

CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical Graph Representation Learning

Haoteng Tang^{a,1}, Guixiang Ma^{b,2}, Lifang He^{c,3}, Heng Huang^{a,1},
Liang Zhan^{a,1,*}

^a*3700 O'Hara St, Pittsburgh, PA, USA, 15260*

^b*2111 NE 25th Ave, Hillsboro, OR, USA, 97124*

^c*113 Research Dr, Bethlehem, PA, USA, 18015*

Abstract

Recent years have witnessed the emergence and flourishing of hierarchical graph pooling neural networks (HGPNNs) which are effective graph representation learning approaches for graph level tasks such as graph classification. However, current HGPNNs do not take full advantage of the graph's intrinsic structures (e.g., community structure). Moreover, the pooling operations in existing HGPNNs are difficult to be interpreted. In this paper, we propose a new interpretable graph pooling framework — CommPOOL, that can capture and preserve the hierarchical community structure of graphs in the graph representation learning process. Specifically, the proposed community pooling mechanism in CommPOOL utilizes an unsupervised approach for capturing the inherent community structure of graphs in an interpretable manner. CommPOOL is a general and flexible framework for hierarchical graph representation learning that can further facilitate various graph-level tasks. Evaluations on five public benchmark datasets and one synthetic dataset demonstrate the superior performance of CommPOOL in graph representation learning for graph classification compared to the state-of-the-art baseline methods, and its effectiveness in cap-

^{*}Corresponding author

¹Department of Electrical and Computer Engineering, University of Pittsburgh

²Intel Labs

³Department of Computer Science and Engineering, Lehigh University

turing and preserving the community structure of graphs.

Keywords: Graph Representation Learning, Hierarchical Graph Pooling
Neural Network, Community Structure, Graph Classification

¹ **1. Introduction**

² In recent years, graph neural network (GNN) has emerged and been broadly used
³ as a generalized deep learning architecture for graph representation learning
⁴ in many fields, such as social network analysis [1, 2] and chemical molecule
⁵ studies [3, 4, 5]. Generally, GNN models learn node embeddings by passing,
⁶ transforming and aggregating node features across the graph. The generated
⁷ node representations can then be forwarded to further layers for specific learning
⁸ tasks, i.e., node classification [6, 7] and link prediction [8].

⁹ Most of the existing GNN models (e.g., GCN [6], GAT [7], GraphSage [9]) fo-
¹⁰ cus on node-level representation learning and only propagate information across
¹¹ edges of the graph in a flat way. When applying these GNNs for graph-level tasks
¹² such as graph classifications, existing works usually apply simple global pooling
¹³ strategies (i.e., a summation over the learned node representations) to obtain
¹⁴ the graph-level embedding and use it for graph label prediction [10, 11, 12]. One
¹⁵ main drawback in these GNNs is that the hierarchical structure, often existing
¹⁶ in graphs, is ignored during the global pooling process, which makes the models
¹⁷ less effective for graph-level tasks. Hierarchical structure is a very important
¹⁸ structure for many graphs in various domains. For example, the hierarchical
¹⁹ community structure shown in **Figure 1** is a typical pattern that often appears
²⁰ in social networks [13, 14], chemical molecule networks [15] and brain networks
²¹ [16, 17]. Therefore, preserving these community structures is critical for better
²² understanding and analyzing these graphs.

²³ Some recent works proposed hierarchical graph pooling neural networks
²⁴ (HGPNNs) to address the hierarchical structure representation issue by intro-
²⁵ ducing the hierarchical pooling operations [18, 19, 20, 21]. Generally, these HG-
²⁶ PNNs consist of two components: the GNN backbone which is used to embed

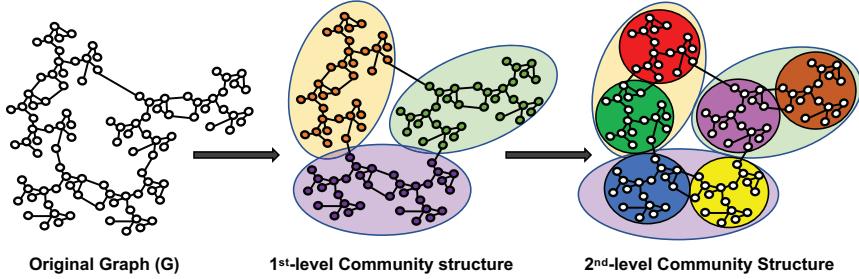


Figure 1: An example of hierarchical community structures in graphs

the graph nodes and local structures, and the pooling operation which represents graph structure in a hierarchical way. These HGPNNs have demonstrated the necessity of adding hierarchical pooling operations in GNNs to better preserve the graph hierarchical structure.

However, a critical limitation of the existing hierarchical graph pooling (HGP) strategies is that few of the pooling operations in the models are interpretable. In many real applications, it is desirable to have an interpretable model, where human can understand the cause of a decision made by the model [22, 23]. Moreover, an interpretable model is more robust under adversarial attacks [24, 25, 26, 27]. A few of recent works [28, 29, 30] interpreted the node feature embedding via GNN as a neighborhood aggregation scheme. Particularly, they stated that the GNN embed the local feature of each node v within two steps: (1) neighbor node features aggregation and (2) node feature transformation. However, the interpretability of pooling operations is still not well solved (Details are discussed in the **Related Work**.). In order to make the HGP operation interpretable, three questions should be considered:

Q1: How to capture the graph hierarchical structures in an interpretable way?

Q2: How to scale down the graph representation while preserving the structures via an interpretable process?

Q3: What do we obtain after the pooling operation?

To address these challenges, we propose a Community-Based HGP framework, **COMMUNITY-POOL** or **CommPOOL**. We aim to encode the hierarchical community structure in graphs, which is a natural structure in many

50 graphs, where nodes within each community are more densely connected than
51 the nodes across different communities. Specifically, we propose a community-
52 based hierarchical pooling operation which aggregates and synthesizes the node
53 features based on the detected communities, such that the community structure
54 of graphs can be preserved during the pooling process. Moreover, we introduce
55 a GNN-based framework with the proposed community-based hierarchical pool-
56 ing operation for learning latent graph representations, where both local node
57 features and the hierarchical community-structure information are encoded and
58 preserved. Our contributions can be summarized as:

- 59 • We propose a community-based HGP framework (CommPOOL) for learn-
60 ing graph representation in a hierarchical way that can preserve both the
61 local node features and the hierarchical community structure of graphs.
- 62 • The proposed hierarchical community pooling strategy relies on the com-
63 munity structure which is explicitly detected from the graphs, therefore
64 the pooling operation can capture the intrinsic community-level latent rep-
65 resentation of graphs and the pooling process is inherently interpretable.
- 66 • We evaluate our CommPOOL framework for the whole graph classification
67 task on multiple public benchmark datasets. The results demonstrate the
68 superior performance of our model compared to several state-of-the-art
69 graph pooling neural networks.
- 70 • Evaluations on synthetic graphs with community ground-truth labels show
71 that our proposed CommPOOL can capture and preserve the intrinsic
72 community structure of graphs during the learning process.

73 2. Related Work

74 2.1. Graph Pooling

75 Graph pooling operation is a strategy aiming to scale down the size of in-
76 put graphs. It can not only help to avoid model overfitting and reduce the

computational cost but also generate graph-level representations [31]. In the
77
early works [32, 33, 34, 35, 11], the graph pooling methods simply compute
78
the *mean/max/sum* of all graph node features as the representation of the
79
whole graph. Such a primitive pooling strategy is named as global pooling.
80
Later on, a few advanced techniques (e.g. attention mechanisms [10, 5, 36], fea-
81
ture sorted [12]) are proposed to improve the performance and efficiency of the
82
global pooling. However, the global pooling methods do not learn the hierarchi-
83
cal representations, which are crucial for capturing the structural information
84
of graphs. Therefore, HGPNNs are proposed [21, 18, 37, 20, 38, 39, 40].
85

2.2. Interpretability of HGPNNs

Most HGP operations in the current HGPNNs [21, 18, 37, 20, 38, 39, 40]
86
show little interpretability and are difficult to be understood by the users. More-
87
over, very few studies present the interpretability of their HGP operations in the
88
paper, which may be accounted for by the following two issues: (1). Hardly
89
any clear definition or analysis can be found to explain what is the captured
90
graph structure. Therefore, the model users are lack of heuristic knowledge
91
to understand the pooling operation. (2). Although some studies [18] present
92
the visualization of hierarchical clusters captured by the model, no quantita-
93
tive analysis is provided to examine whether the captured clusters of nodes are
94
aligned with the intrinsic clusters in the original graph. Apart from these, most
95
recent studies unfold the HGP operation as a neural network layer with train-
96
able parameters. The black-box nature of neural networks may also raise extra
97
difficulties to interpret the models in a way.
98

3. Preliminaries

3.1. Graph Notation

We consider the graph classification problem on attributed graphs with dif-
102
ferent numbers of nodes. Let $G = (A, H)$ be any of the attributed graph with
103
 N nodes, where $A \in \{0, 1\}^{N \times N}$ is the graph adjacency matrix and $H \in \mathcal{R}^{N \times d}$
104

105 is the node feature matrix assuming that each node has d features. Also,
106 $Z = [Z_1, \dots, Z_N]^T$ is defined as the node latent feature matrix where Z_i is
107 the latent feature vector for the node i . Given a set of labeled data $\mathcal{D} =$
108 $\{(G_1, y_1), (G_2, y_2), (G_3, y_3), \dots\}$ where $y_i \in \mathcal{Y}$ is the classification label to the
109 corresponding graph $G_i \in \mathcal{G}$. The graph classification task can be formulated
110 as learning a mapping, $f: \mathcal{G} \rightarrow \mathcal{Y}$.

111 *3.2. Graph Neural Network*

Graph Neural Network (GNN) is an effective message-passing architecture
for embedding the graph nodes and their local structures. Generally, GNN can
be formulated as:

$$Z^{(k)} = F(A^{(k-1)}, Z^{(k-1)}; \theta^{(k)}), \quad (1)$$

112 where k denotes the layer k of GNN. $A^{(k-1)}$ is the graph adjacency matrix
113 computed by layer $(k-1)$ of the GNN. $\theta^{(k)}$ is the trainable parameters in the
114 layer k of the GNN. Particularly, $Z^0 = H$.

115 $F(\cdot)$ is the forward function to combine and transform the messages across
116 the nodes. Many different versions of forward functions $F(\cdot)$ are proposed in
117 the previous studies [5, 9] such as Graph Convolutional Neural Network (GCN)
118 [6] and Graph Attention Network (GAT) [7]. The GCN linearly combines the
119 neighborhoods as the node the representation. And the GAT computes node
120 representations in entire neighborhoods based on attention mechanisms [41].

121 **4. The Proposed Framework**

122 *4.1. Model Architecture*

123 Our goal is to provide a general graph pooling framework that can capture
124 and preserve the hierarchical community structure of graphs in the representa-
125 tion learning process of GNNs. The framework should be interpretable and it
126 should be able to facilitate further graph-level learning tasks, for example, graph
127 classification. To achieve this goal, we propose a community-based hierarchical

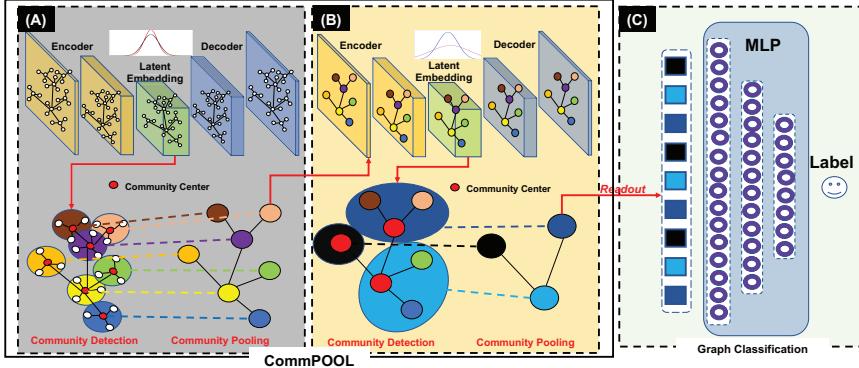


Figure 2: Framework of the CommPOOL for graph classification. **(A)** is the 1^{st} Embedding-Pooling (EP) module and **(B)** is the 2^{nd} EP module. In each module, we embed the graph into the latent space by using VGAE. In the latent space, we scale down the graph representation based on the detected communities. **(C)** is the MLP for graph classification.

graph pooling (HGP) framework: **CommPOOL**, which is composed of k cascaded Embedding-Pooling (EP) modules to learn the graph representation in a hierarchical way. Each EP module consists of (1) an Embedding stage, where a GNN model is employed to get the latent node representations (i.e., node embeddings) of the input graph, and (2) a Pooling stage, where a newly proposed community pooling mechanism is conducted on the node embeddings to detect communities from the graph and obtain a scaled-down graph-level representation that encodes both the local node features and the community structure of the graph. The output of the last EP module will be the final graph-level representation that preserves the overall hierarchical community structure of the graph. **Figure 2(A, B)** shows an instance of the proposed framework with two cascaded EP modules. In real applications of our framework, the choice of value for k is flexible and it can be decided based on the practical needs or domain knowledge for the specific application (e.g., domain evidence about how many community hierarchies exist in the graphs). In this paper, we set $k = 2$ and use the architecture given in **Figure 2(A, B)** for illustrating our framework and we use the MLP shown in **Figure 2(C)** for evaluating the CommPOOL in graph representation learning for facilitating graph classification task.

146 In the following subsections, we introduce the two main parts in the proposed
147 EP module for CommPOOL: (1) the GNN-based Graph Node **Embedding**, and
148 (2) the Community **Pooling** Operation.

149 *4.2. GNN-based Node Embedding*

150 We aim at a general GNN-based model to embed the graph nodes into the
151 latent feature space \mathcal{Z} that well preserves the inherent graph structures. On
152 the one hand, the desired node latent features should well encode the node
153 information and the information between the node and its neighbors. On the
154 other hand, the latent features should preserve the intrinsic structures of the
155 graphs without task-specific influences or supervised information. On account
156 of the above considerations, we choose the Variational Graph Auto-Encoders
157 (VGAE) [8] for this node embedding stage. VGAE is a robust unsupervised
158 method that can embed nodes into the latent space by reconstructing the graph
159 itself. This can help preserve the intrinsic structures of the graph without
160 involving any task-specific information or supervision.

161 *4.2.1. Encoder*

162 In the VGAE, we need to learn a Gaussian distribution $q(Z|H, A) = \mathcal{N}(Z|\mu,$
163 $\sigma^2)$ which is used to approximate the Gaussian prior $p(Z) = \mathcal{N}(Z|0, I)$. Partic-
164 ularly, we utilize two GNN layers to compute the μ and σ^2 parameters of q . In
165 the first layer, μ and σ^2 share the same GNN encoder. And in the second layer,
166 two separate GNNs are used to generate μ and σ^2 respectively. The approxima-
167 tion can be achieved by maximizing the Kullback–Leibler (KL) loss between p
168 and q :

$$\mathcal{L}_{KL} = KL(q(Z|H, A)||p(Z)) \quad (2)$$

169 The latent features Z can be obtained by resampling from the optimal
170 $q(Z|H, A)$.

4.2.2. Decoder

171

After we obtain the latent features Z , we reconstruct the original graph
adjacency matrix by:

172

173

$$\hat{A} = \text{sigmoid}(ZZ^T). \quad (3)$$

We define $+$ and $-$ as the edges and non-edges position index in A . So we
reconstruct the adjacency matrix by minimizing the \mathcal{L}_A :

174

175

$$\begin{aligned} \mathcal{L}_A &= \mathcal{L}^+ + \mathcal{L}^- \\ &= -\frac{1}{E_1} \Sigma(\log(\hat{A}^+)) - \frac{1}{E_2} \Sigma(\log(1 - \hat{A}^-)) \end{aligned} \quad (4)$$

where E_1, E_2 is the number of edges and non-edges. The overall objective
function of VGAE is:

176

177

$$\underset{Z \in \mathcal{Z}}{\text{minimize}} \quad \mathcal{L}_A - \mathcal{L}_{KL} \quad (5)$$

In our CommPOOL, we use GCN [6] to build up the basic encoder layers and
use GAT [7] and Higher-Order Graph Neural Network (HO-GNN) [42] as the
encoder variations.

178

179

180

4.3. Community Pooling

181

After embedding the graph nodes into the latent space \mathcal{Z} , the latent features
represent the node attributes and topology structures among nodes in the latent
space. The distance between two latent features measures the node attributes
similarity and structure similarity between the two nodes. The proposed Comm-
POOL assigns the similar nodes into a community which is further used to scale
down the graph.

182

183

184

185

186

187

4.3.1. Community Capturing

188

We adopt an unsupervised clustering method Partitioning Around Medoids
(PAM) [43, 19] on the node latent feature vectors to group the graph nodes into
 L different communities, where L is a parameter denoting the number of commu-
nities in the graph. Our community partition problem can be defined as: given

189

190

191

192

193 all the N nodes in graph G with their latent feature vectors set $V = \{Z_1, \dots, Z_N\}$,
 194 find L different nodes with their latent features $Z_C = \{Z_{C_1}, \dots, Z_{C_L}\} \subset V$ from
 195 the N nodes as the optimal community centers, and assign the other nodes into
 196 these L communities based on the distances between their latent feature vectors
 197 ($O = V \setminus Z_C$) and Z_C . PAM realizes the community partition problem via the
 198 following four steps.

199 • **Step 1.** Initialization: Randomly select L nodes with their features Z_C
 200 as the community medoid nodes.

201 • **Step 2.** Clustering: Compute the L_1 distances between the medoid nodes
 202 and the rest nodes based on their feature vectors, and assign each non-
 203 medoid node to its closest community; Calculate the value for the below
 204 cost function, which computes the total distance between the non-medoid
 205 node feature vectors $O_j \in O$ and their community medoid feature vectors
 206 by:

$$Cost = \sum_{j=1}^{N-L} |O_j - Z_{C_x}|_{L_1}, \quad (6)$$

207 where $Z_{C_x} \in Z_C$ is the corresponding medoid of O_j .

208 • **Step 3.** Adjusting: Swap each medoid node by all other non-medoids
 209 and calculate the total cost for current configuration referring to Step
 210 2; Compare the cost of current and previous configuration and keep the
 211 configuration with the smaller total cost.

212 • **Step 4.** Optimization: Repeat Step 2 and 3 until the configuration does
 213 not change.

214 *4.3.2. Community Pooling*

215 In order to preserve the captured community structure during the pooling
 216 process for the entire-graph representation learning, we propose a new pool-
 217 ing mechanism called “community pooling”, which summarizes the learned
 218 node representations based on the detected community structure. Suppose

$Z_{M_i} = \{Z_{M_i}^1, \dots, Z_{M_i}^W\}$ is the set consisting of the latent feature vectors of all W community member nodes except for the community center nodes $Z_{C_i} \in Z_C$ in the community- i . Our community pooling problem can be defined as: given a community center feature $Z_{C_i} \in Z_C$, and the corresponding W community member features Z_{M_i} , compute the community representation Z_{Comm_i} . The community pooling operation computes the community- i 's representation by:

$$Z_{Comm_i} = Z_{C_i} + \sum_{w=1}^W Sim(Z_{M_i}^w, Z_{C_i})Z_{M_i}^w, \quad (7)$$

where $Sim(\cdot)$ is a function to measure the normalized similarity ($\in (0,1]$) between each member $Z_{M_i}^w$ and the community center Z_{C_i} . In our model, we mainly define $Sim(\cdot)$ based on L_1 distance:

$$Sim(Z_{M_i}^w, Z_{C_i}) = \frac{1}{\|Z_{M_i}^w - Z_{C_i}\|_{L1}} \quad (8)$$

When each community representation Z_{Comm_i} is computed, we replace the center node feature Z_{C_i} by Z_{Comm_i} and remove other community member nodes. As for the graph topology structure, the preserved center nodes are connected if and only if they are connected in the original graph. To sum up, during the pooling, the community structure information and the node features are preserved onto the community center nodes. And the graph structures among the communities are presented as the topology structure of down-scaled graph with $M < N$ nodes.

4.4. CommPOOL for Graph Classification

When the community representations $Z_{Comm}^{(K)} = [Z_{Comm_1}^{(K)}, \dots, Z_{Comm_L}^{(K)}]^T$ are obtained from the last Embedding-Pooling module ($k = K$), a global readout operation is used to generate the whole graph representation Z_{graph} by averaging $Z_{Comm}^{(K)}$. Finally, an Multilayer Perceptron (MLP) utilizes Z_{graph} to make predictions for graph classification. The training procedure of CommPOOL for the graph classification task is summarized in **Algorithm 1**.

Algorithm 1: Training Procedure

Input : graph: $G = (A, H)$, classification label: y, K

Output: prediction: \hat{y}

for $k = 1, 2, \dots, K$ **do**

- Step 1:** Use G to train the VGAE
- Step 2:** Obtain the latent feature using trained VGAE
- Step 3:** Community Pooling on latent features and generate down-scaled graph $G^{(k)} = (A^{(k)}, Z_{Comm}^{(k)})$. Set $G = G^{(k)}$.

end

Step 4: $Z_{graph} = GlobalReadout(Z_{Comm}^{(K)})$

Step 5: Train MLP to generate $\hat{y} = MLP(Z_{graph})$

243 **5. Experiment**

244 In this section, we evaluate our CommPOOL framework using graph classi-
245 fication tasks. We present our experiment results in the following four subsec-
246 tions: (1) We introduce the dataset used in the experiments. (2) We compare
247 the graph classification performance between CommPOOL and several compet-
248 ing HGPNN models. (3) We provide some variations of the CommPOOL. (4)
249 We test our model on the simulation data to evaluate whether CommPOOL can
250 accurately preserve the community structures in the graph.

251 *5.1. Dataset*

252 Five graph dataset are selected from the public benchmark graph data col-
253 lection [44]. **Table 1** summarizes the statistics of all dataset.

254 **PROTEINS** and **Synthie** [45, 46, 47] are two sets of graphs representing
255 the protein structure. The nodes are some amino acid features such as secondary
256 structure content and amino acid propensities. Nodes are linked by edges if the
257 amino acid is an amino acid sequence. **FRANKENSTEIN** [48] is a set of
258 graphs representing the molecules with or without mutagenicity. The nodes
259 represent different chemical atoms and the edges are the chemical bonds type.
260 **BZR** [49] is a set of graphs representing the ligands for the benzodiazepine
261 receptor. And **AIDS** [50] is set of graphs representing molecular compounds

with activity against HIV or not. The molecules are converted into graphs by
 representing chemical atoms as nodes and the bonds as edges. 262
263

Table 1: Dataset Statistics: \mathcal{V} and the \mathcal{E} represent the nodes and edges in graph G . c represents
 graph classes.

Dataset	# G	Ave. \mathcal{V}	Ave. \mathcal{E}	# c
BZR	405	35.75	38.36	2
Synthie	400	95.00	172.93	4
FRANKENSTEIN	4337	16.90	17.88	2
PROTEINS	1113	39.06	72.82	2
AIDS	2000	15.69	16.20	2

5.2. Graph Classification 264

5.2.1. Baseline Methods 265

Our baseline methods include: two graph global pooling models (**Set2Set** [11] and **SortPool** [12]), and three HGP models (**DIFFPOOL** [18], **SAG-POOL** [19] and **HGP-SL** [21]). For fair comparisons, we set two embedding-pooling modules for all HGP models including three baseline HGPs and our CommPOOL. For the baselines, we follow the original hyperparameter search strategies provided in the related papers. 266
267
268
269
270
271

5.2.2. Experiments Setting 272

Following previous works [51, 18, 21], we randomly split the whole dataset into training (80%) set, validation (10%) set and testing (10%) set. We repeat this randomly splitting process 10 times, and the average test performance with standard derivation is reported in **Table 2**. We optimize the model via Pytorch Adam optimizer. For the VGAE in the first module, the learning rate (lr) and the weight decay (wd) are searched in $\{0.0001, 0.001, 0.005, 0.01, 0.05, 0.1\}$. The dimension of two latent GNN layers are 32 and 16. For the VGAE in the second module, the lr and wd are searched in $\{0.0001, 0.001, 0.005, 0.01\}$ and the dimension of two latent GNN layers are 64 and 32. In the community pooling operation, the number of communities (L) is searched in $\{40\%, 50\%, 60\%\}$ of the 273
274
275
276
277
278
279
280
281
282

283 number of graph nodes (N). The MLP consists of two fully connected layers with
 284 64 and 32 neurons and a *softmax* output layer. The lr for training the MLP is
 285 searched in $\{0.001, 0.005, 0.01\}$. We stop training if the validation loss does not
 286 decrease for 50 epochs. Our experiments are deployed on NVIDIA Tesla P100
 287 GPUs supported by the Bridges system of Pittsburgh Supercomputing Center
 288 (PSC) [52, 53]. We implement all baselines and CommPOOL using PyTorch
 289 [54] and the torch geometric library [55].

Table 2: Average graph classification test accuracy \pm standard deviation (%).

Models	BZR	Synthie	FRANKENSTEIN	PROTEINS	AIDS
Set2Set	80.50 ± 1.03	22.50 ± 0.86	60.62 ± 0.27	68.08 ± 0.56	88.80 ± 0.45
SortPool	77.00 ± 1.24	32.50 ± 1.24	59.86 ± 1.22	70.11 ± 0.04	86.00 ± 2.42
DIFFPOOL	80.50 ± 1.48	57.00 ± 2.62	60.60 ± 1.62	72.43 ± 0.26	93.50 ± 1.00
SAG-POOL	82.00 ± 2.13	45.00 ± 4.21	61.73 ± 0.76	71.86 ± 0.97	93.50 ± 1.00
HGP-SL	83.00 ± 4.30	54.00 ± 0.04	59.51 ± 1.50	84.91 ± 1.62	95.50 ± 1.00
CommPOOL	86.00 ± 1.23	66.50 ± 0.38	62.15 ± 0.37	74.74 ± 0.06	98.50 ± 0.05

290 5.2.3. Summary of Results

291 **Table 2** summarizes the classification performances of six models on five
 292 public datasets. Our CommPOOL outperforms all baselines in the graph clas-
 293 sification task on almost all datasets, especially on the four-class data **Synthie**.
 294 For example, our CommPOOL shows about 5.11% improvement in the classi-
 295 fication accuracy comparing to all baselines on **BZR** data. This superiority of
 296 CommPOOL may be credited to its advanced mechanism for capturing and pre-
 297 serving the community structure in the pooling operation. Also, these results
 298 indicate that the community is a crucial hierarchical structure for learning the
 299 whole graph representation.

300 Moreover, **Table 2** shows that hierarchical pooling methods generally per-
 301 form better than global pooling methods, which verifies that the hierarchical
 302 pooling can better capture the graph global representations. Among all base-
 303 line models, HGP-SL relatively performs better than others, which may be
 304 attributed to the structure learning (SL) operations in the model. On PRO-
 305 TEINS, HGP-SL performs the best among all baseline methods and even better

than ours. As discussed in [21], the structure learning in the HGP-SL is superior to preserve more topology structure of the original protein graph after pooling several times. The topology structure preserved by HGP-SL may play an important role on PROTEINS data classification, which improve its classification performance on this data. However, our proposed CommPOOL is a general approach that can capture the inherent community structure existing in different kinds of graphs, therefore, it overall outperforms the baselines across multiple datasets. 306
307
308
309
310
311
312
313

5.3. Ablation Studies 314

5.3.1. Model Variations 315

To show the flexibility of CommPool, we compare several variations of CommPOOL on PROTEINS and FRANKENSTEIN data. As noted in **The Proposed Framework** section, GAT [7] and HO-GNN [42] are used to replace GCN as VGAE encoder variations. Moreover, instead of using the reciprocal of L_1 distance, we adopt the cosine-similarity as $Sim(\cdot)$ to measure the similarity between community members Z_{M_i} and the corresponding community center Z_{C_i} in community- i :

$$Sim(Z_{M_i}^w, Z_{C_i}) = \frac{Z_{M_i}^w Z_{C_i}}{\|Z_{M_i}^w\| \|Z_{C_i}\|} \quad (9)$$

The performance of CommPool with different encoders and similarity measures are listed in **Table 3**, which indicates that **GAT**, compared to **GCN**, has a better performance as the encoder in CommPOOL to embed the graph nodes. In addition, **Table 3** shows that L_1 distance is better than *cosine* distance when measuring the similarity between the latent features of community member nodes and the community center nodes. A possible explanation is that L_1 distance is used in the PAM clustering. Therefore, it may be better to use the same distance metric in the community partition process. 316
317
318
319
320
321
322
323

5.3.2. Parameters Analysis 324

To investigate how the hyperparameters impact the performance of the proposed CommPOOL, we show the graph classification results achieved by our 325
326

Table 3: Performance (%) of CommPOOL with different encoder settings and different similarity measures

CommPOOL		PROTEINS	FRANKENSTEIN
GCN	L_1	74.74 ± 0.06	62.15 ± 0.37
	<i>cosine</i>	73.84 ± 0.13	60.18 ± 0.42
GAT	L_1	78.84 ± 0.02	63.48 ± 0.52
	<i>cosine</i>	76.01 ± 0.21	62.32 ± 0.39
HO-GCN	L_1	80.01 ± 0.13	64.26 ± 0.20
	<i>cosine</i>	77.09 ± 0.07	63.01 ± 0.11

327 model under different number of communities (L) and different latent feature
 328 dimensions on PROTEINS and FRANKENSTEIN data. As shown in the **Figure 3**, the performance of models is consistent with different L values. When
 329 increasing the L value from $0.3N$ to $0.7N$, the classification results tend to
 330 incline and decline. The best results appear when $L = 0.5N$ on PROTEINS
 331 data whereas appear when $L = 0.6N$ on FRANKENSTEIN data. This may be
 332 attributed to the different intrinsic community patterns in these two datasets.
 333 We show the model performance under different latent feature dimensions in
 334 **Table 4**. As shown in table **Table 4**, four different feature dimension combi-
 335 nations are set as the dimensions of latent feature generated by layers of EP
 336 module 1 and EP module 2 (e.g. [32, 16], [64, 32] indicates that the dimensions
 337 of latent features generated by the two layers in the EP module 1 are 32 and 16,
 338 while the dimensions of latent features generated by the two layers in the EP
 339 module 2 are 64 and 32). It shows that, generally, the feature dimensions have
 340 slight impact on the classification results. Empirically, it indicates that lower
 341 feature dimensions should be set in EP module 1 whereas higher dimensions
 342 should be set in EP module 2.

344 *5.4. Community Evaluation*

345 In order to evaluate if CommPool can capture the community structures, we
 346 simulate a set of graphs with the known community ground-truth and evaluate

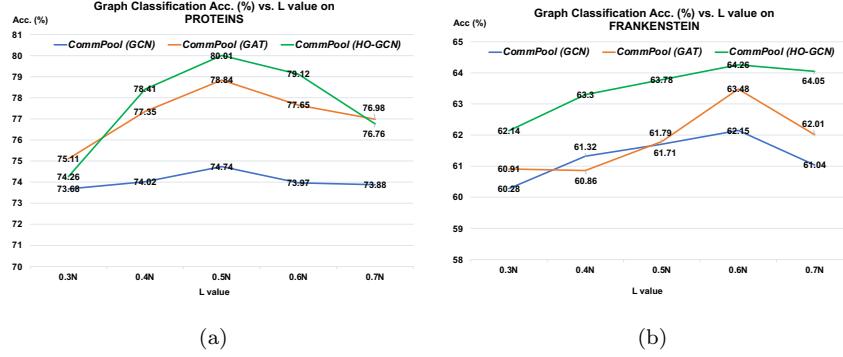


Figure 3: Graph classification accuracy (%) performed by CommPool with three VGAE encoders (e.g. GCN, GAT and HO-GCN) on (a) PROTEINS data and (b) FRANKENSTEIN data under different number of communities (NC). The NC values range from 0.3N to 0.7N with a step as 0.1N, where N is the number of node in each graph.

Table 4: Average graph classification accuracy \pm standard deviation (%) under different feature dimensions.

Feature Dimensions	PROTEINS	FRANKENSTEIN
[32, 16], [64, 32]	74.74 ± 0.06	62.15 ± 0.37
[64, 32], [128, 64]	73.61 ± 0.13	62.02 ± 0.14
[64, 32], [32, 16]	73.89 ± 0.25	61.29 ± 1.04
[128, 64], [64, 32]	74.26 ± 0.31	61.90 ± 0.81

how CommPOOL preserves the intrinsic community structures on these simulation graphs. Meanwhile, on the real-data, we use PROTEINS data with the node labels as the community ground-truth to evaluate the community structures captured by the CommPOOL.

5.4.1. Simulation Graphs

We create 3 classes of simulation graphs using different graph generating methods, including the Random Partition Graphs, the Relax Caveman Graphs, and the Gaussian Random Community Graphs [56, 57]. Each class contains 300 graphs and each graph has 4 communities with the average size of 6 nodes. A community label is assigned to each graph node. Meanwhile, we randomly sample from the normal distribution $\mathcal{N}(0, I)$ as node features. We evaluate

358 CommPOOL on the simulation graphs to predict their class labels. **Table 5**
 359 compares the graph classification performance of CommPool with the baseline
 360 models. The results show that, on the simulation data, the CommPOOL can
 361 also outperform all the baseline models. **N/A** in **Table 5** indicates the SAG-
 POOL cannot achieve an optimal point in reachable epochs.

Table 5: Average graph classification accuracy \pm standard deviation (%) on the simulation data.

Models	Classification Accuracy
Set2Set	46.54 ± 3.85
SortPOOL	51.29 ± 0.61
DIFF-POOL	67.14 ± 2.16
SAG-POOL	N/A
HGP-SL	72.70 ± 1.95
CommPOOL	80.14 ± 2.15

362

363 5.4.2. Evaluation of Community Detection

364 In order to evaluate if CommPool can capture the community structures,
 365 we compare the node community label assigned by PAM clustering in the 1st
 366 EP module to the community ground-truth labels. Specifically, we compute
 367 the **Normalized Mutual Information (NMI)** [58] between distribution of
 368 community labels predicted by the model and given by the ground-truth for
 369 each graph. **Figure 4a** is a histogram presenting the distribution of NMI scores
 370 for all 900 simulation graphs and 1113 PROTEINS data. Statistically, on the
 371 simulation data, 79.44% graphs have an NMI score larger than 0.9 and the mean
 372 NMI score is 0.9516 ± 0.098 . On the PROTEINS data, 66.32% graphs have an
 373 NMI score larger than 0.9 and the mean NMI score is 0.8065 ± 0.032 .

374 6. Evaluation and Discussion

375 In this section, we firstly discuss the interpretability of our proposed com-
 376 munity pooling operation. And then we analyze the importance of community

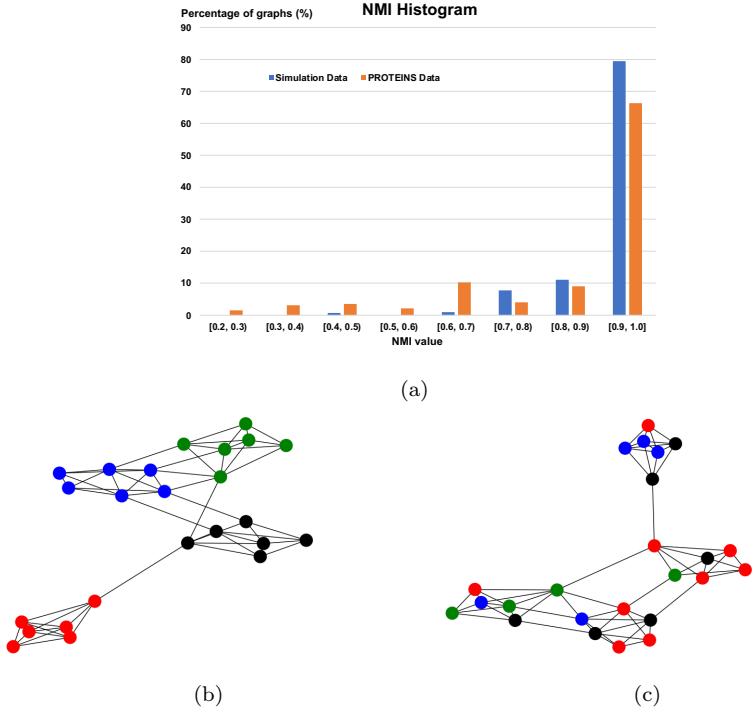


Figure 4: (a) is the NMI histogram between the distributions of community labels of ground-truth and CommPOOL prediction. (b) is a positive example of community structure captured by CommPOOL leading to a correct classification. (c) is a negative example which leads to a graph misclassification. Different colors represent different communities.

structure to the graph classification task.

377

6.1. Interpretability of Community Pooling

378

CommPOOL is a hierarchical graph pooling framework with an interpretable pooling operation. The user can transparently understand the pooling results by monitoring the pooling operation. An interpretable pooling operation should be capable of clearly answering three questions mentioned in the **Introduction** section. Our CommPOOL provides the heuristic and knowledgeable answers for the questions in the following way:

379

380

381

382

383

384

- **Q1: How to capture the graph hierarchical structures in an interpretable way?**

385

386

387 The CommPOOL considers the communities as the basic graph hierar-
388 chical structure. In the community pooling operation, we adopt PAM to
389 group graph nodes into different communities based on the similarities
390 among their features. The goal of the pooling operations is integrating
391 the similar features thereby coarsening the graphs. The CommPOOL
392 coarsens the graphs based on the graph’s inherent community structure
393 captured by the PAM, which is a natural way that allows the further
394 pooling operation to be able to integrate the features of similar nodes. In
395 another word, the features of nodes assigned in the same community by
396 the CommPOOL are similar and are supposed to be integrated into one
397 node after the pooling operation. Therefore, the overall pooling procedure
398 is intuitive and explainable. The community capture ability of our pooling
399 operation has been shown in the previous **Community Evaluation on**
400 **Simulation Data** section.

401 • **Q2: How to scale down the graph while preserving the structures**
402 **via an interpretable process?**

403 To scale down the graph, we choose the community medoid node as the
404 representation of the whole community, which can be understood like the
405 centroid can be used to represent the whole mass. Meanwhile, without
406 loss of necessary graph structure information, an interpretable structure
407 preservation process is introduced during downscaling the graph. The
408 community pooling achieves the preservation via gathering the nodal and
409 structure information of the community member nodes as the features of
410 the community medoid node.

411 • **Q3: What do we obtain after the pooling operation?**

412 From the graph topology view, the community pooling generates community-
413 based sub-graphs of the original graph since the pooling operation does
414 not generate any new graph nodes and edges. Each node in the sub-graph
415 contains the corresponding community information.

6.2. Community Effect on Graph Classification 416

We design a further experiment named **semi-random pooling** to show that a solid community preservation is important to the graph classification. Instead of randomly partitioning the graph into multiple communities, we only randomly select the community center nodes. After determining the community center nodes, we assign each other node to the closest community based on the similarity of node features. Such a semi-random partition method can generate a few node cliques in graphs. These cliques, though are not the optimal communities, can still maintain the hierarchical information to some degree. We replace the PAM clustering by the semi-random partition in the pooling operation. **Table 6** indicates that the community pooling has significant improvements in the graph classification tasks comparing to the semi-random pooling, which demonstrates that the success of community capture and preservation is crucial to the graph classification. To visualize, we select two simulation graphs to show (1) a positive example of community structure captured by the CommPOOL (**Figure 4b**); and (2) a negative example of community structure captured by the CommPOOL, which eventually leads to the graph’s misclassification (**Figure 4c**). In addition, the performance of semi-random pooling does not decrease a lot comparing with the community pooling, which is beyond our expectations in a way. A reasonable explanation is that although unable to preserve the optimal community structure, the semi-random pooling method can still capture some degree of graph hierarchical structure, which again justifies that the significance of the community structure in the graph. 437

Table 6: Graph Classification Accuracy of Semi-random Pooling vs. Community-based Pooling

Dataset	semi-rand.	community-based
PROTEINS	64.90 ± 2.45	74.74 ± 0.06
BZR	81.50 ± 2.82	86.00 ± 1.23
Synthie	59.00 ± 5.89	66.50 ± 0.38
Simulation	70.34 ± 1.26	80.14 ± 2.15

438

439 **7. Conclusion**

440 In this paper, we propose CommPOOL, a new interpretable hierarchical
441 graph pooling framework. CommPOOL is designed for being able to capture
442 and preserve the inherent hierarchical community structures in graphs during
443 the graph representation learning and scaling-down process. Moreover, Comm-
444 POOL is a general graph representation learning framework that can facilitate
445 various graph-level tasks. Experiments on both real-world graph datasets from
446 different domains and synthetic graph data have shown that CommPOOL out-
447 performs the state-of-the-art methods in graph representation learning for the
448 graph classification task. In future work, we will explore leveraging CommPOOL
449 for other graph-level tasks, such as graph regression.

450 **8. Acknowledgement**

451 This study was funded in part by NSF-IIS 1837956, NSF-IIS 1852606, NSF-
452 IIS 2045848, and NSF-IIA 2040588. Also, it used the Extreme Science and
453 Engineering Discovery Environment (XSEDE), which is supported by National
454 Science Foundation grant number ACI-1548562. Specifically, it used the Bridges
455 system, which is supported by NSF award number ACI-1445606, at the Pitts-
456 burgh Supercomputing Center (PSC).

457 **References**

458 [1] J. Chen, T. Ma, C. Xiao, Fastgcn: fast learning with graph convolutional
459 networks via importance sampling, arXiv preprint arXiv:1801.10247 (2018).

460 [2] W. Huang, T. Zhang, Y. Rong, J. Huang, Adaptive sampling towards fast
461 graph representation learning, in: Advances in neural information process-
462 ing systems, 2018, pp. 4558–4567.

463 [3] H. Dai, B. Dai, L. Song, Discriminative embeddings of latent variable mod-
464 els for structured data, in: International conference on machine learning,
465 2016, pp. 2702–2711.

[4] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R. P. Adams, Convolutional networks on graphs for learning molecular fingerprints, in: Advances in neural information processing systems, 2015, pp. 2224–2232. 466
467
468
469

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural message passing for quantum chemistry, arXiv preprint arXiv:1704.01212 (2017). 470
471
472

[6] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907 (2016). 473
474

[7] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, arXiv preprint arXiv:1710.10903 (2017). 475
476

[8] T. N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308 (2016). 477
478

[9] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in: Advances in neural information processing systems, 2017, pp. 1024–1034. 479
480
481

[10] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv preprint arXiv:1511.05493 (2015). 482
483

[11] O. Vinyals, S. Bengio, M. Kudlur, Order matters: Sequence to sequence for sets, arXiv preprint arXiv:1511.06391 (2015). 484
485

[12] M. Zhang, Z. Cui, M. Neumann, Y. Chen, An end-to-end deep learning architecture for graph classification, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 486
487
488

[13] M. Girvan, M. E. Newman, Community structure in social and biological networks, Proceedings of the national academy of sciences 99 (12) (2002) 7821–7826. 489
490
491

492 [14] Q. Long, Y. Wang, L. Du, G. Song, Y. Jin, W. Lin, Hierarchical com-
493 munity structure preserving network embedding: A subspace approach, in:
494 Proceedings of the 28th ACM International Conference on Information and
495 Knowledge Management, 2019, pp. 409–418.

496 [15] V. Spirin, L. A. Mirny, Protein complexes and functional modules in molec-
497 ular networks, *Proceedings of the national Academy of sciences* 100 (21)
498 (2003) 12123–12128.

499 [16] X. Kong, P. S. Yu, Brain network analysis: a data mining perspective,
500 *ACM SIGKDD Explorations Newsletter* 15 (2) (2014) 30–38.

501 [17] D. Meunier, R. Lambiotte, A. Fornito, K. Ersche, E. T. Bullmore, Hier-
502 archical modularity in human brain functional networks, *Frontiers in neu-
503 roinformatics* 3 (2009) 37.

504 [18] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, J. Leskovec, Hierarchical
505 graph representation learning with differentiable pooling, in: *Advances in*
506 *neural information processing systems*, 2018, pp. 4800–4810.

507 [19] C.-F. Lee, J.-J. Shen, K.-L. Hou, F.-W. Hsu, A high-performance comput-
508 ing method for photographic mosaics upon the hadoop framework, *Journal*
509 *of Internet Technology* 20 (5) (2019) 1343–1358.

510 [20] H. Gao, S. Ji, Graph u-nets, *arXiv preprint arXiv:1905.05178* (2019).

511 [21] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, C. Wang, Hierarchi-
512 cal graph pooling with structure learning, *arXiv preprint arXiv:1911.05954*
513 (2019).

514 [22] T. Miller, Explanation in artificial intelligence: Insights from the social
515 sciences, *Artificial Intelligence* 267 (2019) 1–38.

516 [23] C. Molnar, *Interpretable Machine Learning*, Lulu. com, 2020.

517 [24] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, L. Song, Adversarial
518 attack on graph structured data, *arXiv preprint arXiv:1806.02371* (2018).

[25] D. Zügner, A. Akbarnejad, S. Günnemann, Adversarial attacks on neural networks for graph data, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2847–2856. 519
520
521
522

[26] D. Zügner, S. Günnemann, Certifiable robustness of graph convolutional networks under structure perturbations, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1656–1665. 523
524
525
526

[27] H. Tang, G. Ma, Y. Chen, L. Guo, W. Wang, B. Zeng, L. Zhan, Adversarial attack on hierarchical graph pooling neural networks, arXiv preprint arXiv:2005.11560 (2020). 527
528
529

[28] Z. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, Gnnexplainer: Generating explanations for graph neural networks, in: Advances in neural information processing systems, 2019, pp. 9244–9255. 530
531
532

[29] Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. Ma, H. Chen, M.-C. Yang, Measuring and improving the use of graph information in graph neural networks, in: International Conference on Learning Representations, 2019. 533
534
535

[30] H. Yuan, J. Tang, X. Hu, S. Ji, Xgnn: Towards model-level explanations of graph neural networks, arXiv preprint arXiv:2006.02587 (2020). 536
537

[31] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. P. Yu, A comprehensive survey on graph neural networks, IEEE Transactions on Neural Networks and Learning Systems (2020). 538
539
540

[32] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data. arxiv 2015, arXiv preprint arXiv:1506.05163 (2015). 541
542

[33] R. Levie, F. Monti, X. Bresson, M. M. Bronstein, Cayleynets: Graph convolutional neural networks with complex rational spectral filters, IEEE Transactions on Signal Processing 67 (1) (2018) 97–109. 543
544
545

546 [34] H. Tang, L. Guo, E. Dennis, P. M. Thompson, H. Huang, O. Ajilore, A. D.
547 Leow, L. Zhan, Classifying stages of mild cognitive impairment via aug-
548 mented graph embedding, in: Multimodal Brain Image Analysis and Math-
549 ematical Foundations of Computational Anatomy, Springer, 2019, pp. 30–
550 38.

551 [35] I. S. Dhillon, Y. Guan, B. Kulis, Weighted graph cuts without eigenvectors
552 a multilevel approach, *IEEE transactions on pattern analysis and machine*
553 *intelligence* 29 (11) (2007) 1944–1957.

554 [36] D. V. Tran, N. Navarin, A. Sperduti, On filter size in graph convolutional
555 networks, in: 2018 IEEE Symposium Series on Computational Intelligence
556 (SSCI), IEEE, 2018, pp. 1534–1541.

557 [37] J. Lee, I. Lee, J. Kang, Self-attention graph pooling, *arXiv preprint*
558 *arXiv:1904.08082* (2019).

559 [38] Z. T. Kefato, S. Girdzijauskas, Graph neighborhood attentive pooling,
560 *arXiv preprint arXiv:2001.10394* (2020).

561 [39] F. M. Bianchi, D. Grattarola, C. Alippi, Spectral clustering with graph
562 neural networks for graph pooling., *arXiv: Learning* (2020).

563 [40] E. Ranjan, S. Sanyal, P. P. Talukdar, Asap: Adaptive structure aware
564 pooling for learning hierarchical graph representations., in: *AAAI*, 2020,
565 pp. 5470–5477.

566 [41] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally
567 connected networks on graphs, *arXiv preprint arXiv:1312.6203* (2013).

568 [42] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
569 M. Grohe, Weisfeiler and leman go neural: Higher-order graph neural net-
570 works, in: *Proceedings of the AAAI Conference on Artificial Intelligence*,
571 Vol. 33, 2019, pp. 4602–4609.

[43] L. Kaufmann, Clustering by means of medoids, in: Proc. Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, 1987, 1987, pp. 405–416. 572
573
574

[44] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, M. Neumann, Benchmark 575
data sets for graph kernels (2016). 576
URL <http://graphkernels.cs.tu-dortmund.de> 577

[45] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, 578
H.-P. Kriegel, Protein function prediction via graph kernels, *Bioinformatics* 579
21 (suppl_1) (2005) i47–i56. 580

[46] P. D. Dobson, A. J. Doig, Distinguishing enzyme structures from non- 581
enzymes without alignments, *Journal of molecular biology* 330 (4) (2003) 582
771–783. 583

[47] C. Morris, N. M. Kriege, K. Kersting, P. Mutzel, Faster kernels for graphs 584
with continuous attributes via hashing, in: 2016 IEEE 16th International 585
Conference on Data Mining (ICDM), IEEE, 2016, pp. 1095–1100. 586

[48] F. Orsini, P. Frasconi, L. De Raedt, Graph invariant kernels, in: Proceedings 587
of the twenty-fourth international joint conference on artificial intelligence, 588
Vol. 2015, IJCAI-INT JOINT CONF ARTIF INTELL, 2015, pp. 589
3756–3762. 590

[49] J. J. Sutherland, L. A. O'brien, D. F. Weaver, Spline-fitting with a genetic 591
algorithm: A method for developing classification structure- activity 592
relationships, *Journal of chemical information and computer sciences* 43 (6) 593
(2003) 1906–1915. 594

[50] K. Riesen, H. Bunke, Iam graph database repository for graph based pattern 595
recognition and machine learning, in: Joint IAPR International Workshops 596
on Statistical Techniques in Pattern Recognition (SPR) and Structural 597
and Syntactic Pattern Recognition (SSPR), Springer, 2008, pp. 287– 598
297. 599

600 [51] Y. Ma, S. Wang, C. C. Aggarwal, J. Tang, Graph convolutional networks
601 with eigenpooling, in: Proceedings of the 25th ACM SIGKDD International
602 Conference on Knowledge Discovery & Data Mining, 2019, pp. 723–731.

603 [52] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
604 V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al., Xsede: Ac-
605 celerating scientific discovery computing in science & engineering, 16 (5):
606 62–74, sep 2014, URL <https://doi.org/10.1109/mcse.2014.28>.

607 [53] N. A. Nystrom, M. J. Levine, R. Z. Roskies, J. R. Scott, Bridges: a uniquely
608 flexible hpc resource for new communities and data analytics, in: Proceed-
609 ings of the 2015 XSEDE Conference: Scientific Advancements Enabled by
610 Enhanced Cyberinfrastructure, 2015, pp. 1–8.

611 [54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
612 A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch
613 (2017).

614 [55] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch
615 geometric, arXiv preprint arXiv:1903.02428 (2019).

616 [56] U. Brandes, M. Gaertler, D. Wagner, Experiments on graph clustering
617 algorithms, in: European Symposium on Algorithms, Springer, 2003, pp.
618 568–579.

619 [57] S. Fortunato, Community detection in graphs, Physics reports 486 (3-5)
620 (2010) 75–174.

621 [58] A. Strehl, J. Ghosh, Cluster ensembles—a knowledge reuse framework for
622 combining multiple partitions, Journal of machine learning research 3 (Dec)
623 (2002) 583–617.