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Abstract—A great many problems in network information
theory, both fundamental and applied, involve determining a
minimal set of inequalities linking the Shannon entropies of a
certain collection of subsets of random variables. In principle
this minimal set of inequalities could be determined from the
entropy region, whose dimensions are all the subsets of random
variables, by projecting out dimensions corresponding to the
irrelevant subsets. As a general solution technique, however, this
method is plagued both by the incompletely known nature of
the entropy region as well as the exponential complexity of
its bounds. Even worse, for four or more random variables,
it is known that the set of linear information inequalities
necessary to completely describe the entropy region must be
uncountably infinite. A natural question arises then, if there are
certain nontrivial collections of subsets where the inequalities
linking only these subsets is both completely known, and have
inequality descriptions that are linear in the number of random
variables. This paper answers this question in the affirmative.
A decomposition expressing the collection of inequalities linking
a larger collection of subsets from that of smaller collections of
subsets is first proven. This decomposition is then used to provide
systems of subsets for which it both exhaustively determines the
complete list of inequalities, which is linear in the number of
variables.

Index Terms—information inequalities, complexity of entropy
region

I. INTRODUCTION

For two sets A and B, we will denote by AB “

tx |x : B Ñ Au. For two subsets P1 Ď RA1 and P2 Ď RA2

of Euclidean space, define P1 ˆ
Ş

P2 as,

P1 ˆ
č

P2 “

$
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’
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f P RA1YA2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D g1 P P1, g2 P P2 s.t :
fpaq “ g1paq,@a P A1

fpbq “ g2pbq,@b P A2

,

/

.

/

-

(1)

Let the ground set E Ď N index a set of |E| finite discrete
random variables (RVs), and let,

∆E “

$

&

%

pE

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X Ď N, pE : XE Ñ r0, 1s,
ÿ

xEPXE

pEpxEq “ 1

,

.

-

(2)

be a set of valid joint probability mass functions (PMFs) for
these RVs paired with their ranges. For any such joint PMF
pE P ∆E and any subset A Ă E define the generalized
marginalization operator M : ∆E ˆ 2E Ñ

Ť

AĎE ∆A with,
MppE , Aq “ pA, A ‰ H (3)

where,

pApxAq “
ÿ

xE P XE s.t.
xEpeq “ xApeq @e P A

pEpxEq (4)

Given two PMFs pE1 and pE2 such that E1 X E2 ‰ H, we
write

pE1

M
“ pE2 (5)

if and only if

MppE1 , E1 X E2q “ MppE2 , E1 X E2q (6)

Define the function ĥE : ∆E Ñ R2E such that for any A Ď E,

ĥEppEq : A ÞÑ ´
ÿ

xAPXA

pApxAq log2 ppApxAqq (7)

with again MppE , Aq “ pA. Here, based on preference,
we can either think of ĥEppEq as a vector whose elements
are indexed by all subsets 2E , or equivalently as a function
ĥEppEq : 2E Ñ R assigning a number to to each such subset
of E. Either way, the value associated with the subset A is the
joint Shannon entropy of that subset of the random variables.

The entropy region for the ground set E will be the image
of the set of all joint PMFs ∆E under this this map ĥE

Γ˚
E “ ĥEp∆Eq (8)

denoted as h “ rhpAq|A Ď Es an entropic vector in Γ˚
E and

let,

Ξ “ ĥ
´1

E phq (9)

be the collection of PMFs that is associated with h.
Γ˚
E was first introduced in [1], motivated by the desire to

develop a new framework to proof information inequalities.
By definition, Γ˚

E gives a complete characterization of all
information inequalities and thus is closely related to some
important problems in probability theory and information
theory. The attempt to fully characterize Γ˚

E started from the
so-called basic information inequalities [2], which are implied
from the non-negativity of the conditional mutual informations
and are of the form:
hpAq ` hpBq ě hpA Y Bq ` hpA X Bq,@A,B Ď E (10)

Each vector h P Γ˚
E must satisfies all the inequalities of the

form (10), which means, when ΓE is defined as,
ΓE “ th P R2E |h satisfies (10),@A,B Ď Eu (11)



we have an outer bound Γ˚
E Ď ΓE . Γ˚

E denotes the closure of
Γ˚
E , the natural question of whether or not Γ˚

E
?
“ ΓE motivates

the finding of non-Shannon type inequalities [3]–[5], which are
defined as the information inequalities that can not be implied
from basic inequalities in (10). The closure of the entropy
region Γ˚

E was proved to be a closed convex cone [3], and for
|E| ď 3 the cone is polyhedral and Γ˚

E “ ΓE . The equality
doesn’t hold, meaning Γ˚

E ‰ ΓE , for |E| ě 4, moreover Γ˚
E is

not polyhedral when |E| ě 4, and its inequality and extreme
ray descriptions are incompletely known [6], [7].

Significant progresses have been achieved on difference
aspects of the topic [8]–[10] [11]–[13], However, much less
has been written considering the instance when we only need
the list of all fundamental inequalities linking those entropies
of only certain subsets. Furthermore, it is only this restriction
to only a certain collection of subsets that is often required in
the multiterminal information theory applications. Hence, in
this article we are aiming to study the restriction of the entropy
region to only those dimensions associated with a certain given
collection of subsets.

To describe this concept properly, consider a collection of
subsets F Ď 2E , and define the projection,

projF Γ˚
E “

!

h P RF ˇ

ˇ Dh P Γ˚
E , hpAq “ hpAq @A P F

)

(12)
Again, most applied problems, for instance network cod-

ing capacity regions [14], depend on Γ˚
E only through its

projection projF Γ˚
E for some smaller collection of subsets

F Ĺ 2E . Even worse, even the outer bounds such as the
Shannon outer bound have both a number of inequalities and
dimensions that grow exponentially in |E|. Significantly, while
Γ˚
E is non-polyhedral for |E| ě 4, and these outer bounds

have complexities that are exponential in |E|, there is the
possibility that its projection projF Γ˚

E can in some instances
be polyhedral and, further, have a number of inequalities and
dimensions that grow linearly in |E|. This paper proves that
indeed, many non-trivial such instances exist.

II. PRELIMINARIES

To understand the general idea behind the method the paper
utilizes to prove these existence of these cases, let E “ E1 Y

E2, and suppose that F “ 2E1 Y 2E2 . In the trivial case that
E1 X E2 “ H, it is direct to show that,

proj2E1Y2E2 pΓ˚
Eq “ Γ˚

E1
ˆ
č

Γ˚
E2

(13)

The more general case, when there’s a collection of subsets
E1, ..., Em such that Ei X Ej ‰ H for some i, j P r1,ms,
is more complicated. The main contribution of the paper is
summarized as the following theorem.

A. Main Results

Theorem 1. Let n P N, consider a collection of m “ 2n
subsets E2i`1 “ t3i`1, 3i`2, 3i`3u, E2i`2 “ t3i`2, 3i`

3, 3i`4u, @i P r0, n´1s. Let F “
Ťm

i“1 2
Ei , then projF pΓ˚

Eq

is a polyhedral cone with:
1) explicitly known inequality descriptions.
2) a number of inequalities that grows linearly in |E|.

Theorem 1 is proved based on the following two theorems.

Theorem 2. Let E1,E2 two ground sets with such that |E1 X

E2| “ 1, then

proj2E1Y2E2 pΓ˚
Eq “ Γ˚

E1
ˆ
č

Γ˚
E2

(14)

Theorem 3. If E1 “ t1, 2, 3u, E2 “ t2, 3, 4u and E “ E1 Y

E2 “ t1, 2, 3, 4u, then,

proj2E1Y2E2 pΓ˚
Eq “ Γ˚

E1
ˆ
č

Γ˚
E2

(15)

B. Outer bounds on projYm
i“12

Ei pΓ˚
Eq

A natural outer bound of projYm
i“12

Ei pΓ˚
Eq would concate-

nate the inequality descriptions for Γ˚
Ei
, i P r1,ms to get,

projYm
i“12

Ei pΓ˚
Eq Ď

m

ˆ
č

i“1

Γ˚
Ei

(16)

A tighter outer bound forces there to be a way to select the
distributions to match on their marginals,

projYm
i“12

Ei pΓ˚
Eq Ď p

m

ˆ
č

i“1

Γ˚
Ei

q ˆ
č

P“
E1,...,Em

(17)

where,

P“
E1,...,Em

“

$

’

’

’

’

’

’

’

’

’

’

’
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’

’

’

’

’

’

’
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’

’

%

f P

m

ˆ
č

i“1

Γ˚
Ei

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D h
pnq

i P Γ˚
Ei

, i P r1,ms :

1q lim
nÑ8

h
pnq

i “ hi, i P r1,ms

2qfpAq “ hipAq, A Ď Ei, i P r1,ms

3q@i P r1,ms, D p
pnq

Ei
P ĥ

´1

Ei
ph

pnq

i q, s.t.

@i, j P r1,ms if Ei X Ej ‰ H,

then p
pnq

Ei

M
“ p

pnq

Ej
, @n P N

,

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

-

(18)

C. Marginal problem and Running Intersection Property

Definition 1. (The marginal problem on PMF) Consider a col-
lection of marginal PMFs pE1 ,..., pEm ,, the marginal problem
wonders if there exists a joint PMF pE with E “

Ťm
i“1 Ei,

such that,

MppE , Eiq “ pEi , @i P r1,ms (19)

Defined above is the marginal problem on PMF, which has
received research interests in different literature [15]–[18]. The
problem is trivial when the collection of PMFs are defined on
disjoint ground sets, in which case the stochastic product of
the marginals give us a valid joint PMF. However, the problem
is not trivial anymore when the ground sets are not disjoint.
One obvious necessary condition for such joint PMF to exist
for a marginal problem is pairwise compatibility, meaning for
any pair of Ei and Ej , MppEi

, Ei XEjq “ MppEj
, Ei XEjq

if Ei X Ej ‰ H.
So the question becomes when does the pairwise compati-

bility implies a global compatibility. In fact, using the theory
of hypergraphs, Beeri et al. [19](see also [20]) established a
theorem on this problem stating that,



Theorem 4. (Beeri et al. [19]) The following two conditions
are equivalent:

1) For any collection of pairwise compatible marginal PMFs
pE1 , ..., pEm over pE1, ..., Emq, exists a joint PMF pE , over
E “

Ťm
i“1 Ei such that,

MppE , Eiq “ pEi
, , @i P r1,ms (20)

2) The collection of ground sets E1, ..., Em satisfy Running
Intersection Property (RIP).

with the running intersection property defined as,

Definition 2. (Running Intersection Property (RIP)) A se-
quence of subsets E1, E2,..., Em of a finite ground set
E satisfies the Running Intersection Property if for every
k P r2,ms the intersection of Ek with

Ťk´1
j“1 Ej is contained

in one of these previous subsets, that is,

@k P r2,ms, Di P r1, k ´ 1s s.t. Ek X p

k´1
ď

j“1

Ejq Ď Ei (21)

III. THEOREMS AND PROOFS

Proof. (sketch of the proof of Theorem 2) The contaiment

proj2E1Y2E2 pΓ˚
Eq Ď Γ˚

E1
ˆ
č

Γ˚
E2

(22)

is straightforward, so to prove the theorem is suffices to prove
that

Γ˚
E1

ˆ
č

Γ˚
E2

Ď proj2E1Y2E2 pΓ˚
Eq (23)

The group characterizable entropy region is helpful to prove
this containment - by Corollary 4.1 in [21], we know that,

conpΥEq “ Γ˚
E (24)

In fact, using a rational approximation of the conic combina-
tion coefficients, one can show that conpΥEq “ raypΥEq. Thus
we must show that for any pair of sequences of scaled group
characterizable entropy vectors αkh

k
1 P raypΥEq and αk

2h
k
2 P

raypΥEq with limkÑ8 αk
1h

k
1pAq “ limkÑ8 αk

2h
k
2pAq,@A Ď

E1XE2, we can construct a sequence of global entropy vectors
αkhk such that limkÑ8 αkhk

pAq “ limkÑ8 hk
1pAq, @A Ď

E1 and limkÑ8 αkhk
pAq “ limkÑ8 hk

2pAq, @A Ď E2.
Dirichlet’s approximation theorem enables one to construct
a rational approximation with a common denominator for
αk
1 , α

k
2 and αk

1h1pAq ´ αk
2h2pAq, as n1

q , n2

q , e
q , respectively

that enables |n1h
k
1pAq ´ n2h

k
2pAq ´ e| to be made arbitrarily

small. Repeat the group structure for hk
i ni times for i P t1, 2u,

and build a map from the cosets for group associated with A
for i “ 1 to those for i “ 2 that is one to one until running
out of cosets for i “ 1, mapping the remaining cosets to a
deterministic extra symbol, drawing 2e times uniformly from
the selected coset for i “ 2. The subset entropies of this
construction, using the coset index from i “ 1 as the random
variable for the overlapping element, provide the required
entropies in the limit. ■

Lemma 1. Given a collection of subsets E1,...,Em with E “

Ym
i“1Ei such that for any i, j P r1,ms

|Ei X Ej | “

#

1, |i ´ j| “ 1

0, |i ´ j| ą 1
(25)

then,

projYm
i“12

Ei pΓ˚
Eq “

m

ˆ
č

i“1

Γ˚
Ei

(26)

Proof. (proof of Lemma1) Prove by induction, Theorem 2
gives the base case that,

proj2E1Y2E2 pΓ˚
Eq “ Γ˚

E1
ˆ
č

Γ˚
E2

(27)

Next for the inductive step, let E1
k “ Yk

i“1Ei and assume that

projYk
i“12

Ei pΓ˚
E1

k
q “

k

ˆ
č

i“1

Γ˚
Ei

(28)

To prove it holds when adding Ek`1, let E1
k`1 “ E1

k YEk`1,
then applying Theorem 2 on the pair of sets Ek`1 and E1

k

we have,

proj
2E

1
k Y2Ek`1

pΓ˚
E1

k`1
q “ Γ˚

E1
k

ˆ
č

Γ˚
Ek`1

(29)

Now project both sides of (29) down to Y
k`1
i“1 2

Ei , we have

proj
Y

k`1
i“1 2Ei

pproj
2E

1
k Y2Ek`1

pΓ˚
E1

k`1
qq

“proj
Y

k`1
i“1 2Ei

pΓ˚
E1

k`1
q

“proj
Y

k`1
i“1 2Ei

pΓ˚
E1

k
ˆ
č

Γ˚
Ek`1

q

“projYk
i“12

Ei pΓ˚
E1

k
q ˆ

č

Γ˚
Ek`1

“p

k

ˆ
č

i“1

Γ˚
Ei

q ˆ
č

Γ˚
Ek`1

“

k`1

ˆ
č

i“1

Γ˚
Ei

(30)

■

Lemma 2. The ˆ
Ş

is both associative and commutative.

Proof. Straightforward. ■

Proof. (proof of Theorem 3) To show that,

proj2E1Y2E2 pΓ˚
Eq Ď Γ˚

E1
ˆ
č

Γ˚
E2

(31)

Pick an arbitrary vector v P proj2E1Y2E2 pΓ˚
Eq, then we can

find a vector h P Γ˚
E such that v “ proj2E1Y2E2 phq, which

means,

vpAq “ hpAq,@A Ď E1 or A Ď E2 (32)

By definition of Γ˚
E , h is a limit point of Γ˚

E , so we can
find a sequence of entropic vectors hpnq

P Γ˚
E each of which

is associated with a PMF p
pnq

E . Create from hpnq and h the
following terms,



k “ rkpAq|kpAq “ hpAq,@A Ď E1s (33)

l “ rlpAq|lpAq “ hpAq,@A Ď E2s (34)

kpnq
“ rkpnqpAq|kpnqpAq “ hpnq

pAq,@A Ď E1s, (35)

lpnq
“ rlpnqpAq|lpnqpAq “ hpnq

pAq,@A Ď E2s (36)

It is not hard to see that by the above construction, kpnq and
lpnq are sequence of entropic vectors, which implies that k P

Γ˚
E1

and l P Γ˚
E2

. Now combining (32), (33) and (34) we have
v P Γ˚

E1
ˆ
Ş

Γ˚
E2

, which then implies that

v P Γ˚
E1

ˆ
č

Γ˚
E2

ùñ proj2E1Y2E1 pΓ˚
Eq Ď Γ˚

E1
ˆ
č

Γ˚
E2

(37)

To show that,

Γ˚
E1

ˆ
č

Γ˚
E2

Ď proj2E1Y2E2 pΓ˚
Eq (38)

By assumption we have,
Γ˚
E “ Γ˚

t1,2,3,4u

1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1
1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1
1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1
1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 2, 3, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

Figure 1: 35 extreme rays of ΓIn
t1,2,3,4u. Each column indicates

an extreme ray, each row indicates dimension labelled as, from
left to right, hpt1uq, hpt2uq, hpt3uq, hpt4uq, hpt1, 2uq,hpt1, 3uq,
hpt2, 3uq, hpt1, 2, 3uq, hpt2, 4uq,hpt3, 4uq, hpt2, 3, 4uq, hpt1, 4uq,
hpt1, 2, 4uq, hpt1, 3, 4uq, and hpt1, 2, 3, 4uq

As shown in Fig.1, let ΓIn
t1,2,3,4u

be an inner bound of
Γ˚

t1,2,3,4u
constructed by taking the conic hull of all but 6

bad extreme rays of the Shannon outer bound Γt1,2,3,4u of
Γ˚

t1,2,3,4u
, then we must have that,

proj2E1Y2E2 pΓIn
t1,2,3,4uq Ď proj2E1Y2E2 pΓ˚

t1,2,3,4u
q (39)

We actually calculated proj2E1Y2E2 pΓIn
t1,2,3,4u

q, which ended
up to contain 23 extreme rays as shown in Fig.2. We then
calculated Γt1,2,3u ˆ

Ş

Γt2,3,4u and verified that its extreme
rays are exactly the same as Fig.2, which means,

proj2E1Y2E2 pΓIn
t1,2,3,4uq “ Γt1,2,3u ˆ

č

Γt2,3,4u (40)

together with the fact that Γt1,2,3u “ Γ˚
t1,2,3u

and Γt2,3,4u “

Γ˚
t2,3,4u

(Shannon outer bound is tight on Γ˚
E when |E| ď 3),

we have,
Γ˚

t1,2,3u
ˆ
č

Γ˚
t2,3,4u

ĎΓt1,2,3u ˆ
č

Γt2,3,4u

“proj2E1Y2E2 pΓIn
t1,2,3,4uq

Ďproj2E1Y2E2 pΓ˚
t1,2,3,4u

q

(41)

1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 1
1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1
1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2
1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2
1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2
1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2
1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1
1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2

Figure 2: 23 extreme rays of proj2E1 Y2E2 pΓIn
t1,2,3,4uq. Each col-

umn indicates an extreme ray, each row indicates dimension la-
belled as, from left to right, hpt1uq, hpt2uq, hpt3uq, hpt4uq,
hpt1, 2uq,hpt1, 3uq, hpt2, 3uq, hpt1, 2, 3uq, hpt2, 4uq,hpt3, 4uq and
hpt2, 3, 4uq.

which together with (37) implies that,

proj2E1Y2E2 pΓ˚
Eq “ Γ˚

E1
ˆ
č

Γ˚
E2

(42)

■

Theorem 5. Let n P N, consider a collection of m “ 2n
subsets E2i`1 “ t3i`1, 3i`2, 3i`3u, E2i`2 “ t3i`2, 3i`

3, 3i ` 4u, @i P r0, n ´ 1s. Let F “
Ťm

i“1 2
Ei , then,

projF pΓ˚
Eq “

n´1

ˆ
č

i“0

´

Γ˚
E2i`1

ˆ
č

Γ˚
E2i`2

¯

(43)

Proof. (proof of Theorem 5) @i P r0, n´1s, let Bi “ E2i`1Y

E2i`2 “ t3i ` 1, 3i ` 2, 3i ` 3, 3i ` 4u, then we must have
that for any i, j P r0, n ´ 1s,

|Bi X Bj | “

#

1, |i ´ j| “ 1

0, |i ´ j| ą 1
(44)

So from Lemma1 we have,

proj
Y

n´1
i“0 2Bi pΓ˚

Eq “

n´1

ˆ
č

i“0

Γ˚
Bi

(45)

Project both sides of (45) onto F we have

projF pproj
Y

n´1
i“0 2Bi pΓ˚

Eqq

T1
“projF pΓ˚

Eq

“projF

˜

n´1

ˆ
č

i“0

Γ˚
Bi

¸

“

n´1

ˆ
č

i“0

proj2E2i`1Y2E2i`2 pΓ˚
Bi

q

T2
“

n´1

ˆ
č

i“0

pΓ˚
E2i`1

ˆ
č

Γ˚
E2i`2

q

(46)

where T1 holds because F Ď Y
n´1
i“0 2

Bi , T2 holds because
@i P r0, n ´ 1s

|E2i`1| “ 3 (47)
|E2i`2| “ 3 (48)

|E2i`1 X E2i`2| “ 2 (49)
|Bi| “ |E2i`1 Y E2i`2| “ 4 (50)



So from Theorem 3 we know that proj2E2i`1Y2E2i`2 pΓ˚
Bi

q “

Γ˚
E2i`1

ˆ
Ş

Γ˚
E2i`2

. ■

Now we have everything we need to prove Theorem 1.

Proof. (proof of Theorem 1) From Theorem 5 we know that

projF pΓ˚
Eq “

n´1

ˆ
č

i“0

´

Γ˚
E2i`1

ˆ
č

Γ˚
E2i`2

¯

(51)

given that for each i P r0, n´ 1s, both E2i`1 and E2i`2 have
cardinality 3, we know that

ΓE2i`1
“ Γ˚

E2i`1
(52)

ΓE2i`2
“ Γ˚

E2i`2
(53)

Plugging the above two equations into (51) we have

projF pΓ˚
Eq “

n´1

ˆ
č

i“0

´

ΓE2i`1
ˆ
č

ΓE2i`2

¯

(54)

So either ΓE2i`1
or ΓE2i`2

involved in (54) is polyhedral, the
explicit inequality representation of projF pΓ˚

Eq is nothing but
the stacking of all inequalities defining ΓE2i`1 and ΓE2i`2

together, which gives,

hpEiztjuq ď hpEiq,@j P Ei,@i P r1,ms (55)
hptj, ku Y Aq ` hpAq ď hptju Y Aq ` hptku Y Aq,

@A Ď Eiztj, ku,@tj, ku Ď Ei,@i P r1,ms
(56)

So the number of these inequalities (including replicas) is,

mp3 `

ˆ

3

2

̇

23´2q “ 9m “ 6p|E| ´ 4q ` 18 (57)

The number of these inequalities after excluding replicas is,
m

2

ˆ

2p3 `

ˆ

3

2

̇

23´2q ´ 3

̇

“
15m

2
“ 5p|E| ´ 4q ` 15

(58)

which means that the number of inequalities defining
projF pΓ˚

Eq grows linearly in |E|. ■

IV. DISCUSSION AND FUTURE WORK

This manuscript proved several instances of systems of
subsets F , for which projF pΓ˚

Eq is equal to the pasting of a
collection of small entropy regions together, including several
in which E grows arbitrarily large, and, further, several for
which, utilizing the known inequalities for the entropy region
on two and three random variables, a polyhedral description
of this projection of the entropy region can be provided.
Additionally, it is shown that that not only may this set be
polyhedral, but also that it may have a number of inequalities
that grows only linearly in |E|, which provides a stark contrast
to the behavior of, for example, the commonly used Shannon
outer bound ΓE which requires a number of inequalities that
grows exponentially. A companion manuscript [] reviews how
key problems often expressed in terms of Γ˚

E or its bounds,
only depend on it through projF pΓ˚

Eq, so this difference in
description complexity can be highly useful in applications.
Current and future work is cataloging further collections of
systems of subsets F enabling this type of decomposition.
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