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Abstract—A great many problems in network information
theory, both fundamental and applied, involve determining a
minimal set of inequalities linking the Shannon entropies of a
certain collection of subsets of random variables. In principle
this minimal set of inequalities could be determined from the
entropy region, whose dimensions are all the subsets of random
variables, by projecting out dimensions corresponding to the
irrelevant subsets. As a general solution technique, however, this
method is plagued both by the incompletely known nature of
the entropy region as well as the exponential complexity of
its bounds. Even worse, for four or more random variables,
it is known that the set of linear information inequalities
necessary to completely describe the entropy region must be
uncountably infinite. A natural question arises then, if there are
certain nontrivial collections of subsets where the inequalities
linking only these subsets is both completely known, and have
inequality descriptions that are linear in the number of random
variables. This paper answers this question in the affirmative.
A decomposition expressing the collection of inequalities linking
a larger collection of subsets from that of smaller collections of
subsets is first proven. This decomposition is then used to provide
systems of subsets for which it both exhaustively determines the
complete list of inequalities, which is linear in the number of
variables.

Index Terms—information inequalities, complexity of entropy
region

I. INTRODUCTION

For two sets A and B, we will denote by AB =
{z |z : B — A}. For two subsets &; < R41 and &, < R42
of Euclidean space, define &, (X £?; as,

3g,€ P1,9,€ P st
P (N P2 =1 feRMA |f(a) = g,(a),Ya e A,
f(b) = g5(b),Vbe A,
(1)

Let the ground set £ < N index a set of |F| finite discrete
random variables (RVs), and let,
X SN, pp: ¥ - J0,1],

>, pe(ze) =1 2

:IZEEXE

Agp =A< pE

be a set of valid joint probability mass functions (PMFs) for
these RVs paired with their ranges. For any such joint PMF
pe € Apg and any subset A — FE define the generalized
marginalization operator M : Ap x 28 — |, A4 with,

M(pg,A) =pa, A# D 3)

where,

pa(®a) = >
Tp € XE S.t.
xp(e) =xa(e) Vee A

pe(xp) @)

Given two PMFs pg, and pg, such that By n By # &, we
write

M
PE, = PE, (5)

if and only if
M(pE17E1 mEQ) :M(pE27E1 ﬁEQ) (6)
Define the function Ap : Ap — R2” such that forany A € F,

he(pp): A= — Y pa(@a)log, (pa(@a)) ()

wAGXA

with again M (pg,A) = pa. Here, based on preference,
we can either think of hg(pg) as a vector whose elements
are indexed by all subsets 27, or equivalently as a function
hi(pe) : 2F — R assigning a number to to each such subset
of E. Either way, the value associated with the subset A is the
joint Shannon entropy of that subset of the random variables.

The entropy region for the ground set F will be the image
of the set of all joint PMFs A g under this this map hg

T% = hp(Ag) (8)

denoted as h = [h(A)|A < E] an entropic vector in I'}, and
let,

==hy (h) )
be the collection of PMFs that is associated with h.

I'% was first introduced in [[I], motivated by the desire to
develop a new framework to proof information inequalities.
By definition, I'}; gives a complete characterization of all
information inequalities and thus is closely related to some
important problems in probability theory and information
theory. The attempt to fully characterize I'}, started from the
so-called basic information inequalities [2], which are implied
from the non-negativity of the conditional mutual informations
and are of the form:

h(A) + h(B) 2 h(AuB)+h(AnB),YyA,B< E (10)

Each vector h € I'f, must satisfies all the inequalities of the
form (I0), which means, when I'g is defined as,

Ty = {h e R2"|h satisfies (I0),VA, B € E} (11)



we have an outer bound I‘E cl'g. g denotes the closure of

F}g, the natural question of whether or not @ L I' r motivates
the finding of non-Shannon type inequalities [3[-[5]], which are
defined as the information inequalities that can not be implied
from basic inequalities in (I0). The closure of the entropy
region I, was proved to be a closed convex cone [3]], and for
|E| < 3 the cone is polyhedral and T% = I'p. The equality
doesn’t hold, meaning @ # DIg, for |E| > 4, moreover @ is
not polyhedral when |E| > 4, and its inequality and extreme
ray descriptions are incompletely known [6], [7].

Significant progresses have been achieved on difference
aspects of the topic [8]-[10] [11—[/13)], However, much less
has been written considering the instance when we only need
the list of all fundamental inequalities linking those entropies
of only certain subsets. Furthermore, it is only this restriction
to only a certain collection of subsets that is often required in
the multiterminal information theory applications. Hence, in
this article we are aiming to study the restriction of the entropy
region to only those dimensions associated with a certain given
collection of subsets.

To describe this concept properly, consider a collection of
subsets 7 < 2, and define the projection,

proj» I = {heRﬂahe@, h(A) = h(A) VAe]-'}

(12)

Again, most applied problems, for instance network cod-
ing capacity regions [14]], depend on I'}, only through its
projection projz I'%, for some smaller collection of subsets
F < 2E. Even worse, even the outer bounds such as the
Shannon outer bound have both a number of inequalities and
dimensions that grow exponentially in | E|. Significantly, while
@ is non-polyhedral for |E| > 4, and these outer bounds
have complexities that are exponential in |E|, there is the
possibility that its projection projr I'}, can in some instances
be polyhedral and, further, have a number of inequalities and
dimensions that grow linearly in |E|. This paper proves that
indeed, many non-trivial such instances exist.

II. PRELIMINARIES

To understand the general idea behind the method the paper
utilizes to prove these existence of these cases, let £ = E; U
E5, and suppose that F = 21 U 2F2, In the trivial case that
FE1n Ey = ¢, it is direct to show that,

projye: oes () = T, (<] T,
The more general case, when there’s a collection of subsets
Ei,...,E,, such that E; n E; # & for some i,j € [1,m],
is more complicated. The main contribution of the paper is
summarized as the following theorem.

13)

A. Main Results

Theorem 1. Let n € N, consider a collection of m = 2n
subsets E2i+1 = {32 +1,31+2,3c+ 3}, E2i+2 = {32 + 2, %
3,3i+4}, Vie [0,n—1]. Let F = |J;~, 25, then proj (T'%)
is a polyhedral cone with:

1) explicitly known inequality descriptions.

2) a number of inequalities that grows linearly in |E|.

Theorem [I]is proved based on the following two theorems.

Theorem 2. Let F1,Es two ground sets with such that |Eq n
Es| =1, then
Projoe oE, (@) = Ff}i?l m ]'—‘7;2 (14)

Theorem 3. If By = {1,2,3}, By = {2,3,4} and E = E; U
E, = {1,2,3,4}, then,

Projaey Joms (@) = FiEl m FEQ

B. Outer bounds on proj ,m 5, (I'f;)

5)

A natural outer bound of proj,m e (T%) would concate-

nate the inequality descriptions for I';, ;i € [1,m] to get,

m

projm e, (T5) < (X T,

i=1

(16)

A tighter outer bound forces there to be a way to select the
distributions to match on their marginals,

proj e e (TF) € (M TE) (X P, (D)
i=1

where,

FhM eTh ie1,m]:

1)7}iﬂoh§"> = hiie[1,m]
—|2)F(A) = hi(A), AC E; i€ [l,m)]

o1 3Vie[l,m],3p) € hp, (B), st

Vi, j e [1,m] if E; n E; # &,

(n

then pEi) u p%lj), Vn e N

(18)

C. Marginal problem and Running Intersection Property

Definition 1. (The marginal problem on PMF) Consider a col-
lection of marginal PMFs pg,,..., DE,, , the marginal problem
wonders if there exists a joint PMF pg with E = | J;"| E;,
such that,

M(pE, Ei) = pg,, Vi€ [1,m] 19)

Defined above is the marginal problem on PMF, which has
received research interests in different literature [15[]—[18]]. The
problem is trivial when the collection of PMFs are defined on
disjoint ground sets, in which case the stochastic product of
the marginals give us a valid joint PMF. However, the problem
is not trivial anymore when the ground sets are not disjoint.
One obvious necessary condition for such joint PMF to exist
for a marginal problem is pairwise compatibility, meaning for
any pair of E; and E;, M (pg,, E; 0 E;) = M (pg,, E; 0 Ej)
it B;nE; # .

So the question becomes when does the pairwise compati-
bility implies a global compatibility. In fact, using the theory
of hypergraphs, Beeri et al. [[19](see also [20]]) established a
theorem on this problem stating that,




Theorem 4. (Beeri et al. [[19]) The following two conditions
are equivalent:

1) For any collection of pairwise compatible marginal PMFs

DEy» - DB, over (E1,...,Ey,), exists a joint PMF pg, over
E =J*, E; such that,
M(pE7E1) = PE;>, Vie [Lm] (20)

2) The collection of ground sets F1, ...,
Intersection Property (RIP).

E,, satisfy Running

with the running intersection property defined as,

Definition 2. (Running Intersection Property (RIP)) A se-
quence of subsets Fi, Fo,.., E,, of a finite ground set
FE satisfies the Running Intersection Property if for every
k € [2,m] the intersection of Ej with Uf;ll E; is contained
in one of these previous subsets, that is,

Vke [2,m],qie[1,k—1] st Eyn U YS E; (21)

III. THEOREMS AND PROOFS
Proof. (sketch of the proof of Theorem [2) The contaiment
(%) €T%, (M Tk,

is straightforward, so to prove the theorem is suffices to prove
that

(22)

Projoe; oE,

T (X T, S projys, o (TF) (23)
The group characterizable entropy region is helpful to prove
this containment - by Corollary 4.1 in [21], we know that,
con(Yp) =T% (24)
In fact, using a rational approximation of the conic combina-
tion coefficients, one can show that con(Y ) = ray(Y g). Thus
we must show that for any pair of sequences of scaled group
characterizable entropy vectors ahY € ray(Y ) and o5ht e
ray(Yg) with limy_, a¥hY(A) = limy_. o5h5(A),VA
E,n E5, we can construct a sequence of global entropy vectors
oFh¥ such that limy_,o, aFh¥(A) = limy_,o, h¥(A), VA <
E; and limj_, o*h*(A) = limg_, h5(A), VA < E,.
Dirichlet’s approximation theorem enables one to construct
a rational approximation with a common denominator for
af,ak and afhi(A) — abhy(A), as ok, 2, o, respectively
that enables |nh%(A) — nohh(A) — e| to be made arbitrarily
small. Repeat the group structure for hf n; times for ¢ € {1, 2},
and build a map from the cosets for group associated with A
for ¢ = 1 to those for ¢+ = 2 that is one to one until running
out of cosets for ¢ = 1, mapping the remaining cosets to a
deterministic extra symbol, drawing 2° times uniformly from
the selected coset for ¢ = 2. The subset entropies of this
construction, using the coset index from ¢ = 1 as the random
variable for the overlapping element, provide the required
entropies in the limit. ]

Lemma 1. Given a collection of subsets Ej,...,E,, with E =
v E; such that for any i,j € [1,m]
1, i1—9g|=1
Bnm) = il (25)
0, i—j|>1
then,
projm oe (Tg) = (X TE, (26)
i=1

Proof. (proof of Lemma]T) Prove by induction, Theorem

gives the base case that,
(%) =T, (X TE,

Next for the inductive step, let Ej = U¥ | E; and assume that

27)

Projo ey 0B,

k
proj_s_oe, (T, ) = (< TE, (28)
To prove it holds when adding Ej1, let B | = Ej U By 1,

then applying Theorem [2| on the pair of sets Ejq and Ej,

we have,
T, (M TE,,.
k+1

Now project both sides of (Z9) down to U T2 we have

prOjQE;C U2Ek+1 ( (29)

Proj i+ 1am, (Proj, ey yms (T, )

k+1
:prOJUi_e+1 E; E/ ﬂ FEH—l
=proj 25 (I}, /k ﬂ I‘Ek+1

(
=proj OB (F )
(T%,

(30)
ﬂ F* ﬂ FEk+l
k+1 _
= m El
i=1
]
Lemma 2. The (X is both associative and commutative.
Proof. Straightforward. |
Proof. (proof of Theorem [3) To show that,
projys, om, (Th) € T, (<) T, 31)

Pick an arbitrary vector ¥ € projye, oz, (I'5), then we can
find a vector h € T'% such that © = projys, o5, (h), which
means,

v(A) = h(A),YAC Ey or AC Ey (32)

By definition of I'%, h is a limit point of I'%, so we can
find a sequence of entropic vectors R e I'% each of which
is associated with a PMF pgt). Create from h(™ and F the
following terms,



k = [k(A)|k(A) = h(A),YA S F] (33)

1=[I(A)]I(A) = h(A),YA C E,] (34)
k™ = [k (A) k™ (A) = bW (A),VA S E1],  (35)
1 = 10 (A4)10M (A) = h™ (A),VA € B (36)

It is not hard to see that by the above construction, k) gnd
1™ are sequence of entropic vectors, which implies that k €
I';, and I € 'y . Now combining (32), (33) and (34) we have
vel} (X TE,, which then implies that

= PIOjym; om (@) < Fia M Fia

To show that,

(37

Fia m FiEz S prOjQEl u2E2 (@)
By assumption we have,

FE = 11?1,2,3,4}

(38)

R
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Figure 1: 35 extreme rays of Fffz,sA}- Each column indicates
an extreme ray, each row indicates dimension labelled as, from
left to right, A({1}), h({2}), h({3}), h({4}), h({1,2}),h({1,3}),
h({2,3}), h({1,2,3}), h({2,4})h({3,4}), h({2,3,4)). h({1,4}).
h({1,2,4}), h({1,3,4}), and h({1,2,3,4})

As shown in Fig let I‘ﬁl’27374
FTI,ZB, 2 constructed by taking the conic hull of all but 6
bad extreme rays of the Shannon outer bound TI'{; 5343 of

m, then we must have that,

Projosy o8, (Fff2,3,4}) S projoe s (F?1,2’3,4})

} be an inner bound of

(39)

We actually calculated proj,e, o5, (Ff&,& 43)» which ended
up to contain 23 extreme rays as shown in Fig2] We then
calculated 'y 533 X [i2,3.4) and verified that its extreme
rays are exactly the same as Fig[2] which means,

Projoe; om, (Fff2,3,4}) = F{1,2’3} m F{2,3’4} (40)

together with the fact that T'; 55y = m

I'Y, 3,4,(Shannon outer bound is tight on I';; when |E| < 3),

we have,
F?I,Q,B} ﬁ I‘?2,3,4}
Sl 2,3 rﬂ Ty2,3,43
=Projoe, o, (Fff2,3,4})

CSProjos, om: (m)

and ].—‘{27374} =

(41)

1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0,1,1,2,1,
1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,0,0,1,1, 1,
1,1001,1,00,1,1,0,0,1,1,1,1,1,1,1,1,1,
1,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,1, 1,
1,1,1,0,2,0,1,1,1,1,1,1,2,1,1,1,0,1,2,2, 2,
1,1,1,0,2,1,0,1,1,1,0,1,2,1,1,2,1,1,2, 2,1,
1,1,1,02,1,1,0,1,1,1,1,2,1,2,2,1,1,2,2,2,2,
1,1,1,0,2,1,1,1,1,1,1,1,2,1,2,2,1,1,2,2, 2,
1,0,1,1,1,0,1,0,1,1,1,1,1,1,2,2,1,1,2,2, 2,
1,1,0,1,1,1,0,0,1,1,1,1,2,1,2,2,1,1,2,2, 2,
1,1,1,1,2,1,1,0,1,1,1,1,2,1,2,2,1,1,2,2,2

[ el |

Figure 2: 23 extreme rays of projym; om, (Ff{”2,3’4}). Each col-
umn indicates an extreme ray, each row indicates dimension la-
belled as, from left to right, h({1}), h({2}), h({3}), h({4}),
h({1,2}),h({1,3}), h({2,3}), h({1,2,3}), h({2,4}).h({3,4}) and
h({2,3,4}).

which together with (37) implies that,

Projyey Joms (@) = 1-‘7%1 m FiEz (42)

Theorem 5. Let n € N, consider a collection of m = 2n
subsets E2i+1 = {3Z+1,3Z+2,3Z+3}, E2i+2 = {3Z+2,3l+
3,3i +4}, Vie [0,n —1]. Let F = |J]*, 27, then,

n—1

PrOjf(FE) = m <FE2H1 @ FE%H})

1=0
Proof. (proof of Theorem[3)) Vi € [0,n—1], let B; = Ea;1q U

Esivo = {3i + 1,3i + 2,30 + 3,3i + 4}, then we must have
that for any 4, j € [0,n — 1],

(43)

R "
So from Lemma[] we have,
n—1
proj n1,m, (TF) = [ T, (45)
i=0
Project both sides of @3] onto F we have
proj - (proj_»-1,5, (7))
Zprojx(Tg)
=proj » (ﬁl F*Bl>
n—1 = - (46)
— ) Projyeaccs paeaces (T5,)
o

T
= m (F%2i+1 m Fﬂézwz)
0

~
Il

where T} holds because F < u?~2Pi, T, holds because
Vie [0,n — 1]

|Eai1] =3 47)

|Eairo| =3 (43)

|Eaiy1 N Eaiyo] =2 (49)

|Bi| = [E2i41 U Eoiyo| =4 (50)



So from Theorem |3{ we know that proj,eo, s oF2is2 (I'5) =

i
k *
FE21'+1 m FE271+2' u

Now we have everything we need to prove Theorem

Proof. (proof of Theorem [T) From Theorem [5| we know that
n—1

@ ( E2i+l @ FE2i+2)

=0

proj x(T'%;) = (51)

given that for each i € [0,n — 1], both F5; 1 and Es; o have
cardinality 3, we know that

FE2i+1 = FE%_H (52)
FE272+2 = F22H2 (53)
Plugging the above two equations into we have
n—1
proj].-(FE) = m (FE2i+1 m FE21+2) (54)
i=0

So either I'g,,,, or I'g,,,, involved in (54) is polyhedral, the
explicit inequality representation of proj (I'%,) is nothing but
the stacking of all inequalities defining I'g,,., and I'g,,,,

together, which gives,
h(E\{j}) < h(E;),Vj € E;,Vie [1,m] (55)
A3, K) 0 A)+ BA) < B((G) O A) + RO 0 ), oo

VA< EN\{j, k}, V{4, k} € E;,Vie [1,m]
So the number of these inequalities (including replicas) is,

m(3 + (;’) 25" =9m =6(lE|—4)+18  (57)

The number of these inequalities after excluding replicas is,

n (2(3 + (g) 23-2) _ 3) D™ siE -+ 128)

2 2
which means that the number of inequalities defining

proj =(I'%) grows linearly in |E|. [ ]
1V. DISCUSSION AND FUTURE WORK

This manuscript proved several instances of systems of
subsets F, for which proj ]_-(@) is equal to the pasting of a
collection of small entropy regions together, including several
in which E grows arbitrarily large, and, further, several for
which, utilizing the known inequalities for the entropy region
on two and three random variables, a polyhedral description
of this projection of the entropy region can be provided.
Additionally, it is shown that that not only may this set be
polyhedral, but also that it may have a number of inequalities
that grows only linearly in |E|, which provides a stark contrast
to the behavior of, for example, the commonly used Shannon
outer bound I'p which requires a number of inequalities that
grows exponentially. A companion manuscript [] reviews how
key problems often expressed in terms of @ or its bounds,
only depend on it through proj }-(@), so this difference in
description complexity can be highly useful in applications.
Current and future work is cataloging further collections of
systems of subsets F enabling this type of decomposition.
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