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Abstract. Diffusion MRI-derived brain structural connectomes or brain
networks are widely used in the brain research. However, constructing
brain networks is highly dependent on various tractography algorithms,
which leads to difficulties in deciding the optimal view concerning the
downstream analysis. In this paper, we propose to learn a unified rep-
resentation from multi-view brain networks. Particularly, we expect the
learned representations to convey the information from different views
fairly and in a disentangled sense. We achieve the disentanglement via an
approach using unsupervised variational graph auto-encoders. We achieve
the view-wise fairness, i.e. proportionality, via an alternative training rou-
tine. More specifically, we construct an analogy between training the deep
network and the network flow problem. Based on the analogy, the fair
representations learning is attained via a network scheduling algorithm
aware of proportionality. The experimental results demonstrate that the
learned representations fit various downstream tasks well. They also show
that the proposed approach effectively preserves the proportionality.

Keywords: Brain Connectome · Alzheimer’s Disease · Multi-view · Pre-
diction.

1 Introduction

Human brain connectomes [6] are models of complex brain networks and can
be derived from diverse experimental modalities and tractography algorithms.
Large-scale brains connections convey important insights for understanding the
underlying yet largely unknown mechanisms of many mental disorders [11,15,26,7].
Nevertheless, the apparent characteristics of brain networks are profoundly
influenced by the tractography algorithms. The designs of tractography algorithms,
including tensor-based deterministic algorithms [2], probabilistic approaches [18],
random forest [17] and Deep Neural Network (DNN) [20], and regularized methods
guided by biologically plausible fascicle structures [3], are inspired by specific
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experimental questions [5], e.g., different tractography algorithms are used for
predicting or classifying neurodegenerative or neurodevelopmental conditions
based on various brain abnormalities. For example, the selection and accuracy of
the extracted fibers are different for different tractography algorithms, and the
relevance of the extracted fiber bundles depend on the different tasks and questions
being addressed. Therefore, it is elusive to decide a universally optimal modality
of brain networks and associated processing pipeline for distinct diagnostic
tasks [5,23].

Multi-view methods can leverage the available information from diverse
tractography algorithms simultaneously, and tentative studies have demonstrated
that multi-modal brain networks can provide complementary viewpoints for the
classification tasks, e.g., multi-view graph convolutional network [25] is found
to have state-of-the-art performance in classifying Parkinson’s disease (PD)
status. However, previous multi-view methods have two restrictions regarding
general prediction tasks of neurodegenerative conditions. First, many methods
are designed for some specific tasks. If one want to tailor these methods to other
tasks, it is necessary to carefully tune the hyperparameters. Second, though
some methods learn representations from multi-view brain networks, the learning
is guided by some predefined prediction tasks, which may introduce bias to
overemphasize a particular modality. As such, the learned embeddings cannot
represent multi-modal brain networks comprehensively, and their application to
the related analysis in a broader scope is potentially constrained.

To address these problem, we propose to learn unified representations from
multi-modal brain networks via unsupervised learning techniques. To extend
the generalization ability of the learned representations to different downstream
analysis, the representations shall be of disentanglement and proportionality con-
cerning different modalities. Here, disentanglement refers to the representations
encoding salient attributes of data explicitly, which can help the analysis of the
prediction tasks and the modalities. Proportionality refers to a balanced contri-
bution to the representations of each modality, which avoids the potential bias on
specific modalities. In other words, in our approach the learned representations
can fairly convey the information from different modalities and can be exploited
by various downstream analysis. More specifically, in this paper we propose
a multi-view graph auto-encoder to learn the disentangled graph embeddings
from brain networks. We formulate the proportionality-awareness in multi-view
representation learning as a network scheduling problem via an analogy between
training deep networks and the graph flow problems. The experimental results
demonstrate the effectiveness of the proposed method.

2 Methodology

The proposed method is illustrated in Fig. 1. For each view, a Variational
Graph Auto-encoder (VGAE) [10] is exploited. Let G(v) denote the brain net-
works of the vth view, f (v) and g(v) the corresponding encoder and decoder,
[µ(v)|σ(v)] = f(G(v)) is the estimated mean and variance of the encoder. The
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Fig. 1: The structure of the proposed method. Each view uses an independent
VGAE to learn a unified μ, while the σ is different.

unified representations are computed by max-out the stacked μ(v) by the position,
which can be denoted as μ = maxpool1d([μ(v)]). The reparameterization for the
vth view is then computed using μ and σ(v). μ ∈ R

k is also used as the embed-
dings. According to the structure of VGAE, σ(v) ∈ R

k. Besides the view-wise
VGAE loss, we push μ and μ(v) to be close so that the learned embeddings
for different views are consistent. The disentanglement of the representations
is acquired via introduce the β-VAE loss [8]. Disentangled representations are
compact and interpretable [4]. The objective for our multi-view GVAE is:

L =
∑
v∈V

B

(
log

(
P (G̃(v))

))
+ βKL

(
P (z(v))|N (0, 1))

)
+ λ(μ(v) − μ)2 (1)

here the first term is the reconstruction loss, the second is the Kullback-Leibler
divergence, and the last is the multi-view consistency.

As aforementioned, the representations shall also be fair to different views. In
the above auto-encoder framework, the decoder is used for evaluating the vividness
of the learned representations. However, for multi-view data, the reconstruction
for different views is not necessarily equally accurate. When the imbalance occurs,
some views are less included in the learned representations. To address this
problem, we consider to learn fair representations regarding different views, which
indicates the view-wise loss in (1) is close to each other. Such fairness, referred
to as proportionality, can be achieved via an alternative training routine of the
above model. We will formulate an analog between flow network problem and
the training of multi-view model in the following. Based on the formulation, we
design a scheduling algorithm to satisfy the proportionality requirement.
Training Multi-view Network: a Flow Network Perspective Directed
Acyclic Graph (DAG) is an important tool in graphical models [9]. It is also
exploited to express network structures by many popular deep learning frame-
works [19,1]. Inspired by this idea, we make an analogy between training the
deep network and the flow network problems.

In Fig. 2, we illustrate an example for multi-view learning. To simplify the
elaboration, we consider a structure taking two views s1 and s2, as inputs. The
network consists of four sub-networks, each corresponding to one edge in the
DAG. v0 is a fused hidden representation, and t1 is the prediction. For multiple
inputs, ⊕ denotes the fusion operation for the outputs of multiple sub-networks,
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Fig. 2: Left: a simple DNN. Right: the corresponding DAG. Each edge represents
a network, and each node denote an intermediate representation.

and it can either a weighted summation or concatenation. Consider a network
trained after t steps using gradient based method. In the t+ 1 step, we can define

the flow di,j from predecessor i to successor j as di,j = �L
(
f
(t+1)
j (h

(t+1)
i ,H(t)

j\i)
)
,

here L is an objective defined on the targets, and �L denotes the loss difference
between step t+ 1 and t. Let Pij represent the set of all paths from sources to

targets containing ei,j . f
(t+1)
j refers to the network to compute the final outputs

with all paths in Pij updated. Pij can be defined on the node i and a set Hj\i.
Here Hj\i denotes any cut set containing node j that separate sources and targets,
and Hj\i does not include any node in Pij except j.

Our definition satisfies the flow conservation, which states that if a node is
neither a source or a target, its net flow shall be 0. For a node j with multiple
incoming flow, the fusion operation is defined as hj =

∑
i∈Pj

PijWijfij (hi), here
Pj is the predecessor set of node j, fij is the sub-network between node i and
j. For different fusion oeprations, Pi and Wi take different forms. For example,
when both Pi and Wi are the identity matrices, the fusion is by summation; if
Wi is the augmented matrix (Ii|0), fusion by concatenation is feasible by setting
Pi as the corresponding permutation matrix. For a node with multiple outgoing
flow, the output is equally distributed. We abuse the notation Hj ≡ Hj\i ∪ {i}.
Consider a fixed given cut Hj for node j, we can induce two additional cuts: HPj

,
which excludes j and include all its predecessors; and HSj

, which excludes j and
include all its successors. Under the updating rule of backward propagation, the
incoming flow with respect to node j is,

∑
i∈Pj

di,j ≈ ∂L
∂fj

∑
i∈Pj

PijWij
∂fj
∂hi

dhi =
∂L
∂fj

∂fj
∂hj

dhj , (2)

the above equation follows because the partial differential is 0 except dhi and
dhj term. Similarly, the outgoing flow is,

∑
k∈Sj

dj,k ≈
∑
k∈Sj

∂L
∂fk

PjkWjk
∂fk
∂hj

dhj =
∂L
∂fj

∂fj
∂hj

dhj , (3)

(2) and (3) are bridged by the change in hj , which ensures the net flow to be 0.
If we extend the above analogy to the accumulative case, the flow is defined

to be the loss decrease with respect to the particular structure represented by
i → j. Noteworthy, it is not the pure contribution of i → j. Rather, it is more
of the quantification of the total loss decrease of the particular structure, as
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Round-Robin
Input: v views, max epoch e
Output: model f

1 Initialize f .
2 repeat
3 for i← 1 to v do
4 Optimize (1) w.r.t. view

j.

5 until max epoch;

Proportionality

Input: v views, max epoch e
Output: model f

1 Initialize f .
2 repeat
3 Compute priority w.r.t. (6)
4 Optimize (1) w.r.t. view j

with the highest priority.
5 until max epoch;

the definition considers both the upstream and downstream computation of the
entire network. The empirical loss is related to the generalization bound of the
learned representations concerning downstream tasks. As such, the accumulated
flow can be interpreted as the amount of information learned from each view
informally. Based on this analogy, we define that the proportionality is achieved if
the view-wise flow, i.e. the accumulated

∑
k∈Sj dj,k for some view j, is balanced.

Alternative Training Routine with Proportionality Awareness Conven-
tionally, the proportionality concerning different views can be written as a
constrained optimization problem, and a standard training routine is based on
SGD. From the flow perspective, the proportional training can be interpreted as
multiple views competing for the updating resources in the backward propagation,
which is a network scheduling algorithm. More specifically, during the training,
the accumulated flow is continuously updated, which reflexes the dynamic of loss
decrease and the generalization ability. A proportional representation is then
equivalent to a balanced flow avoiding the overload of some specific path.

In detail, we define the total flow as the loss decrease. When the learning
rate is small enough, the summation of view-wise SGD update is equivalent to a
round-robin update with respect to each view. Here, the objective associated with
each view is optimized in a predefined turn. To avoid a specific view taking up too
much updating resources, we can maximize the total flow of the network while
allowing the minimal level of service for all views via introducing a competing
mechanism for each view to occupy the update based on the estimated flow. We
refer to this method as proportionality. The updating priority of each view is
based on the current loss decrease and the historical cumulative loss decrease.
Assume the loss decrease of view i at update t can be foreseen as ri,t. The
throughput of view i is defined as historical cumulative loss decrease at step t:

θi,t = θi,0 +
t∑

l=1

ri,lIi,l
t

=
n− 1

n
θi,t−1 +

1

n
ri,t−1Ii,t−1, (4)

where Ii,l is an indicator. Ii,l = 1 if the lth update is conducted on view i, and 0
otherwise. Based on (4), the priority pi,t for view i can be defined, and the t+ 1
update is then applied to the view with the highest priority:

arg max
i∈V

{pi,t} , pi,t =
ri,t+1

ε+ θi,t
(5)
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where ε is a small positive number for computational stability. Notably, the above
algorithms is not immediately applicable to our formulation, as that ri,t is not
pre-assigned as in standard proportionally fairness algorithms. Instead, the values
are only known after the update is finished. Thus, we propose a compensation
update method: at the beginning, we use one round robin update and compute
initial ri,0. In the following steps we use proportionally fairness algorithm, but
computing the priority using the loss decrease from the last applied update:

arg max
i≤v

{
ri,ti

di + θi,t

}
, ti = max l, s.t. l ≤ t, Ii,l = 1, (6)

The proportionality and convergence of our scheduling algorithm are guaranteed
under some weak conditions, and the analysis can be found in [13].

3 Experimental Results

In this experiments we use three datasets, including the data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating
Center (NACC), and the Parkinson Progression Marker Initiative (PPMI). The
preprocessed ADNI brain networks [22] include 51 healthy controls (HC) (mean
age=69.69 ± 10.27, 29 males), 112 people with Mild Cognitive Impairment
(MCI) (mean age=71.68 ± 9.89, 41 males) and 39 individuals with AD (mean
age=75.56±8.99, 14 males). The similarly preprocessed NACC brain networks [21]
include 329 HCs (mean age=60.96 ± 8.96, 107 males), 57 with MCI (mean
age=73.60 ± 7.93, 38 males), and 54 AD patients (mean age = 72.02 ± 10.41,
32 males). The similarly preprocessed PPMI brain networks [27,28] includes 145
HC (mean age = 66.70 ± 10.95, 96 males) and 474 subjects with PD (mean
age=67.33 ± 9.33, 318 males). Nine different views are reconstructed using T-
FACT, T-RK2, T-TL, T-SL, O-FACT and O-RK2, Probt, Hough, and PICo
(Please refer to [24] for more details on the brain network reconstruction). We
use a modified network structure based on graph variational auto-encoder. The
view-wise graph is the averaged brain connectome, and the node features are the
corresponding row for each brain connectome. We set β = 4 recommended by
β-VAE [8]. The performance is not sensitive to λ, and we set it to 0.001. In the
encoder, we use three graph convolutional layers for µ and σ respectively. The
first two layers are shared, both with 64 hidden units. The embedding length
is 32. The encoder are limited in layers due to the potential over-smoothing for
graph convolutional layers. Our model is trained 100 epochs using ADAM with
batch size 32 and learning rate 0.0001.
Evaluating the Proposed Method in Down-streaming Analysis: We com-
pare our approach with related baselines on several classification and regression
tasks. The ablation study is also included.

Table 1 summarizes the classification results. For ADNI and NACC, we
predict the HC and AD. For PPMI we predict HC and PD. For multi-view
predictions, we include principal component analysis (PCA), multi-view non-
negative matrix factorization (MVNMF) [14], co-regularized spectral clustering
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Table 1: The comparison on classification tasks.

Sparse Logistic Regression

ADNI NACC PPMI

Single View

FSL 0.7786± 0.0976 0.7669± 0.0799 0.6597± 0.0584
PICo 0.7615± 0.1408 0.7119± 0.1103 0.6065± 0.0486

T-FACT 0.7451± 0.0379 0.6581± 0.0411 0.5850± 0.0433
O-FACT 0.7278± 0.1066 0.7094± 0.0866 0.5921± 0.0353
ODF-Rk2 0.7568± 0.0821 0.6890± 0.0366 0.5942± 0.0331

T-RK2 0.7276± 0.0797 0.7281± 0.0674 0.5921± 0.0353
T-SL 0.7402± 0.1371 0.6582± 0.0785 0.5884± 0.0389
T-TL 0.6875± 0.0682 0.7358± 0.0799 0.5851± 0.0423
Hough 0.7559± 0.0780 0.7271± 0.0549 0.5536± 0.0391

Multi View

all views 0.7966± 0.0904 0.7301± 0.1325 0.5716± 0.0378
MVNMF 0.8149± 0.0550 0.7685± 0.0958 0.6104± 0.0332
MVSC 0.8203± 0.0791 0.7595± 0.1013 0.6205± 0.0373

DMGCN 0.8058± 0.1006 0.7557± 0.0898 0.6141± 0.0707
Proposed-I 0.8074± 0.0493 0.7491± 0.0897 0.6122± 0.0442
Proposed-II 0.8185± 0.0770 0.7549± 0.0790 0.6240± 0.0234
proposed∗ 0.8278± 0.1537 0.8090± 0.1472 0.6250± 0.0472

Random Forest

ADNI NACC PPMI

Single View

FSL 0.8124± 0.0455 0.3737± 0.7065 0.5753± 0.0255
PICo 0.7838± 0.1067 0.1588± 0.9463 0.5475± 0.0244

T-FACT 0.8383± 0.0483 0.7029± 0.1184 0.5654± 0.0331
O-fact 0.7817± 0.1512 0.3789± 0.6903 0.5478± 0.0228
O-RK2 0.7617± 0.1087 0.7879± 0.1333 0.5566± 0.0382
T-RK2 0.7764± 0.1275 0.7029± 0.1333 0.5486± 0.0361
T-SL 0.8148± 0.0587 0.7235± 0.1163 0.5386± 0.0347
T-TL 0.7695± 0.0862 0.7009± 0.1164 0.5411± 0.0410
Hough 0.8368± 0.0671 0.7011± 0.1797 0.5276± 0.0344

Multi View

all views 0.8560± 0.0574 0.7615± 0.1053 0.5743± 0.0464
MVNMF 0.8826± 0.0830 0.8317± 0.1561 0.5659± 0.0528
MVSC 0.8827± 0.0457 0.7997± 0.1435 0.5753± 0.0348

DMGCN 0.8862± 0.0503 0.8307± 0.1493 0.5683± 0.0323
Proposed-I 0.8578± 0.0516 0.7919± 0.0725 0.5590± 0.0250
Proposed-II 0.8678± 0.0573 0.8327± 0.0988 0.5699± 0.0382
Proposed∗ 0.8946± 0.0510 0.8359± 0.1321 0.5814± 0.0274

(MVSC) [12] and Deep Metric Graph Convolutional Network (DMGCN) [11]. We
use the aforementioned methods to learn the representations, and then exploit
two off-the-shelves methods, sparse logistic regression, and random forest to make
the final prediction. We report AUC on 5-fold cross-validation. To make the
comparison self-contained, single view results are also included. For the ablation
study, in propose-I neither disentanglement nor proportionality is considered, and
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Table 2: The comparison on regression tasks.

TD UPSIT MoCA

Single View

FSL 0.0749± 0.0167 0.0794± 0.0054 0.0381± 0.0033
PICo 0.0714± 0.0078 0.0983± 0.0101 0.0394± 0.0027

T-FACT 0.0404± 0.0037 0.0545± 0.0043 0.0210± 0.0021
O-FACT 0.0410± 0.0018 0.0508± 0.0066 0.0208± 0.0036
O-RK2 0.0428± 0.0079 0.0503± 0.0015 0.0208± 0.0027
T-RK2 0.0441± 0.0034 0.0500± 0.0051 0.0212± 0.0025
T-SL 0.0427± 0.0012 0.0512± 0.0058 0.0212± 0.0017
T-TL 0.0406± 0.0059 0.0517± 0.0019 0.0210± 0.0027
Hough 0.0434± 0.0036 0.0495± 0.0058 0.0225± 0.0044

Multi View

all views 0.0414± 0.0045 0.0524± 0.0034 0.0227± 0.0074
MVNMF 0.0378± 0.0122 0.0507± 0.0041 0.0207± 0.0030
MVSC 0.0355± 0.0047 0.0499± 0.0046 0.0199± 0.0013

DMGCN 0.0365± 0.0071 0.0487± 0.0085 0.0202± 0.0015
Proposed-I 0.0358± 0.0024 0.0501± 0.0022 0.0209± 0.0019
Proposed-II 0.0361± 0.0035 0.0492± 0.0033 0.0200± 0.0022
Proposed∗ 0.0351± 0.0059 0.0484± 0.0044 0.0199± 0.0022

in proposed-II the disentanglement is considered. The full approach is proposed∗.
We omit more single-view ablation study in the experiments because our objective
is designed for multi-view data. Of note, integrating multi-view data is also shown
to be beneficial for brain network analysis [27]. From the results, we find that the
prediction ability of different views with respect to different tasks are complicated,
and heavily coupled with the algorithms. Multi-view methods, generally, can
improve the prediction ability. However, the advantage of multi-view data is
intriguing and needs careful examination. The proposed method have good
performances and are robust with respect to different tasks. And at last, the
ablation study demonstrates that the performance can be improved through
considering disentanglement and proportionality.

Table 2 summarizes the regression results. We use the learned representation
to predict several clinical scores, including the Tremor Dominant scores (TD), the
University of Pennsylvania Smell Identification Test (UPSIT), and the Montreal
Cognitive Assessment Test (MoCA). Mean squared error (MSE) is used as the
metric evaluating the prediction. All scores are normalized to [0, 1]. The results
show that the prediction is more complicated with respect to the particular
medical scores and views. Similarly, we can observe the advantage of utilizing
multi-view data and the robust and superior prediction abilities of our approach.

Evaluating the Proportionality during Training: In this section, we demon-
strate the proposed method can achieve proportionality using the proposed train-
ing scheduling method. Figure 4 illustrates the training loss of the proposed deep
network against epochs, and the shaded area represents the variance regarding
different views. From the results, we can observe that the proposed method
effectively reduces the variance during training, which indicates the learned rep-
resentations proportionally represent different modalities of brain networks. The
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Fig. 4: Left to right: ADNI, NACC, PPMI.

results also show the training routine aware of proportionality converges slightly
slower than the standard training routine. However, with moderate epochs their
performance difference is negligible.
Discussions: There some works applying the fairness principle on brain analy-
sis [16]. Our method is designed for representation learning for multi-view brain
connectomes, particularly focusing on the disentangled and proportional prop-
erty (which is related to algorithmic fairness) for the learned embeddings. Our
experimental results demonstrate that the proposed method can be applied to
various downstream works. As such, it is of potential to apply our method to
broader applications, including generating a refined connectome matrix,

4 Conclusion

In this paper, we propose an unsupervised method to learn unified graph embed-
dings for multi-view brain networks. We design a multi-view graph variational
auto-encoder to learn the representations with disentanglement and proportion-
ality. The experimental results demonstrate that the learned representations can
be effectively used by various downstream tasks.
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