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Abstract

We study the problem of differentially private constrained
maximization of decomposable submodular functions. A sub-
modular function is decomposable if it takes the form of a sum
of submodular functions. The special case of maximizing a
monotone, decomposable submodular function under cardinal-
ity constraints is known as the Combinatorial Public Projects
(CPP) problem (Papadimitriou, Schapira, and Singer 2008).
Previous work by Gupta et al. (2010) gave a differentially
private algorithm for the CPP problem.
We extend this work by designing differentially private algo-
rithms for both monotone and non-monotone decomposable
submodular maximization under general matroid constraints,
with competitive utility guarantees. We complement our the-
oretical bounds with experiments demonstrating improved
empirical performance.

Introduction
A set function f : 2N → R is submodular if it satisfies
the following property of diminishing marginal returns: for
all sets S ⊆ T ⊆ N and every element u ∈ N \ T ,
f(S∪{u})−f(S) ≥ f(T ∪{u})−f(T ). Optimization prob-
lems involving the maximization of a submodular function
arise naturally in many different applications, which span
a wide range of fields such as combinatorial optimization
(e.g. Max Cut, Max r-Cover, Facility Location, and Gener-
alized Assignment problems), computer vision, operations
research, and electrical networks (see Narayanan 1997; Fu-
jishige 2005; Schrijver 2003). Furthermore, submodular func-
tions are extensively used in economics (e.g. in the problem
of welfare maximization in combinatorial auctions (Dobzin-
ski and Schapira 2006; Feige 2006; Feige and Vondrák 2006;
Vondrák 2008)). Recently, submodular maximization has
found numerous applications to problems in machine learn-
ing (Kawahara et al. 2009), such as influence maximization
in social networks (Kempe, Kleinberg, and Tardos 2003;
Borgs et al. 2014; Borodin et al. 2017), result diversification
in recommender systems (Puthiya Parambath, Usunier, and
Grandvalet 2016), feature selection for classification (Krause
and Guestrin 2005), dictionary selection (Krause and Cevher
2010), document and corpus summarization (Lin and Bilmes
2011; Kirchhoff and Bilmes 2014; Sipos et al. 2012), crowd
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teaching (Singla et al. 2014), and exemplar-based cluster-
ing (Dueck and Frey 2007; Gomes and Krause 2010).

In most applications, machine learning tools are applied
to users’ sensitive data, causing privacy concerns to become
increasingly important. Differential Privacy (DP) (Dwork
et al. 2006) has been widely-accepted as a robust mathemati-
cal guarantee that a model produced by a machine learning
algorithm does not reveal sensitive, personal information con-
tained in the training data. Notably, Mitrovic et al. (2017)
gave differentially private algorithms for monotone and non-
monotone submodular maximization under cardinality, ma-
troid, and p-extendible system constraints. Gupta et al. (2010)
studied a variety of combinatorial optimization problems un-
der differential privacy and, in particular, gave a differentially
private algorithm for the Combinatorial Public Projects (CPP)
problem by Papadimitriou, Schapira, and Singer (2008). This
is a special case of monotone submodular maximization un-
der cardinality constraints, as the objective function f is
decomposable (also known as Sum-of-Submodular).

Decomposable submodular functions encompass many ex-
amples of submodular functions studied in the context of
machine learning as well as welfare maximization. In the lat-
ter, each agent has a valuation function over sets and the goal
is to maximize the sum of the valuations of the agents, i.e., the
“social welfare”. In machine learning, data summarization,
where the goal is to select a representative subset of elements
of small size, falls into this setting and has numerous applica-
tions, including exemplar-based clustering, image summariza-
tion, recommender systems, active set selection, and corpus
summarization. The line of work of Mirzasoleiman, Badani-
diyuru, and Karbasi (2016); Mirzasoleiman et al. (2016);
Mirzasoleiman, Zadimoghaddam, and Karbasi (2016) studies
decomposable submbodular maximization under p-systems
constraints in various data summarization settings and takes
different approaches to user privacy.

Our Contributions
We focus on the problem of maximization of a decomposable
submodular function under matroid constraints.

Definition 1. A function f : 2N → R is λ-decomposable if
f(S) =

∑︁
I∈D fI(S) ∀S ⊆ N , for submodular functions

fI : 2N → [0, λ].

Concretely, suppose there exists a set of agents D of size



m and a ground set of elements N of size n. We assume that
each agent I has a submodular function fI : 2N → [0, λ],
and the goal is to find the subset S maximizing f(S) =∑︁

I∈D fI(S) subject to a matroid constraintM = (N , I)
of rank r, under differential privacy. Let f(OPT) denote the
value of the optimal non-private solution.

We provide two algorithms for the maximization of mono-
tone and non-monotone decomposable submodular functions
under matroid constraints, with utility guarantees close to
the non-private optimal. Our contributions, denoted by (⋆),
are summarized in Table 1. Our solution exhibits a tradeoff
between the multiplicative and the additive factor via an arbi-
trarily small constant η, which depends on the chosen number
of rounds of the algorithm.

Our results extend the results of Gupta et al. (2010) from
cardinality to matroid constraints, as well as to non-monotone
functions. The multiplicative factor of our utility guarantee
for the monotone case is arbitrarily close to the optimal for
the non-private version of the problem and the additive factor
is optimal for any ε-differentially private algorithm with ap-
proximation factor 1 (see lower bound by Gupta et al. 2010,
Thm. 8.5). In particular, delving into the proof of the lower
bound in (Gupta et al. 2010), we can see that a stronger state-
ment holds: no ε-differentially private algorithm can achieve
additive factor less than r/ε without incurring a polynomial
approximation factor (in the order of (n/r)1/5). Therefore, if
we want a constant approximation factor, an additive error of
r/ε is necessary. In general, for combinatorial optimization
problems such as this, the cost of privacy manifests itself in
the additive error (see lower bounds in (Gupta et al. 2010)).
Thus, minimizing the additive error and reaching this funda-
mental limit, which in our case can be achieved due to the
decomposability assumption, is our foremost consideration.

In comparison, the general case of submodular function
maximization assumes functions of bounded sensitivity, that
is, maxS maxA,B |fA(S)− fB(S)| ≤ λ for A,B sets of
agents that differ in at most one agent. The decomposability
assumption allows us to improve on the utility guarantees
of the general case of the maximization of submodular λ-
sensitive functions, studied by Mitrovic et al. (2017), in our
multiplicative and additive factor. Mitrovic et al. (2017) also
note that using their general greedy algorithm for monotone
submodular maximization under matroid constraints with the
analysis of Gupta et al. (2010) yields a result for decompos-
able functions with improved additive error.

In proving our results, we also fix a lemma that is essential
in the privacy analysis of the CPP problem of Gupta et al.
(2010) and, in turn, in the result for decomposable mono-
tone submodular maximization under matroid constraints of
(Mitrovic et al. 2017) mentioned above, which allows for the
improved additive error.

We complement our theoretical bounds with experiments
on a dataset of Uber pickups in Section . We show that our
algorithms perform better than the more general algorithms
of (Mitrovic et al. 2017) for monotone submodular maximiza-
tion, and are close to the non-private greedy algorithm.

Related Work
Submodular maximization There is a vast literature on
submodular maximization (see (Buchbinder and Feldman
2018) for a survey), for which the greedy technique has been
a dominant approach. Nemhauser, Wolsey, and Fisher (1978)
introduced the basic greedy algorithm for the maximization
of a monotone submodular function that iteratively builds
a solution by choosing the item with the largest marginal
gain with respect to the set of previously selected items. This
algorithm achieves a

(︁
1− 1

e

)︁
-approximation for a cardinality

constraint (which is optimal, see (Raz and Safra 1997)) and a
1/2-approximation for a matroid constraint.

Calinescu et al. (2011) developed a framework based on
continuous optimization and rounding that led to an optimal(︁
1− 1

e

)︁
-approximation for the problem. The approach is to

turn the discrete optimization problem of maximizing a sub-
modular function f subject to a matroid constraint into a con-
tinuous problem of maximizing the multilinear extension F
(a continuous extension of f ) subject to the matroid polytope
(a convex polytope whose vertices are the feasible integral
solutions). The continuous problem can be solved within a(︁
1− 1

e

)︁
factor with a Continuous Greedy algorithm (Von-

drák 2008). In each round t ∈ [T ], this algorithm estimates
the marginal gains of each element u with respect to the
current fractional solution y(t): F (y(t) ∨ 1u) − F (y(t)) =
E
[︁
f(R(y(t)) ∪ {u})− f(R(y(t)))

]︁
, where R(y) is a ran-

dom set which contains v with probability yv . The algorithm
finds an independent set of the matroid, B(t), maximizing the
sum of the estimated marginal gains of the items, and updates
the current fractional solution by taking a small step η = 1/T
in the direction of the selected set: y(t+1) = y(t) + η1B(t) .
The final solution y(T ) is then rounded without loss (Chekuri,
Vondrak, and Zenklusen 2010).

The Measured Continuous Greedy algorithm of Feldman,
Naor, and Schwartz (2011) is a variant of the continuous
greedy, which increases the coordinates of its fractional so-
lution more slowly, and achieves a 1

e -approximation for the
general case of non-monotone submodular functions. This is
not the optimal approximation factor (Buchbinder and Feld-
man 2019; Ene and Nguyen 2016), but the structure of the
algorithm is favorable for its private adaptation.

Private submodular maximization A randomized algo-
rithm A : D → R is (ε, δ)-differentially private (Dwork
et al. 2006) if for all neighboring sets D,D′ (i.e., that dif-
fer in at most one element) and any measurable output set
R, Pr[A(D) ∈ R] ≤ eε Pr[A(D′) ∈ R] + δ. The private
algorithms of (Mitrovic et al. 2017) and (Gupta et al. 2010)
are based on the discrete greedy algorithm, where the greedy
step of selecting an item in each round is implemented via
the Exponential Mechanism (McSherry and Talwar 2007),
which guarantees that the selected item is almost as good
as the marginal gain maximizer. By the advanced composi-
tion property of DP (Dwork, Rothblum, and Vadhan 2010), r
consecutive runs of an (ε, 0)-DP algorithm lead to a cumu-
lative privacy guarantee of the order of

√
rε. Remarkably,

for the case of decomposable monotone submodular func-
tions, Gupta et al. (2010) show that the privacy guarantee



r-Cardinality Matroid (rank r)

λ-decomposable

Monotone
(︁
1− 1

e

)︁
f(OPT)− rλ

ε log n (GLMRT10)
(︁
1− 1

e − η
)︁
f(OPT)− rλ

ηε log n (⋆)
1
2f(OPT)−

rλ
ε log n (MBKK17)

Non-monotone
(︁
1
e − η

)︁
f(OPT)− rλ

ηε log n (⋆)
(︁
1
e − η

)︁
f(OPT)− rλ

ηε log n (⋆)

λ-sensitive

Monotone
(︁
1− 1

e

)︁
f(OPT)− r

3/2λ
ε log n (MBKK17) 1

2f(OPT)−
r
3/2λ
ε log n (MBKK17)(︁

1− 1
e

)︁
f(OPT)− nr7λ

ε3 log n (RY20)
Non-monotone 1

e

(︁
1− 1

e

)︁
f(OPT)− r

3/2λ
ε log n (MBKK17) −

General, non-private

Monotone
(︁
1− 1

e

)︁
f(OPT) (NWF78)

(︁
1− 1

e

)︁
f(OPT) (CCPRV11; V08)

Non-monotone 0.385f(OPT) (BF19) 0.385f(OPT) (BF19)

Table 1: Expected utility guarantees of submodular maximization algorithms. The bottom section refers to submodular maxi-
mization without privacy constraints, whereas the top two refer to DP submodular maximization. All results omit any log 1

δ and
constant factors.

of r rounds is, up to constant factors, the same as that of a
single run of the exponential mechanism, which allows for
the improved additive error in this case. It is the main idea of
this proof by Gupta et al. (2010) that we extend to the case
of matroid constraints and non-monotone funtions.

More recently, Rafiey and Yoshida (2020) proposed a dif-
ferentially private submodular maximization algorithm for
the general case of λ-sensitive functions achieving a multi-
plicative approximation factor of (1− 1/e), which is arbitrar-
ily close to our approximation for decomposable submodular
functions. However, the additive error, which is precisely the
error we aim to minimize, is in the order of nr7 logn

ε3 , which
is large in comparison to our rλ

ε for the case of decomposable
submodular functions, especially in the high rank regime.

We finally note that, in principle, differentially private sub-
modular optimization is related to submodular maximization
in the presence of noise (Hassidim and Singer 2017). How-
ever, the structure of the noise is of a multiplicative nature,
so it is not clear how these algorithms could be applicable.

Techniques
Our algorithms for the monotone and non-monotone prob-
lems are a private adaptation of the Continuous and Measured
Continuous Greedy algorithms, respectively. They both use
the Exponential Mechanism to greedily find an independent
set B(t,r) in each round t and update with this set the cur-
rent fractional solution. Our privacy analysis is based on the
technique of (Gupta et al. 2010).

The main idea of this technique is the following. Let
A,B be two sets of agents which differ in the individual
I , as A = B ∪ {I}. The privacy loss of the algorithm
is bounded by the sum over the rounds of the expected

marginal gains of each item with respect to the valuation
function of agent I , where the expected value is calculated
over a distribution that depends on the valuation functions
of the rest of the agents B. More formally, the privacy
loss is bounded by

∑︁r
i=1 Eu[fI(Si−1 ∪ {u}) − fI(Si−1)].

By a key lemma, whose proof we fix and state in Sec-
tion , this is bounded by a function of the sum of the re-
alized marginal gains

∑︁r
i=1[fI(Si−1∪{ui})− fI(Si−1)] =∑︁r

i=1[fI(Si) − fI(Si−1)] = fI(S) − fI(∅), which in turn
is bounded by λ. Note that it is important in this argument
that the sum telescopes to the total utility gain of fI .

We now explain the main challenges in its application to
our continuous algorithms. Recall that we use the continuous
greedy algorithm to achieve the optimal multiplicative guar-
antee for the monotone case, which means that instead of
calculating the marginal gain of u in each round with respect
to f , we have to estimate F (y(t,i−1) ∨ 1u) − F (y(t,i−1)).
Since the random sets used to estimate these marginal gains
are drawn independently in each round, the final sum of the
estimated marginal gains with respect to fI is not a telescop-
ing sum. If instead we use concentration to argue that the
final sum is close to the true marginal gains with respect to
FI , the final telescoping sum would be in the order of Tλ.

To overcome both these problems, we take two steps.
First, we choose the smoother marginal gains F (y(t,i−1) +
η1u) − F (y(t,i−1)), so that the realized marginal gain is
FI(y

(t,i))− FI(y
(t,i−1)), which, by concentration, leads to

the telescoping sum FI(y
(T,r)) − FI(y

(1,0)) up to the sam-
pling error term. However, this is not enough as the latter
would be on the order of m, the number of agents. In regimes
of interest, this is large enough that we would want to avoid



Algorithm 1 Private Continuous Greedy

1: Input: Utility parameters η, γ ∈ (0, 1], privacy parame-
ters ε, δ ∈ (0, 1], and set of agents D.

2: Let T ← ⌈ 1η ⌉ and ε0 ← 2 log
(︂
1 + ε

4+log(1/δ)

)︂
.

3: Draw s = 6r2T 4 log(n/γ) independent random vectors
such that rj ← Un for all j ∈ [s].

4: y(1,0) = 1∅.
5: for t = 1, . . . , T do
6: B(t,0) = ∅.
7: for i = 1, . . . , r do
8: Let N (t,i) = {u ∈ N \ B(t,i−1) : B(t,i−1) ∪
{u} ∈ I}.

9: ifN (t,i) = ∅ then let y(t,r) = y(t,i−1) and break
the loop.

10: Define w̃
(t,i)
D (u) = G(y(t,i−1) + η1u) −

G(y(t,i−1)) for all u ∈ N (t,i).
11: Let u(t,i) ← Oε0(w̃

(t,i)
D ).

12: Let y(t,i) = y(t,i−1) + η1u(t,i) .
13: Let B(t,i) ← B(t,i−1) ∪ {u(t,i)}.
14: y(t+1,0) = y(t,r).
15: return SWAP-ROUNDING(y(T,r), I).

any dependence on m in the utility or sample complexity.
Second, we introduce a function G : [0, 1]N → R. This

function is not itself submodular but serves as a proxy for F .
To construct G, we draw uniform vectors rj ∈ [0, 1]N in the
beginning of the algorithm, and define G(x) to be the average
over samples f({u ∈ N : rju < xu}). Therefore, GI(x) is
always bounded by λ and the sum of estimated marginal
gains of agent I telescopes to GI(y

(T,r))−GI(y
(1,0)) ≤ λ.

It follows that G’s sampling error only affects utility.
Further applying this technique to the non-monotone case

requires a bound on the sum of the absolute realizable
marginal gains of the function on non-decreasing inputs. This
bound does not hold for all non-monotone functions, but it is
true for submodular functions, as we prove in Section .

Monotone
We denote by w

(t,i)
D (u) = F (y(t,i−1) + η1u)− F (y(t,i−1))

the true marginal gain of an element u in round (t, i). We
let G(x) be the estimate of F (x) for any point x ∈ [0, 1]n.
To compute G, we generate s uniformly random vectors
rj ← Un for j ∈ [s] in the beginning of the algorithm, where
U denotes the uniform distribution over [0, 1], and set

G(x) =
1

s

s∑︂
j=1

f({u ∈ N : rju < xu}).

We denote by Oε0(h) the Exponential Mechanism (McSh-
erry and Talwar 2007) with privacy parameter ε0 and score
function h, formally defined in the supplementary. For ease
of notation, we consider 1-decomposable functions. This is
equivalent to adding a pre-processing step to scale the func-
tion by 1/λ, which only affects the additive error.

Theorem 1. Let f : 2N → R+, where |N | = n, be a
monotone, 1-decomposable, submodular function andM =
(N , I) a matroid of rank r. Algorithm 1 with parameters η
and γ is (ε, δ)-differentially private and returns a set S ∈ I
such that, with probability 1− γ,

E[f(S)] ≥ (1−1

e
−O(η))f(OPT)−O

(︃
r

ηε
log

nr

ηγ
· log 1

δ

)︃
.

Algorithm 1 makes O
(︂

nr3

η5 log n
γ

)︂
oracle calls.

We prove the theorem by combining the utility and pri-
vacy guarantees of our algorithm, as stated in Theorem 2 and
Theorem 3, respectively. We remark that Theorem 2 lower
bounds the utility of the fractional solution F (y(T,r)). Since
y(T,r) =

∑︁T
t=1 η1B(t,r) , where B(t,r) ∈ I for all t ∈ [T ], it

follows that y(T,r) ∈ P(M) (the convex and down-closed
polytope ofM). The results of (Chekuri, Vondrak, and Zen-
klusen 2010) can be applied to yield the final guarantees of
the integral solution returned by the swap-rounding process.

For the utility analysis, we first show that G is a good
proxy for F by bounding the sampling error.
Lemma 1. With probability at least 1−2γ, for any sequence
of points picked by the algorithm

{︁
{u(t,i)}ri=1

}︁T
t=1

and any
u ∈ N , it holds that

(1− η)w
(t,i)
D (u)− ηf(OPT)

rT
≤ w̃

(t,i)
D (u) and

w̃
(t,i)
D (u) ≤ (1 + η)w

(t,i)
D (u) +

ηf(OPT)

rT
.

The utility proof follows the steps of that of the Continuous
Greedy algorithm, yet accounting for the discretization, the
error of the Exponential Mechanism, and the sampling.
Theorem 2. With probability at least 1− 3γ,

F (y(T+1,0)) ≥ (1− 1/e−O(η))f(OPT)− 8r

ηε0
log

nr

ηγ
.

Proof Sketch. With probability 1 − 2γ, the bounds of
Lemma 1 hold. We condition on this event.

F (y(t+1,0))− F (y(t,0)) =

r∑︂
i=1

w
(t,i)
D (u(t,i))

≥ 1

1 + η

r∑︂
i=1

w̃
(t,i)
D (u(t,i))− ηf(OPT)

T
.

We assume wlog that |B(t,r)| = r and that there exists a
mapping of u(t,i) to o(t,i), where OPT = {o(t,1), . . . , o(t,r)}.
Since o(t,i) is a feasible option in the i-th round, by the
guarantees of the Exponential Mechanism, with probability
1− γ we have that for all rounds (t, i) ∈ [T ]× [r],

w̃
(t,i)
D (u(t,i)) ≥ w̃

(t,i)
D (o(t,i))− 2

ε0
log

nrT

γ
.

We condition on this event for the rest of the proof. Thus, by
Lemma 1, with probability 1− 3γ,

F (y(t+1,0))− F (y(t,0))

≥ 1− η

1 + η

r∑︂
i=1

w
(t,i)
D (o(t,i))− 2ηf(OPT)

T
− 2r

ε0
log

nrT

γ
.

(1)



Claim 1. For mototone f , for all t ∈ [T ],∑︁r
i=1 w

(t,i)
D (o(t,i)) ≥ η[f(OPT)− F (y(t,r))].

Substituting this bound in inequality (1), we get that

F (y(t+1,0))− F (y(t,0))

≥ η[(1− 2η)f(OPT)− F (y(t+1,0))]

− 2ηf(OPT)

T
− 2r

ε0
log

nrT

γ
.

By rearranging and induction, we have that with probability
at least 1− 3γ,

F (y(T+1,0)) ≥
(︃
1− 1

(1 + η)T

)︃
(1− 2η)f(OPT)

− T

(︃
2ηf(OPT)

T
+

2r

ε0
log

nrT

γ

)︃
⇒ F (y(T+1,0)) ≥ (1−1/e−O(η))f(OPT)− 8r

ηε0
log

nr

ηγ
(since T = ⌈ 1η ⌉ ≤

2
η )

This concludes the sketch of the proof.

For the privacy analysis, we need the next concentration
bound (Claim 2). A stronger version of this bound with re-
spect to constant factors also appears in (Gupta et al. 2010),
but its proof is not entirely correct. We briefly explain the
mistake in (Gupta et al. 2010) in the supplementary.
Claim 2. Consider an n-round probabilistic process. In each
round i ∈ [n], an adversary chooses a distribution Di over
[0, 1] and a sample Ri is drawn from this distribution. Let
Z1 = 1 and Zi+1 = Zi − RiZi. We define the random
variable Yj =

∑︁n
i=j ZiE[Ri]. Then for any j ∈ [n],

P[Yj ≥ qZj ] ≤ exp(3− q).

Proof. The proof is by reverse induction on j. For j = n,
Yn = E[Rn]Zn ≤ Zn since E[Rn] ∈ [0, 1]. It follows that
P[Yn ≥ qZn] = 0 for q > 1, so the claim is trivially true for
j = n and for any q.

For the inductive step, suppose P[Yj+1 ≥ qZj+1] ≤
exp(3− q). We will prove that P[Yj ≥ qZj ] ≤ exp(3− q).
For q ≤ 3 the RHS is at least 1, so the claim is trivially true.
Let us denote µj = E[Rj ].

P[Yj ≥ qZj ] = E
[︃
P
[︃
Yj+1 ≥

q − µj

1−Rj
· Zj+1

]︃]︃
≤ E

[︃
exp

(︃
3− q − µj

1−Rj

)︃]︃
,

by the inductive hypothesis. It suffices to prove that
E
[︂
exp
(︂
3− q−µj

1−Rj

)︂]︂
≤ exp(3− q) for q > 3. This is equiv-

alent to E
[︂
exp
(︂

µj−qRj

1−Rj

)︂]︂
≤ 1, for q > 3.

Let us denote f(Rj) = exp
(︂

µj−qRj

1−Rj

)︂
. Calculations show

that f ′′(Rj) > 0 so f is convex for q > 3 and Rj , µj ∈ [0, 1].
Therefore, E[f(Rj)] ≤ E[(1−Rj)f(0) +Rjf(1)] = (1−
µj)f(0) +µjf(1) = (1−µj) exp(µj) + 0 ≤ 1, concluding
the proof of the inductive step and the claim.

Theorem 3. Algorithm 1 is
(︁
(eε0/2 − 1)(4 + log 1

δ ), δ
)︁
-

differentially private.

The privacy analysis follows (Gupta et al. 2010) using
Claim 2. For A,B sets of agents such that A△B = {I},
we bound the ratio of the probabilities that the sequence
of chosen elements over the rounds be U , under inputs
A and B, which suffices by the post-processing property
of DP (Dwork et al. 2006). Crucially, our setting of G al-
lows

∑︁T
t=1

∑︁r
i=1[GI(y

(t,i−1)+η1u(t,i))−GI(y
(t,i−1))] =

GI(y
(T,r))−GI(y

(1,0)) ≤ 1.

Proof Sketch. Let A and B be two sets of agents such that
A△B = {I}. Suppose that, instead of the output set, we
reveal the sequence in which we pick the elements of our
algorithm, denoted by U = (u(1,1), u(1,2), . . . , u(T,r)). We
then want to bound the ratio of the probabilities that the
output sequence be U under input A and B. By the post-
processing property of DP (Dwork et al. 2006) this suffices
to achieve the same privacy parameters over the output of the
algorithm, SWAP-ROUNDING(y(T,r), I).

P[M(A) = U ]

P[M(B) = U ]
=

(︄
T∏︂

t=1

r∏︂
i=1

exp( ε02 w̃
(t,i)
A (u(t,i)))

exp( ε02 w̃
(t,i)
B (u(t,i)))

)︄

·

(︄
T∏︂

t=1

r∏︂
i=1

∑︁
u∈N (t,i) exp(

ε0
2 w̃

(t,i)
B (u))∑︁

u∈N (t,i) exp(
ε0
2 w̃

(t,i)
A (u))

)︄
(2)

If A \ B = {I}, the second factor of (2) is bounded above
by 1, and the first factor by exp( ε02 ). If B \ A = {I}, the
first factor of (2) is bounded from above by 1, and the second
factor by:

T∏︂
t=1

r∏︂
i=1

E
u

[︂
e

ε0
2 (GI(y

(t,i−1)+η1u)−GI(y
(t,i−1)))

]︂
≤e(e

ε0/2−1)
∑︁(T,r)

(1,1)
E
u
[GI(y

(t,i−1)+η1u)−GI(y
(t,i−1))]

.

(Since ex ≤ 1 + eε0/2−1
ε0/2

x ∀x ∈ [0, ε0
2 ] and 1 + t ≤ et ∀t)

Here, the expectations are over u← P (t,i), where P (t,i) are
the distributions defined by the weights of the Exponential
Mechanism with respect to w̃

(t,i)
A . Consider the underlying

Tr-round process, where Z(t,i) is the total remaining realized
marginal gain with respect to GI and R(t,i) its expected
increase with respect to P (t,i). By Claim 2,

P

⎡⎣(T,r)∑︂
(1,1)

E
u

[︂
GI(y

(t,i) + η1u)−G(y(t,i)))
]︂
≥ 3 + log

1

δ

⎤⎦
≤ δ

Thus, with probability 1 − δ, the ratio of equation (2)
is at most exp((eε0/2 − 1)(3 + log 1

δ )). In general, for
two neighboring sets of agents A,B, Algorithm 1 is(︁
(eε0/2 − 1)(4 + log 1

δ ), δ
)︁
-DP.



Algorithm 2 Private Measured Continuous Greedy

1: Input: Utility parameters η, γ ∈ (0, 1], privacy parame-
ters ε, δ ∈ (0, 1], and set of agents D.

2: Let T ← ⌈ 1η ⌉ and ε0 ← ε/(14 + 4 log(1/δ)).
3: Draw s = 48r3T 7 log(n/γ) independent random vec-

tors such that rj ← Un for all j ∈ [s].
4: y(1,0) = 1∅.
5: for t = 1, . . . , T do
6: B(t,0) = ∅.
7: for i = 1, . . . , r do
8: Let N (t,i) = {u ∈ N \ B(t,i−1) : B(t,i−1) ∪
{u} ∈ I}.

9: ifN (t,i) = ∅ then let y(t,r) = y(t,i−1) and break
the loop.

10: Define w̃
(t,i)
D (u) = G(y(t,i−1) + η(1 −

y
(t,i−1)
u )1u)−G(y(t,i−1)) for all u ∈ N (t,i).

11: Let u(t,i) ← Oε0(w̃
(t,i)
D ).

12: Let y(t,i) = y(t,i−1) + η(1− y
(t,i−1)

u(t,i) )1u(t,i) .
13: Let B(t,i) ← B(t,i−1) ∪ {u(t,i)}.
14: y(t+1,0) = y(t,r).
15: return SWAP-ROUNDING(y(T,r), I).

Non-monotone
Algorithm 2 is an adaptation of the Measured Continu-
ous Greedy algorithm introduced by Feldman, Naor, and
Schwartz (2011). The main difference from Algorithm 1 is
the update step in line 12, which also leads to a change in the
definition of the marginal gains w̃(t,i)

D (u) in line 10.
Theorem 4. Let f : 2N → R+, where |N | = n, be a non-
monotone, 1-decomposable, submodular function andM =
(N , I) a matroid of rank r. Algorithm 2 with parameters η
and γ is (ε, δ)-differentially private and returns a set S ∈ I
such that, with probability 1− γ,

E[f(S)] ≥ (1/e−O(η))f(OPT)−O

(︃
r

ηε
log

nr

ηγ
· log 1

δ

)︃
.

Algorithm 2 makes O
(︂

nr4

η8 log n
γ

)︂
oracle calls.

The utility and privacy analyses follow the main steps of
their counterparts for the monotone case, with a few key
modifications. The utility analysis now accounts for possibly
negative marginal gains. The privacy analysis now relies
on bounding a sum of expected absolute marginal gains,
which, using Claim 2, can be bounded by the sum of realized
absolute marginal gains. Bounding the latter is not as trivial
as in the monotone case; the “movement” of a non-monotone
function could be unbounded, even though the function has
a bounded range, so we have to leverage the fact that fI is
submodular:
Lemma 2. Let fI : 2[n] → [0, 1] be a submodular function.
Then for any sequence of non-decreasing sets ∅ = T0 ⊆
· · · ⊆ Tr ⊆ [n],

∑︁r
i=1 |fI(Ti)− fI(Ti−1)| ≤ 2− fI(∅).

Proof. Let Si = {1, . . . , i}. Suppose T = {it : t =
1, . . . , k}, for some k ∈ [n], is the set of indices for which

fI(Sit) − fI(Sit−1) ≥ 0. Then, by submodularity, for
t = 1, . . . , k we have that

fI(Sit)− fI(Sit−1) ≤ fI(T ∩ Sit)− fI(T ∩ Sit−1)

= fI(i1, . . . , it)− fI(i1, . . . , it−1).

Summing over the range of t ∈ [k], it follows that

k∑︂
t=1

|fI(Sit)− fI(Sit−1)| =
k∑︂

t=1

fI(Sit)− fI(Sit−1)

≤ fI(i1, . . . ik)− fI(∅) ≤ 1− fI(∅) (3)

Similarly, we let j1, . . . jℓ be the indices for which
fI(Sjt)− fI(Sjt−1) < 0. Then, by (3),

ℓ∑︂
t=1

|fI(Sjt)− fI(Sjt−1)|

=

k∑︂
t=1

fI(Sit)− fI(Sit−1)− fI([n]) + fI(∅)

≤ 1− fI([n]) ≤ 1 (4)

Adding inequalities (3) and (4), we get that∑︁n
i=1 |fI(Si) − fI(Si−1)| ≤ 2 − fI(∅). Since the or-

der of the elements of [n] is arbitrary, by the triangle
inequality, we get the statement of the lemma.

Experiments
We describe two experiments evaluating the Private Contin-
uous Greedy (PCG) Algorithm 11. We replicate the Uber
location selection experiment in (Mitrovic et al. 2017), com-
paring PCG and its rank-invariant noise addition with the
composition law based differentially private greedy (DPG)
algorithm; (Mitrovic et al. 2017, Theorem 8). We also study
a hard instance of a partition matroid constraint where PCG
significantly outperforms the discrete DPG with the rank-
invariant privacy parameter (Mitrovic et al. 2017, Theorem
9). We use the same dataset of coordinates of Uber pick-ups2.
The goal is to choose a set of utility-maximizing waiting
locations S under the given constraints, while keeping the
pick-up data differentially private. If M(l, p) is the ℓ1 dis-
tance between l, p ∈ R2 normalised to lie in [0, 1] for our
dataset D, we define the utility of a set S using the monotone
decomposable function

fD(S) =
∑︂
p∈D

(︃
1−min

l∈S
M(l, p)

)︃
= |D|−

∑︂
p∈D

min
l∈S

M(l, p).

(5)
FD, the multilinear extension of fD, can be computed ex-
actly in O(nm log n) time via the closed form expression
F{p}(x) =

∑︁n
i=1(1− d(p, ci))xi

∏︁
j<i(1− xj) (where the

ci are locations sorted in increasing order of distance from
p), and summing up over all p.

1The code and dataset used for our experiments are available
at https://github.com/Anamay-Chaturvedi/Differentially-private-
decomposable-submodular-optimization

2https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-
york-city.

https://github.com/Anamay-Chaturvedi/Differentially-private-decomposable-submodular-optimization
https://github.com/Anamay-Chaturvedi/Differentially-private-decomposable-submodular-optimization


Figure 1: Empirical performance of our algorithm for the
monotone case under cardinality (top) and matroid con-
straints (bottom).

Cardinality constraint For the r-cardinality constraint
problem, our PCG algorithm and the general monotone sub-
modular maximization algorithm DPG have additive error
r logn
ηε and r

3/2 logn
ε , respectively.3 We study the high rank

regime, which in theory is more favourable for PCG.
Analogous to (Mitrovic et al. 2017), we use a 5× 4 grid

over Manhattan as potential waiting spots, but make their
experiment harder by adding 80 copies of the northern corner
of the grid. Due to the structure and density of the points, the
original problem reduces to an easy instance of Geometric
Maximum Coverage, which admits a PTAS (Li et al. 2015)
and a randomly chosen set performs close to optimal for
r > 10. The modified instance is harder for random selection,
but essentially the same for the rest of the algorithms.

We draw m = 100 pickups uniformly at random 40 times
and average the empirical utilities of DPG and our PCG over
10 runs for each draw. In PCG, we set η = 0.33 and use the

3Mitrovic et al. (2017) report that DPG with the privacy param-
eter calculated using basic DP composition might outperform the
one that uses advanced. Per instance, we check and use the best of
the two for our comparison.

closed-form expression for the multilinear relaxation of fD.
We also measure the performance of the non-private greedy
which has optimal utility as a yardstick, and that of a ran-
domly chosen basis set that serves as a trivial private baseline.
We set ε = 0.1, δ = 1/m1.5 where m = |D| = 100, with
which the privacy parameter used in the differentially private
choices of increment is ε0 ≈ 0.01006.

In Figure 1 (top), we see that that the PCG algorithm starts
to outperform the DPG algorithm around rank r = 13, but
that both private algorithms become equivalent to picking a
uniformly random set around r = 25. It is slightly beyond
r = 10 that our setting for ε0 starts to be larger than the
rank-sensitive privacy parameter ε/r used in each round of
the DPG algorithm, which justifies this trend. We also found
that this algorithm scales well to large datasets, executing
10 runs for ranks r = 10, 15, 20, 25, each for datasets with
10, 000 points, in 25 minutes in total on a personal computer.

Partition matroid constraint As noted in (Mitrovic et al.
2017), in the decomposable case with matroid constraints,
DPG combined with the privacy analysis of (Gupta et al.
2010) gives the optimal additive error (see Table 1). However,
the 1

2 approximation factor in the DPG guarantee is not a
pessimistic bound but a tight one.

Suppose S = {A,B,C} is the ground set, and
{{A}, {B,C}} the partition. We define a matroid so that
member sets have at most one element per partition. For a
monotone increasing submodular f the optimum must be
either {A,B} or {A,C}. If f({B}) > f({A}), f({C}) but
f({A,B}) < f({A,C}), then the greedy algorithm will
consistently choose B, and then A for the sub-optimal out-
put {A,B}. In particular, if f({B}) = 1 and f({A}) =
f({C}) = 1−ϵ, but f({A,B}) = 1 and f({A,C}) = 2−2ϵ
(readily extendable to a submodular function), the utility
gained by greedy is at most 1

2−2ϵ times the optimal.

We test DPG and PCG empirically in this type of worst-
case instance. Although the noise induced by privacy would
help DPG overcome this pitfall with some probability, our
experiments show that the phenomenon described above is
realized in the experiment. We pick three points in Manhat-
tan which mimic this partition structure (with B closest to
downtown, and A and C slightly further away) and compare
the DPG and the PCG algorithms on a range of dataset sizes.

In Figure 1 (bottom), we compare the average utilities (nor-
malised by the dataset size) obtained by PCG (with η = 1/7
and δ = 1/m1.5) and DPG with the improved privacy analy-
sis. The error bars at each point mark the empirical standard
deviation of the means. Although their performances are com-
parable for small datasets, the improvement of PCG increases
as the dataset grows in size. There is high variance due to the
random choices of the dataset for each set size, but the sepa-
ration between the empirical confidence intervals still widens
with larger datasets. We find that for these types of worst-case
instances, compared to DPG (even with the improved privacy
analysis) a significant performance enhancement can be ob-
tained by switching to PCG for the decomposable setting.
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