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2 
 

Abstract: 22 

Neural activity coordinated across different scales from neuronal circuits to large-scale brain 23 

networks gives rise to complex cognitive functions. Bridging the gap between micro- and macro-24 

scale processes, we present a novel framework based on the maximum entropy model to infer a 25 

hybrid resting-state structural connectome, representing functional interactions constrained by 26 

structural connectivity. We demonstrate that the structurally informed network outperforms the 27 

unconstrained model in simulating brain dynamics; wherein by constraining the inference model 28 

with the network structure we may improve the estimation of pairwise BOLD signal interactions. 29 

Further, we simulate brain network dynamics using Monte Carlo simulations with the new 30 

hybrid connectome to probe connectome-level differences in excitation-inhibition balance 31 

between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences 32 

among APOE- ε4 carriers in functional dynamics at criticality; specifically, female carriers 33 

appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory 34 

interactions. In sum, the new multimodal network explored here enables analysis of brain 35 

dynamics through the integration of structure and function, providing insight into the complex 36 

interactions underlying neural activity such as the balance of excitation and inhibition. 37 

 38 

 39 

 40 

 41 
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Introduction 43 

The brain is a complex dynamical system whose functional properties are largely determined by 44 

the characteristics of its neurons and patterns of synaptic connectivity, resulting in a balance of 45 

excitatory (E) and inhibitory (I) interactions. For example, if the number of neurons that are co-46 

activated from one signal is too high (increased excitation), the result is wide-scale activations 47 

and errant signal propagation across the brain’s sub-networks.  On the other hand, if the number 48 

of co-activated neurons is too low (increased inhibition), the propagation of the signal may 49 

diminish too quickly, limiting information transfer. The dynamical balance between excitation 50 

and inhibition is important for adjusting neural input/output relationships in cortical networks 51 

and regulating the dynamic range of their responses to stimuli (Kinouchi & Copelli, 2006) as 52 

well as the optimal dynamic range where information capacity and transfer are maximized (Shew 53 

et al., 2011). This is the central thesis of the criticality hypothesis, a phenomenon which suggests 54 

that neural networks and many aspects of brain activity self-organize into a unique configuration, 55 

sometimes called a critical state (Wilting & Priesemann, 2019). This state represents the 56 

transition of complex dynamical systems like the brain from order (balanced excitation-57 

inhibition) to disorder (disrupted excitation-inhibition balance) and has found applications in 58 

many scientific domains, including neuroscience and clinical neurology (Cocchi et al., 2017; 59 

Hahn et al., 2017; Sornette, 2006; Tagliazucchi, 2017). Studies have demonstrated that the cortex 60 

operates near criticality (Beggs & Plenz, 2003; Hahn et al., 2017; Shew et al., 2009) at the 61 

microscale, as well as in studies with blood oxygen level-dependent (BOLD) signals extracted 62 

from fMRI imaging (Haimovici et al., 2013; Lombardi et al., 2017; Rabuffo et al., 2021; 63 

Tagliazucchi et al., 2012). In fact, there is growing evidence from animal models and whole-cell 64 

recordings supporting the hypothesis that synaptic dysfunction leading to neuronal 65 
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hyperexcitation may represent some of the earliest changes in the progression of 66 

neurodegenerative disease like Alzheimer’s disease (AD) (Busche & Konnerth, 2016; Palop et 67 

al., 2007; Petrache et al., 2019; Ren et al., 2018). However, the major challenge with early 68 

detection and intervention is that both normal aging and AD are associated with alterations to 69 

neural structure and function (McDonald et al., 2009; Schuff et al., 1999). This includes regional 70 

hypometabolism (Chételat et al., 2013; Curiati et al., 2011), white matter (WM) changes (Barrick 71 

et al., 2010; Michielse et al., 2010), Aβ deposition (Rodrigue et al., 2012; Rowe et al., 2010), and 72 

disrupted resting-state functional connectivity (Damoiseaux et al., 2008; Sheline et al., 2010; 73 

Wang et al., 2006). To improve our understanding of neurodegenerative diseases (accounting for 74 

major factors such as age, sex, or genetic phenotypes) and improve early detection, we 75 

investigate a model that can integrate micro scale principles at a connectome level to bridge the 76 

gap between cell-to-network level degeneration. However, we acknowledge some abstraction is 77 

required in this strategy; in models of large-scale effects, physiological information may be more 78 

abstract, and details of cellular processes potentially lost. While this may seem counterintuitive 79 

from a biological perspective, it is necessary for describing higher level phenomena informed by 80 

MRI neuroimaging. 81 

To this end, in this paper we introduce a method based on statistical physics to jointly model 82 

both brain structure and function via a pairwise maximum entropy model (pMEM). Our 83 

framework is inspired by the Ising Model representation of brain dynamics whereby self-84 

organized patterns of connectivity are formed through the spontaneous fluctuations of random 85 

spins (Reichl & Luscombe, 1999). This model has been used to characterize complex microscale 86 

dynamics of the human brain (Deco et al., 2008; Kadirvelu et al., 2017; Ostojic & Brunel, 2011; 87 

Tkačik et al., 2015), as well as macro-scale interactions  (Ezaki et al., 2017; Marinazzo et al., 88 
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2014; Nghiem et al., 2018; Niu et al., 2019; Nuzzi et al., 2020; Schneidman et al., 2006).  89 

Unconstrained Maximum entropy models (MEM) have been shown to accurately represent 90 

spatiotemporal co-activations in neuronal spike trains (Roudi et al., 2009; Schneidman et al., 91 

2006; Shlens et al., 2006) as well as patterns of BOLD activity (Ashourvan et al., 2017; Cocco et 92 

al., 2017; Ezaki et al., 2020; Watanabe et al., 2013).  In fact, Zanoci, et al. recently showed that 93 

the Ising model captures collective neuronal behavior during wakefulness, light sleep, and deep 94 

sleep when both excitatory (E) and inhibitory (I) neurons are modeled (Zanoci et al., 2019).  95 

Further, at the macro-scale, Ashourvan et al. recently developed a maximum entropy-based 96 

framework that derives functional connectivity measures from intracranial EEG recordings; their 97 

findings suggest that  structural connections in the brain give rise to large-scale patterns of 98 

functional connectivity by promoting co-activation between connected structures (Ashourvan et 99 

al., 2021). Thus, MEM may be an ideal tool to model functional connectivity and ultimately link 100 

micro-scale interactions (such as excitation and inhibition in neuronal circuits) to the functional 101 

connectome (FC) captured through fMRI BOLD activity.  102 

Described as a function-by-structure embedding (FSE), our model infers the organization of 103 

functional connectivity from global activity patterns (i.e., simultaneously considering the activity 104 

of more than two brain regions) constrained to the structural connectome. We present a robust 105 

numerical approach for our model, optimizing a constrained maximum likelihood estimation. 106 

The use of a structural connectome to inform the modeling of BOLD activity is motivated by a 107 

strong link between fMRI-based functional connectivity and white matter-based structural 108 

connectivity (Bettinardi et al., 2017; Honey et al., 2009; K. Shen et al., 2015). These studies 109 

suggest that models of functional dynamics should also be governed by the underlying structure 110 

to include direct and indirect connections between brain regions. Thus, if our model accurately 111 
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describes large-scale brain activity patterns during rest, it will provide a much richer 112 

representation of functional interactions governing global dynamics that may give rise to 113 

hyperexcitation. With our framework we construct hybrid resting-state structural connectomes 114 

(rs-SC) for a group of seventy-six middle-aged and cognitively intact individuals. These unique 115 

structural networks are informed by a spin glass-like Ising model, whose dynamics resemble that 116 

of traditional FC. We demonstrate that our new structurally informed networks can consistently 117 

and accurately reconstruct observed BOLD correlations.  Investigating macro-scale brain 118 

dynamics through the lens of statistical physics allows us to infer computationally the nature of 119 

resting-state activity (corresponding to inhibition or excitation) and probe potential disruptions to 120 

E/I balance that may lead to hyperexcitation and subsequent increased vulnerability to 121 

neurodegeneration. To evaluate this phenomenon, we create subgroups of thirty-eight age and 122 

sex-matched individuals based on whether one is a carrier of the apolipoprotein E (APOE) ε4 123 

allele, a well-known genetic risk factor of AD. Recent studies have shown that APOE-ε4 may 124 

contribute directly to early neuronal dysfunction, either directly via modification of the 125 

excitation/inhibition balance or linked with amyloid deposition (Bi et al., 2020; Koelewijn et al., 126 

2019; Nuriel et al., 2017; Stargardt et al., 2015)). Using our new hybrid rs-SC, we investigate the 127 

relationship between E/I balance and criticality in these two groups. We hypothesized that, due 128 

to a shift in E/I balance towards hyperexcitation, the female APOE-ε4 carrier group would 129 

exhibit a lower tolerance to perturbations in the network when simulating brain dynamics using 130 

Monte Carlo simulations of the Ising model as compared to the female non-carrier group. Herein 131 

we aim to demonstrate that an increase in excitatory interactions at the connectome-level, 132 

identified using our new hybrid connectome, may provide new evidence of vulnerability among 133 

females to Alzheimer’s disease (AD) neuropathology due to disruptions in E/I balance. 134 
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Results  135 

Constructing a function-by-structure embedding (FSE) using a constrained maximum 136 

likelihood estimation  137 

In constructing the function-by-structure embedding (FSE), we begin with the unconstrained 138 

pairwise maximum entropy model (pMEM) as described in the methods. The pMEM is 139 

sometimes referred to as the inverse Ising model, where the pairwise interactions (represented as 140 

𝐽𝑖,𝑗, with i and j representing ROIs in the brain network) are inferred from the observed data 141 

(BOLD time series). As the model assumes binary data, we binarized the resting-state fMRI 142 

signals obtained from the 76 cognitively intact middled aged subjects. The binarized activity 143 

pattern of N = 80 ROIs at time t (𝑡 = 1,2, … , 𝑡𝑚𝑎𝑥; 𝑡𝑚𝑎𝑥 = 236) is denoted 𝒔(𝑡) =144 

𝑠1(𝑡), 𝑠2(𝑡), … 𝑠𝑁(𝑡) 𝜖 {−1, +1}𝑁. Note that 𝑡𝑚𝑎𝑥 is determined as a result of the 8 minute fMRI 145 

scan time with TR = 2s (“see Methods”). Here 𝑠1(𝑡) = ± 1 indicates that an ROI is either active 146 

(+1) or inactive (-1). First, the time series goes through a z-score normalization procedure, 147 

resulting in zero mean and unitary variance. To assess the sensitivity of our results to 148 

thresholding, we tested thresholds of 0 and ± 1 SD. The results of this assessment will be 149 

presented in the section on determining parameters for generating the optimal resting-state 150 

structural connectome. For the unconstrained pMEM we fit the following probability distribution 151 

to all 76 subjects by maximizing a pseudolikelihood (see methods): 𝑃𝑟(𝒔) = exp(−𝛽𝐻(𝑠)) /𝑍, 152 

where 𝐻(𝒔) = − ∑ 𝐽𝑖,𝑗𝑠𝑖𝑠𝑗<𝑖 𝑗> , 𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ [1,2, … , 𝑘] is the Hamiltonian function describing the 153 

energy of the system, and 𝑍 = ∑ exp (−𝛽𝐻(𝒔))𝒔  is the partition function. Here, the spin 154 

configuration 𝒔 is defined as the column vector 𝐬 = [s1, 𝑠2 … . , 𝑠𝑁]𝑡𝑚𝑎𝑥, where 𝑠𝑖 and 𝑠𝑗 are the 155 

spin states of region 𝑖 and 𝑗, and 𝐽𝑖,𝑗  represents a pairwise interaction between those regions. 156 
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Traditionally, the Hamiltonian includes a term for external influences which we assume to be 157 

zero for resting-state data. We use the unconstrained pMEM as a control for comparison 158 

purposes. In our approach we hypothesized that the interaction 𝐽𝑖,𝑗  between two regions should 159 

be directly linked back to the diffusion MRI-derived structural connectivity between them as 160 

informed by tractography, so we add a constraint to the Hamiltonian function as follows: 161 

𝐻(𝑠) = − ∑ 𝐽𝑖,𝑗𝑠𝑖𝑠𝑗 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝐽𝑖,𝑗| ∝𝑖<𝑗 𝑊𝑖,𝑗,     (1) 162 

where 𝑊𝑖,𝑗 is the structural connectivity between pairs of ROIs. This ensures that in the 163 

pseudolikelihood estimation of 𝑱, we constrain it with the structural connectivity (under the 164 

assumption that structural connectivity informs spin models governing brain dynamics).  Thus, 165 

the optimal interaction matrix  𝑱 is derived by maximizing the pseudo-likelihood function as 166 

follows (Besag, 1975, 1977) : 167 

ℒ𝑝𝑒𝑢𝑠𝑑𝑜(𝑱, 𝛽) = ∏ ∏ 𝑃𝑟𝑘
𝑖=1 (𝑠𝑖(𝑡)|𝑱, 𝛽, 𝒔−𝑖(𝑡)) 

𝑡𝑚𝑎𝑥
𝑡=1      (2) 168 

Pseudolikelihood substitutes 𝑃𝑟(𝒔) by the product of the conditional probabilities 𝑝̃ =169 

𝑃𝑟(𝑠𝑖(𝑡)|𝑱, 𝛽, 𝒔−𝑖(𝑡)), observing one element 𝑠𝑖(𝑡) with all the other elements (denoted 𝒔−𝑖(𝑡)) 170 

fixed. To ensure that the magnitude of the coupling interactions is scaled relative to structural 171 

connectivity, the constraint is formulated as |𝐽𝑖,𝑗|~ = 𝜇𝑊𝑖,𝑗 , where 𝜇 is a normalization constant 172 

and 𝑊𝑖,𝑗 is the structural connectivity between ROI pairs. Without loss of generality, we assume 173 

that 𝜇 = 1 with appropriate normalization. We therefore present a penalty-based optimization 174 

scheme to maximize the constrained log-pseudolikelihood function as follows:  175 

ℓ(𝑱, 𝛽) =
1

𝑡𝑚𝑎𝑥
𝑙𝑛 ℒ𝑝𝑠𝑒𝑢𝑑𝑜(𝑱, 𝛽) − 

𝝀

𝟐
∑ (𝐽𝑖,𝑗 − 𝑠𝑔𝑛(𝐽𝑖,𝑗)𝑊𝑖,𝑗)𝟐

𝒊<𝒋 .    (3) 176 
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The pseudolikelihood component 1

𝑡𝑚𝑎𝑥
ln ℒ𝑝𝑠𝑒𝑢𝑑𝑜(𝑱, 𝛽) expands to: 177 

1

𝑡𝑡𝑚𝑎𝑥 
∑ ∑ ln (

exp(𝛽 ∑ 𝐽𝑖,𝑘𝑠𝑖(𝑡)𝑠𝑘(𝑡)𝑁
𝑘=1 )

exp(𝛽 ∑ 𝐽𝑖,𝑘𝑠𝑘(𝑡)𝑁
𝑘=1 )+exp(−𝛽 ∑ 𝐽𝑖,𝑘𝑠𝑘(𝑡)𝑁

𝑘=1 )
)𝑁

𝑖=1
𝑡𝑚𝑎𝑥
𝑡=1 .   (4) 178 

We formulate the probability distribution based on the Boltzmann distribution under 179 

pseudolikelihood conditions. Thus, the numerator describes the energy of the system, while the 180 

denominator is the sum of all possible energies. Hence, there are only two terms in the 181 

denominator since 𝑠𝑖(𝑡) is binary (one positive, and one negative). The likelihood function may 182 

be simplified by setting 𝐶𝑖(𝑡) = 𝛽 ∑ 𝐽𝑖,𝑚𝑠𝑚(𝑡)𝑘
𝑚=1 , resulting in the following formulation: 183 

ℓ(𝑱, 𝛽) =  
1

𝑡𝑡𝑚𝑎𝑥  
 ∑ ∑  𝐶𝑖(𝑡)𝑁

𝑖=1
𝑡𝑚𝑎𝑥
𝑡=1 𝑠𝑖(𝑡) − ln(𝑒𝑥𝑝(𝐶𝑖(𝑡)) + 𝑒𝑥𝑝(−𝐶𝑖(𝑡)))   (5) 184 

− 
𝝀

𝟐
∑ (𝐽𝑖,𝑗 − 𝑠𝑔𝑛(𝐽𝑖,𝑗)𝑊𝑖,𝑗)𝟐

𝒊<𝒋    185 

Here we may construct the gradient ascent procedure with respect to 𝐽𝑖,𝑗 by computing the partial 186 

derivative of the log-pseudolikelihood as: 187 

𝜕 ℓ

𝜕 𝐽𝑖,𝑗
=   

1

𝑡𝑚𝑎𝑥
 ∑ 𝛽{𝑠𝑖(𝑡)𝑠𝑗(𝑡) − 𝑠𝑗(𝑡) tanh(𝐶𝑖(𝑡))}

𝑡𝑚𝑎𝑥
 𝑡=1  − 𝜆(𝐽𝑖,𝑗 − 𝑠𝑔𝑛(𝐽𝑖,𝑗)𝑊𝑖,𝑗)  (6) 188 

∝   
1

𝑡𝑚𝑎𝑥
 ∑ {𝑠𝑖(𝑡)𝑠𝑗(𝑡) −  𝑠𝑗(𝑡) tanh(𝐶𝑖(𝑡))}

𝑡𝑚𝑎𝑥
 𝑡=1  − 𝐴(𝐽𝑖,𝑗 − 𝑠𝑔𝑛(𝐽𝑖,𝑗)𝑊𝑖,𝑗),         (7) 189 

where 𝐴 =  
𝜆

𝛽
. The updating scheme follows: 𝐽𝑖,𝑗

𝑛+1 = 𝐽𝑖,𝑗
𝑛 + 𝛾

𝜕 ℓ

𝜕 𝐽𝑖,𝑗
|

𝑛

. Here, 𝑛 is the iteration 190 

number and 𝛾 is the learning rate. In this way, the penalty function ensures that the inferred 191 

pairwise interaction is scaled relative to the estimated structure of the brain. This process is 192 

followed for all 76 subjects as part of first stage in constructing an optimized rs-SC as shown in 193 
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the schematic of Fig 1. The next stage involves optimization of the two parameters which control 194 

scale and convergence, 𝛽 and A. 195 

Determining parameters for generating the optimal resting-state structural connectome 196 

Within the framework for the FSE, parameters that need to be tuned are the constraint scale 197 

(parameter 𝐴) and the convergence parameter 𝛽. We note two points here: first, in the gradient 198 

ascent procedure, the influence of the 𝛽 parameter is primarily in the hyperbolic tangent, which 199 

converges to 1 as 𝛽 →  ∞ and 0 as  𝛽 →  0. Second, in a similar fashion, the influence of A is in 200 

the scale of the constraint. Thus, if as 𝐴 →  0, then the model converges to an unconstrained 201 

pMEM, and if 𝐴 →  ∞ , then the constraint will completely dominate the ascent and the system 202 

will converge to a pure structural connectome.  203 

With that in mind, we develop two metrics to evaluate the accuracy and performance of our rs-204 

SC, constructed with our FSE method. First is a similarity metric 𝑆𝑚(𝛽, 𝐴) which, as described 205 

in the methods is simply the correlation between |rs-SC| and the structural connectome. This 206 

metric is used to gauge the quality of the constraint component in the framework. Second, we 207 

generate a correlation function 𝑓𝑐(𝛽, 𝐴) by simulating the Ising model with MCMC simulations 208 

(see “Methods”), computing a Pearson correlation between observed and simulated functional 209 

connectivity for all 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 . As shown in stage 2 of Fig 1, this results in a bell-like curve 210 

where each point represents a correlation value between the observed FC and reconstructed FC 211 

for each 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 . Here we identify the 𝑚𝑎𝑥 𝑓𝑐(𝛽, 𝐴), which represents the maximum achieved 212 

correlation between observed and reconstructed FC for the parameters 𝛽, 𝐴. As described in the 213 

methods, we perform these computations for a range of empirically determined values and the 214 

results are presented in Fig 2. As expected, as the parameter values of 𝛽, 𝐴 increase, the 215 
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similarity metric 𝑆𝑚 evaluating the constraint increases to be almost perfectly correlated with the 216 

structural connectome. However, the quality of FC reconstruction, evaluated using 𝑚𝑎𝑥 𝑓𝑐(𝛽, 𝐴), 217 

decreases as the values of 𝛽, 𝐴 increase. This suggests that, while structural connectivity is 218 

important for reconstructing functional dynamics, a purely structural network is limited in the 219 

accuracy of FC reconstruction. Hence, using a grid-search technique shown in stage 3 of Fig 1, 220 

we compute 𝑓(𝛽, 𝐴) = 𝑚𝑎𝑥 𝑓𝑐 + 𝑆𝑚, which intends to take equal weight between the underlying 221 

structure of the rs-SC and the accuracy with which it can reconstruct FC. As shown in Fig 2, this 222 

grid search optimization results in the optimal values of 𝛽 = 0.8, 𝑎𝑛𝑑 𝐴 = 1.4 for a single 223 

subject (shown as an example). This process is computed individually for each subject, resulting 224 

in a unique parameter set for each individual. The range of parameter values is presented in 225 

supplemental Fig.1, noting that the approximate mean value for A = 1.75 and 𝛽 = 0.75. Using 226 

these parameters, we then reconstruct an optimized rs-SC for each of the 76 subjects to be used 227 

in the ensuing analyses. 228 

Using this optimization process, we further tested different binarization strategies for the z-229 

scored time series data to identify the optimal thresholding parameter. Here we tested 0, and ± 1 230 

SD. We used 𝑚𝑎𝑥 𝑓𝑐(𝛽, 𝐴) as a measure of performance to determine if one threshold results in 231 

better FC reconstruction quality. The results are presented in Fig 3, noting that using zero as the 232 

threshold results in more consistent and accurate quality. We note the existence of a handful of 233 

outliers when binarizing ± 1 𝑆𝐷. This is in part due to processing steps of the observed BOLD 234 

time series, where upwards of forty percent of the TRs were excluded due to imaging artefacts 235 

for some subjects. As with all inference-based methods, accuracy of estimations increases or 236 

decreases with the amount of observed data. Future studies using this methodology will focus on 237 

cohorts with more consistent time series data across subjects.   238 
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Evaluating the quality and performance of the resting-state structural connectome (rs-SC)  239 

With the now optimized rs-SC it is important to compare this combined structure-function 240 

network with our control (or null model) pMEM-based interaction network, and the traditional 241 

Pearson-correlated FC. To do this we first perform MCMC simulations of the Ising model with 242 

64,000 runs (N x N x 10; N = 80 ROIs) over a range of 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  (see “Methods”). In this we 243 

may compute the 𝑚𝑎𝑥 𝑓𝑐 correlation results for each participant using the pMEM-based network 244 

and FSE-based networks (rs-SC), comparing the performance of both in reconstructing observed 245 

functional connectivity. In evaluating the results, we also separate our 76 subjects into two 246 

groups of non-carriers (NC) and carriers (APOE) to determine if there are any within-group 247 

performance differences. The results of these simulations are presented in Fig 3 with the violin 248 

plot showing the median and range of 𝑚𝑎𝑥 𝑓𝑐 correlation values. The median 𝑚𝑎𝑥 𝑓𝑐 for (NC, 249 

APOE) using the pMEM-based interaction network is (0.67,0.60) with a range of {(0.81,0.32), 250 

(0.85,0.28)}. The 95% CI for the NC group is 0.62 ± 0.035 and 0.56 ± 0.042 for the APOE 251 

group. Using the FSE-based rs-SC, the median correlation for (NC, APOE) is (0.90, 0.89) with a 252 

range of {(0.94,0.85), (0.94,0.84)}. The 95% CI for the NC group is 0.91 ± 0.011 and 0.89 ± 253 

0.014 for the APOE group.  Based on comparison with the pMEM-based network, the FSE-254 

based network results in a more consistent and accurate reconstruction of FC for both the NC and 255 

APOE groups. Further, we evaluate the quality of our constraint under the optimized parameters 256 

𝛽, 𝐴 for all subjects. Violin plots for both NC and APOE groups, evaluating the similarity metric 257 

𝑆𝑚 are presented in Fig 3. The median 𝑆𝑚 for both groups is 0.94 with a range of (0.96, 0.90) in 258 

the NC group and (0.96, 0.88) in the APOE group. Further, the 95% CI for the NC group is 0.92 259 

± 0.0015 and 0.91 ± 0.0003 in the APOE group. These results suggest strong and consistent 260 
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performance of the structurally informed rs-SC in reconstructing functional dynamics for both 261 

groups, as well as constraint on the estimated network.  262 

Last, in previous studies no group differences could be identified between NC and APOE groups 263 

using traditional FC measures (Fortel et al., 2019; Korthauer et al., 2018). Here, we test whether 264 

or not an Excitation-Inhibition (E/I) ratio may be used to differentiate between the rs-SC network 265 

as as well as the pMEM-derived interaction network. As defined in the methods, the E/I ratio is 266 

simply the sum of the positive edges, divided by the sum of negative edges (computed at either 267 

the whole-brain or ROI-level). For both networks, the E/I ratio is computed for all ROIs and 268 

averaged for the NC and APOE groups. In Fig 4, the scatter plots display a weak association 269 

between the average E/I ratio for all ROIs between the NC and APOE groups using the pMEM-270 

derived network with 𝑅2 = 0.44, and a paired t-test across all ROIs results in P >> 0.1, 271 

suggesting no statistically significant group differences in the pMEM-based networks. 272 

Conversely, performing a similar computation of the E/I ratio on the rs-SC networks results in a 273 

strong association between NC and APOE groups, with 𝑅2 = 0.74, as well as a notable shift 274 

observed for all ROIs (i.e., globally). A paired t-test between the groups results in P = 0.037, 275 

suggesting a statistically significant group difference in the rs-SC networks between NC and 276 

APOE groups, as evaluated with the E/I ratio that cannot be identified with the unconstrained 277 

model. In sum, the results presented in this section indicate the novel rs-SC network constructed 278 

with the FSE framework can describe not only structural and functional dynamics, but also probe 279 

brain dynamics that may not be captured using a similar unconstrained methodology. Last, we 280 

compare the E/I ratio in a group comparison of males and females (NC versus APOE) and 281 

present the results in the scatter plot of Fig 5. Both males and females exhibit a positive 282 

association between groups with 𝑅2 = 0.65 and 𝑅2 = 0.75, respectively, however only the 283 
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female group has a statistically significant group difference with P = 0.008. Here, we perform a 284 

calculation on group difference by computing 𝑑𝑒𝑙𝑡𝑎 =  1 −
(𝐸/𝐼)𝑁𝐶 

(𝐸/𝐼)𝐴𝑃𝑂𝐸
 to evaluate the average 285 

change between NC and APOE groups. The males have an average increase of 2.4% (averaged 286 

across all ROIs), while the females have an average increase of 5.9% in E/I ratio (approximately 287 

2.4x higher increase than the male group). The raw values for each brain region are shared in the 288 

supplement Table 1 for reference. 289 

Criticality and hyperexcitation in female APOE ε4 Carriers 290 

In this study, our subjects are separated into two age and sex-matched groups (NC and APOE). 291 

One aspect of the link between APOE-ε4 and Alzheimer’s disease that has often been overlooked 292 

is that females with at least one ε4 allele are four times more likely to develop Alzheimer’s 293 

disease than males (Bretsky et al., 1999; Jack et al., 2015; Payami et al., 1994). Thus, we use our 294 

framework to evaluate not just group differences in criticality, but sex differences as well 295 

(22F/16M in each group). As previously mentioned, the brain criticality hypothesis suggests that 296 

neural networks self-organize into a unique configuration between order and disorder. In the 297 

context of statistical physics and the Ising model, this unique configuration occurs at some 298 

critical point (𝛽𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). Here, we again utilized MCMC simulations to generate a series of state 299 

configurations (±1) resulting in an N x t matrix, where N = 80 ROIs, and t = 100,000 runs (see 300 

“Methods”). In the previous section we used these states to compute a correlation between brain 301 

regions, however in this case we will evaluate the critical dynamics elucidated from the rs-SC 302 

networks. Specifically, we are interested in the phase transitions based on the positive edges of 303 

the networks. The Ising model can be modified to model spin-glass behavior (full signed 304 

network), however this can lead to “frustration” in the simulations. Frustration describes a 305 

scenario in which it is impossible to simultaneously minimize all the terms in the Hamiltonian. 306 
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As a result, this generally leads to complex energy landscapes with many local minima. At low 307 

𝛽, the system can get stuck in the local minima without ever reaching a true equilibrium. In 308 

future work we can investigate thermodynamic properties using the full signed network (spin-309 

glass), but here we proceed in evaluating the ferromagnetic phase transitions.  310 

For each 𝛽, we compute the order parameter (magnetization) and the variance (susceptibility) 311 

with respect to 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 .  Here, we again compute average values over NC and APOE groups 312 

to investigate potential group differences in critical behavior. As described in the methods, β is 313 

the inverse temperature (T) parameter used in the Boltzmann distribution and thus when 314 

simulating dynamics to identify phase transitions, we interpret temperature as a tolerance of the 315 

system when increased randomness is introduced. Performing Monte Carlo simulations of the 316 

Ising model using our hybrid network for a range of temperatures is used to identify a critical 317 

point, such that the system transitions from a hypoactive regime to a chaotic regime. Hence, the 318 

critical temperature is a measure of how much tolerance the system has to increased 319 

perturbations. We present the phase diagrams for susceptibility in Fig 5 for males and females, 320 

highlighting 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 for both groups (evaluated by the peak of susceptibility). It should be noted 321 

that 𝛽 was simulated from 0.2 to 3.0 at increments of 0.05 (then plotted against 𝑇 =
1

𝛽
). We 322 

identified a more pronounced deviation between NC and APOE females with 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.65 for 323 

the female APOE group as compared to 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.87 in the NC group. Conversely, 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =324 

0.8 in the male APOE group as compared to 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.83 in the NC group. This suggests that 325 

the critical dynamics within the male group between NC and APOE is more similar in nature, 326 

than the dynamics observed within the female group between NC and APOE. A lower critical 327 

temperature in the female carrier group suggests a lower tolerance to network dysfunction as a 328 

result of an increase in excitatory interactions, increasing vulnerability to chaotic activity. In 329 
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sum, these results suggest that there is a link between brain criticality and Excitation-Inhibition 330 

balance that can be identified via our new connectome, demonstrating a disruption to this 331 

balance in APOE carriers (with a larger effect in females).  332 

 333 

Table 1. Demographic characteristics, screening measures 334 

 335 

 336 

Values represent M(SD). DRS-2: Mattis Dementia Rating Scale-2. MMSE: Mini-Mental Status 337 

Examination. GDS: Geriatric Depression Scale. 338 

 339 

 
ε4 carriers (N = 38) non-ε4 carriers (N = 38) 

Age (years) 50.8 (.99) 50.9 (.99) 

Sex (M:F) 16:22 16:22 

Education (years) 15.4 (2.5) 15.2 (2.4) 

DRS-2 (total) 139.9 (2.3) 139.9 (2.3) 

MMSE (total) 28.5 (1.1) 28.8 (1.3) 

GDS (total) 1.8 (2.3) 2.4 (2.7) 
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 340 

Fig 1.  Schematic for the function-by-structure embedding (FSE) and ensuing parameter 341 

optimization strategy. The framework for constructing the hybrid resting-state structural 342 

connectome using the FSE is based on principle of maximum entropy. Using a constrained 343 

maximum likelihood estimation where structural and functional connectivity is combined, we 344 

estimate both an edge strength in the network as well as a sign (+/-) representing excitatory or 345 

inhibitory interactions. (Fortel et al., 2019). In stage 2, two metrics are used to evaluate 346 

parameter quality, namely a similarity metric 𝑺𝒎 and the maximum of a functional correlation 347 

function 𝑚𝑎𝑥 𝒇𝒄. As these values are dependent on parameter choices within the FSE 348 

framework, in Stage 3 a grid search is performed to find the optimal values for the tuned 349 

parameters which maximizes  𝑓(𝜷, 𝑨) = 𝑚𝑎𝑥 𝒇𝒄 + 𝑺𝒎. These two metrics were computed for 350 

each subject individually, to identify the optimal parameters for constructing a hybrid resting-351 

state structural connectome (rs-SC) for each subject.  352 
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353 

’ 354 

Fig 2. Grid search parameter optimization for FSE framework (need to rewrite with this 355 

performed at subject level) 356 

Presented here are example grid-search results based on the proposed optimization strategy as a 357 

function of 𝛽𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝐴 =
𝜆

𝛽𝑇𝑟𝑢𝑒
. Here, 𝛽𝑇𝑟𝑢𝑒 is the value of 𝛽 used in the FSE algorithm. In the 358 

top left is the average 𝑆𝑚, the correlation 𝑟(|𝑱|, 𝑾) used to evaluate the performance of the 359 

constraint. The maximum value achieved in this example is r = 0.979 when 𝛽𝑇𝑟𝑢𝑒, 𝐴 are 360 

maximized. In the top right is the average of 𝑚𝑎𝑥 𝑓𝑐, computed using MCMC simulations for the 361 

Ising model as described in the methods section. The maximum value achieved is r = 0.91 for 362 
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𝛽𝑇𝑟𝑢𝑒 = 0.6, 𝐴 = 0.2. Given the inverse effect of these two metrics, we compute 𝑓(𝛽, 𝐴) =363 

𝑚𝑎𝑥 𝑓𝑐 + 𝑆𝑚 , identifying a parameter set which maximizes both metrics. Thus, in the grid 364 

search the maximum values is achieved at 𝑓(𝛽, 𝐴) = 1.78 where 𝛽 = 0.8, 𝑎𝑛𝑑 𝐴 = 1.4. Last, in 365 

the bottom right is the average 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  (𝑚𝑎𝑥 𝑓𝑐) during MCMC simulations. We note that as 366 

the parameters 𝛽, 𝐴 →  0, 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  (𝑚𝑎𝑥 𝑓𝑐) converges to the unconstrained pMEM, and as 367 

𝛽, 𝐴 →  ∞, 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  (𝑚𝑎𝑥 𝑓𝑐) → 1.  368 

 369 

 370 
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  371 

Fig 3. Violin plots evaluating optimal hybrid resting-state connectomes (rs-SC), generated 372 

using the FSE framework. The top left plot evaluates the reconstruction quality, that is the 373 

ability of our new network to reconstruct traditional FC correlation patterns. We use the network 374 

estimated using an unconstrained pMEM as a control for comparison. Using these networks, we 375 

identify a 𝑚𝑎𝑥 𝑓𝑐 value, representing the maximum correlation between the observed FC and 376 

reconstructed FC using MCMC simulations of the Ising model as described in the methods 377 

section. Presented here are results for the non-carrier (NC) and APOE groups based on the two 378 
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estimation techniques. The median 𝑚𝑎𝑥 𝑓𝑐 for (NC, APOE) using the pMEM is (0.67, 0.6) with 379 

a range of {(0.84, 0.32), (0.85, 0.28)}. The 95% CI for the NC group is 0.66 +/- 0.036 and 0.6 +/- 380 

0.044 for the APOE group. Using the FSE, the median correlation for (NC, APOE) is (0.89, 381 

0.90) with a range of {(0.94, 0.85), (0.94, 0.84)}. The 95% CI for the NC group is 0.89 +/- 0.015 382 

and 0.87 +/- 0.021 for the APOE group. Last, given that the FSE framework relies on the 383 

structural connectivity as a constraint on the network estimation, we evaluate the quality of the 384 

constraint using the similarity metric 𝑆𝑚 described in the methods section. In the top right plot, 385 

the median 𝑆𝑚 for both groups is 0.94 with a range of (0.90, 0.96) in the NC group and (0.88, 386 

0.96) in the APOE group. Further, the 95% CI for the NC group is 0.93 +/- 0.0017 and 0.93 +/- 387 

0.0003 in the APOE group. These results suggest strong and consistent performance of the 388 

structurally informed rs-SC in reconstructing functional dynamics for both groups, as well as 389 

constraint on the estimated network. Last, the bottom plot presents an evaluation of binarization 390 

thresholds using the 𝑚𝑎𝑥 𝑓𝑐 value, representing the maximum correlation between the observed 391 

FC and reconstructed FC using MCMC simulations of the Ising model. The median value when 392 

binarizing about zero is 0.89, while the median value is 0.62 and 0.60 for +/- 1 SD respectively. 393 

These results reveal outliers when binarizing the time series data using a value other than zero. 394 

This is most likely due to data quality questions related to fMRI processing resulting in time 395 

series with up to forty percent of the TRs excluded due to imaging artifacts for some subjects. 396 

 397 
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 398 

Fig 4. Group comparison of the excitation-inhibition ratio for each brain region based on 399 

the unconstrained pairwise maximum entropy model and the function-by-structure 400 

embedding 401 

As described in the methods, the E/I ratio is simply the sum of positive edges divided by the sum 402 

of negative edges for each ROI. Here, we present a plot comparing the E/I ratio between the NC 403 

and APOE groups using the pMEM-based network and our rs-SC network, computed and 404 

averaged at the ROI level. This results in a weak association with 𝑅2 = 0.44 for for the pMEM-405 

based network, and 𝑅2 = 0.76 for the rs-SC network, with paired t-tests across all ROIs results P 406 

>> 0.1 and P = 0.037 respectively. This suggests no statistically significant differences in E/I 407 

balance when using the unconstrained model, however there is a statistically significant 408 

difference in the two groups when using our structurally informed model. We note that 409 

numerically, an increase in group-averaged E/I ratio would move a point (representing one ROI) 410 

above the x = y reference line, suggesting a shift in E/I balance towards hyperexcitation. A 411 

tabular version of these results is included in the Supplement. 412 
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 413 

Fig 5. Gender-based comparison of critical behavior and E/I balance 414 

As described in the methods, the E/I ratio is simply the sum of positive edges divided by the sum 415 

of negative edges for each ROI. In the top Fig, we present a plot comparing the E/I ratio between 416 

the NC and APOE groups for males and females, computed and averaged at the ROI level. This 417 

results in a strong association with 𝑅2 = 0.65 for males, and 𝑅2 = 0.70 for females with paired 418 

t-tests across all ROIs results P = 0.19 for males, and 0.008 for females. This suggests no 419 
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statistically significant differences in E/I balance for males, however there is a statistically 420 

significant difference for females. We note that numerically, an increase in group-averaged E/I 421 

ratio would move a point (representing one ROI) above the x = y reference line, suggesting a 422 

shift in E/I balance towards hyperexcitation with increased risk of chaotic activity. Thus, for each 423 

ROI, we can quantify the shift in E/I balance by computing 𝑑𝑒𝑙𝑡𝑎 =  1 −
(𝐸/𝐼)𝑁𝐶 

(𝐸/𝐼)𝐴𝑃𝑂𝐸
 to evaluate 424 

the average change between NC and APOE groups; this yields a shift of 5.94% in the female 425 

group between carriers and non-carriers, while in the male group it is 2.46% (approximately 2.4x 426 

difference between sexes). A tabular version of these results is included in the Supplement. 427 

Further, presented here are plots demonstrating a global evaluation of critical brain dynamics. In 428 

the bottom panel, ferromagnetic susceptibility is shown for males and females, with the dashed 429 

lines representing the critical point 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑚𝑎𝑥 𝛘). These charts demonstrate a 430 

more pronounced deviation between NC and APOE females with 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.65 for the female 431 

APOE group as compared to 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.87 in the NC group. Conversely, 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.8 in the 432 

male APOE group as compared to 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.83 in the NC group. This suggests that as the E/I 433 

balance shifts at global scale, the critical point also decreases due to an increase in excitatory 434 

interactions. As described in the methods, a lower critical temperature indicates a lower tolerance 435 

to network dysfunction, increasing vulnerability to chaotic activity.  436 

Discussion  437 

Using a constrained maximum entropy model for our function-by-structure embedding (FSE), 438 

we have developed here a novel resting a resting-state structural connectome (rs-SC), unifying 439 

connectome-level structure and function into a new spatiotemporal network. We constructed rs-440 

SC networks for seventy-six cognitively intact participants with a grid-search parameter 441 
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optimization scheme. Hence, we demonstrate two important results: First, the underlying 442 

structure of the rs-SC is as expected, strongly correlated with the empirical structural 443 

connectome (r > 0.9) due to it being used as a constraint in the FSE framework. Second, and 444 

more importantly, we demonstrated that it is possible to model the resting-state functional 445 

connectome using based on a model of spin products, accounting for indirect or higher-order 446 

structural connectivity. We acknowledge that when Ising dynamics are used to model neural 447 

firing patterns, these activations may amount to the collective behavior of a few of neurons, and 448 

at the macro level of fMRI imaging used in this study each voxel may be providing information 449 

as a result of thousands of interacting neurons. However, simulation and empirical studies have 450 

demonstrated that increases in excitatory neuronal activity amplify oscillations associated with 451 

the transient BOLD response, while increasing inhibitory activity evokes an overall decrease in 452 

the BOLD signal (Aksenov et al., 2019; Krishnan et al., 2018; Sotero & Trujillo-Barreto, 2007; 453 

Sten et al., 2017). By grounding our macroscale methodology with models of microscale 454 

dynamics, we bridge the gap between the two, hereby inferring the nature (excitatory or 455 

inhibitory) of structural connectivity at rest. Further, the rs-SC can be used to simulate functional 456 

dynamics using Monte Carlo simulations, reconstruction traditional functional correlations 457 

patterns (𝑟𝑎𝑣𝑔 = 0.9),. Beyond model quality and performance, we have also demonstrated that 458 

our rs-SC can distinguish between female non-carriers and APOE-ε4 carriers (age and sex-459 

matched) using our Excitation-Inhibition (E/I) ratio. Our results demonstrate that modeling with 460 

the rs-SC reveals a global shift of E/I balance for the APOE-ε4 carrier group. Given that APOE-461 

ε4 carriers are at an elevated risk for AD, the observed shift in E/I balance in this sample may be 462 

a result of disease pathology. In many studies of AD, one critical feature that is often overlooked 463 

is that females with at least one ε4 allele are four times more likely to develop AD than males 464 
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(Jack et al., 2015). A comparison of group-averaged E/I ratio at the ROI-level for each sex using 465 

the rs-SC (with new optimization strategy) yielded a global shift in E/I balance towards 466 

hyperexcitation, in-line with our previous work (Fortel et al., 2020) and prior studies on sex 467 

differences related to the APOE genotype (Aboud et al., 2013; Bi et al., 2020; Jiménez-Balado & 468 

Eich, 2021; Leung et al., 2012). In future work, we may investigate in-depth the relationship of 469 

our hybrid connectome with traditional measures of structural and functional connectivity in a 470 

larger cohort (with increased age range), to investigate known sex differences and further 471 

evaluate our method.  472 

Further, in this study, we observe significant difference in critical behavior between a group of 473 

cognitively intact individuals with a genetic predisposition for late onset Alzheimer’s as 474 

compared to age and sex-matched non-carriers. Traditional structural and functional connectivity 475 

based on BOLD correlations were unable to separate the two groups (Fortel et al., 2020; 476 

Korthauer et al., 2018). These results suggest that using a multimodal framework to unify 477 

structure and function can reveal underlying patters in brain dynamics that would otherwise not 478 

be captured using traditional methods. Further, we endeavored to identify a link between E/I 479 

balance and criticality. As a result of increased positive interactions (increased deviation from an 480 

E/I balance) in the hybrid connectome, simulations of brain dynamics using Monte Carlo 481 

simulations revealed a shift in criticality for female carriers compared to non-carriers of APOE-482 

ε4 which may suggest an increased vulnerability to AD neuropathology in female APOE-ε4 483 

carriers. We describe the critical temperature as a measure of tolerance in our modeled system 484 

which we simulate in dynamical regimes spanning from highly ordered (i.e. hypoactive) to 485 

highly disordered. This is in line with studies of preclinical neural models which have shown that 486 

networks operating at criticality exhibit an E/I balance as compared to networks which have been 487 
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over excited or over-inhibited by a controlled chemical stimulus (Heiney et al., 2019; Shew et 488 

al., 2011)”. In fact, many of the in vivo studies that have investigated the criticality hypothesis 489 

and excitation-inhibition balance in neurodegenerative disorders have relied on 490 

Electroencephalography (EEG) or Magnetoencephalography (MEG) recordings (Bruining et al., 491 

2020; Montez et al., 2009; Rajkumar et al., 2021; Stam et al., 2005), which have inherent 492 

challenges with spatial resolution. By defining our activity states using both structural and 493 

functional connectivity together, we are capable of analyzing patterns of activity across both 494 

temporal and spatial scales, thereby improving the network inference, and mitigating many 495 

challenges observed in unimodal and traditional analyses. 496 

The results presented herein regarding E/I balance, criticality and the APOE-ε4 genotype also 497 

coincide with the current understanding of the microscale mechanisms underlying AD pathology. 498 

A recent review article by Najm and colleagues explored the relationship among APOE-ε4, loss 499 

of GABAergic interneurons, and dysfunctional brain networks in the context of AD (Najm et al., 500 

2019). In short, neurons responding to different factors (e.g., normal aging, injury, or stress) 501 

break down APOE-ε4 proteins and produce fragments that trigger phosphorylation of tau; this in 502 

turn disrupts mitochondrial function, leading to cell death. Destruction of inhibitory neurons in 503 

this way can alter network activity and produce hyperexcitability in neural circuits long before 504 

clinically identifiable symptoms arise. This may help explain the known associations of APOE-505 

ε4 with memory deficits and severe epilepsy. Indeed, several in vitro and preclinical in vivo 506 

studies [cited by Najm et al.] have demonstrated that intracellular APOE-ε4 is toxic to 507 

GABAergic interneurons, particularly in the hippocampus.  508 

Moreover, other authors have recently suggested that neuronal hyperexcitability may be 509 

considered as both a causal factor and risk factor in the disease progression, even in the 510 
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preclinical phase (Hijazi et al., 2020; Paterno et al., 2020; Tok et al., 2021). While significant 511 

structural and functional degeneration is well established in AD (DeTure & Dickson, 2019), our 512 

framework incorporates both structural and functional connectivity in order to provide a new 513 

multimodal perspective of connectome-level interactions in a preclinical group of individuals 514 

predisposed to AD. We acknowledge that our methodology is limited to insights which may be 515 

gained from macro-scale BOLD activity as opposed to direct measurements of neuronal 516 

processes. That said, we reached a similar conclusion to independent studies of underlying neural 517 

mechanisms in AD: individuals with the APOE-ε4 allele (females in particular) have a higher 518 

risk of neurodegeneration due to an increase of excitatory activity in neural circuits (Jiménez-519 

Balado & Eich, 2021; Koutsodendris et al., 2022; Li et al., 2016). 520 

We note several limitations of this study; first, this study investigated only a small cross-section 521 

of healthy middle-aged individuals at increased risk of developing Alzheimer’s Disease. Further, 522 

the parcellation used in the processing used an atlas with eighty brain regions, which may be 523 

considered too coarse. Additional research with a longitudinal cohort and higher resolution 524 

parcellation would help improve the generalizability of results, providing important validation 525 

regarding within-subject variability, as well as broadening our understanding of longitudinal 526 

alterations in brain dynamics. Second, when interpreted as a strictly nodal property, excitation-527 

inhibition balance may be best measured at a regional level using FSG PET or Phosphorous 528 

imaging. However, as conceptualized in this study, the concept of E/I balance may directly relate 529 

to this notion of “criticality” in brain dynamics. Further, in this group of participants, 530 

measurements of well-known biomarkers of Aβ and tau were not included in the protocol, and 531 

thus we could not add this layer of validation. Future studies comparing additional imaging 532 

modalities and biomarkers for validation and correlation purposes may be used to strengthen the 533 
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results and methodology presented in this study (in addition to more state-of-the-art DTI and 534 

fMRI imaging protocols). Further, in this study as we are working with resting-state data 535 

processed with global signal regression (accounting for background and non-neural physiological 536 

noise), we model the BOLD activity assuming no external influences and future work can 537 

incorporate external influences in the framework to account for different interference scenarios.  538 

It remains unclear whether the difference in criticality observed between the NC and APOE 539 

groups is because the NC group (on average) contains more inhibitory interactions or if the 540 

APOE group has more excitatory interactions. Since we do not identify directionality in this 541 

study, this question is left for future work. Additionally, we have not performed an assessment 542 

herein on the potential relationships between traditional structural and functional connectivity 543 

measures, and metrics obtained with our rs-SC. This may be explored in detail with future 544 

investigations. Further, at the coarser spatial scale of human functional magnetic resonance 545 

imaging (fMRI), there is evidence that the strength of functional connectivity between regions is 546 

greatest for region pairs separated by short physical distance and that connectivity strength 547 

decays rapidly as the Euclidean distance between brain regions increases (Alexander-Bloch et 548 

al., 2013). Likewise, the extent of white matter tract connectivity as measured with diffusion 549 

imaging also decays with distance. However, the inverse relationship between fMRI-based 550 

connectivity and distance is significant even after controlling for the strong association between 551 

anatomical connectivity and functional connectivity (Honey et al., 2009). In the future, the role 552 

of distance related to excitatory and inhibitory interactions should be explored in greater depth. 553 

Further utilizing thermodynamic principles, it should be investigated if the rs-SC decays 554 

algebraically with a distance d, (i.e., 𝑱(𝑑) ∝ 𝑑−𝛼) as well as what, if any effect this distance 555 

decay would have on critical brain dynamics. Given the complex inner workings of the brain, it 556 
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is entirely plausible that dynamics between brain regions at or near criticality rely on a balance 557 

between long and short-range interactions. Again, this suggests that functional brain dynamics 558 

are governed by the underlying structure of the networks. Thus, after decades of research 559 

studying the brain’s individual components, from neurons to neuronal ensembles and large-scale 560 

brain regions; conclusive evidence demonstrates the need for maps and models that incorporate 561 

interactions among these components in order to better understand the brain’s ensemble 562 

dynamics, circuit function, and emergent behavior. 563 

Materials and methods 564 

Participants and MRI data acquisition 565 

The cohort used in this work has been described in a previous study (Korthauer et al., 2018). 566 

Participants (N = 76; all Caucasian) were selected based on APOE genotype from a larger 567 

sample of 150 adults aged 40-60 (age = 49.9 ± 6.0 in years; 60 men). The University of 568 

Wisconsin-Madison Biotechnology Center conducted the sequencing of the SNPs (rs7412, 569 

rs429358) making up the common ε2, ε3, and ε4 APOE genotypes. Thirty-eight individuals out 570 

of the larger sample were APOE-ε4 carriers (either ε3/ε4 or ε4/ε4). Hence, a subset of non-571 

carriers (ε3/ε3 or e2/ε3) were age and sex-matched, creating equal groups (N = 38, 22 female) of 572 

carriers (APOE) and noncarriers (NC). The following exclusion criteria was used: (a) self-573 

reported cognitive or memory complaints; (b) Mini-Mental Status Exam (MMSE) (Folstein et 574 

al., 1975) score ≤ 24; (c) Mattis Dementia Rating Scale Second Edition (DRS-2) (Johnson-575 

Greene, 2004) score ≤ 135; (d) Geriatric Depression Scale (GDS) (Yesavage et al., 1982) > 10; 576 

(e) history of central nervous system disease (e.g., dementia, stroke, Parkinson’s disease, 577 

epilepsy, other neurological disease); (f) history of severe cardiac disease (e.g., myocardial 578 

infarction, coronary bypass surgery, angioplasty); (g) history of metastatic cancer; (h) history of 579 
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serious psychiatric disorder or substance use disorder; (i) any contraindication to MRI. MRI 580 

imaging was conducted on a GE Signa 3T scanner (Waukesha, WI) with quad split quadrature 581 

transmit/receive head coil. All participants provided written informed consent, and were 582 

compensation financially for their participation; the imaging collection was carried out in 583 

accordance with the guidelines set by the institutional review boards of the University of 584 

Wisconsin-Milwaukee and Medical college of Wisconsin (Korthauer et al., 2018). Demographic 585 

characteristics and screening measures for each group are presented in Table 1. 586 

All participants were screened for any contraindications to MRI. Imaging sessions lasted 75 587 

minutes. To determine the structural and functional connectivity maps, multimodal imaging, 588 

including T1-weighted MRI, resting-state fMRI and diffusion weighted MRI was performed. For 589 

structural MRI imaging, a ‘spoiled-grass’ (SPGR) sequence (axial acquisition: TR = 35 ms, TE = 590 

5 ms, flip angle = 45°, matrix = 256 x 256, FOV = 24 cm, NEX = 1) was obtained, followed by a 591 

T2*-weighted functional scan with an echo-planar pulse imaging (EPI) sequence (28 axial slices, 592 

20 x 20 cm2 FOV, 64 x 64 matrix, 3.125 mm x 3.125 mm x 4 mm voxels, TE = 40 ms, TR = 593 

2,000 ms). The 8-minute rs-fMRI scan was acquired while participants were under task-free 594 

conditions (i.e., resting-state). Additionally, a 3-minute, 30 seconds DTI sequence was acquired 595 

with a spin echo single shot, echo-planar imaging sequence with sensitivity (SENSE = 2.5) 596 

encoding (2.2 mm isotropic voxels, 212 x 212 mm FOV, 96 x 96 acquired matrix), TR/TE = 597 

6338/69 ms, 60 slices for whole brain coverage. Diffusion gradients were applied along 32 non-598 

collinear directions at a b-factor of 700 s/mm2, including one minimally weighted image with b = 599 

0 s/mm2. 600 

Processing of fMRI and DTI imaging 601 
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Preprocessing of rs-fMRI images was performed using Analysis of Functional NeuroImages 602 

(AFNI) (Cox, 1996) and FMRIB Software Library (FSL) (Smith et al., 2004) based on the rs-603 

fMRI preprocessing pipeline from the Human Connectome Project (HCP) (Smith et al., 2013). 604 

Detailed processing information steps can be found in prior work (Korthauer et al., 2018). 605 

Diffusion tensor imaging (DTI) data processing was carried out with the FSL. The B0 image was 606 

skull-stripped using the brain extraction tool (Smith, 2002), with the resulting mask applied to 607 

the other images. Eddy current-induced distortions and subject movements were corrected using 608 

FSL’s “eddy” tool (Andersson & Sotiropoulos, 2016). A probability distribution for fiber 609 

direction was generated at each voxel using BEDPOSTX (Behrens et al., 2003, 2007), which was 610 

then used in probabilistic tractography. For individual subjects, Freesurfer cortical parcellation 611 

and subcortical segmentation was used, defining the 80 regions of interest (ROIs) (Dale et al., 612 

1999; Fischl et al., 2002, 2004). Affine registration with 6 degrees of freedom (DOF) using 613 

FLIRT registered the ROIs to MNI and diffusion space (Jenkinson et al., 2002). For each ROI, 614 

the mean time-course from the BOLD signal was extracted using global signal regression (GSR) 615 

from the preprocessed rs-fMRI data prior to constructing the functional connectivity matrix. The 616 

resulting zero-mean time courses for each ROI were then correlated using Pearson correlations to 617 

generate a traditional functional connectivity matrix. Probabilistic tractography was performed 618 

between pairs of ROIs using Probtrackx for estimating the structural connectivity. The resulting 619 

matrix was then further normalized by dividing each matrix row by the way-total for its 620 

corresponding seed ROI (Behrens et al., 2003, 2007). 621 

The unconstrained pairwise maximum entropy model (pMEM) 622 

This maximum entropy approach provides a way of quantifying the goodness of fit in models 623 

that include varying degrees of correlations (Schneidman et al., 2006). At a microscale level for 624 
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example, a first-order model seeks to fit only the average firing rate of all neurons recorded in 625 

the ensemble. A second-order model would seek to fit the average firing rate and all pairwise 626 

correlations, with an nth-order model fitting all correlations up to and including those between 627 

all n-tuples of neurons in the ensemble. At macro-scale, this amounts to fitting the average 628 

BOLD activation rate of a brain region and all pairwise correlations. Here, the observed bold 629 

activation rate is determined through a binarization of the BOLD time course. Thus, we construct 630 

unbiased predictions for the probabilities of functional brain states by fitting a pairwise 631 

maximum entropy model (pMEM). Here, in estimating the probability distribution, it is 632 

necessary to use the distribution that maximizes the uncertainty (e.g., entropy). To fit the pMEM, 633 

we must tune the first and second order interaction parameters between ROIs such that the 634 

predicted activation and co-activation rates match the observed data (the BOLD time series). An 635 

accurately fitted pMEM suggests that patterns of functional activity can be estimated from each 636 

ROI’s independent activation rate combined with the joint activation rates. Thus, the pMEM 637 

represents a model of fMRI BOLD dynamics as a probabilistic process defined by underlying 638 

pairwise relationships between ROIs. In constructing this model, we leverage the Ising model, a 639 

special case of a Markov random field in which each ROI can exhibit two possible states 𝑠 =640 

 ±1. In this work, we first convert our BOLD time series to z-scores, ensuring that our BOLD 641 

date is represented as zero-mean with unitary variance, without altering the correlations between 642 

brain regions. As maximum entropy models of neural activity are developed based on Ising 643 

dynamics, studies investigating pairwise interactions using BOLD time course data are binarized 644 

to define activation states (either +1 for active, or -1 for inactive) in both simulated and empirical 645 

fMRI-based studies (Ashourvan et al., 2021; Cofré et al., 2019; Ezaki et al., 2017, 2020; Gu et 646 

al., 2018; Nghiem et al., 2018; Niu et al., 2019; Watanabe et al., 2013). We will show how the 647 
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binarization strategy may be validated using monte carlo simulations, whereby using the inferred 648 

interaction networks to reconstruct functional correlations. Our results will also show that for our 649 

network construction methodology, binarizing the z-scored time series at zero provides better 650 

inference of functional interactions than ±1SD. 651 

We first begin by modeling the neural system using an energy-based formulation, namely the 652 

Hamiltonian, as follows:  653 

𝐻(𝒔) = − ∑ 𝐽𝑖,𝑗𝑠𝑖𝑠𝑗<𝑖 𝑗> , 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ [1,2, … , 𝑘]    (1) 654 

Here, the spin configuration 𝑠 is defined as the column vector 𝐬 = [s1, s2, … 𝑠𝑘]𝑇, k is the number 655 

of regions, 𝑠𝑖 and 𝑠𝑗 are the spin states of region 𝑖 and 𝑗, and 𝐽𝑖,𝑗  represents a pairwise interaction 656 

between ROIs. Conceptually, if two regions are co-active or co-inactive, the pairwise interaction 657 

is likely positive (excitatory), and if one region is active while the other is inactive, the pairwise 658 

interaction is likely negative (inhibitory). Here we assume that there is no external influence (i.e., 659 

resting-state). Further, unless otherwise stated, the summations in this manuscript are for 𝑖 < 𝑗 to 660 

avoid double counting and exclude self-connections. The probability of observing a specific 661 

configuration is given as the following Boltzmann distribution:  662 

𝑃𝑟(𝒔) = exp(−𝛽𝐻(𝑠)) /𝑍,     (2) 663 

where 𝛽 is the inverse temperature, and 𝑍 is the partition function: 𝑍 = ∑ exp (−𝛽𝐻(𝒔))𝒔 . 664 

The summation in the partition function is over all possible configurations of states. Similar to 665 

other studies fitting pairwise models to neuronal firing data, a gradient ascent updating scheme is 666 

used (Watanabe et al., 2013; Yeh et al., 2010). Estimating a parameter set that minimizes the 667 

Kullback-Leibler (K-L) divergence between modeled and observed probability distributions is 668 

equivalent to maximizing a log likelihood of the observed data (the empirical BOLD time series. 669 
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We note that a brute-force application of the Maximum Likelihood Estimation (MLE) requires 670 

heavy computational costs with calculations over all 2N possible spin configurations for the 671 

partition function (Nguyen et al., 2017).To overcome the intractability of the partition function Z, 672 

we utilize a pseudolikelihood estimation method (Ezaki et al., 2017). Pseudolikelihood 673 

estimation has been shown to converge to a maximum likelihood estimator for large sample sizes 674 

(Besag, 1975).  675 

The optimal interaction matrix  𝑱 can thus be derived by maximizing the pseudo-likelihood 676 

function (Besag, 1975, 1977) : 677 

ℒ𝑝𝑒𝑢𝑠𝑑𝑜(𝑱, 𝛽) = ∏ ∏ 𝑃𝑟𝑘
𝑖=1 (𝑠𝑖(𝑡)|𝑱, 𝛽, 𝒔−𝑖(𝑡)) 

𝑡𝑚𝑎𝑥
𝑡=1      (3) 678 

Pseudolikelihood substitutes the probability of observing the state vector 𝐬(t) by the product of 679 

the conditional probability 𝑝̃ = 𝑃𝑟(𝑠𝑖(𝑡)|𝑱, 𝛽, 𝒔−𝑖(𝑡)) of observing a single element 𝑠𝑖(𝑡) while 680 

all the other elements, denoted 𝒔−𝑖(𝑡), are fixed. Thus, we maximize the following log-681 

pseudolikelihood function as:  682 

ℓ(𝑱, 𝛽) =
1

𝑡𝑚𝑎𝑥
𝑙𝑛 ℒ𝑝𝑠𝑒𝑢𝑑𝑜(𝑱, 𝛽)      (4) 683 

= 1

𝑡𝑡𝑚𝑎𝑥  
∑ ∑ ln (

exp(𝛽 ∑ 𝐽𝑖,𝑘𝑠𝑖(𝑡)𝑠𝑘(𝑡)𝑁
𝑘=1 )

exp(𝛽 ∑ 𝐽𝑖,𝑘𝑠𝑘(𝑡)𝑁
𝑘=1 )+exp(−𝛽 ∑ 𝐽𝑖,𝑘𝑠𝑘(𝑡)𝑁

𝑘=1 )
)𝑁

𝑖=1
𝑡𝑚𝑎𝑥
𝑡=1 .  684 

 (5) 685 

This probability distribution is derived based on the Boltzmann distribution under 686 

pseudolikelihood conditions. The numerator describes the energy of the system, while the 687 

denominator is the sum of all possible energies. Hence, there are only two terms in the 688 

denominator, one positive and one negative since 𝑠𝑖(𝑡) is binary. The likelihood function may be 689 

simplified further by setting 𝐶𝑖(𝑡) = 𝛽 ∑ 𝐽𝑖,𝑚𝑠𝑚(𝑡)𝑘
𝑚=1 , resulting in the following: 690 
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ℓ(𝑱, 𝛽) =  
1

𝑡𝑡𝑚𝑎𝑥  
 ∑ ∑  𝐶𝑖(𝑡)𝑁

𝑖=1
𝑡𝑚𝑎𝑥
𝑡=1 𝑠𝑖(𝑡) − ln(𝑒𝑥𝑝(𝐶𝑖(𝑡)) + 𝑒𝑥𝑝(−𝐶𝑖(𝑡)))   (6) 691 

The gradient ascent procedure can now be constructed with respect to 𝐽𝑖,𝑗 by computing the 692 

partial derivative of the log-pseudolikelihood as: 693 

𝜕 ℓ

𝜕 𝐽𝑖,𝑗
=   

1

𝑡𝑚𝑎𝑥
 ∑ 𝛽{𝑠𝑖(𝑡)𝑠𝑗(𝑡) − 𝑠𝑗(𝑡) tanh(𝐶𝑖(𝑡))}

𝑡𝑚𝑎𝑥
 𝑡=1    (7) 694 

The updating scheme follows: 𝐽𝑖,𝑗
𝑛+1 = 𝐽𝑖,𝑗

𝑛 + 𝛾
𝜕 ℓ

𝜕 𝐽𝑖,𝑗
|

𝑛

. Here, 𝑛 is the iteration number and 𝛾 is the 695 

learning rate. 696 

Monte Carlo simulations for the Ising model 697 

All scripts were developed and executed in Matlab R2018a on a Windows 10 machine with Intel 698 

i7 CPU@ 2.8 GHz and 16GB of RAM. We used a Markov Chain Monte Carlo (MCMC) method 699 

based on the metropolis algorithm to calculate the observables of the Ising model using the 700 

networks inferred from the pMEM and FSE. Here we present the simulations performed step by 701 

step: 702 

1) Define the parameters J (network inferred with pMEM or FSE), the number of runs t, 703 

and a range of  𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  704 

2) For each run randomly fix an 𝒔𝑖 from the configuration and compute the Hamiltonian 705 

𝐻(𝒔𝑖). 706 

3) If 𝐻(𝒔𝑖)  ≤  0 𝑜𝑟 𝑟𝑎𝑛𝑑(0,1)  ≤ exp (
𝐻(𝒔𝑖)

𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
), flip the state. Note: the command rand 707 

(0,1) generates a random value between 0 and 1. Complete this for all elements in the 708 

configuration. 709 

4)  The final configuration of states is the then used as the input for the next run. 710 
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5) Concatenate all runs into an 𝑁 𝑥 𝑡 array and compute the averages of the observables 711 

(i.e., Pearson correlation < 𝑠𝑖𝒔𝑗 >, Magnetization |𝐌|, Susceptibility 𝛘) 712 

6) Do this for all 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  713 

Due to the computational cost, when performing MCMC simulations for the grid-search 714 

parameter optimization we used 𝑡 = 2000 runs and 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  from 0.2 to 3.0 with increments 715 

of 0.2. For the control case based on pMEM, we used 𝑡 = 𝑁 𝑥 𝑁 𝑥 10 runs with 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  from 716 

1 to 20 with increments of 0.5. Last, when evaluating the thermodynamic properties 717 

Magnetization |𝐌|, Susceptibility 𝛘 using the rs-SC network, we use 𝑡 = 100,000 with 718 

𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  from 0.2 to 3.0 with increments of 0.05. The number of runs, as well as range and 719 

increments of 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  were selected based on the task performed to maximize algorithmic 720 

performance and minimize processing time. The upper and lower bound of these values was first 721 

empirically determined to be containing the optimal range by simulations. 722 

Phase transition and biological motivation: 723 

The simplicity of the Ising model enables the prediction of cooperative behavior among a system 724 

of biological elements wherein each element has two states, and the energy of the system 725 

depends only on the state of each element and its neighbors. Moreover, the model parameters 726 

and representative physical properties are readily amenable to biological interpretation in the 727 

context of various complex systems. For example, a four-dimensional cellular automaton-like 728 

Ising model has been previously developed to investigate transitions between normal, 729 

proliferative, hypoxic, and necrotic states in the tumorigenesis processes (Durrett 2013; Torquato 730 

2010). Ising-like models have also been implemented to estimate information transfer between 731 

spins occurring on the human connectome (Marinazzo et al. 2014); or assess differentially 732 
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expressed genes in cancer patients (Xumeng et al. 2011); and even modeling the joint expression 733 

profiles of genes to reconstruct E. coli gene interaction pathways (Santhanam et al. 2009). 734 

Hence, when we discuss a “phase transition”, it is a result of the interactions among many 735 

elements, not from the specific nature of the individual units (be they ferromagnetic materials or 736 

biological elements like neurons, protein chains, genes, etc.).  737 

To evaluate these transitions, we look to the average of activations over the whole network 738 

(termed magnetization), which determines the ordering of the system. Magnetic susceptibility is 739 

simply the variance of the magnetization. If all the binary spin states are aligned in the same 740 

direction, a magnetization of  ±1 corresponds to a configuration of complete order. The 741 

magnetization per site is defined as M =  ∑ < 𝒔𝑖 >𝑵
𝒊=𝟏 , 𝑤ℎ𝑒𝑟𝑒 <⋅>, represents the ensemble 742 

average, and quantifies the mean tendency that 𝒔𝑖  = 1 as opposed to 𝒔𝑖  = −1 is taken across the 743 

brain regions. The magnetic susceptibility is defined as 𝛘 =
𝟏

𝛽
 (< 𝑀𝟐 > −< 𝑀 >𝟐) (A Guide to 744 

Monte Carlo Simulations in Statistical Physics: Landau, David P.: 0000521768489: 745 

Amazon.Com: Books, n.d.). 746 

Here, we consider brain networks positioned near a critical point between complete inactivity 747 

(i.e. neuronal death) and random activity (as in epilepsy, for example). In a less extreme sense, 748 

simulations of Ising dynamics can reveal a transition from a hypoactive state towards a more 749 

chaotic state. As described in Eq 2, the behavior of the modeled system depends on temperature. 750 

However, for a network of neurons or brain regions, there is no real concept of “temperature”. 751 

Hence, when performing Monte Carlo simulations of the Ising model, we may describe 752 

temperature (T) as a "tolerance" of the system in the sense that the effect of the T parameter 753 

injects additional randomness to the simulated dynamics of the system. Thus, for very low 𝑇 (𝑇 754 
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< 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙), spontaneous MCMC spin flips are less probable, with the spins in each configuration 755 

mostly aligned to contribute the minimum energy of the system. For very high 𝑇 (𝑇 > 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙), 756 

the magnetic ordering is completely lost as a result of a high number of spontaneous spin flips, 757 

thus the magnetization tends to “0,” which can be used to characterize the disordered (or chaotic) 758 

phase. In the intermediate range of 𝑇 where self-organized criticality and second order phase 759 

transitions occur, there is a point of maximal fluctuations in the magnetization at 𝑇 = 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 760 

that corresponds to a peak in the magnetic susceptibility (Chialvo, 2010). Thus, a system with 761 

lower critical temperature is suggestive of a lower tolerance to perturbations in the network as 762 

determined via Monte Carlo simulations of brain dynamics than a higher critical temperature 763 

which would suggest a higher tolerance. 764 

Parameter optimization using a similarity metric and correlation function: 765 

In this work, we use a grid-search optimization scheme to find the optimal parameters {𝛽, 𝐴}. 766 

The parameters are evaluated from 0.2 to 3.0 with 0.2 increments for all 76 participants. With the 767 

FSE, J, we generate a correlation function 𝑚𝑎𝑥 𝑓𝑐(𝛽, 𝐴) by simulating the Ising model with 768 

Monte Carlo simulations, computing a Pearson correlation between observed and simulated 769 

functional connectivity for all 𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  (from 0.2 to 3.0 with 0.2 increments). Further, we 770 

compute a similarity metric 𝑆𝑚(𝛽, 𝐴) via the correlation 𝑟(|𝐽𝑖,𝑗|, 𝑊𝑖,𝑗) ∀ 𝑖, 𝑗 to ensure that |𝐽𝑖,𝑗| ∝771 

𝑊𝑖,𝑗, the structural connectome. To identify the optimal parameters, we find 𝐴, 𝛽 such that 772 

 𝑓(𝛽, 𝐴) = 𝑚𝑎𝑥 𝑓𝑐 + 𝑆𝑚  is maximized.  773 

Excitation-Inhibition (E/I) ratio 774 

It is important to note that in using the terminology connectome-level excitation-inhibition 775 

balance and hyperexcitation, we are not necessarily inferring directionality of these interactions 776 
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nor measuring processes at a neuronal level. Rather, we used such a terminology to bridge the 777 

gap between micro-scale interactions (such as excitation and inhibition of neuronal circuits) and 778 

the connectome-level changes that may occur because of such processes. Note that similar 779 

terminologies have previously been adopted in several seminal studies that investigated neuronal 780 

firing patterns using the Ising model (Schneidman et al., 2006; Tkačik et al., 2013). To be clear, 781 

from a connectomics perspective, if several brain regions are identified to have an increase in 782 

positive edges in the rs-SC, collectively, that would suggest a wider-spread pattern of coupling 783 

(i.e., more likely to exhibit a pattern of global coupling) that may subserve hyperexcitation. It is 784 

in this context that we conceptualize the Excitation-Inhibition (E/I) ratio, a global (whole-brain) 785 

or local (ROI-level) estimation of E/I balance, computed as the sum of positive edges divided by 786 

the sum of negative edges. For example, if an ROI in the network has 45 positive edges and 34 787 

negative edges, then the 𝐸/𝐼 𝑟𝑎𝑡𝑖𝑜 = 45

34
, or 1.32 (a value of 1 indicates perfect E/I balance). 788 
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