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Abstract

Recent years have witnessed the emergence and flourishing of hierarchical graph

pooling neural networks (HGPNNs) which are effective graph representation

learning approaches for graph level tasks such as graph classification. How-

ever, current HGPNNs do not take full advantage of the graph’s intrinsic struc-

tures (e.g., community structure). Moreover, the pooling operations in exist-

ing HGPNNs are difficult to be interpreted. In this paper, we propose a new

interpretable graph pooling framework — CommPOOL, that can capture and

preserve the hierarchical community structure of graphs in the graph representa-

tion learning process. Specifically, the proposed community pooling mechanism

in CommPOOL utilizes an unsupervised approach for capturing the inherent

community structure of graphs in an interpretable manner. CommPOOL is a

general and flexible framework for hierarchical graph representation learning

that can further facilitate various graph-level tasks. Evaluations on five public

benchmark datasets and one synthetic dataset demonstrate the superior perfor-

mance of CommPOOL in graph representation learning for graph classification

compared to the state-of-the-art baseline methods, and its effectiveness in cap-
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turing and preserving the community structure of graphs.

Keywords: Graph Representation Learning, Hierarchical Graph Pooling

Neural Network, Community Structure, Graph Classification

1. Introduction1

In recent years, graph neural network (GNN) has emerged and been broadly used2

as a generalized deep learning architecture for graph representation learning3

in many fields, such as social network analysis [1, 2] and chemical molecule4

studies [3, 4, 5]. Generally, GNN models learn node embeddings by passing,5

transforming and aggregating node features across the graph. The generated6

node representations can then be forwarded to further layers for specific learning7

tasks, i.e., node classification [6, 7] and link prediction [8].8

Most of the existing GNN models (e.g., GCN [6], GAT [7], GraphSage [9]) fo-9

cus on node-level representation learning and only propagate information across10

edges of the graph in a flat way. When applying these GNNs for graph-level tasks11

such as graph classifications, existing works usually apply simple global pooling12

strategies (i.e., a summation over the learned node representations) to obtain13

the graph-level embedding and use it for graph label prediction [10, 11, 12]. One14

main drawback in these GNNs is that the hierarchical structure, often existing15

in graphs, is ignored during the global pooling process, which makes the models16

less effective for graph-level tasks. Hierarchical structure is a very important17

structure for many graphs in various domains. For example, the hierarchical18

community structure shown in Figure 1 is a typical pattern that often appears19

in social networks [13, 14], chemical molecule networks [15] and brain networks20

[16, 17]. Therefore, preserving these community structures is critical for better21

understanding and analyzing these graphs.22

Some recent works proposed hierarchical graph pooling neural networks23

(HGPNNs) to address the hierarchical structure representation issue by intro-24

ducing the hierarchical pooling operations [18, 19, 20, 21]. Generally, these HG-25

PNNs consist of two components: the GNN backbone which is used to embed26
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Figure 1: An example of hierarchical community structures in graphs

the graph nodes and local structures, and the pooling operation which represents 27

graph structure in a hierarchical way. These HGPNNs have demonstrated the 28

necessity of adding hierarchical pooling operations in GNNs to better preserve 29

the graph hierarchical structure. 30

However, a critical limitation of the existing hierarchical graph pooling 31

(HGP) strategies is that few of the pooling operations in the models are in- 32

terpretable. In many real applications, it is desirable to have an interpretable 33

model, where human can understand the cause of a decision made by the model 34

[22, 23]. Moreover, an interpretable model is more robust under adversarial 35

attacks [24, 25, 26, 27]. A few of recent works [28, 29, 30] interpreted the node 36

feature embedding via GNN as a neighborhood aggregation scheme. Particu- 37

larly, they stated that the GNN embed the local feature of each node v within 38

two steps: (1) neighbor node features aggregation and (2) node feature trans- 39

formation. However, the interpretability of pooling operations is still not well 40

solved (Details are discussed in the Related Work.). In order to make the 41

HGP operation interpretable, three questions should be considered: 42

Q1: How to capture the graph hierarchical structures in an interpretable way? 43

Q2: How to scale down the graph representation while preserving the structures 44

via an interpretable process? 45

Q3: What do we obtain after the pooling operation? 46

To address these challenges, we propose a Community-Based HGP frame- 47

work, COMMUNITY-POOL or CommPOOL. We aim to encode the hier- 48

archical community structure in graphs, which is a natural structure in many 49
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graphs, where nodes within each community are more densely connected than50

the nodes across different communities. Specifically, we propose a community-51

based hierarchical pooling operation which aggregates and synthesizes the node52

features based on the detected communities, such that the community structure53

of graphs can be preserved during the pooling process. Moreover, we introduce54

a GNN-based framework with the proposed community-based hierarchical pool-55

ing operation for learning latent graph representations, where both local node56

features and the hierarchical community-structure information are encoded and57

preserved. Our contributions can be summarized as:58

• We propose a community-based HGP framework (CommPOOL) for learn-59

ing graph representation in a hierarchical way that can preserve both the60

local node features and the hierarchical community structure of graphs.61

• The proposed hierarchical community pooling strategy relies on the com-62

munity structure which is explicitly detected from the graphs, therefore63

the pooling operation can capture the intrinsic community-level latent rep-64

resentation of graphs and the pooling process is inherently interpretable.65

• We evaluate our CommPOOL framework for the whole graph classification66

task on multiple public benchmark datasets. The results demonstrate the67

superior performance of our model compared to several state-of-the-art68

graph pooling neural networks.69

• Evaluations on synthetic graphs with community ground-truth labels show70

that our proposed CommPOOL can capture and preserve the intrinsic71

community structure of graphs during the learning process.72

2. Related Work73

2.1. Graph Pooling74

Graph pooling operation is a strategy aiming to scale down the size of in-75

put graphs. It can not only help to avoid model overfitting and reduce the76
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computational cost but also generate graph-level representations [31]. In the 77

early works [32, 33, 34, 35, 11], the graph pooling methods simply compute 78

the mean/max/sum of all graph node features as the representation of the 79

whole graph. Such a primitive pooling strategy is named as global pooling. 80

Later on, a few advanced techniques (e.g. attention mechanisms [10, 5, 36], fea- 81

ture sorted [12]) are proposed to improve the performance and efficiency of the 82

global pooling. However, the global pooling methods do not learn the hierarchi- 83

cal representations, which are crucial for capturing the structural information 84

of graphs. Therefore, HGPNNs are proposed [21, 18, 37, 20, 38, 39, 40]. 85

2.2. Interpretability of HGPNNs 86

Most HGP operations in the current HGPNNs [21, 18, 37, 20, 38, 39, 40] 87

show little interpretability and are difficult to be understood by the users. More- 88

over, very few studies present the interpretabiliy of their HGP operations in the 89

paper, which may be accounted for by the following two issues: (1). Hardly 90

any clear definition or analysis can be found to explain what is the captured 91

graph structure. Therefore, the model users are lack of heuristic knowledge 92

to understand the pooling operation. (2). Although some studies [18] present 93

the visualization of hierarchical clusters captured by the model, no quantita- 94

tive analysis is provided to examine whether the captured clusters of nodes are 95

aligned with the intrinsic clusters in the original graph. Apart from these, most 96

recent studies unfold the HGP operation as a neural network layer with train- 97

able parameters. The black-box nature of neural networks may also raise extra 98

difficulties to interpret the models in a way. 99

3. Preliminaries 100

3.1. Graph Notation 101

We consider the graph classification problem on attributed graphs with dif- 102

ferent numbers of nodes. Let G = (A,H) be any of the attributed graph with 103

N nodes, where A ∈ {0, 1}N×N is the graph adjacency matrix and H ∈ RN×d
104
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is the node feature matrix assuming that each node has d features. Also,105

Z = [Z1, ..., ZN ]T is defined as the node latent feature matrix where Zi is106

the latent feature vector for the node i. Given a set of labeled data D =107

{(G1, y1), (G2, y2), (G3, y3), ...} where yi ∈ Y is the classification label to the108

corresponding graph Gi ∈ G. The graph classification task can be formulated109

as learning a mapping, f : G → Y.110

3.2. Graph Neural Network111

Graph Neural Network (GNN) is an effective message-passing architecture

for embedding the graph nodes and their local structures. Generally, GNN can

be formulated as:

Z(k) = F (A(k−1), Z(k−1); θ(k)), (1)

where k denotes the layer k of GNN. A(k−1) is the graph adjacency matrix112

computed by layer (k − 1) of the GNN. θ(k) is the trainable parameters in the113

layer k of the GNN. Particularly, Z0 = H.114

F (·) is the forward function to combine and transform the messages across115

the nodes. Many different versions of forward functions F (·) are proposed in116

the previous studies [5, 9] such as Graph Convolutional Neural Network (GCN)117

[6] and Graph Attention Network (GAT) [7]. The GCN linearly combines the118

neighborhoods as the node the representation. And the GAT computes node119

representations in entire neighborhoods based on attention mechanisms [41].120

4. The Proposed Framework121

4.1. Model Architecture122

Our goal is to provide a general graph pooling framework that can capture123

and preserve the hierarchical community structure of graphs in the representa-124

tion learning process of GNNs. The framework should be interpretable and it125

should be able to facilitate further graph-level learning tasks, for example, graph126

classification. To achieve this goal, we propose a community-based hierarchical127
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Figure 2: Framework of the CommPOOL for graph classification. (A) is the 1st Embedding-

Pooling (EP) module and (B) is the 2nd EP module. In each module, we embed the graph into

the latent space by using VGAE. In the latent space, we scale down the graph representation

based on the detected communities. (C) is the MLP for graph classification.

graph pooling (HGP) framework: CommPOOL, which is composed of k cas- 128

caded Embedding-Pooling (EP) modules to learn the graph representation in a 129

hierarchical way. Each EP module consists of (1) an Embedding stage, where a 130

GNN model is employed to get the latent node representations (i.e., node em- 131

beddings) of the input graph, and (2) a Pooling stage, where a newly proposed 132

community pooling mechanism is conducted on the node embeddings to detect 133

communities from the graph and obtain a scaled-down graph-level representa- 134

tion that encodes both the local node features and the community structure of 135

the graph. The output of the last EP module will be the final graph-level rep- 136

resentation that preserves the overall hierarchical community structure of the 137

graph. Figure 2(A, B) shows an instance of the proposed framework with two 138

cascaded EP modules. In real applications of our framework, the choice of value 139

for k is flexible and it can be decided based on the practical needs or domain 140

knowledge for the specific application (e.g., domain evidence about how many 141

community hierarchies exist in the graphs). In this paper, we set k = 2 and 142

use the architecture given in Figure 2(A, B) for illustrating our framework 143

and we use the MLP shown in Figure 2(C) for evaluating the CommPOOL in 144

graph representation learning for facilitating graph classification task. 145
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In the following subsections, we introduce the two main parts in the proposed146

EP module for CommPOOL: (1) the GNN-based Graph Node Embedding, and147

(2) the Community Pooling Operation.148

4.2. GNN-based Node Embedding149

We aim at a general GNN-based model to embed the graph nodes into the150

latent feature space Z that well preserves the inherent graph structures. On151

the one hand, the desired node latent features should well encode the node152

information and the information between the node and its neighbors. On the153

other hand, the latent features should preserve the intrinsic structures of the154

graphs without task-specific influences or supervised information. On account155

of the above considerations, we choose the Variational Graph Auto-Encoders156

(VGAE) [8] for this node embedding stage. VGAE is a robust unsupervised157

method that can embed nodes into the latent space by reconstructing the graph158

itself. This can help preserve the intrinsic structures of the graph without159

involving any task-specific information or supervision.160

4.2.1. Encoder161

In the VGAE, we need to learn a Gaussian distribution q(Z|H,A) = N (Z|µ,162

σ2) which is used to approximate the Gaussian prior p(Z) = N (Z|0, I). Partic-163

ularly, we utilize two GNN layers to compute the µ and σ2 parameters of q. In164

the first layer, µ and σ2 share the same GNN encoder. And in the second layer,165

two separate GNNs are used to generate µ and σ2 respectively. The approxima-166

tion can be achieved by maximizing the Kullback–Leibler (KL) loss between p167

and q:168

LKL = KL(q(Z|H,A)||p(Z)) (2)

The latent features Z can be obtained by resampling from the optimal169

q(Z|H,A).170
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4.2.2. Decoder 171

After we obtain the latent features Z, we reconstruct the original graph 172

adjacency matrix by: 173

Â = sigmoid(ZZT ). (3)

We define + and − as the edges and non-edges position index in A. So we 174

reconstruct the adjacency matrix by minimizing the LA: 175

LA = L+ + L− (4)

= − 1

E1
Σ(log(Â+))− 1

E2
Σ(log(1− Â−))

where E1, E2 is the number of edges and non-edges. The overall objective 176

function of VGAE is: 177

minimize
Z∈Z

LA − LKL (5)

In our CommPOOL, we use GCN [6] to build up the basic encoder layers and 178

use GAT [7] and Higher-Order Graph Neural Network (HO-GNN) [42] as the 179

encoder variations. 180

4.3. Community Pooling 181

After embedding the graph nodes into the latent space Z, the latent features 182

represent the node attributes and topology structures among nodes in the latent 183

space. The distance between two latent features measures the node attributes 184

similarity and structure similarity between the two nodes. The proposed Comm- 185

POOL assigns the similar nodes into a community which is further used to scale 186

down the graph. 187

4.3.1. Community Capturing 188

We adopt an unsupervised clustering method Partitioning Around Medoids 189

(PAM) [43, 19] on the node latent feature vectors to group the graph nodes into 190

L different communities, where L is a parameter denoting the number of commu- 191

nities in the graph. Our community partition problem can be defined as: given 192
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all theN nodes in graphG with their latent feature vectors set V = {Z1, ..., ZN},193

find L different nodes with their latent features ZC = {ZC1
, ..., ZCL

} ⊂ V from194

the N nodes as the optimal community centers, and assign the other nodes into195

these L communities based on the distances between their latent feature vectors196

(O = V \ZC ) and ZC . PAM realizes the community partition problem via the197

following four steps.198

• Step 1. Initialization: Randomly select L nodes with their features ZC199

as the community medoid nodes.200

• Step 2. Clustering: Compute the L1 distances between the medoid nodes201

and the rest nodes based on their feature vectors, and assign each non-202

medoid node to its closest community; Calculate the value for the below203

cost function, which computes the total distance between the non-medoid204

node feature vectors Oj ∈ O and their community medoid feature vectors205

by:206

Cost = ΣN−L
j=1 |Oj − ZCx

|L1
, (6)

where ZCx
∈ ZC is the corresponding medoid of Oj .207

• Step 3. Adjusting: Swap each medoid node by all other non-medoids208

and calculate the total cost for current configuration referring to Step209

2; Compare the cost of current and previous configuration and keep the210

configuration with the smaller total cost.211

• Step 4. Optimization: Repeat Step 2 and 3 until the configuration does212

not change.213

4.3.2. Community Pooling214

In order to preserve the captured community structure during the pooling215

process for the entire-graph representation learning, we propose a new pool-216

ing mechanism called “community pooling”, which summarizes the learned217

node representations based on the detected community structure. Suppose218
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ZMi = {Z1
Mi
, ..., ZW

Mi
} is the set consisting of the latent feature vectors of all W 219

community member nodes except for the community center nodes ZCi
∈ ZC in 220

the community−i. Our community pooling problem can be defined as: given 221

a community center feature ZCi
∈ ZC , and the corresponding W community 222

member features ZMi , compute the community representation ZCommi . The 223

community pooling operation computes the community−i’s representation by: 224

ZCommi = ZCi + ΣW
w=1 Sim(Zw

Mi
, ZCi

)Zw
Mi
, (7)

where Sim(·) is a function to measure the normalized similarity (∈(0,1]) between 225

each member Zw
Mi

and the community center ZCi
. In our model, we mainly 226

define Sim(·) based on L1 distance: 227

Sim(Zw
Mi
, ZCi

) =
1

‖Zw
Mi
− ZCi

‖L1
(8)

When each community representation ZCommi
is computed, we replace the cen- 228

ter node feature ZCi by ZCommi
and remove other community member nodes. 229

As for the graph topology structure, the preserved center nodes are connected 230

if and only if they are connected in the original graph. To sum up, during the 231

pooling, the community structure information and the node features are pre- 232

served onto the community center nodes. And the graph structures among the 233

communities are presented as the topology structure of down-scaled graph with 234

M < N nodes. 235

4.4. CommPOOL for Graph Classification 236

When the community representations Z
(K)
Comm = [Z

(K)
Comm1

, ..., Z
(K)
CommL

]T are 237

obtained from the last Embedding-Pooling module (k = K), a global readout 238

operation is used to generate the whole graph representation Zgraph by averag- 239

ing Z
(K)
Comm. Finally, an Multilayer Perceptron (MLP) utilizes Zgraph to make 240

predictions for graph classification. The training procedure of CommPOOL for 241

the graph classification task is summarized in Algorithm 1. 242
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Algorithm 1: Training Procedure

Input : graph: G = (A,H), classification label: y, K

Output: prediction: ŷ

for k = 1, 2, ...,K do
Step 1: Use G to train the VGAE

Step 2: Obtain the latent feature using trained VGAE

Step 3: Community Pooling on latent features and generate down-scaled

graph G(k) = (A(k), Z
(k)
Comm). Set G = G(k).

end

Step 4: Zgraph = GlobalReadout(Z
(K)
Comm)

Step 5: Train MLP to generate ŷ = MLP (Zgraph)

5. Experiment243

In this section, we evaluate our CommPOOL framework using graph classi-244

fication tasks. We present our experiment results in the following four subsec-245

tions: (1) We introduce the dataset used in the experiments. (2) We compare246

the graph classification performance between CommPOOL and several compet-247

ing HGPNN models. (3) We provide some variations of the CommPOOL. (4)248

We test our model on the simulation data to evaluate whether CommPOOL can249

accurately preserve the community structures in the graph.250

5.1. Dataset251

Five graph dataset are selected from the public benchmark graph data col-252

lection [44]. Table 1 summarizes the statistics of all dataset.253

PROTEINS and Synthie [45, 46, 47] are two sets of graphs representing254

the protein structure. The nodes are some amino acid features such as secondary255

structure content and amino acid propensities. Nodes are linked by edges if the256

amino acid is an amino acid sequence. FRANKENSTEIN [48] is a set of257

graphs representing the molecules with or without mutagenicity. The nodes258

represent different chemical atoms and the edges are the chemical bonds type.259

BZR [49] is a set of graphs representing the ligands for the benzodiazepine260

receptor. And AIDS [50] is set of graphs representing molecular compounds261
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with activity against HIV or not. The molecules are converted into graphs by 262

representing chemical atoms as nodes and the bonds as edges. 263

Table 1: Dataset Statistics: V and the E represent the nodes and edges in graph G. c represents

graph classes.

Dataset #|G| Ave.|V| Ave.|E| #|c|

BZR 405 35.75 38.36 2

Synthie 400 95.00 172.93 4

FRANKENSTEIN 4337 16.90 17.88 2

PROTEINS 1113 39.06 72.82 2

AIDS 2000 15.69 16.20 2

5.2. Graph Classification 264

5.2.1. Baseline Methods 265

Our baseline methods include: two graph global pooling models (Set2Set 266

[11] and SortPool [12] ), and three HGP models (DIFFPOOL [18], SAG- 267

POOL [19] and HGP-SL [21]). For fair comparisons, we set two embedding- 268

pooling modules for all HGP models including three baseline HGPs and our 269

CommPOOL. For the baselines, we follow the original hyperparameter search 270

strategies provided in the related papers. 271

5.2.2. Experiments Setting 272

Following previous works [51, 18, 21], we randomly split the whole dataset 273

into training (80%) set, validation (10%) set and testing (10%) set. We repeat 274

this randomly splitting process 10 times, and the average test performance with 275

standard derivation is reported in Table 2. We optimize the model via Pytorch 276

Adam optimizer. For the VGAE in the first module, the learning rate (lr) 277

and the weight decay (wd) are searched in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1}. 278

The dimension of two latent GNN layers are 32 and 16. For the VGAE in the 279

second module, the lr and wd are searched in {0.0001, 0.001, 0.005, 0.01} and the 280

dimension of two latent GNN layers are 64 and 32. In the community pooling 281

operation, the number of communities (L) is searched in {40%, 50%, 60%} of the 282
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number of graph nodes (N). The MLP consists of two fully connected layers with283

64 and 32 neurons and a softmax output layer. The lr for training the MLP is284

searched in {0.001, 0.005, 0.01}. We stop training if the validation loss does not285

decrease for 50 epochs. Our experiments are deployed on NVIDIA Tesla P100286

GPUs supported by the Bridges system of Pittsburgh Supercomputing Center287

(PSC) [52, 53]. We implement all baselines and CommPOOL using PyTorch288

[54] and the torch geometric library [55].289

Table 2: Average graph classification test accuracy ± standard deviation (%).

Models BZR Synthie FRANKENSTEIN PROTEINS AIDS

Set2Set 80.50± 1.03 22.50± 0.86 60.62± 0.27 68.08± 0.56 88.80± 0.45

SortPool 77.00± 1.24 32.50± 1.24 59.86± 1.22 70.11± 0.04 86.00± 2.42

DIFFPOOL 80.50± 1.48 57.00± 2.62 60.60± 1.62 72.43± 0.26 93.50± 1.00

SAG-POOL 82.00± 2.13 45.00± 4.21 61.73± 0.76 71.86± 0.97 93.50± 1.00

HGP-SL 83.00± 4.30 54.00± 0.04 59.51± 1.50 84.91± 1.62 95.50± 1.00

CommPOOL 86.00 ± 1.23 66.50 ± 0.38 62.15 ± 0.37 74.74 ± 0.06 98.50 ± 0.05

5.2.3. Summary of Results290

Table 2 summarizes the classification performances of six models on five291

public datasets. Our CommPOOL outperforms all baselines in the graph clas-292

sification task on almost all datasets, especially on the four-class data Synthie.293

For example, our CommPOOL shows about 5.11% improvement in the classi-294

fication accuracy comparing to all baselines on BZR data. This superiority of295

CommPOOL may be credited to its advanced mechanism for capturing and pre-296

serving the community structure in the pooling operation. Also, these results297

indicate that the community is a crucial hierarchical structure for learning the298

whole graph representation.299

Moreover, Table 2 shows that hierarchical pooling methods generally per-300

form better than global pooling methods, which verifies that the hierarchical301

pooling can better capture the graph global representations. Among all base-302

line models, HGP-SL relatively performs better than others, which may be303

attributed to the structure learning (SL) operations in the model. On PRO-304

TEINS, HGP-SL performs the best among all baseline methods and even better305
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than ours. As discussed in [21], the structure learning in the HGP-SL is superior 306

to preserve more topology structure of the original protein graph after pooling 307

several times. The topology structure preserved by HGP-SL may play an im- 308

portant role on PROTEINS data classification, which improve its classification 309

performance on this data. However, our proposed CommPOOL is a general ap- 310

proach that can capture the inherent community structure existing in different 311

kinds of graphs, therefore, it overall outperforms the baselines across multiple 312

datasets. 313

5.3. Ablation Studies 314

5.3.1. Model Variations 315

To show the flexibility of CommPool, we compare several variations of

CommPOOL on PROTEINS and FRANKENSTEIN data. As noted in The

Proposed Framework section, GAT [7] and HO-GNN [42] are used to replace

GCN as VGAE encoder variations. Moreover, instead of using the reciprocal of

L1 distance, we adopt the cosine-similarity as Sim(·) to measure the similar-

ity between community members ZMi
and the corresponding community center

ZCi
in community−i:

Sim(Zw
Mi
, ZCi

) =
Zw
Mi
ZCi

‖Zw
Mi
‖‖ZCi‖

(9)

The performance of CommPool with different encoders and similarity measures 316

are listed in Table 3, which indicates that GAT, compared to GCN, has a 317

better performance as the encoder in CommPOOL to embed the graph nodes. In 318

addition, Table 3 shows that L1 distance is better than cosine distance when 319

measuring the similarity between the latent features of community member 320

nodes and the community center nodes. A possible explanation is that L1 321

distance is used in the PAM clustering. Therefore, it may be better to use the 322

same distance metric in the community partition process. 323

5.3.2. Parameters Analysis 324

To investigate how the hyperparameters impact the performance of the pro- 325

posed CommPOOL, we show the graph classification results achieved by our 326
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Table 3: Performance (%) of CommPOOL with different encoder settings and different simi-

larity measures

CommPOOL PROTEINS FRANKENSTEIN

GCN
L1 74.74± 0.06 62.15± 0.37

cosine 73.84± 0.13 60.18± 0.42

GAT
L1 78.84± 0.02 63.48± 0.52

cosine 76.01± 0.21 62.32± 0.39

HO-GCN
L1 80.01.± 0.13 64.26± 0.20

cosine 77.09± 0.07 63.01± 0.11

model under different number of communities (L) and different latent feature327

dimensions on PROTEINS and FRANKENSTEIN data. As shown in the Fig-328

ure 3, the performance of models is consistent with different L values. When329

increasing the L value from 0.3N to 0.7N , the classification results tend to330

incline and decline. The best results appear when L = 0.5N on PROTEINS331

data whereas appear when L = 0.6N on FRANKENSTEIN data. This may be332

attributed to the different intrinsic community patterns in these two datasets.333

We show the model performance under different latent feature dimensions in334

Table 4. As shown in table Table 4, four different feature dimension combi-335

nations are set as the dimensions of latent feature generated by layers of EP336

module 1 and EP module 2 (e.g. [32, 16], [64, 32] indicates that the dimensions337

of latent features generated by the two layers in the EP module 1 are 32 and 16,338

while the dimensions of latent features generated by the two layers in the EP339

module 2 are 64 and 32). It shows that, generally, the feature dimensions have340

slight impact on the classification results. Empirically, it indicates that lower341

feature dimensions should be set in EP module 1 whereas higher dimensions342

should be set in EP module 2.343

5.4. Community Evaluation344

In order to evaluate if CommPool can capture the community structures, we345

simulate a set of graphs with the known community ground-truth and evaluate346
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Figure 3: Graph classification accuracy (%) performed by CommPool with there VGAE en-

coders (e.g. GCN, GAT and HO-GCN) on (a) PROTEINS data and (b) FRANKENSTEIN

data under different number of communities (NC). The NC values range from 0.3N to 0.7N

with a step as 0.1N, where N is the number of node in each graph.

Table 4: Average graph classification accuracy ± standard deviation (%) under different

feature dimensions.

Feature Dimensions PROTEINS FRANKENSTEIN

[32, 16], [64, 32] 74.74± 0.06 62.15± 0.37

[64, 32], [128, 64] 73.61± 0.13 62.02± 0.14

[64, 32], [32, 16] 73.89± 0.25 61.29± 1.04

[128, 64], [64, 32] 74.26± 0.31 61.90± 0.81

how CommPOOL preserves the intrinsic community structures on these simu- 347

lation graphs. Meanwhile, on the real-data, we use PROTEINS data with the 348

node labels as the community ground-truth to evaluate the community struc- 349

tures captured by the CommPOOL. 350

5.4.1. Simulation Graphs 351

We create 3 classes of simulation graphs using different graph generating 352

methods, including the Random Partition Graphs, the Relax Caveman Graphs, 353

and the Gaussian Random Community Graphs [56, 57]. Each class contains 354

300 graphs and each graph has 4 communities with the average size of 6 nodes. 355

A community label is assigned to each graph node. Meanwhile, we randomly 356

sample from the normal distribution N (0, I) as node features. We evaluate 357
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CommPOOL on the simulation graphs to predict their class labels. Table 5358

compares the graph classification performance of CommPool with the baseline359

models. The results show that, on the simulation data, the CommPOOL can360

also outperform all the baseline models. N/A in Table 5 indicates the SAG-361

POOL cannot achieve an optimal point in reachable epochs.

Table 5: Average graph classification accuracy ± standard deviation (%) on the simulation

data.

Models Classification Accuracy

Set2Set 46.54± 3.85

SortPOOL 51.29± 0.61

DIFF-POOL 67.14± 2.16

SAG-POOL N/A

HGP-SL 72.70± 1.95

CommPOOL 80.14± 2.15

362

5.4.2. Evaluation of Community Detection363

In order to evaluate if CommPool can capture the community structures,364

we compare the node community label assigned by PAM clustering in the 1st365

EP module to the community ground-truth labels. Specifically, we compute366

the Normalized Mutual Information (NMI) [58] between distribution of367

community labels predicted by the model and given by the ground-truth for368

each graph. Figure 4a is a histogram presenting the distribution of NMI scores369

for all 900 simulation graphs and 1113 PROTEINS data. Statistically, on the370

simulation data, 79.44% graphs have an NMI score larger than 0.9 and the mean371

NMI score is 0.9516± 0.098. On the PROTEINS data, 66.32% graphs have an372

NMI score larger than 0.9 and the mean NMI score is 0.8065± 0.032.373

6. Evaluation and Discussion374

In this section, we firstly discuss the interpretibility of our proposed com-375

munity pooling operation. And then we analyze the importance of community376
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Figure 4: (a) is the NMI histogram between the distributions of community labels of ground-

truth and CommPOOL prediction. (b) is a positive example of community structure captured

by CommPOOL leading to a correct classification. (c) is a negative example which leads to

a graph misclassification. Different colors represent different communities.

structure to the graph classification task. 377

6.1. Interpretability of Community Pooling 378

CommPOOL is a hierarchical graph pooling framework with an interpretable 379

pooling operation. The user can transparently understand the pooling results 380

by monitoring the pooling operation. An interpretable pooling operation should 381

be capable of clearly answering three questions mentioned in the Introduction 382

section. Our CommPOOL provides the heuristic and knowledgeable answers 383

for the questions in the following way: 384

• Q1: How to capture the graph hierarchical structures in an in- 385

terpretable way? 386
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The CommPOOL considers the communities as the basic graph hierar-387

chical structure. In the community pooling operation, we adopt PAM to388

group graph nodes into different communities based on the similarities389

among their features. The goal of the pooling operations is integrating390

the similar features thereby coarsening the graphs. The CommPOOL391

coarsens the graphs based on the graph’s inherent community structure392

captured by the PAM, which is a natural way that allows the further393

pooling operation to be able to integrate the features of similar nodes. In394

another word, the features of nodes assigned in the same community by395

the CommPOOL are similar and are supposed to be integrated into one396

node after the pooling operation. Therefore, the overall pooling procedure397

is intuitive and explainable. The community capture ability of our pooling398

operation has been shown in the previous Community Evaluation on399

Simulation Data section.400

• Q2: How to scale down the graph while preserving the structures401

via an interpretable process?402

To scale down the graph, we choose the community medoid node as the403

representation of the whole community, which can be understood like the404

centroid can be used to represent the whole mass. Meanwhile, without405

loss of necessary graph structure information, an interpretable structure406

preservation process is introduced during downscaling the graph. The407

community pooling achieves the preservation via gathering the nodal and408

structure information of the community member nodes as the features of409

the community medoid node.410

• Q3: What do we obtain after the pooling operation?411

From the graph topology view, the community pooling generates community-412

based sub-graphs of the original graph since the pooling operation does413

not generate any new graph nodes and edges. Each node in the sub-graph414

contains the corresponding community information.415
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6.2. Community Effect on Graph Classification 416

We design a further experiment named semi-random pooling to show 417

that a solid community preservation is important to the graph classification. 418

Instead of randomly partitioning the graph into multiple communities, we only 419

randomly select the community center nodes. After determining the community 420

center nodes, we assign each other node to the closest community based on the 421

similarity of node features. Such a semi-random partition method can generate 422

a few node cliques in graphs. These cliques, though are not the optimal com- 423

munities, can still maintain the hierarchical information to some degree. We 424

replace the PAM clustering by the semi-random partition in the pooling oper- 425

ation. Table 6 indicates that the community pooling has significant improve- 426

ments in the graph classification tasks comparing to the semi-random pooling, 427

which demonstrates that the success of community capture and preservation 428

is crucial to the graph classification. To visualize, we select two simulation 429

graphs to show (1) a positive example of community structure captured by the 430

CommPOOL (Figure 4b); and (2) a negative example of community structure 431

captured by the CommPOOL, which eventually leads to the graph’s misclassifi- 432

cation (Figure 4c). In addition, the performance of semi-random pooling does 433

not decrease a lot comparing with the community pooling, which is beyond our 434

expectations in a way. A reasonable explanation is that although unable to pre- 435

serve the optimal community structure, the semi-random pooling method can 436

still capture some degree of graph hierarchical structure, which again justifies 437

that the significance of the community structure in the graph.

Table 6: Graph Classification Accuracy of Semi-random Pooling vs. Community-based Pool-

ing

Dataset semi-rand. community-based

PROTEINS 64.90± 2.45 74.74± 0.06

BZR 81.50± 2.82 86.00± 1.23

Synthie 59.00± 5.89 66.50± 0.38

Simulation 70.34± 1.26 80.14± 2.15

438
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7. Conclusion439

In this paper, we propose CommPOOL, a new interpretable hierarchical440

graph pooling framework. CommPOOL is designed for being able to capture441

and preserve the inherent hierarchical community structures in graphs during442

the graph representation learning and scaling-down process. Moreover, Comm-443

POOL is a general graph representation learning framework that can facilitate444

various graph-level tasks. Experiments on both real-world graph datasets from445

different domains and synthetic graph data have shown that CommPOOL out-446

performs the state-of-the-art methods in graph representation learning for the447

graph classification task. In future work, we will explore leveraging CommPOOL448

for other graph-level tasks, such as graph regression.449
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[26] D. Zügner, S. Günnemann, Certifiable robustness of graph convolutional 523

networks under structure perturbations, in: Proceedings of the 26th ACM 524

SIGKDD International Conference on Knowledge Discovery & Data Min- 525

ing, 2020, pp. 1656–1665. 526

[27] H. Tang, G. Ma, Y. Chen, L. Guo, W. Wang, B. Zeng, L. Zhan, Adver- 527

sarial attack on hierarchical graph pooling neural networks, arXiv preprint 528

arXiv:2005.11560 (2020). 529

[28] Z. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, Gnnexplainer: Gen- 530

erating explanations for graph neural networks, in: Advances in neural 531

information processing systems, 2019, pp. 9244–9255. 532

[29] Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. Ma, H. Chen, M.-C. Yang, 533

Measuring and improving the use of graph information in graph neural 534

networks, in: International Conference on Learning Representations, 2019. 535

[30] H. Yuan, J. Tang, X. Hu, S. Ji, Xgnn: Towards model-level explanations 536

of graph neural networks, arXiv preprint arXiv:2006.02587 (2020). 537

[31] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. P. Yu, A comprehensive 538

survey on graph neural networks, IEEE Transactions on Neural Networks 539

and Learning Systems (2020). 540

[32] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph- 541

structured data. arxiv 2015, arXiv preprint arXiv:1506.05163 (2015). 542

[33] R. Levie, F. Monti, X. Bresson, M. M. Bronstein, Cayleynets: Graph con- 543

volutional neural networks with complex rational spectral filters, IEEE 544

Transactions on Signal Processing 67 (1) (2018) 97–109. 545

25



[34] H. Tang, L. Guo, E. Dennis, P. M. Thompson, H. Huang, O. Ajilore, A. D.546

Leow, L. Zhan, Classifying stages of mild cognitive impairment via aug-547

mented graph embedding, in: Multimodal Brain Image Analysis and Math-548

ematical Foundations of Computational Anatomy, Springer, 2019, pp. 30–549

38.550

[35] I. S. Dhillon, Y. Guan, B. Kulis, Weighted graph cuts without eigenvectors551

a multilevel approach, IEEE transactions on pattern analysis and machine552

intelligence 29 (11) (2007) 1944–1957.553

[36] D. V. Tran, N. Navarin, A. Sperduti, On filter size in graph convolutional554

networks, in: 2018 IEEE Symposium Series on Computational Intelligence555

(SSCI), IEEE, 2018, pp. 1534–1541.556

[37] J. Lee, I. Lee, J. Kang, Self-attention graph pooling, arXiv preprint557

arXiv:1904.08082 (2019).558

[38] Z. T. Kefato, S. Girdzijauskas, Graph neighborhood attentive pooling,559

arXiv preprint arXiv:2001.10394 (2020).560

[39] F. M. Bianchi, D. Grattarola, C. Alippi, Spectral clustering with graph561

neural networks for graph pooling., arXiv: Learning (2020).562

[40] E. Ranjan, S. Sanyal, P. P. Talukdar, Asap: Adaptive structure aware563

pooling for learning hierarchical graph representations., in: AAAI, 2020,564

pp. 5470–5477.565

[41] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally566

connected networks on graphs, arXiv preprint arXiv:1312.6203 (2013).567

[42] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,568

M. Grohe, Weisfeiler and leman go neural: Higher-order graph neural net-569

works, in: Proceedings of the AAAI Conference on Artificial Intelligence,570

Vol. 33, 2019, pp. 4602–4609.571

26



[43] L. Kaufmann, Clustering by means of medoids, in: Proc. Statistical Data 572

Analysis Based on the L1 Norm Conference, Neuchatel, 1987, 1987, pp. 573

405–416. 574

[44] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, M. Neumann, Benchmark 575

data sets for graph kernels (2016). 576

URL http://graphkernels.cs.tu-dortmund.de 577

[45] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, 578

H.-P. Kriegel, Protein function prediction via graph kernels, Bioinformatics 579

21 (suppl 1) (2005) i47–i56. 580

[46] P. D. Dobson, A. J. Doig, Distinguishing enzyme structures from non- 581

enzymes without alignments, Journal of molecular biology 330 (4) (2003) 582

771–783. 583

[47] C. Morris, N. M. Kriege, K. Kersting, P. Mutzel, Faster kernels for graphs 584

with continuous attributes via hashing, in: 2016 IEEE 16th International 585

Conference on Data Mining (ICDM), IEEE, 2016, pp. 1095–1100. 586

[48] F. Orsini, P. Frasconi, L. De Raedt, Graph invariant kernels, in: Proceed- 587

ings of the twenty-fourth international joint conference on artificial intel- 588

ligence, Vol. 2015, IJCAI-INT JOINT CONF ARTIF INTELL, 2015, pp. 589

3756–3762. 590

[49] J. J. Sutherland, L. A. O’brien, D. F. Weaver, Spline-fitting with a genetic 591

algorithm: A method for developing classification structure- activity rela- 592

tionships, Journal of chemical information and computer sciences 43 (6) 593

(2003) 1906–1915. 594

[50] K. Riesen, H. Bunke, Iam graph database repository for graph based pat- 595

tern recognition and machine learning, in: Joint IAPR International Work- 596

shops on Statistical Techniques in Pattern Recognition (SPR) and Struc- 597

tural and Syntactic Pattern Recognition (SSPR), Springer, 2008, pp. 287– 598

297. 599

27



[51] Y. Ma, S. Wang, C. C. Aggarwal, J. Tang, Graph convolutional networks600

with eigenpooling, in: Proceedings of the 25th ACM SIGKDD International601

Conference on Knowledge Discovery & Data Mining, 2019, pp. 723–731.602

[52] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,603

V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al., Xsede: Ac-604

celerating scientific discovery computing in science & engineering, 16 (5):605

62–74, sep 2014, URL https://doi. org/10.1109/mcse (2014).606

[53] N. A. Nystrom, M. J. Levine, R. Z. Roskies, J. R. Scott, Bridges: a uniquely607

flexible hpc resource for new communities and data analytics, in: Proceed-608

ings of the 2015 XSEDE Conference: Scientific Advancements Enabled by609

Enhanced Cyberinfrastructure, 2015, pp. 1–8.610

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,611

A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch612

(2017).613

[55] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch614

geometric, arXiv preprint arXiv:1903.02428 (2019).615

[56] U. Brandes, M. Gaertler, D. Wagner, Experiments on graph clustering616

algorithms, in: European Symposium on Algorithms, Springer, 2003, pp.617

568–579.618

[57] S. Fortunato, Community detection in graphs, Physics reports 486 (3-5)619

(2010) 75–174.620

[58] A. Strehl, J. Ghosh, Cluster ensembles—a knowledge reuse framework for621

combining multiple partitions, Journal of machine learning research 3 (Dec)622

(2002) 583–617.623

28


