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Abstract:

Neural activity coordinated across different scales from neuronal circuits to large-scale brain
networks gives rise to complex cognitive functions. Bridging the gap between micro- and macro-
scale processes, we present a novel framework based on the maximum entropy model to infer a
hybrid resting-state structural connectome, representing functional interactions constrained by
structural connectivity. We demonstrate that the structurally informed network outperforms the
unconstrained model in simulating brain dynamics; wherein by constraining the inference model
with the network structure we may improve the estimation of pairwise BOLD signal interactions.
Further, we simulate brain network dynamics using Monte Carlo simulations with the new
hybrid connectome to probe connectome-level differences in excitation-inhibition balance
between apolipoprotein E (APOE)-¢4 carriers and noncarriers. Our results reveal sex differences
among APOE- &4 carriers in functional dynamics at criticality; specifically, female carriers
appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory
interactions. In sum, the new multimodal network explored here enables analysis of brain
dynamics through the integration of structure and function, providing insight into the complex

interactions underlying neural activity such as the balance of excitation and inhibition.
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Introduction

The brain is a complex dynamical system whose functional properties are largely determined by
the characteristics of its neurons and patterns of synaptic connectivity, resulting in a balance of
excitatory (E) and inhibitory (I) interactions. For example, if the number of neurons that are co-
activated from one signal is too high (increased excitation), the result is wide-scale activations
and errant signal propagation across the brain’s sub-networks. On the other hand, if the number
of co-activated neurons is too low (increased inhibition), the propagation of the signal may
diminish too quickly, limiting information transfer. The dynamical balance between excitation
and inhibition is important for adjusting neural input/output relationships in cortical networks
and regulating the dynamic range of their responses to stimuli (Kinouchi & Copelli, 2006) as
well as the optimal dynamic range where information capacity and transfer are maximized (Shew
et al., 2011). This is the central thesis of the criticality hypothesis, a phenomenon which suggests
that neural networks and many aspects of brain activity self-organize into a unique configuration,
sometimes called a critical state (Wilting & Priesemann, 2019). This state represents the
transition of complex dynamical systems like the brain from order (balanced excitation-
inhibition) to disorder (disrupted excitation-inhibition balance) and has found applications in
many scientific domains, including neuroscience and clinical neurology (Cocchi et al., 2017;
Hahn et al., 2017; Sornette, 2006; Tagliazucchi, 2017). Studies have demonstrated that the cortex
operates near criticality (Beggs & Plenz, 2003; Hahn et al., 2017; Shew et al., 2009) at the
microscale, as well as in studies with blood oxygen level-dependent (BOLD) signals extracted
from fMRI imaging (Haimovici et al., 2013; Lombardi et al., 2017; Rabuffo et al., 2021;
Tagliazucchi et al., 2012). In fact, there is growing evidence from animal models and whole-cell

recordings supporting the hypothesis that synaptic dysfunction leading to neuronal
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hyperexcitation may represent some of the earliest changes in the progression of
neurodegenerative disease like Alzheimer’s disease (AD) (Busche & Konnerth, 2016; Palop et
al., 2007; Petrache et al., 2019; Ren et al., 2018). However, the major challenge with early
detection and intervention is that both normal aging and AD are associated with alterations to
neural structure and function (McDonald et al., 2009; Schuff et al., 1999). This includes regional
hypometabolism (Chételat et al., 2013; Curiati et al., 2011), white matter (WM) changes (Barrick
et al., 2010; Michielse et al., 2010), AP deposition (Rodrigue et al., 2012; Rowe et al., 2010), and
disrupted resting-state functional connectivity (Damoiseaux et al., 2008; Sheline et al., 2010;
Wang et al., 2006). To improve our understanding of neurodegenerative diseases (accounting for
major factors such as age, sex, or genetic phenotypes) and improve early detection, we
investigate a model that can integrate micro scale principles at a connectome level to bridge the
gap between cell-to-network level degeneration. However, we acknowledge some abstraction is
required in this strategy; in models of large-scale effects, physiological information may be more
abstract, and details of cellular processes potentially lost. While this may seem counterintuitive
from a biological perspective, it is necessary for describing higher level phenomena informed by

MRI neuroimaging.

To this end, in this paper we introduce a method based on statistical physics to jointly model
both brain structure and function via a pairwise maximum entropy model (pMEM). Our
framework is inspired by the Ising Model representation of brain dynamics whereby self-
organized patterns of connectivity are formed through the spontaneous fluctuations of random
spins (Reichl & Luscombe, 1999). This model has been used to characterize complex microscale
dynamics of the human brain (Deco et al., 2008; Kadirvelu et al., 2017; Ostojic & Brunel, 2011;

Tkacik et al., 2015), as well as macro-scale interactions (Ezaki et al., 2017; Marinazzo et al.,
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2014; Nghiem et al., 2018; Niu et al., 2019; Nuzzi et al., 2020; Schneidman et al., 2006).
Unconstrained Maximum entropy models (MEM) have been shown to accurately represent
spatiotemporal co-activations in neuronal spike trains (Roudi et al., 2009; Schneidman et al.,
2006; Shlens et al., 2006) as well as patterns of BOLD activity (Ashourvan et al., 2017; Cocco et
al., 2017; Ezaki et al., 2020; Watanabe et al., 2013). In fact, Zanoci, et al. recently showed that
the Ising model captures collective neuronal behavior during wakefulness, light sleep, and deep
sleep when both excitatory (E) and inhibitory (I) neurons are modeled (Zanoci et al., 2019).
Further, at the macro-scale, Ashourvan et al. recently developed a maximum entropy-based
framework that derives functional connectivity measures from intracranial EEG recordings; their
findings suggest that structural connections in the brain give rise to large-scale patterns of
functional connectivity by promoting co-activation between connected structures (Ashourvan et
al., 2021). Thus, MEM may be an ideal tool to model functional connectivity and ultimately link
micro-scale interactions (such as excitation and inhibition in neuronal circuits) to the functional

connectome (FC) captured through fMRI BOLD activity.

Described as a function-by-structure embedding (FSE), our model infers the organization of
functional connectivity from global activity patterns (i.e., simultaneously considering the activity
of more than two brain regions) constrained to the structural connectome. We present a robust
numerical approach for our model, optimizing a constrained maximum likelihood estimation.
The use of a structural connectome to inform the modeling of BOLD activity is motivated by a
strong link between fMRI-based functional connectivity and white matter-based structural
connectivity (Bettinardi et al., 2017; Honey et al., 2009; K. Shen et al., 2015). These studies
suggest that models of functional dynamics should also be governed by the underlying structure

to include direct and indirect connections between brain regions. Thus, if our model accurately
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describes large-scale brain activity patterns during rest, it will provide a much richer
representation of functional interactions governing global dynamics that may give rise to
hyperexcitation. With our framework we construct hybrid resting-state structural connectomes
(rs-SC) for a group of seventy-six middle-aged and cognitively intact individuals. These unique
structural networks are informed by a spin glass-like Ising model, whose dynamics resemble that
of traditional FC. We demonstrate that our new structurally informed networks can consistently
and accurately reconstruct observed BOLD correlations. Investigating macro-scale brain
dynamics through the lens of statistical physics allows us to infer computationally the nature of
resting-state activity (corresponding to inhibition or excitation) and probe potential disruptions to
E/I balance that may lead to hyperexcitation and subsequent increased vulnerability to
neurodegeneration. To evaluate this phenomenon, we create subgroups of thirty-eight age and
sex-matched individuals based on whether one is a carrier of the apolipoprotein E (APOE) &4
allele, a well-known genetic risk factor of AD. Recent studies have shown that APOE-g4 may
contribute directly to early neuronal dysfunction, either directly via modification of the
excitation/inhibition balance or linked with amyloid deposition (Bi et al., 2020; Koelewijn et al.,
2019; Nuriel et al., 2017; Stargardt et al., 2015)). Using our new hybrid rs-SC, we investigate the
relationship between E/I balance and criticality in these two groups. We hypothesized that, due
to a shift in E/I balance towards hyperexcitation, the female APOE-g4 carrier group would
exhibit a lower tolerance to perturbations in the network when simulating brain dynamics using
Monte Carlo simulations of the Ising model as compared to the female non-carrier group. Herein
we aim to demonstrate that an increase in excitatory interactions at the connectome-level,
identified using our new hybrid connectome, may provide new evidence of vulnerability among

females to Alzheimer’s disease (AD) neuropathology due to disruptions in E/I balance.
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Results

Constructing a function-by-structure embedding (FSE) using a constrained maximum

likelihood estimation

In constructing the function-by-structure embedding (FSE), we begin with the unconstrained
pairwise maximum entropy model (pMEM) as described in the methods. The pMEM is
sometimes referred to as the inverse Ising model, where the pairwise interactions (represented as
Ji,j» with i and j representing ROIs in the brain network) are inferred from the observed data
(BOLD time series). As the model assumes binary data, we binarized the resting-state fMRI
signals obtained from the 76 cognitively intact middled aged subjects. The binarized activity
pattern of N = 80 ROIs at time t (t = 1,2, ..., t;,qy; tmax = 236) is denoted s(t) =

51(t),5,(t), ...sy(t) € {—1,+1}". Note that tmax is determined as a result of the 8 minute fMRI
scan time with TR = 2s (“see Methods”). Here s, (t) = * 1 indicates that an ROI is either active
(+1) or inactive (-1). First, the time series goes through a z-score normalization procedure,
resulting in zero mean and unitary variance. To assess the sensitivity of our results to
thresholding, we tested thresholds of 0 and + 1 SD. The results of this assessment will be
presented in the section on determining parameters for generating the optimal resting-state
structural connectome. For the unconstrained pMEM we fit the following probability distribution
to all 76 subjects by maximizing a pseudolikelihood (see methods): Pr(s) = exp(—ﬁH (s)) /Z,
where H(s) = —Y.<; j>J; jsiSj, with i,j € [1,2, ..., k] is the Hamiltonian function describing the
energy of the system, and Z = ), exp (—BH(S)) is the partition function. Here, the spin
configuration s is defined as the column vector s = [s;, S, ...., Sy |"™aex, where s; and s; are the

spin states of region i and j, and J; ; represents a pairwise interaction between those regions.
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Traditionally, the Hamiltonian includes a term for external influences which we assume to be
zero for resting-state data. We use the unconstrained pMEM as a control for comparison

purposes. In our approach we hypothesized that the interaction J; ; between two regions should

be directly linked back to the diffusion MRI-derived structural connectivity between them as

informed by tractography, so we add a constraint to the Hamiltonian function as follows:
H(S) = _Zi<j]i,jSiSjJSUCh that |]l,]| OCWi’j, (1)

where W; ; is the structural connectivity between pairs of ROIs. This ensures that in the

pseudolikelihood estimation of J, we constrain it with the structural connectivity (under the
assumption that structural connectivity informs spin models governing brain dynamics). Thus,
the optimal interaction matrix J is derived by maximizing the pseudo-likelihood function as

follows (Besag, 1975, 1977) :

Lpeusdo(]r ﬁ) = Hirznix {'(=1Pr (Si(t) |]: B:S—i(t)) (2)

Pseudolikelihood substitutes Pr(s) by the product of the conditional probabilities p =
Pr(s;(t) | ], 5, s_i(t)), observing one element s;(t) with all the other elements (denoted s_; ()
fixed. To ensure that the magnitude of the coupling interactions is scaled relative to structural

connectivity, the constraint is formulated as | i |~ = ulW; ;

i j» Where p is a normalization constant

and W, ; is the structural connectivity between ROI pairs. Without loss of generality, we assume

that u = 1 with appropriate normalization. We therefore present a penalty-based optimization

scheme to maximize the constrained log-pseudolikelihood function as follows:

tU,p) = ﬁln Lyseuao U, B) — %ij(li,j —sgn(J, ;) )W; )% (3)
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The pseudolikelihood component l N Lyseudo J, B) expands to:

t N exp(B XN_1 Jirsi(©)sk (D))
max A | . 4
%= n (exp(ﬁz’,¥=11i,ksk(t))+exp(—ﬁzﬁzlh,ksm)) “)

ttmax

We formulate the probability distribution based on the Boltzmann distribution under
pseudolikelihood conditions. Thus, the numerator describes the energy of the system, while the
denominator is the sum of all possible energies. Hence, there are only two terms in the

denominator since s;(t) is binary (one positive, and one negative). The likelihood function may

be simplified by setting C;(t) = B XK,—1 J; mSm (£), resulting in the following formulation:

¢U.B) =

tmax M1 GO si(®) —In(exp(C; (D) + exp(—Ci (D)) (5)

i
EZi<j(]i,j - Sgn(fi.j)wi,j)z

Here we may construct the gradient ascent procedure with respect to J; ; by computing the partial

derivative of the log-pseudolikelihood as:

a7¢

—= — Ztmaxﬁ{s (0)s;(®) — s;(t) tanh(C;(O)} — A(J;; — sgn(Ji;)Wi;) (6)

d]ij

« = TP (s (050 - 50 @nh(C©)) - Ay, — sgn(,)Wi)) 2

tm

where A = E The updating scheme follows: ]"+1 =Ji;+ y% . Here, n is the iteration
L] n

number and Y is the learning rate. In this way, the penalty function ensures that the inferred
pairwise interaction is scaled relative to the estimated structure of the brain. This process is

followed for all 76 subjects as part of first stage in constructing an optimized rs-SC as shown in
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the schematic of Fig 1. The next stage involves optimization of the two parameters which control

scale and convergence, f and A.

Determining parameters for generating the optimal resting-state structural connectome

Within the framework for the FSE, parameters that need to be tuned are the constraint scale
(parameter A) and the convergence parameter . We note two points here: first, in the gradient
ascent procedure, the influence of the f parameter is primarily in the hyperbolic tangent, which
convergesto 1 as f - o and 0 as  — 0. Second, in a similar fashion, the influence of A is in
the scale of the constraint. Thus, if as A — 0, then the model converges to an unconstrained
pMEM, and if A = oo, then the constraint will completely dominate the ascent and the system

will converge to a pure structural connectome.

With that in mind, we develop two metrics to evaluate the accuracy and performance of our rs-
SC, constructed with our FSE method. First is a similarity metric S,,, (5, A) which, as described
in the methods is simply the correlation between |rs-SC| and the structural connectome. This
metric is used to gauge the quality of the constraint component in the framework. Second, we
generate a correlation function f.(f, A) by simulating the Ising model with MCMC simulations
(see “Methods”), computing a Pearson correlation between observed and simulated functional
connectivity for all Bimuiatea- AS shown in stage 2 of Fig 1, this results in a bell-like curve
where each point represents a correlation value between the observed FC and reconstructed FC
for each Simuiatea- Here we identify the max f. (S, A), which represents the maximum achieved
correlation between observed and reconstructed FC for the parameters 8, A. As described in the
methods, we perform these computations for a range of empirically determined values and the

results are presented in Fig 2. As expected, as the parameter values of 3, A increase, the

10
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similarity metric S,,, evaluating the constraint increases to be almost perfectly correlated with the
structural connectome. However, the quality of FC reconstruction, evaluated using max f.(f, 4),
decreases as the values of 8, A increase. This suggests that, while structural connectivity is
important for reconstructing functional dynamics, a purely structural network is limited in the
accuracy of FC reconstruction. Hence, using a grid-search technique shown in stage 3 of Fig 1,
we compute f(8,A4) = max f, + S,,, which intends to take equal weight between the underlying
structure of the rs-SC and the accuracy with which it can reconstruct FC. As shown in Fig 2, this
grid search optimization results in the optimal values of f = 0.8,and A = 1.4 for a single
subject (shown as an example). This process is computed individually for each subject, resulting
in a unique parameter set for each individual. The range of parameter values is presented in
supplemental Fig.1, noting that the approximate mean value for A =1.75 and f = 0.75. Using
these parameters, we then reconstruct an optimized rs-SC for each of the 76 subjects to be used

in the ensuing analyses.

Using this optimization process, we further tested different binarization strategies for the z-
scored time series data to identify the optimal thresholding parameter. Here we tested 0, and + 1
SD. We used max f.(f, A) as a measure of performance to determine if one threshold results in
better FC reconstruction quality. The results are presented in Fig 3, noting that using zero as the
threshold results in more consistent and accurate quality. We note the existence of a handful of
outliers when binarizing + 1 SD. This is in part due to processing steps of the observed BOLD
time series, where upwards of forty percent of the TRs were excluded due to imaging artefacts
for some subjects. As with all inference-based methods, accuracy of estimations increases or
decreases with the amount of observed data. Future studies using this methodology will focus on

cohorts with more consistent time series data across subjects.

11
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Evaluating the quality and performance of the resting-state structural connectome (rs-SC)

With the now optimized rs-SC it is important to compare this combined structure-function
network with our control (or null model) pMEM-based interaction network, and the traditional
Pearson-correlated FC. To do this we first perform MCMC simulations of the Ising model with
64,000 runs (N x N x 10; N = 80 ROIs) over a range of Simuiatea (s€€ “Methods™). In this we
may compute the max f, correlation results for each participant using the pMEM-based network
and FSE-based networks (rs-SC), comparing the performance of both in reconstructing observed
functional connectivity. In evaluating the results, we also separate our 76 subjects into two
groups of non-carriers (NC) and carriers (APOE) to determine if there are any within-group
performance differences. The results of these simulations are presented in Fig 3 with the violin
plot showing the median and range of max f. correlation values. The median max f, for (NC,
APOE) using the pMEM-based interaction network is (0.67,0.60) with a range of {(0.81,0.32),
(0.85,0.28)}. The 95% CI for the NC group is 0.62 + 0.035 and 0.56 = 0.042 for the APOE
group. Using the FSE-based rs-SC, the median correlation for (NC, APOE) is (0.90, 0.89) with a
range of {(0.94,0.85), (0.94,0.84)}. The 95% CI for the NC group is 0.91 +0.011 and 0.89 +
0.014 for the APOE group. Based on comparison with the pMEM-based network, the FSE-
based network results in a more consistent and accurate reconstruction of FC for both the NC and
APOE groups. Further, we evaluate the quality of our constraint under the optimized parameters
B, A for all subjects. Violin plots for both NC and APOE groups, evaluating the similarity metric
Sm are presented in Fig 3. The median S,,, for both groups is 0.94 with a range of (0.96, 0.90) in
the NC group and (0.96, 0.88) in the APOE group. Further, the 95% CI for the NC group is 0.92

+0.0015 and 0.91 + 0.0003 in the APOE group. These results suggest strong and consistent

12
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performance of the structurally informed rs-SC in reconstructing functional dynamics for both

groups, as well as constraint on the estimated network.

Last, in previous studies no group differences could be identified between NC and APOE groups
using traditional FC measures (Fortel et al., 2019; Korthauer et al., 2018). Here, we test whether
or not an Excitation-Inhibition (E/I) ratio may be used to differentiate between the rs-SC network
as as well as the pMEM-derived interaction network. As defined in the methods, the E/I ratio is
simply the sum of the positive edges, divided by the sum of negative edges (computed at either
the whole-brain or ROI-level). For both networks, the E/I ratio is computed for all ROIs and
averaged for the NC and APOE groups. In Fig 4, the scatter plots display a weak association
between the average E/I ratio for all ROIs between the NC and APOE groups using the pMEM-
derived network with R? = 0.44, and a paired t-test across all ROIs results in P >> 0.1,
suggesting no statistically significant group differences in the pMEM-based networks.
Conversely, performing a similar computation of the E/I ratio on the rs-SC networks results in a
strong association between NC and APOE groups, with R? = 0.74, as well as a notable shift
observed for all ROIs (i.e., globally). A paired t-test between the groups results in P = 0.037,
suggesting a statistically significant group difference in the rs-SC networks between NC and
APOE groups, as evaluated with the E/I ratio that cannot be identified with the unconstrained
model. In sum, the results presented in this section indicate the novel rs-SC network constructed
with the FSE framework can describe not only structural and functional dynamics, but also probe
brain dynamics that may not be captured using a similar unconstrained methodology. Last, we
compare the E/I ratio in a group comparison of males and females (NC versus APOE) and
present the results in the scatter plot of Fig 5. Both males and females exhibit a positive

association between groups with R? = 0.65 and R? = 0.75, respectively, however only the
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female group has a statistically significant group difference with P = 0.008. Here, we perform a

(E/Dnc

calculation on group difference by computing delta = 1 —
(E/DapoE

to evaluate the average

change between NC and APOE groups. The males have an average increase of 2.4% (averaged
across all ROIs), while the females have an average increase of 5.9% in E/I ratio (approximately
2.4x higher increase than the male group). The raw values for each brain region are shared in the

supplement Table 1 for reference.

Criticality and hyperexcitation in female APOE ¢4 Carriers

In this study, our subjects are separated into two age and sex-matched groups (NC and APOE).
One aspect of the link between APOE-¢4 and Alzheimer’s disease that has often been overlooked
is that females with at least one ¢4 allele are four times more likely to develop Alzheimer’s
disease than males (Bretsky et al., 1999; Jack et al., 2015; Payami et al., 1994). Thus, we use our
framework to evaluate not just group differences in criticality, but sex differences as well
(22F/16M in each group). As previously mentioned, the brain criticality hypothesis suggests that
neural networks self-organize into a unique configuration between order and disorder. In the
context of statistical physics and the Ising model, this unique configuration occurs at some
critical point (SB.riticqr)- Here, we again utilized MCMC simulations to generate a series of state
configurations (£1) resulting in an N x t matrix, where N = 80 ROIs, and t = 100,000 runs (see
“Methods”). In the previous section we used these states to compute a correlation between brain
regions, however in this case we will evaluate the critical dynamics elucidated from the rs-SC
networks. Specifically, we are interested in the phase transitions based on the positive edges of
the networks. The Ising model can be modified to model spin-glass behavior (full signed
network), however this can lead to “frustration” in the simulations. Frustration describes a

scenario in which it is impossible to simultaneously minimize all the terms in the Hamiltonian.
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As aresult, this generally leads to complex energy landscapes with many local minima. At low
B, the system can get stuck in the local minima without ever reaching a true equilibrium. In
future work we can investigate thermodynamic properties using the full signed network (spin-

glass), but here we proceed in evaluating the ferromagnetic phase transitions.

For each 5, we compute the order parameter (magnetization) and the variance (susceptibility)
with respect t0 Sgimuiateqa- Here, we again compute average values over NC and APOE groups
to investigate potential group differences in critical behavior. As described in the methods, B is
the inverse temperature (T) parameter used in the Boltzmann distribution and thus when
simulating dynamics to identify phase transitions, we interpret temperature as a tolerance of the
system when increased randomness is introduced. Performing Monte Carlo simulations of the
Ising model using our hybrid network for a range of temperatures is used to identify a critical
point, such that the system transitions from a hypoactive regime to a chaotic regime. Hence, the
critical temperature is a measure of how much tolerance the system has to increased
perturbations. We present the phase diagrams for susceptibility in Fig 5 for males and females,

highlighting T,,iticq1 fOr both groups (evaluated by the peak of susceptibility). It should be noted

that § was simulated from 0.2 to 3.0 at increments of 0.05 (then plotted against T = %) We

identified a more pronounced deviation between NC and APOE females with T,,jticq; = 0.65 for
the female APOE group as compared to T,y iticqr = 0.87 in the NC group. Conversely, Teriticar =
0.8 in the male APOE group as compared to T,pjticq; = 0.83 in the NC group. This suggests that
the critical dynamics within the male group between NC and APOE is more similar in nature,
than the dynamics observed within the female group between NC and APOE. A lower critical
temperature in the female carrier group suggests a lower tolerance to network dysfunction as a
result of an increase in excitatory interactions, increasing vulnerability to chaotic activity. In
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sum, these results suggest that there is a link between brain criticality and Excitation-Inhibition
balance that can be identified via our new connectome, demonstrating a disruption to this

balance in APOE carriers (with a larger effect in females).

Table 1. Demographic characteristics, screening measures

&4 carriers (N = 38) non-&¢4 carriers (N = 38)
Age (years) 50.8 (.99) 50.9 (.99)
Sex (M:F) 16:22 16:22
Education (years) | 15.4(2.5) 15.2 (2.4)
DRS-2 (total) 139.9 (2.3) 139.9 (2.3)
MMSE (total) 28.5(1.1) 28.8 (1.3)
GDS (total) 1.8 (2.3) 2.4 (2.7)

Values represent M(SD). DRS-2: Mattis Dementia Rating Scale-2. MMSE: Mini-Mental Status

Examination. GDS: Geriatric Depression Scale.
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Stage 1: Generating the Hybrid Stage 2: Evaluating Parameters Stage 3: Standard Grid Search

Resting State Structural Connectome : : F(B.A) = maxf.+5
: | s ctdm
Compute §,, with
Diffusion Tensor Imaging Fiber Tractography Structural Connectome H r(|f], W)
-
<
o
=
Q -
=
x
w * B True
Define ROH F”'é“:“;:!"s"’:s‘;‘" Function-by-Structure Embedding (FSE)
Atlas/Parcellation RUSSEERS. with Optimized Parameters
& e MCMC to
&‘ find max f,.
=z . /
g — it S e poc DK B [ ¥
Q
£ E
z
Resting State o Hybrid Resting State Structural b4
Functional MRI Connectome (rs-SC) . i
Baimtated
H et ' Optimized Hybrid Resting State
340 : Structural Connectome (rs-SC)

341  Fig 1. Schematic for the function-by-structure embedding (FSE) and ensuing parameter
342  optimization strategy. The framework for constructing the hybrid resting-state structural

343  connectome using the FSE is based on principle of maximum entropy. Using a constrained
344  maximum likelihood estimation where structural and functional connectivity is combined, we
345  estimate both an edge strength in the network as well as a sign (+/-) representing excitatory or
346 inhibitory interactions. (Fortel et al., 2019). In stage 2, two metrics are used to evaluate

347  parameter quality, namely a similarity metric §,, and the maximum of a functional correlation
348  function max f.. As these values are dependent on parameter choices within the FSE

349  framework, in Stage 3 a grid search is performed to find the optimal values for the tuned

350 parameters which maximizes f(B,A4) = max f. + S,,. These two metrics were computed for
351  each subject individually, to identify the optimal parameters for constructing a hybrid resting-

352  state structural connectome (rs-SC) for each subject.
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Fig 2. Grid search parameter optimization for FSE framework (need to rewrite with this
performed at subject level)

Presented here are example grid-search results based on the proposed optimization strategy as a

A

BTrue

function of Sy and A = . Here, Br e 1 the value of f§ used in the FSE algorithm. In the

top left is the average S,,,, the correlation r(|J|, W) used to evaluate the performance of the
constraint. The maximum value achieved in this example is r = 0.979 when B, 4 are
maximized. In the top right is the average of max f., computed using MCMC simulations for the

Ising model as described in the methods section. The maximum value achieved is r = 0.91 for
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Brrue = 0.6,A = 0.2. Given the inverse effect of these two metrics, we compute f (S, A) =
max f. + S, , identifying a parameter set which maximizes both metrics. Thus, in the grid
search the maximum values is achieved at f (8, A) = 1.78 where B = 0.8,and A = 1.4. Last, in
the bottom right is the average Bsimuiatea (Max f;) during MCMC simulations. We note that as

the parameters 5,4 = 0, Bsimuiatea (Max f.) converges to the unconstrained pMEM, and as

p,A = o, Boimuated (max fc) - 1.
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FC Reconstruction Quality:
Networks Constructed with the pMEM and FSE
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Fig 3. Violin plots evaluating optimal hybrid resting-state connectomes (rs-SC), generated

using the FSE framework. The top left plot evaluates the reconstruction quality, that is the

ability of our new network to reconstruct traditional FC correlation patterns. We use the network

estimated using an unconstrained pMEM as a control for comparison. Using these networks, we

identify a max f, value, representing the maximum correlation between the observed FC and

reconstructed FC using MCMC simulations of the Ising model as described in the methods

section. Presented here are results for the non-carrier (NC) and APOE groups based on the two
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estimation techniques. The median max f for (NC, APOE) using the pMEM is (0.67, 0.6) with
a range of {(0.84, 0.32), (0.85, 0.28)}. The 95% CI for the NC group is 0.66 +/- 0.036 and 0.6 +/-
0.044 for the APOE group. Using the FSE, the median correlation for (NC, APOE) is (0.89,
0.90) with a range of {(0.94, 0.85), (0.94, 0.84)}. The 95% CI for the NC group is 0.89 +/- 0.015
and 0.87 +/- 0.021 for the APOE group. Last, given that the FSE framework relies on the
structural connectivity as a constraint on the network estimation, we evaluate the quality of the
constraint using the similarity metric S,,, described in the methods section. In the top right plot,
the median S,,, for both groups is 0.94 with a range of (0.90, 0.96) in the NC group and (0.88,
0.96) in the APOE group. Further, the 95% CI for the NC group is 0.93 +/- 0.0017 and 0.93 +/-
0.0003 in the APOE group. These results suggest strong and consistent performance of the
structurally informed rs-SC in reconstructing functional dynamics for both groups, as well as
constraint on the estimated network. Last, the bottom plot presents an evaluation of binarization
thresholds using the max f, value, representing the maximum correlation between the observed
FC and reconstructed FC using MCMC simulations of the Ising model. The median value when
binarizing about zero is 0.89, while the median value is 0.62 and 0.60 for +/- 1 SD respectively.
These results reveal outliers when binarizing the time series data using a value other than zero.
This is most likely due to data quality questions related to fMRI processing resulting in time

series with up to forty percent of the TRs excluded due to imaging artifacts for some subjects.
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Group Comparison of pMEM-base Network Group Comparison of Hybrid Resting State Structural

Average E/I Ratio for Each ROI (all subjects) Connectome (rs-5C)
15 - Average E/I Ratio for Each ROI (all subjects)
’ .
2_ . 1.5 .
14 R*=0.44,P>>0.1 . R?=0.76, P = 0.037 o
. a a L]
. 1.4 ” L]
™ L]
1.3 n! * .
=" 13 P Ce
sl . " .
012 o w I T
a . O 1.2 Y "w
< *s 2 o ad M. *
811 'Y wO < Ry LT
= 811 £ %
= ... E ‘; a2l P2 % 8
= Y { [ Y ek P
T 1 . LO % = o
o & ® E/I Ratio = ! P & .
® ", ® E/I Ratio
0.9 i (rs-SC) 2 o
. ° 0.9 . (rs-SC)
. ex=y Y v ~
0.8 . 08 - ! *X=y
L .
0.7 = 07 e
0.7 0.9 1.1 1.3 15 0.7 0.9 1.1 1.3 15
E/I Ratio: NC E/I Ratio: NC

Fig 4. Group comparison of the excitation-inhibition ratio for each brain region based on
the unconstrained pairwise maximum entropy model and the function-by-structure

embedding

As described in the methods, the E/I ratio is simply the sum of positive edges divided by the sum
of negative edges for each ROI. Here, we present a plot comparing the E/I ratio between the NC
and APOE groups using the pMEM-based network and our rs-SC network, computed and
averaged at the ROI level. This results in a weak association with R? = 0.44 for for the pMEM-
based network, and R? = 0.76 for the rs-SC network, with paired t-tests across all ROIs results P
>> (.1 and P = 0.037 respectively. This suggests no statistically significant differences in E/I
balance when using the unconstrained model, however there is a statistically significant
difference in the two groups when using our structurally informed model. We note that
numerically, an increase in group-averaged E/I ratio would move a point (representing one ROI)
above the x =y reference line, suggesting a shift in E/I balance towards hyperexcitation. A

tabular version of these results is included in the Supplement.
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Fig 5. Gender-based comparison of critical behavior

-#-NC —4—APOE

Hypoactivity {smmmmmmsl) Chaotic Activity

and E/I balance

As described in the methods, the E/I ratio is simply the sum of positive edges divided by the sum

of negative edges for each ROI. In the top Fig, we present a plot comparing the E/I ratio between

the NC and APOE groups for males and females, computed and averaged at the ROI level. This

results in a strong association with R? = 0.65 for males, and R? = 0.70 for females with paired

t-tests across all ROIs results P = 0.19 for males, and 0.008 for females. This suggests no
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statistically significant differences in E/I balance for males, however there is a statistically
significant difference for females. We note that numerically, an increase in group-averaged E/I
ratio would move a point (representing one ROI) above the x = y reference line, suggesting a

shift in E/I balance towards hyperexcitation with increased risk of chaotic activity. Thus, for each

(E/Dnc

to evaluate
(E/DapoE

ROI, we can quantify the shift in E/I balance by computing delta = 1 —

the average change between NC and APOE groups; this yields a shift of 5.94% in the female
group between carriers and non-carriers, while in the male group it is 2.46% (approximately 2.4x

difference between sexes). A tabular version of these results is included in the Supplement.

Further, presented here are plots demonstrating a global evaluation of critical brain dynamics. In
the bottom panel, ferromagnetic susceptibility is shown for males and females, with the dashed
lines representing the critical point Tepiticar = Tsimutatea (Max X). These charts demonstrate a
more pronounced deviation between NC and APOE females with T¢ticqi = 0.65 for the female
APOE group as compared to T¢iticqr = 0.87 in the NC group. Conversely, T¢piticar = 0.8 in the
male APOE group as compared to T¢pi¢icq; = 0.83 in the NC group. This suggests that as the E/I
balance shifts at global scale, the critical point also decreases due to an increase in excitatory
interactions. As described in the methods, a lower critical temperature indicates a lower tolerance

to network dysfunction, increasing vulnerability to chaotic activity.

Discussion

Using a constrained maximum entropy model for our function-by-structure embedding (FSE),
we have developed here a novel resting a resting-state structural connectome (rs-SC), unifying
connectome-level structure and function into a new spatiotemporal network. We constructed rs-

SC networks for seventy-six cognitively intact participants with a grid-search parameter
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optimization scheme. Hence, we demonstrate two important results: First, the underlying
structure of the rs-SC is as expected, strongly correlated with the empirical structural
connectome (r > 0.9) due to it being used as a constraint in the FSE framework. Second, and
more importantly, we demonstrated that it is possible to model the resting-state functional
connectome using based on a model of spin products, accounting for indirect or higher-order
structural connectivity. We acknowledge that when Ising dynamics are used to model neural
firing patterns, these activations may amount to the collective behavior of a few of neurons, and
at the macro level of fMRI imaging used in this study each voxel may be providing information
as a result of thousands of interacting neurons. However, simulation and empirical studies have
demonstrated that increases in excitatory neuronal activity amplify oscillations associated with
the transient BOLD response, while increasing inhibitory activity evokes an overall decrease in
the BOLD signal (Aksenov et al., 2019; Krishnan et al., 2018; Sotero & Trujillo-Barreto, 2007;
Sten et al., 2017). By grounding our macroscale methodology with models of microscale
dynamics, we bridge the gap between the two, hereby inferring the nature (excitatory or
inhibitory) of structural connectivity at rest. Further, the rs-SC can be used to simulate functional
dynamics using Monte Carlo simulations, reconstruction traditional functional correlations
patterns (7,4 = 0.9),. Beyond model quality and performance, we have also demonstrated that
our rs-SC can distinguish between female non-carriers and APOE-¢4 carriers (age and sex-
matched) using our Excitation-Inhibition (E/I) ratio. Our results demonstrate that modeling with
the rs-SC reveals a global shift of E/I balance for the APOE-g4 carrier group. Given that APOE-
€4 carriers are at an elevated risk for AD, the observed shift in E/I balance in this sample may be
a result of disease pathology. In many studies of AD, one critical feature that is often overlooked

is that females with at least one &4 allele are four times more likely to develop AD than males
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(Jack et al., 2015). A comparison of group-averaged E/I ratio at the ROI-level for each sex using
the rs-SC (with new optimization strategy) yielded a global shift in E/I balance towards
hyperexcitation, in-line with our previous work (Fortel et al., 2020) and prior studies on sex
differences related to the APOE genotype (Aboud et al., 2013; Bi et al., 2020; Jiménez-Balado &
Eich, 2021; Leung et al., 2012). In future work, we may investigate in-depth the relationship of
our hybrid connectome with traditional measures of structural and functional connectivity in a
larger cohort (with increased age range), to investigate known sex differences and further

evaluate our method.

Further, in this study, we observe significant difference in critical behavior between a group of
cognitively intact individuals with a genetic predisposition for late onset Alzheimer’s as
compared to age and sex-matched non-carriers. Traditional structural and functional connectivity
based on BOLD correlations were unable to separate the two groups (Fortel et al., 2020;
Korthauer et al., 2018). These results suggest that using a multimodal framework to unify
structure and function can reveal underlying patters in brain dynamics that would otherwise not
be captured using traditional methods. Further, we endeavored to identify a link between E/I
balance and criticality. As a result of increased positive interactions (increased deviation from an
E/I balance) in the hybrid connectome, simulations of brain dynamics using Monte Carlo
simulations revealed a shift in criticality for female carriers compared to non-carriers of APOE-
€4 which may suggest an increased vulnerability to AD neuropathology in female APOE-¢4
carriers. We describe the critical temperature as a measure of tolerance in our modeled system
which we simulate in dynamical regimes spanning from highly ordered (i.e. hypoactive) to
highly disordered. This is in line with studies of preclinical neural models which have shown that

networks operating at criticality exhibit an E/I balance as compared to networks which have been
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over excited or over-inhibited by a controlled chemical stimulus (Heiney et al., 2019; Shew et
al., 2011)”. In fact, many of the in vivo studies that have investigated the criticality hypothesis
and excitation-inhibition balance in neurodegenerative disorders have relied on
Electroencephalography (EEG) or Magnetoencephalography (MEG) recordings (Bruining et al.,
2020; Montez et al., 2009; Rajkumar et al., 2021; Stam et al., 2005), which have inherent
challenges with spatial resolution. By defining our activity states using both structural and
functional connectivity together, we are capable of analyzing patterns of activity across both
temporal and spatial scales, thereby improving the network inference, and mitigating many

challenges observed in unimodal and traditional analyses.

The results presented herein regarding E/I balance, criticality and the APOE-g4 genotype also

coincide with the current understanding of the microscale mechanisms underlying AD pathology.

A recent review article by Najm and colleagues explored the relationship among APOE-g4, loss
of GABAergic interneurons, and dysfunctional brain networks in the context of AD (Najm et al.,
2019). In short, neurons responding to different factors (e.g., normal aging, injury, or stress)
break down APOE-¢4 proteins and produce fragments that trigger phosphorylation of tau; this in
turn disrupts mitochondrial function, leading to cell death. Destruction of inhibitory neurons in
this way can alter network activity and produce hyperexcitability in neural circuits long before
clinically identifiable symptoms arise. This may help explain the known associations of APOE-
¢4 with memory deficits and severe epilepsy. Indeed, several in vitro and preclinical in vivo
studies [cited by Najm et al.] have demonstrated that intracellular APOE-¢4 is toxic to

GABAergic interneurons, particularly in the hippocampus.

Moreover, other authors have recently suggested that neuronal hyperexcitability may be

considered as both a causal factor and risk factor in the disease progression, even in the
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preclinical phase (Hijazi et al., 2020; Paterno et al., 2020; Tok et al., 2021). While significant
structural and functional degeneration is well established in AD (DeTure & Dickson, 2019), our
framework incorporates both structural and functional connectivity in order to provide a new
multimodal perspective of connectome-level interactions in a preclinical group of individuals
predisposed to AD. We acknowledge that our methodology is limited to insights which may be
gained from macro-scale BOLD activity as opposed to direct measurements of neuronal
processes. That said, we reached a similar conclusion to independent studies of underlying neural
mechanisms in AD: individuals with the APOE-¢4 allele (females in particular) have a higher
risk of neurodegeneration due to an increase of excitatory activity in neural circuits (Jiménez-

Balado & Eich, 2021; Koutsodendris et al., 2022; Li et al., 2016).

We note several limitations of this study; first, this study investigated only a small cross-section
of healthy middle-aged individuals at increased risk of developing Alzheimer’s Disease. Further,
the parcellation used in the processing used an atlas with eighty brain regions, which may be
considered too coarse. Additional research with a longitudinal cohort and higher resolution
parcellation would help improve the generalizability of results, providing important validation
regarding within-subject variability, as well as broadening our understanding of longitudinal
alterations in brain dynamics. Second, when interpreted as a strictly nodal property, excitation-
inhibition balance may be best measured at a regional level using FSG PET or Phosphorous
imaging. However, as conceptualized in this study, the concept of E/I balance may directly relate
to this notion of “criticality” in brain dynamics. Further, in this group of participants,
measurements of well-known biomarkers of A} and tau were not included in the protocol, and
thus we could not add this layer of validation. Future studies comparing additional imaging

modalities and biomarkers for validation and correlation purposes may be used to strengthen the
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results and methodology presented in this study (in addition to more state-of-the-art DTI and
fMRI imaging protocols). Further, in this study as we are working with resting-state data
processed with global signal regression (accounting for background and non-neural physiological
noise), we model the BOLD activity assuming no external influences and future work can

incorporate external influences in the framework to account for different interference scenarios.

It remains unclear whether the difference in criticality observed between the NC and APOE
groups is because the NC group (on average) contains more inhibitory interactions or if the
APOE group has more excitatory interactions. Since we do not identify directionality in this
study, this question is left for future work. Additionally, we have not performed an assessment
herein on the potential relationships between traditional structural and functional connectivity
measures, and metrics obtained with our rs-SC. This may be explored in detail with future
investigations. Further, at the coarser spatial scale of human functional magnetic resonance
imaging (fMRI), there is evidence that the strength of functional connectivity between regions is
greatest for region pairs separated by short physical distance and that connectivity strength
decays rapidly as the Euclidean distance between brain regions increases (Alexander-Bloch et
al., 2013). Likewise, the extent of white matter tract connectivity as measured with diffusion
imaging also decays with distance. However, the inverse relationship between fMRI-based
connectivity and distance is significant even after controlling for the strong association between
anatomical connectivity and functional connectivity (Honey et al., 2009). In the future, the role
of distance related to excitatory and inhibitory interactions should be explored in greater depth.
Further utilizing thermodynamic principles, it should be investigated if the rs-SC decays
algebraically with a distance d, (i.e., J(d) « d~%) as well as what, if any effect this distance

decay would have on critical brain dynamics. Given the complex inner workings of the brain, it
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is entirely plausible that dynamics between brain regions at or near criticality rely on a balance
between long and short-range interactions. Again, this suggests that functional brain dynamics
are governed by the underlying structure of the networks. Thus, after decades of research
studying the brain’s individual components, from neurons to neuronal ensembles and large-scale
brain regions; conclusive evidence demonstrates the need for maps and models that incorporate
interactions among these components in order to better understand the brain’s ensemble

dynamics, circuit function, and emergent behavior.

Materials and methods

Participants and MRI data acquisition

The cohort used in this work has been described in a previous study (Korthauer et al., 2018).
Participants (N = 76; all Caucasian) were selected based on APOE genotype from a larger
sample of 150 adults aged 40-60 (age =49.9 = 6.0 in years; 60 men). The University of
Wisconsin-Madison Biotechnology Center conducted the sequencing of the SNPs (rs7412,
rs429358) making up the common €2, €3, and eé4 APOE genotypes. Thirty-eight individuals out
of the larger sample were APOE-¢4 carriers (either €3/e4 or €4/e4). Hence, a subset of non-
carriers (€3/€3 or e2/€3) were age and sex-matched, creating equal groups (N = 38, 22 female) of
carriers (APOE) and noncarriers (NC). The following exclusion criteria was used: (a) self-
reported cognitive or memory complaints; (b) Mini-Mental Status Exam (MMSE) (Folstein et
al., 1975) score < 24; (c) Mattis Dementia Rating Scale Second Edition (DRS-2) (Johnson-
Greene, 2004) score < 135; (d) Geriatric Depression Scale (GDS) (Yesavage et al., 1982) > 10;
(e) history of central nervous system disease (e.g., dementia, stroke, Parkinson’s disease,
epilepsy, other neurological disease); (f) history of severe cardiac disease (e.g., myocardial

infarction, coronary bypass surgery, angioplasty); (g) history of metastatic cancer; (h) history of
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serious psychiatric disorder or substance use disorder; (i) any contraindication to MRI. MRI
imaging was conducted on a GE Signa 3T scanner (Waukesha, WI) with quad split quadrature
transmit/receive head coil. All participants provided written informed consent, and were
compensation financially for their participation; the imaging collection was carried out in
accordance with the guidelines set by the institutional review boards of the University of
Wisconsin-Milwaukee and Medical college of Wisconsin (Korthauer et al., 2018). Demographic

characteristics and screening measures for each group are presented in Table 1.

All participants were screened for any contraindications to MRI. Imaging sessions lasted 75
minutes. To determine the structural and functional connectivity maps, multimodal imaging,
including T1-weighted MRI, resting-state fMRI and diffusion weighted MRI was performed. For
structural MRI imaging, a ‘spoiled-grass’ (SPGR) sequence (axial acquisition: TR =35 ms, TE =
5 ms, flip angle = 45°, matrix = 256 x 256, FOV =24 cm, NEX = 1) was obtained, followed by a
T2*-weighted functional scan with an echo-planar pulse imaging (EPI) sequence (28 axial slices,
20 x 20 cm? FOV, 64 x 64 matrix, 3.125 mm x 3.125 mm x 4 mm voxels, TE = 40 ms, TR =
2,000 ms). The 8-minute rs-fMRI scan was acquired while participants were under task-free
conditions (i.e., resting-state). Additionally, a 3-minute, 30 seconds DTI sequence was acquired
with a spin echo single shot, echo-planar imaging sequence with sensitivity (SENSE = 2.5)
encoding (2.2 mm isotropic voxels, 212 x 212 mm FOV, 96 x 96 acquired matrix), TR/TE =
6338/69 ms, 60 slices for whole brain coverage. Diffusion gradients were applied along 32 non-
collinear directions at a b-factor of 700 s/mm?, including one minimally weighted image with b =

0 s/mm?.

Processing of fMRI and DTI imaging
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Preprocessing of rs-fMRI images was performed using Analysis of Functional Neurolmages
(AFNI) (Cox, 1996) and FMRIB Software Library (FSL) (Smith et al., 2004) based on the rs-
fMRI preprocessing pipeline from the Human Connectome Project (HCP) (Smith et al., 2013).
Detailed processing information steps can be found in prior work (Korthauer et al., 2018).
Diffusion tensor imaging (DTI) data processing was carried out with the FSL. The B0 image was
skull-stripped using the brain extraction tool (Smith, 2002), with the resulting mask applied to
the other images. Eddy current-induced distortions and subject movements were corrected using
FSL’s “eddy” tool (Andersson & Sotiropoulos, 2016). A probability distribution for fiber
direction was generated at each voxel using BEDPOSTX (Behrens et al., 2003, 2007), which was
then used in probabilistic tractography. For individual subjects, Freesurfer cortical parcellation
and subcortical segmentation was used, defining the 80 regions of interest (ROIs) (Dale et al.,
1999; Fischl et al., 2002, 2004). Affine registration with 6 degrees of freedom (DOF) using
FLIRT registered the ROIs to MNI and diffusion space (Jenkinson et al., 2002). For each ROI,
the mean time-course from the BOLD signal was extracted using global signal regression (GSR)
from the preprocessed rs-fMRI data prior to constructing the functional connectivity matrix. The
resulting zero-mean time courses for each ROI were then correlated using Pearson correlations to
generate a traditional functional connectivity matrix. Probabilistic tractography was performed
between pairs of ROIs using Probtrackx for estimating the structural connectivity. The resulting
matrix was then further normalized by dividing each matrix row by the way-total for its

corresponding seed ROI (Behrens et al., 2003, 2007).

The unconstrained pairwise maximum entropy model (pMEM)

This maximum entropy approach provides a way of quantifying the goodness of fit in models

that include varying degrees of correlations (Schneidman et al., 2006). At a microscale level for
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example, a first-order model seeks to fit only the average firing rate of all neurons recorded in
the ensemble. A second-order model would seek to fit the average firing rate and all pairwise
correlations, with an nth-order model fitting all correlations up to and including those between
all n-tuples of neurons in the ensemble. At macro-scale, this amounts to fitting the average
BOLD activation rate of a brain region and all pairwise correlations. Here, the observed bold
activation rate is determined through a binarization of the BOLD time course. Thus, we construct
unbiased predictions for the probabilities of functional brain states by fitting a pairwise
maximum entropy model (pMEM). Here, in estimating the probability distribution, it is
necessary to use the distribution that maximizes the uncertainty (e.g., entropy). To fit the pMEM,
we must tune the first and second order interaction parameters between ROIs such that the
predicted activation and co-activation rates match the observed data (the BOLD time series). An
accurately fitted pMEM suggests that patterns of functional activity can be estimated from each
ROI’s independent activation rate combined with the joint activation rates. Thus, the pMEM
represents a model of fMRI BOLD dynamics as a probabilistic process defined by underlying
pairwise relationships between ROIs. In constructing this model, we leverage the Ising model, a
special case of a Markov random field in which each ROI can exhibit two possible states s =
+1. In this work, we first convert our BOLD time series to z-scores, ensuring that our BOLD
date is represented as zero-mean with unitary variance, without altering the correlations between
brain regions. As maximum entropy models of neural activity are developed based on Ising
dynamics, studies investigating pairwise interactions using BOLD time course data are binarized
to define activation states (either +1 for active, or -1 for inactive) in both simulated and empirical
fMRI-based studies (Ashourvan et al., 2021; Coft¢ et al., 2019; Ezaki et al., 2017, 2020; Gu et

al., 2018; Nghiem et al., 2018; Niu et al., 2019; Watanabe et al., 2013). We will show how the
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binarization strategy may be validated using monte carlo simulations, whereby using the inferred
interaction networks to reconstruct functional correlations. Our results will also show that for our
network construction methodology, binarizing the z-scored time series at zero provides better

inference of functional interactions than +1SD.

We first begin by modeling the neural system using an energy-based formulation, namely the

Hamiltonian, as follows:
H(s) = =Y j>Jijsisj,where i,j € [1,2, ..., k] (1)

Here, the spin configuration s is defined as the column vector s = [s;, S5, ... 5|7, k is the number
of regions, s; and s; are the spin states of region i and j, and J; ; represents a pairwise interaction
between ROIs. Conceptually, if two regions are co-active or co-inactive, the pairwise interaction
is likely positive (excitatory), and if one region is active while the other is inactive, the pairwise
interaction is likely negative (inhibitory). Here we assume that there is no external influence (i.e.,
resting-state). Further, unless otherwise stated, the summations in this manuscript are for i < j to
avoid double counting and exclude self-connections. The probability of observing a specific

configuration is given as the following Boltzmann distribution:

Pr(s) = exp(—BH(s)) /Z, (2)

where f is the inverse temperature, and Z is the partition function: Z = Y, exp (—BH(s)).

The summation in the partition function is over all possible configurations of states. Similar to
other studies fitting pairwise models to neuronal firing data, a gradient ascent updating scheme is
used (Watanabe et al., 2013; Yeh et al., 2010). Estimating a parameter set that minimizes the
Kullback-Leibler (K-L) divergence between modeled and observed probability distributions is
equivalent to maximizing a log likelihood of the observed data (the empirical BOLD time series.
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We note that a brute-force application of the Maximum Likelihood Estimation (MLE) requires
heavy computational costs with calculations over all 2N possible spin configurations for the
partition function (Nguyen et al., 2017).To overcome the intractability of the partition function Z,
we utilize a pseudolikelihood estimation method (Ezaki et al., 2017). Pseudolikelihood
estimation has been shown to converge to a maximum likelihood estimator for large sample sizes

(Besag, 1975).

The optimal interaction matrix J can thus be derived by maximizing the pseudo-likelihood

function (Besag, 1975, 1977) :

Loeusao U, B) = TI;me [T, Pr (si(O|], B 5—ir)) (3)

Pseudolikelihood substitutes the probability of observing the state vector s(t) by the product of
the conditional probability # = Pr(s;(t)|J, 8, s_i(t)) of observing a single element s;(t) while
all the other elements, denoted s_; (), are fixed. Thus, we maximize the following log-

pseudolikelihood function as:

1
{(], :8) = Emas In Lpseudo (I' B) (4)
__1 tmax 3N In ( eXp(B Ellg=1]i,k5i(t)5k(t)) )
temax “E=1 1T Nexp(B XR-1 Jiksik(t))+exp(—B Th=q Jiksk(®))”

(5)

This probability distribution is derived based on the Boltzmann distribution under
pseudolikelihood conditions. The numerator describes the energy of the system, while the
denominator is the sum of all possible energies. Hence, there are only two terms in the
denominator, one positive and one negative since s;(t) is binary. The likelihood function may be

simplified further by setting C;(t) = B XK,—1 J; mSm (£), resulting in the following:
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1

£U.B) = 3 NIy Ci(8) 5:(£) — In(exp(Ci()) + exp(—Ci(1))) (6)

ttmax

The gradient ascent procedure can now be constructed with respect to J; ; by computing the

partial derivative of the log-pseudolikelihood as:

P = o L Blsi(0s,(0) — 50 tanh(Ci(6) @

The updating scheme follows: J+ = J*. + y 2-

L Lj 37| - Here, n is the iteration number and y is the
iLj

n

learning rate.
Monte Carlo simulations for the Ising model

All scripts were developed and executed in Matlab R2018a on a Windows 10 machine with Intel
17 CPU@ 2.8 GHz and 16GB of RAM. We used a Markov Chain Monte Carlo (MCMC) method
based on the metropolis algorithm to calculate the observables of the Ising model using the
networks inferred from the pMEM and FSE. Here we present the simulations performed step by

step:

1) Define the parameters J (network inferred with pMEM or FSE), the number of runs t,
and a range of ,Bsimulated

2) For each run randomly fix an s; from the configuration and compute the Hamiltonian

H(Sl').

3) IfH(s;) < 0orrand(0,1) < exp (ﬂ), flip the state. Note: the command rand

Bsimulated

(0,1) generates a random value between 0 and 1. Complete this for all elements in the
configuration.

4) The final configuration of states is the then used as the input for the next run.
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5) Concatenate all runs into an N x t array and compute the averages of the observables
(i.e., Pearson correlation < s;s; >, Magnetization [M|, Susceptibility x)

6) Do this for all Bsimuiated

Due to the computational cost, when performing MCMC simulations for the grid-search
parameter optimization we used t = 2000 runs and Simuiateq from 0.2 to 3.0 with increments
of 0.2. For the control case based on pMEM, we used t = N x N x 10 runs with Sgmuiateqa from
1 to 20 with increments of 0.5. Last, when evaluating the thermodynamic properties
Magnetization |M|, Susceptibility x using the rs-SC network, we use t = 100,000 with
Bsimuiatea from 0.2 to 3.0 with increments of 0.05. The number of runs, as well as range and
increments of Bgimuiatea Were selected based on the task performed to maximize algorithmic
performance and minimize processing time. The upper and lower bound of these values was first

empirically determined to be containing the optimal range by simulations.
Phase transition and biological motivation:

The simplicity of the Ising model enables the prediction of cooperative behavior among a system
of biological elements wherein each element has two states, and the energy of the system
depends only on the state of each element and its neighbors. Moreover, the model parameters
and representative physical properties are readily amenable to biological interpretation in the
context of various complex systems. For example, a four-dimensional cellular automaton-like
Ising model has been previously developed to investigate transitions between normal,
proliferative, hypoxic, and necrotic states in the tumorigenesis processes (Durrett 2013; Torquato
2010). Ising-like models have also been implemented to estimate information transfer between

spins occurring on the human connectome (Marinazzo et al. 2014); or assess differentially
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expressed genes in cancer patients (Xumeng et al. 2011); and even modeling the joint expression
profiles of genes to reconstruct E. coli gene interaction pathways (Santhanam et al. 2009).
Hence, when we discuss a “phase transition”, it is a result of the interactions among many
elements, not from the specific nature of the individual units (be they ferromagnetic materials or

biological elements like neurons, protein chains, genes, etc.).

To evaluate these transitions, we look to the average of activations over the whole network
(termed magnetization), which determines the ordering of the system. Magnetic susceptibility is
simply the variance of the magnetization. If all the binary spin states are aligned in the same
direction, a magnetization of +1 corresponds to a configuration of complete order. The
magnetization per site is defined as M= YN ; < s; >, where <->, represents the ensemble

average, and quantifies the mean tendency that s; =1 as opposed to s; =—1 is taken across the

brain regions. The magnetic susceptibility is defined as x = % (< M? > —< M >?%) (4 Guide to

Monte Carlo Simulations in Statistical Physics: Landau, David P.: 0000521768489

Amazon.Com: Books, n.d.).

Here, we consider brain networks positioned near a critical point between complete inactivity
(i.e. neuronal death) and random activity (as in epilepsy, for example). In a less extreme sense,
simulations of Ising dynamics can reveal a transition from a hypoactive state towards a more
chaotic state. As described in Eq 2, the behavior of the modeled system depends on temperature.
However, for a network of neurons or brain regions, there is no real concept of “temperature”.
Hence, when performing Monte Carlo simulations of the Ising model, we may describe
temperature (7) as a "tolerance" of the system in the sense that the effect of the 7 parameter

injects additional randomness to the simulated dynamics of the system. Thus, for very low T (T

38

€7UjaU/Z9 | | 01/10p/Pd-o[oILE/UIBU/NP W 0a1IP//dRY WOl papeojumoq

€ Ueu/810..61/02200 !

1202 JequiedeQ G uo 3senb Aq ypd-0zz00



755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

< Teriticar)> Spontaneous MCMC spin flips are less probable, with the spins in each configuration
mostly aligned to contribute the minimum energy of the system. For very high T (T > T¢ritical)>
the magnetic ordering is completely lost as a result of a high number of spontaneous spin flips,
thus the magnetization tends to “0,” which can be used to characterize the disordered (or chaotic)
phase. In the intermediate range of T where self-organized criticality and second order phase
transitions occur, there is a point of maximal fluctuations in the magnetization at T = T¢ritica
that corresponds to a peak in the magnetic susceptibility (Chialvo, 2010). Thus, a system with
lower critical temperature is suggestive of a lower tolerance to perturbations in the network as
determined via Monte Carlo simulations of brain dynamics than a higher critical temperature

which would suggest a higher tolerance.
Parameter optimization using a similarity metric and correlation function:

In this work, we use a grid-search optimization scheme to find the optimal parameters {§3, A}.
The parameters are evaluated from 0.2 to 3.0 with 0.2 increments for all 76 participants. With the
FSE, J, we generate a correlation function max f,(f, A) by simulating the Ising model with
Monte Carlo simulations, computing a Pearson correlation between observed and simulated
functional connectivity for all Ssimuiatea (from 0.2 to 3.0 with 0.2 increments). Further, we
compute a similarity metric S,,, (5, A) via the correlation r(l /i j |, w; j) V i,j to ensure that |J; ;|
W

j» the structural connectome. To identify the optimal parameters, we find 4, f such that

f(B,A) = max f. + S,, is maximized.
Excitation-Inhibition (E/I) ratio

It is important to note that in using the terminology connectome-level excitation-inhibition

balance and hyperexcitation, we are not necessarily inferring directionality of these interactions
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nor measuring processes at a neuronal level. Rather, we used such a terminology to bridge the
gap between micro-scale interactions (such as excitation and inhibition of neuronal circuits) and
the connectome-level changes that may occur because of such processes. Note that similar
terminologies have previously been adopted in several seminal studies that investigated neuronal
firing patterns using the Ising model (Schneidman et al., 2006; Tkacik et al., 2013). To be clear,
from a connectomics perspective, if several brain regions are identified to have an increase in
positive edges in the rs-SC, collectively, that would suggest a wider-spread pattern of coupling
(i.e., more likely to exhibit a pattern of global coupling) that may subserve hyperexcitation. It is
in this context that we conceptualize the Excitation-Inhibition (E/I) ratio, a global (whole-brain)
or local (ROI-level) estimation of E/I balance, computed as the sum of positive edges divided by

the sum of negative edges. For example, if an ROI in the network has 45 positive edges and 34
negative edges, then the E /I ratio = :—z, or 1.32 (a value of 1 indicates perfect E/I balance).
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