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Abstract

Recent years have witnessed the emergence and flourishing of hierarchical graph
pooling neural networks (HGPNNs) which are effective graph representation
learning approaches for graph level tasks such as graph classification. How-
ever, current HGPNNs do not take full advantage of the graph’s intrinsic struc-
tures (e.g., community structure). Moreover, the pooling operations in exist-
ing HGPNNs are difficult to be interpreted. In this paper, we propose a new
interpretable graph pooling framework — CommPOOL, that can capture and
preserve the hierarchical community structure of graphs in the graph representa-
tion learning process. Specifically, the proposed community pooling mechanism
in CommPOOL utilizes an unsupervised approach for capturing the inherent
community structure of graphs in an interpretable manner. CommPOOL is a
general and flexible framework for hierarchical graph representation learning
that can further facilitate various graph-level tasks. Evaluations on five public
benchmark datasets and one synthetic dataset demonstrate the superior perfor-
mance of CommPOOL in graph representation learning for graph classification

compared to the state-of-the-art baseline methods, and its effectiveness in cap-
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turing and preserving the community structure of graphs.
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1. Introduction

In recent years, graph neural network (GNN) has emerged and been broadly used
as a generalized deep learning architecture for graph representation learning
in many fields, such as social network analysis [1, 2] and chemical molecule
studies [3, 4, 5]. Generally, GNN models learn node embeddings by passing,
transforming and aggregating node features across the graph. The generated
node representations can then be forwarded to further layers for specific learning
tasks, i.e., node classification [6, 7] and link prediction [8].

Most of the existing GNN models (e.g., GCN [6], GAT [7], GraphSage [9]) fo-
cus on node-level representation learning and only propagate information across
edges of the graph in a flat way. When applying these GNNs for graph-level tasks
such as graph classifications, existing works usually apply simple global pooling
strategies (i.e., a summation over the learned node representations) to obtain
the graph-level embedding and use it for graph label prediction [10, 11, 12]. One
main drawback in these GNNs is that the hierarchical structure, often existing
in graphs, is ignored during the global pooling process, which makes the models
less effective for graph-level tasks. Hierarchical structure is a very important
structure for many graphs in various domains. For example, the hierarchical
community structure shown in Figure 1 is a typical pattern that often appears
in social networks [13, 14], chemical molecule networks [15] and brain networks
[16, 17]. Therefore, preserving these community structures is critical for better
understanding and analyzing these graphs.

Some recent works proposed hierarchical graph pooling neural networks
(HGPNNs) to address the hierarchical structure representation issue by intro-
ducing the hierarchical pooling operations [18, 19, 20, 21]. Generally, these HG-
PNNs consist of two components: the GNN backbone which is used to embed



Original Graph (G) 1st-level Community structure 2nd-level Community Structure

Figure 1: An example of hierarchical community structures in graphs

the graph nodes and local structures, and the pooling operation which represents
graph structure in a hierarchical way. These HGPNNs have demonstrated the
necessity of adding hierarchical pooling operations in GNNs to better preserve
the graph hierarchical structure.

However, a critical limitation of the existing hierarchical graph pooling
(HGP) strategies is that few of the pooling operations in the models are in-
terpretable. In many real applications, it is desirable to have an interpretable
model, where human can understand the cause of a decision made by the model
[22, 23]. Moreover, an interpretable model is more robust under adversarial
attacks [24, 25, 26, 27]. A few of recent works [28, 29, 30] interpreted the node
feature embedding via GNN as a neighborhood aggregation scheme. Particu-
larly, they stated that the GNN embed the local feature of each node v within
two steps: (1) neighbor node features aggregation and (2) node feature trans-
formation. However, the interpretability of pooling operations is still not well
solved (Details are discussed in the Related Work.). In order to make the
HGP operation interpretable, three questions should be considered:

Q1: How to capture the graph hierarchical structures in an interpretable way?
Q2: How to scale down the graph representation while preserving the structures
via an interpretable process?

Q3: What do we obtain after the pooling operation?

To address these challenges, we propose a Community-Based HGP frame-
work, COMMUNITY-POOL or CommPOOL. We aim to encode the hier-

archical community structure in graphs, which is a natural structure in many
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graphs, where nodes within each community are more densely connected than
the nodes across different communities. Specifically, we propose a community-
based hierarchical pooling operation which aggregates and synthesizes the node
features based on the detected communities, such that the community structure
of graphs can be preserved during the pooling process. Moreover, we introduce
a GNN-based framework with the proposed community-based hierarchical pool-
ing operation for learning latent graph representations, where both local node
features and the hierarchical community-structure information are encoded and

preserved. Our contributions can be summarized as:

e We propose a community-based HGP framework (CommPOOL) for learn-
ing graph representation in a hierarchical way that can preserve both the

local node features and the hierarchical community structure of graphs.

e The proposed hierarchical community pooling strategy relies on the com-
munity structure which is explicitly detected from the graphs, therefore
the pooling operation can capture the intrinsic community-level latent rep-

resentation of graphs and the pooling process is inherently interpretable.

e We evaluate our CommPOOL framework for the whole graph classification
task on multiple public benchmark datasets. The results demonstrate the
superior performance of our model compared to several state-of-the-art

graph pooling neural networks.

e Evaluations on synthetic graphs with community ground-truth labels show
that our proposed CommPOOL can capture and preserve the intrinsic

community structure of graphs during the learning process.

2. Related Work

2.1. Graph Pooling

Graph pooling operation is a strategy aiming to scale down the size of in-

put graphs. It can not only help to avoid model overfitting and reduce the



computational cost but also generate graph-level representations [31]. In the
early works [32, 33, 34, 35, 11], the graph pooling methods simply compute
the mean/max/sum of all graph node features as the representation of the
whole graph. Such a primitive pooling strategy is named as global pooling.
Later on, a few advanced techniques (e.g. attention mechanisms [10, 5, 36], fea-
ture sorted [12]) are proposed to improve the performance and efficiency of the
global pooling. However, the global pooling methods do not learn the hierarchi-
cal representations, which are crucial for capturing the structural information

of graphs. Therefore, HGPNNs are proposed [21, 18, 37, 20, 38, 39, 40].

2.2. Interpretability of HGPNNs

Most HGP operations in the current HGPNNs [21, 18, 37, 20, 38, 39, 40]
show little interpretability and are difficult to be understood by the users. More-
over, very few studies present the interpretabiliy of their HGP operations in the
paper, which may be accounted for by the following two issues: (1). Hardly
any clear definition or analysis can be found to explain what is the captured
graph structure. Therefore, the model users are lack of heuristic knowledge
to understand the pooling operation. (2). Although some studies [18] present
the visualization of hierarchical clusters captured by the model, no quantita-
tive analysis is provided to examine whether the captured clusters of nodes are
aligned with the intrinsic clusters in the original graph. Apart from these, most
recent studies unfold the HGP operation as a neural network layer with train-
able parameters. The black-box nature of neural networks may also raise extra

difficulties to interpret the models in a way.

3. Preliminaries

3.1. Graph Notation

We consider the graph classification problem on attributed graphs with dif-
ferent numbers of nodes. Let G = (A4, H) be any of the attributed graph with

N nodes, where A € {0,1}*¥ is the graph adjacency matrix and H € RV*d
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is the node feature matrix assuming that each node has d features. Also,
Z = [Z1,...,ZN]T is defined as the node latent feature matrix where Z; is
the latent feature vector for the node i. Given a set of labeled data D =
{(G1,11), (G2,y2), (G3,y3), ...} where y; € Y is the classification label to the
corresponding graph G; € G. The graph classification task can be formulated

as learning a mapping, f: G — ).

3.2. Graph Neural Network

Graph Neural Network (GNN) is an effective message-passing architecture
for embedding the graph nodes and their local structures. Generally, GNN can
be formulated as:

z(k) — F(A(k*1)7z(k*1);9(k))7 (1)

where k denotes the layer k of GNN. A®*~1) is the graph adjacency matrix
computed by layer (k — 1) of the GNN. () is the trainable parameters in the
layer k of the GNN. Particularly, Z° = H.

F(+) is the forward function to combine and transform the messages across
the nodes. Many different versions of forward functions F(-) are proposed in
the previous studies [5, 9] such as Graph Convolutional Neural Network (GCN)
[6] and Graph Attention Network (GAT) [7]. The GCN linearly combines the
neighborhoods as the node the representation. And the GAT computes node

representations in entire neighborhoods based on attention mechanisms [41].

4. The Proposed Framework

4.1. Model Architecture

Our goal is to provide a general graph pooling framework that can capture
and preserve the hierarchical community structure of graphs in the representa-
tion learning process of GNNs. The framework should be interpretable and it
should be able to facilitate further graph-level learning tasks, for example, graph

classification. To achieve this goal, we propose a community-based hierarchical
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Figure 2: Framework of the CommPOOL for graph classification. (A) is the 15¢ Embedding-
Pooling (EP) module and (B) is the 27? EP module. In each module, we embed the graph into
the latent space by using VGAE. In the latent space, we scale down the graph representation
based on the detected communities. (C) is the MLP for graph classification.

graph pooling (HGP) framework: CommPOOL, which is composed of k cas-
caded Embedding-Pooling (EP) modules to learn the graph representation in a
hierarchical way. Each EP module consists of (1) an Embedding stage, where a
GNN model is employed to get the latent node representations (i.e., node em-
beddings) of the input graph, and (2) a Pooling stage, where a newly proposed
community pooling mechanism is conducted on the node embeddings to detect
communities from the graph and obtain a scaled-down graph-level representa-
tion that encodes both the local node features and the community structure of
the graph. The output of the last EP module will be the final graph-level rep-
resentation that preserves the overall hierarchical community structure of the
graph. Figure 2(A, B) shows an instance of the proposed framework with two
cascaded EP modules. In real applications of our framework, the choice of value
for k is flexible and it can be decided based on the practical needs or domain
knowledge for the specific application (e.g., domain evidence about how many
community hierarchies exist in the graphs). In this paper, we set kK = 2 and
use the architecture given in Figure 2(A, B) for illustrating our framework
and we use the MLP shown in Figure 2(C) for evaluating the CommPOOL in

graph representation learning for facilitating graph classification task.
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In the following subsections, we introduce the two main parts in the proposed
EP module for CommPOOL: (1) the GNN-based Graph Node Embedding, and
(2) the Community Pooling Operation.

4.2. GNN-based Node Embedding

We aim at a general GNN-based model to embed the graph nodes into the
latent feature space Z that well preserves the inherent graph structures. On
the one hand, the desired node latent features should well encode the node
information and the information between the node and its neighbors. On the
other hand, the latent features should preserve the intrinsic structures of the
graphs without task-specific influences or supervised information. On account
of the above considerations, we choose the Variational Graph Auto-Encoders
(VGAE) [8] for this node embedding stage. VGAE is a robust unsupervised
method that can embed nodes into the latent space by reconstructing the graph
itself. This can help preserve the intrinsic structures of the graph without

involving any task-specific information or supervision.

4.2.1. Encoder

In the VGAE, we need to learn a Gaussian distribution ¢(Z|H, A) = N'(Z|u,
0?) which is used to approximate the Gaussian prior p(Z) = N'(Z|0,I). Partic-
ularly, we utilize two GNN layers to compute the p and o2 parameters of ¢. In
the first layer, 4 and o2 share the same GNN encoder. And in the second layer,
two separate GNNs are used to generate u and o? respectively. The approxima-
tion can be achieved by maximizing the Kullback—Leibler (K'L) loss between p

and ¢:
Lk = KL(¢(Z|H,A)||p(Z)) ()

The latent features Z can be obtained by resampling from the optimal

q(Z|H, A).



4.2.2. Decoder
After we obtain the latent features Z, we reconstruct the original graph

adjacency matrix by:
A = sigmoid(ZZ7). (3)

We define + and — as the edges and non-edges position index in A. So we

reconstruct the adjacency matrix by minimizing the £ 4:

LA Lr+c- (4)

—EilZ(log(/ﬁ)) - E%E(log(l )

where Fq, F5 is the number of edges and non-edges. The overall objective

function of VGAE is:
migimize La—Lkr (5)

In our CommPOOL, we use GCN [6] to build up the basic encoder layers and
use GAT [7] and Higher-Order Graph Neural Network (HO-GNN) [42] as the

encoder variations.

4.3. Community Pooling

After embedding the graph nodes into the latent space Z, the latent features
represent the node attributes and topology structures among nodes in the latent
space. The distance between two latent features measures the node attributes
similarity and structure similarity between the two nodes. The proposed Comm-
POOL assigns the similar nodes into a community which is further used to scale

down the graph.

4.8.1. Community Capturing

We adopt an unsupervised clustering method Partitioning Around Medoids
(PAM) [43, 19] on the node latent feature vectors to group the graph nodes into
L different communities, where L is a parameter denoting the number of commu-

nities in the graph. Our community partition problem can be defined as: given
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all the N nodes in graph G with their latent feature vectors set V.= {71, ..., Zn},
find L different nodes with their latent features Z¢ = {Z¢,, ..., Zc, } C V from
the N nodes as the optimal community centers, and assign the other nodes into
these L communities based on the distances between their latent feature vectors
(O=V\Z¢ ) and Zc. PAM realizes the community partition problem via the

following four steps.

e Step 1. Initialization: Randomly select L nodes with their features Z¢

as the community medoid nodes.

e Step 2. Clustering: Compute the L; distances between the medoid nodes
and the rest nodes based on their feature vectors, and assign each non-
medoid node to its closest community; Calculate the value for the below
cost function, which computes the total distance between the non-medoid
node feature vectors O; € O and their community medoid feature vectors

by:
Cost = Z;V:jL|Oj A (6)
where Z¢, € Z¢ is the corresponding medoid of O;.

e Step 3. Adjusting: Swap each medoid node by all other non-medoids
and calculate the total cost for current configuration referring to Step
2; Compare the cost of current and previous configuration and keep the

configuration with the smaller total cost.

e Step 4. Optimization: Repeat Step 2 and 3 until the configuration does

not change.

4.3.2. Community Pooling

In order to preserve the captured community structure during the pooling
process for the entire-graph representation learning, we propose a new pool-
ing mechanism called “community pooling”, which summarizes the learned

node representations based on the detected community structure. Suppose

10



Zn, = {23y, - Z}y. } is the set consisting of the latent feature vectors of all W
community member nodes except for the community center nodes Z¢, € Z¢ in
the community—:. Our community pooling problem can be defined as: given
a community center feature Zo, € Z¢, and the corresponding W community
member features Z;s,, compute the community representation Zcomm,. The

community pooling operation computes the community—i’s representation by:
ZCommi = ZCi + Z1‘/)1/:1 Szm(Z}“\’}L, ZCL)Z}\U/II’ (7)

where Sim/(-) is a function to measure the normalized similarity (€(0,1]) between
each member Z}; and the community center Z¢,. In our model, we mainly

define Sim(-) based on L; distance:

1

~IZy, — Ze,

Sim(Zyy,, Zc,) B
1

(8)

When each community representation Zcomm, is computed, we replace the cen-
ter node feature Zc; by Zcomm, and remove other community member nodes.
As for the graph topology structure, the preserved center nodes are connected
if and only if they are connected in the original graph. To sum up, during the
pooling, the community structure information and the node features are pre-
served onto the community center nodes. And the graph structures among the
communities are presented as the topology structure of down-scaled graph with

M < N nodes.
4.4. CommPOOL for Graph Classification

(K) _ [ (K) (K) ]T are

When the community representations Zg,,... = |Zcomm, s s LCommy,

obtained from the last Embedding-Pooling module (k = K), a global readout
operation is used to generate the whole graph representation Zg;.qpn by averag-

ing Z(c?nm' Finally, an Multilayer Perceptron (MLP) utilizes Zg,qpn to make
predictions for graph classification. The training procedure of CommPOOL for

the graph classification task is summarized in Algorithm 1.
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Algorithm 1: Training Procedure
Input : graph: G = (A, H), classification label: y, K

Output: prediction: g
for k=1,2,..., K do
Step 1: Use G to train the VGAE
Step 2: Obtain the latent feature using trained VGAE

Step 3: Community Pooling on latent features and generate down-scaled

graph G® = (A® z®) ) Set G = GW.

Comm

end

Step 4: Zgraph = GlobalReadout(Z<K) )

Comm

Step 5: Train M LP to generate § = M LP(Zgrapn)

5. Experiment

In this section, we evaluate our CommPOOL framework using graph classi-
fication tasks. We present our experiment results in the following four subsec-
tions: (1) We introduce the dataset used in the experiments. (2) We compare
the graph classification performance between CommPOOL and several compet-
ing HGPNN models. (3) We provide some variations of the CommPOOL. (4)
We test our model on the simulation data to evaluate whether CommPOOL can

accurately preserve the community structures in the graph.

5.1. Dataset

Five graph dataset are selected from the public benchmark graph data col-
lection [44]. Table 1 summarizes the statistics of all dataset.

PROTEINS and Synthie [45, 46, 47] are two sets of graphs representing
the protein structure. The nodes are some amino acid features such as secondary
structure content and amino acid propensities. Nodes are linked by edges if the
amino acid is an amino acid sequence. FRANKENSTEIN [48] is a set of
graphs representing the molecules with or without mutagenicity. The nodes
represent different chemical atoms and the edges are the chemical bonds type.
BZR [49] is a set of graphs representing the ligands for the benzodiazepine

receptor. And AIDS [50] is set of graphs representing molecular compounds

12



with activity against HIV or not. The molecules are converted into graphs by

representing chemical atoms as nodes and the bonds as edges.

Table 1: Dataset Statistics: V and the € represent the nodes and edges in graph G. c represents

graph classes.

Dataset #|G| | Ave.|V| | Ave.|E] | #]c]
BZR 405 35.75 38.36 2
Synthie 400 95.00 | 172.93 4
FRANKENSTEIN | 4337 | 16.90 17.88 2
PROTEINS 1113 | 39.06 72.82 2
AIDS 2000 | 15.69 16.20 2

5.2. Graph Classification
5.2.1. Baseline Methods

Our baseline methods include: two graph global pooling models (Set2Set
[11] and SortPool [12] ), and three HGP models (DIFFPOOL [18], SAG-
POOL [19] and HGP-SL [21]). For fair comparisons, we set two embedding-
pooling modules for all HGP models including three baseline HGPs and our
CommPOOL. For the baselines, we follow the original hyperparameter search

strategies provided in the related papers.

5.2.2. Experiments Setting

Following previous works [51, 18, 21], we randomly split the whole dataset
into training (80%) set, validation (10%) set and testing (10%) set. We repeat
this randomly splitting process 10 times, and the average test performance with
standard derivation is reported in Table 2. We optimize the model via Pytorch
Adam optimizer. For the VGAE in the first module, the learning rate (Ir)
and the weight decay (wd) are searched in {0.0001,0.001,0.005,0.01,0.05,0.1}.
The dimension of two latent GNN layers are 32 and 16. For the VGAE in the
second module, the Ir and wd are searched in {0.0001,0.001,0.005,0.01} and the
dimension of two latent GNN layers are 64 and 32. In the community pooling

operation, the number of communities (L) is searched in {40%, 50%, 60%} of the
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number of graph nodes (V). The MLP consists of two fully connected layers with
64 and 32 neurons and a softmaz output layer. The Ir for training the MLP is
searched in {0.001,0.005,0.01}. We stop training if the validation loss does not
decrease for 50 epochs. Our experiments are deployed on NVIDIA Tesla P100
GPUs supported by the Bridges system of Pittsburgh Supercomputing Center
(PSC) [52, 53]. We implement all baselines and CommPOOL using PyTorch
[54] and the torch geometric library [55].

Table 2: Average graph classification test accuracy £ standard deviation (%).

Models BZR Synthie FRANKENSTEIN | PROTEINS AIDS
Set2Set 80.50 + 1.03 | 22.50 + 0.86 60.62 + 0.27 68.08 + 0.56 | 88.80 4+ 0.45
SortPool 77.00 £ 1.24 | 32.50 £ 1.24 59.86 + 1.22 70.11 £ 0.04 | 86.00 £ 2.42
DIFFPOOL | 80.50 £1.48 | 57.00 £ 2.62 60.60 + 1.62 72.43 £0.26 | 93.50 £ 1.00
SAG-POOL | 82.00 +2.13 | 45.00 +4.21 61.73 £ 0.76 71.86 +£0.97 | 93.50 £ 1.00
HGP-SL 83.00 + 4.30 | 54.00 + 0.04 59.51 + 1.50 84.91 + 1.62 | 95.50 £ 1.00
CommPOOL | 86.00 + 1.23 | 66.50 + 0.38 62.15 + 0.37 74.74 £+ 0.06 | 98.50 + 0.05

5.2.3. Summary of Results

Table 2 summarizes the classification performances of six models on five
public datasets. Our CommPOOL outperforms all baselines in the graph clas-
sification task on almost all datasets, especially on the four-class data Synthie.
For example, our CommPOOL shows about 5.11% improvement in the classi-
fication accuracy comparing to all baselines on BZR data. This superiority of
CommPOOL may be credited to its advanced mechanism for capturing and pre-
serving the community structure in the pooling operation. Also, these results
indicate that the community is a crucial hierarchical structure for learning the
whole graph representation.

Moreover, Table 2 shows that hierarchical pooling methods generally per-
form better than global pooling methods, which verifies that the hierarchical
pooling can better capture the graph global representations. Among all base-
line models, HGP-SL relatively performs better than others, which may be
attributed to the structure learning (SL) operations in the model. On PRO-
TEINS, HGP-SL performs the best among all baseline methods and even better

14



than ours. As discussed in [21], the structure learning in the HGP-SL is superior
to preserve more topology structure of the original protein graph after pooling
several times. The topology structure preserved by HGP-SL may play an im-
portant role on PROTEINS data classification, which improve its classification
performance on this data. However, our proposed CommPOOL is a general ap-
proach that can capture the inherent community structure existing in different
kinds of graphs, therefore, it overall outperforms the baselines across multiple

datasets.

5.3. Ablation Studies

5.83.1. Model Variations

To show the flexibility of CommPool, we compare several variations of
CommPOOL on PROTEINS and FRANKENSTEIN data. As noted in The
Proposed Framework section, GAT [7] and HO-GNN [42] are used to replace
GCN as VGAE encoder variations. Moreover, instead of using the reciprocal of
L, distance, we adopt the cosine-similarity as Sim(-) to measure the similar-
ity between community members Zj;, and the corresponding community center
Zc, in community—i:

o w Iy Ze,
S 20) = iz Mz ¥

The performance of CommPool with different encoders and similarity measures
are listed in Table 3, which indicates that GAT, compared to GCN, has a
better performance as the encoder in CommPOOL to embed the graph nodes. In
addition, Table 3 shows that L; distance is better than cosine distance when
measuring the similarity between the latent features of community member
nodes and the community center nodes. A possible explanation is that L;
distance is used in the PAM clustering. Therefore, it may be better to use the
same distance metric in the community partition process.
5.8.2. Parameters Analysis

To investigate how the hyperparameters impact the performance of the pro-

posed CommPOOL, we show the graph classification results achieved by our
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Table 3: Performance (%) of CommPOOL with different encoder settings and different simi-

larity measures

CommPOOL | PROTEINS | FRANKENSTEIN
Ly 74.74 + 0.06 62.15+ 0.37
GCN
cosine| 73.84 +0.13 60.18 +0.42
Ly 78.84 £+ 0.02 63.48 + 0.52
GAT
cosine| 76.01 +£0.21 62.32 +0.39
Ly 80.01. £0.13 64.26 + 0.20
HO-GCN
cosine| 77.09 £ 0.07 63.01 = 0.11

model under different number of communities (L) and different latent feature
dimensions on PROTEINS and FRANKENSTEIN data. As shown in the Fig-
ure 3, the performance of models is consistent with different L values. When
increasing the L value from 0.3N to 0.7N, the classification results tend to
incline and decline. The best results appear when L = 0.5N on PROTEINS
data whereas appear when L = 0.6 N on FRANKENSTEIN data. This may be
attributed to the different intrinsic community patterns in these two datasets.
We show the model performance under different latent feature dimensions in
Table 4. As shown in table Table 4, four different feature dimension combi-
nations are set as the dimensions of latent feature generated by layers of EP
module 1 and EP module 2 (e.g. [32,16], [64, 32] indicates that the dimensions
of latent features generated by the two layers in the EP module 1 are 32 and 16,
while the dimensions of latent features generated by the two layers in the EP
module 2 are 64 and 32). It shows that, generally, the feature dimensions have
slight impact on the classification results. Empirically, it indicates that lower
feature dimensions should be set in EP module 1 whereas higher dimensions

should be set in EP module 2.

5.4. Community Fvaluation

In order to evaluate if CommPool can capture the community structures, we

simulate a set of graphs with the known community ground-truth and evaluate
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Figure 3: Graph classification accuracy (%) performed by CommPool with there VGAE en-
coders (e.g. GCN, GAT and HO-GCN) on (a) PROTEINS data and (b) FRANKENSTEIN
data under different number of communities (NC). The NC values range from 0.3N to 0.7N

with a step as 0.1N, where N is the number of node in each graph.

Table 4: Average graph classification accuracy + standard deviation (%) under different

feature dimensions.

Feature Dimensions | PROTEINS | FRANKENSTEIN
(32, 16], [64, 32] 74.74 + 0.06 62.15 + 0.37
[64,32],[128,64] | 73.61+£0.13 62.02 £ 0.14
[64,32], [32, 16] 73.89 + 0.25 61.29 + 1.04
[128,64],[64,32] | 74.26 +£0.31 61.90 = 0.81

how CommPOOL preserves the intrinsic community structures on these simu-
lation graphs. Meanwhile, on the real-data, we use PROTEINS data with the
node labels as the community ground-truth to evaluate the community struc-

tures captured by the CommPOOL.

5.4.1. Simulation Graphs

We create 3 classes of simulation graphs using different graph generating
methods, including the Random Partition Graphs, the Relax Caveman Graphs,
and the Gaussian Random Community Graphs [56, 57]. Each class contains
300 graphs and each graph has 4 communities with the average size of 6 nodes.
A community label is assigned to each graph node. Meanwhile, we randomly

sample from the normal distribution N(0,I) as node features. We evaluate
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CommPOOL on the simulation graphs to predict their class labels. Table 5
compares the graph classification performance of CommPool with the baseline
models. The results show that, on the simulation data, the CommPOOL can
also outperform all the baseline models. N/A in Table 5 indicates the SAG-

POOL cannot achieve an optimal point in reachable epochs.

Table 5: Average graph classification accuracy + standard deviation (%) on the simulation

data.
Models Classification Accuracy

Set2Set 46.54 + 3.85
SortPOOL 51.29 + 0.61
DIFF-POOL 67.14 £ 2.16

SAG-POOL N/A
HGP-SL 72.70 £1.95
CommPOOL 80.14 £ 2.15

5.4.2. Fvaluation of Community Detection

In order to evaluate if CommPool can capture the community structures,
we compare the node community label assigned by PAM clustering in the 15
EP module to the community ground-truth labels. Specifically, we compute
the Normalized Mutual Information (NMI) [58] between distribution of
community labels predicted by the model and given by the ground-truth for
each graph. Figure 4a is a histogram presenting the distribution of NMI scores
for all 900 simulation graphs and 1113 PROTEINS data. Statistically, on the
simulation data, 79.44% graphs have an NMI score larger than 0.9 and the mean
NMI score is 0.9516 + 0.098. On the PROTEINS data, 66.32% graphs have an
NMI score larger than 0.9 and the mean NMI score is 0.8065 4 0.032.

6. Evaluation and Discussion

In this section, we firstly discuss the interpretibility of our proposed com-

munity pooling operation. And then we analyze the importance of community
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Figure 4: (a) is the NMI histogram between the distributions of community labels of ground-
truth and CommPOOL prediction. (b) is a positive example of community structure captured
by CommPOOL leading to a correct classification. (c) is a negative example which leads to

a graph misclassification. Different colors represent different communities.

structure to the graph classification task.

6.1. Interpretability of Community Pooling

CommPOOL is a hierarchical graph pooling framework with an interpretable
pooling operation. The user can transparently understand the pooling results
by monitoring the pooling operation. An interpretable pooling operation should
be capable of clearly answering three questions mentioned in the Introduction

section. Our CommPOOL provides the heuristic and knowledgeable answers

for the questions in the following way:

e Q1: How to capture the graph hierarchical structures in an in-

terpretable way?
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The CommPOOL considers the communities as the basic graph hierar-
chical structure. In the community pooling operation, we adopt PAM to
group graph nodes into different communities based on the similarities
among their features. The goal of the pooling operations is integrating
the similar features thereby coarsening the graphs. The CommPOOL
coarsens the graphs based on the graph’s inherent community structure
captured by the PAM, which is a natural way that allows the further
pooling operation to be able to integrate the features of similar nodes. In
another word, the features of nodes assigned in the same community by
the CommPOOL are similar and are supposed to be integrated into one
node after the pooling operation. Therefore, the overall pooling procedure
is intuitive and explainable. The community capture ability of our pooling
operation has been shown in the previous Community Evaluation on

Simulation Data section.

Q2: How to scale down the graph while preserving the structures
via an interpretable process?

To scale down the graph, we choose the community medoid node as the
representation of the whole community, which can be understood like the
centroid can be used to represent the whole mass. Meanwhile, without
loss of necessary graph structure information, an interpretable structure
preservation process is introduced during downscaling the graph. The
community pooling achieves the preservation via gathering the nodal and
structure information of the community member nodes as the features of

the community medoid node.

Q3: What do we obtain after the pooling operation?
From the graph topology view, the community pooling generates community-
based sub-graphs of the original graph since the pooling operation does
not, generate any new graph nodes and edges. Each node in the sub-graph

contains the corresponding community information.
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6.2. Community Effect on Graph Classification

We design a further experiment named semi-random pooling to show
that a solid community preservation is important to the graph classification.
Instead of randomly partitioning the graph into multiple communities, we only
randomly select the community center nodes. After determining the community
center nodes, we assign each other node to the closest community based on the
similarity of node features. Such a semi-random partition method can generate
a few node cliques in graphs. These cliques, though are not the optimal com-
munities, can still maintain the hierarchical information to some degree. We
replace the PAM clustering by the semi-random partition in the pooling oper-
ation. Table 6 indicates that the community pooling has significant improve-
ments in the graph classification tasks comparing to the semi-random pooling,
which demonstrates that the success of community capture and preservation
is crucial to the graph classification. To visualize, we select two simulation
graphs to show (1) a positive example of community structure captured by the
CommPOOL (Figure 4b); and (2) a negative example of community structure
captured by the CommPOOL, which eventually leads to the graph’s misclassifi-
cation (Figure 4c). In addition, the performance of semi-random pooling does
not decrease a lot comparing with the community pooling, which is beyond our
expectations in a way. A reasonable explanation is that although unable to pre-
serve the optimal community structure, the semi-random pooling method can
still capture some degree of graph hierarchical structure, which again justifies

that the significance of the community structure in the graph.

Table 6: Graph Classification Accuracy of Semi-random Pooling vs. Community-based Pool-

ing
Dataset semi-rand. | community-based

PROTEINS | 64.90 £ 2.45 74.74 £ 0.06

BZR 81.50 £+ 2.82 86.00 +1.23

Synthie 59.00 £ 5.89 66.50 = 0.38

Simulation | 70.34 £ 1.26 80.14 £ 2.15
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7. Conclusion

In this paper, we propose CommPOOL, a new interpretable hierarchical
graph pooling framework. CommPOOL is designed for being able to capture
and preserve the inherent hierarchical community structures in graphs during
the graph representation learning and scaling-down process. Moreover, Comm-
POOL is a general graph representation learning framework that can facilitate
various graph-level tasks. Experiments on both real-world graph datasets from
different domains and synthetic graph data have shown that CommPOOL out-
performs the state-of-the-art methods in graph representation learning for the
graph classification task. In future work, we will explore leveraging CommPOOL

for other graph-level tasks, such as graph regression.
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