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Abstract— In this paper we develop four methods for proving
stability for a subclass of co-regulated systems – finite-state, co-
regulated systems with restrictions on possible sampling rates.
“Co-regulation” is a control strategy we previously developed
wherein cyber and physical effectors are dynamically adjusted
in response to holistic system performance. The cyber effector,
sampling rate, is adjusted in response to off-nominal conditions
in the controlled system, and the physical effector adjusts con-
trol outputs corresponding to the current (changing) sampling
rate. The resulting computer-control system is a discrete-time-
varying system with changing zero-order holds and sampling
periods, and unknown delays over discrete intervals. This makes
performance guarantees such as stability difficult to obtain.

We address this difficulty by drawing from specialized results
in the control community to develop four methods for proving
asymptotic stability of finite-state, co-regulated systems. Each
successive method relaxes the assumptions needed to guarantee
stability. This lays the groundwork for a more all-encompassing
analytical framework for co-regulated systems. We use the
results to demonstrate stability for a co-regulated multicopter
unmanned aircraft system.

I. INTRODUCTION

Cyber-Physical Systems (CPS) host an interacting suite of
communication and computational tasks, as well as physical
system actuation and sensing. This requires careful allocation
of these resources to accomplish mission objectives. For
control systems this allocation most often takes the form
of fixed-rate controller design with an accompanying fixed-
period computational task in a real-time schedule. Part of
why this fixed-period control strategy has been so successful
is the rich theoretical foundation of both the control [1],
[2] and real-time systems (RTS) communities [3], [4] which
provide performance guarantees. Other control strategies that
carefully allocate resources such as event-triggered control [5],
or self-triggered control [6] are still developing a comparable
all-encompassing theory. As a result, to provide performance
guarantees they tend to rely on less-traditional results from
advanced control strategies and then impose limitations
on sampling, packet drop rates, delays or other timing
characteristics [6]–[8]. Similarly, in the RTS community,
alternate scheduling strategies such as rate-adaptive tasks
[9], rhythmic tasks [10], or control-driven tasks [11] that
attempt to allocate resources on-demand are typically limited
to one or a small set of time-varying periodic tasks.
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Fig. 1: Co-Regulation Block Diagram

Our approach, co-regulation of cyber and physical effectors,
is a method of dynamically adjusting resources and control
performance in response to system performance [12], [13],
and has been proven effective in simulation [14], and real-
system demonstrations [15]. In this strategy, a traditional
state-space control model is augmented with a computational
model representing sampling rate. Figure 1 shows how this
is accomplished in a multicopter Unmanned Aircraft System
(UAS) [14]. Output from a cyber model representing sampling
rate is fed to the physical controller which adjusts physical
system performance accordingly. Simultaneously, output from
the physical plant is fed to the cyber controller which
adjusts sampling rate in response to physical performance.
Discrete-time-varying controllers for both the physical and
cyber systems are designed holistically, thereby co-regulating
cyber and physical effectors in response to overall system
performance. Our work has primarily revolved around cyber-
physical vehicles (e.g., multicopters, CubeSats) [14], [15].
Moreover, our strategy has been applied by others in different
application domains such as control of grid-tied Active Front
End (AFE) power converters [16], loads in active distribution
networks [17], and the optimization of plant and controller
parameters for an automated electric vehicle [18].

One benefit of our approach is a holistic representation
of both the control and real-time computational scheduling
systems which lends itself to the goal of an all-encompassing
theory providing a resource-aware, co-regulation framework
with performance guarantees. However, this is difficult
because the computer-controlled system has a dynamically
changing sampling rate and thus exhibits discrete-time-
varying zero-order holds (ZOH) and sampling periods, as
well as delays and holds over potentially unknown discrete
intervals. From the perspective of the RTS, the task schedule
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must dynamically update in response to changing conditions
in the physical system while guaranteeing all other deadlines
are met. These characteristics don’t fit cleanly into an existing
modeling paradigm and presents a fundamental challenge in
the kind of holistic modeling required by modern computer-
controlled systems.

Traditionally, a time-varying sampling period in a computer-
controlled system is seen as an aberration resulting from
implementation [19], [20], the robustness to which the
controller must be examined and designed [21], [22]. Time-
varying sampling intervals have been addressed in subclasses
of computer-controlled system theory such as network control
and hybrid systems [23]. Systems with varying sampling
rate can be viewed as time-delay systems [24]–[26], hybrid
systems [27], [28], Input/Output interconnections [29], [30],
discrete-time systems with time-varying parameters [23].
These results use different analytical frameworks to model
and provide results for narrow classes of systems.

Toward the goal of developing an analytical framework
providing performance guarantees for co-regulated systems,
we develop a series of results for the subclass of finite-state co-
regulated systems. Each strategy borrows specialized results
from the control systems community, and while increasingly
difficult to solve, broadens the scope of the results – laying
a foundation for a broader class of co-regulated systems. To
solidify the techniques, we apply the proposed strategies to
the stability analysis for the co-regulated system we developed
for a multicopter Unmanned Aircraft System (UAS) in [14].

The contributions in this paper are:
• development of stability guarantees for the class of finite-

state, co-regulated systems, laying a foundation for a
broader analytical framework.

• application of these methods to the stability analysis of
a co-regulated, multicopter UAS.

With these methods of providing guarantees in place, these
contributions will help solidify co-regulation as a viable
method to holistically design CPS.

II. PROBLEM FORMULATION

Co-regulated cyber-physical systems can be represented by
an augmented, stacked state-space system as:

Ẋp = fp(t,Xp) + Up(Xp, Xc)

Ẋc = Uc(Xp, Xc).
(1)

where Xp and fp are the physical system states and dynamics,
Xc is the state of the resource, in this case, the control task
execution rate (sampling rate) of the system. Up(Xp, Xc)
is the physical control law, and Uc(Xp, Xc) regulates the
resource - the sampling rate. Because both are functions of
both Xp and Xc, system control performance and sampling
rate are directly linked. The co-regulated system is a computer-
controlled system, where the sampling rate is dynamically
updated, exhibits time-varying zero-order holds (ZOH) and
sampling periods, as well as delays and holds over potentially
unknown discrete intervals. Throughout this work we will use
subscript “p” to indicate the physical system, and subscript
“c” to indicate the cyber/computational system.

A. Physical System Model
Our physical model is a quadcopter UAS, whose model

is obtained by applying Newton’s law or Euler-Lagrange
equations [31], [32]. For physical controller design, we
linearize the equations about an equilibrium point to obtain
a linear state-space model

Ẋp = ApXp +BpUp, (2)

where subscript p indicates the model of the physical system.
Xp is the state, Ap and Bp are system matrices representing
dynamics, and Up is the control input.

B. Cyber System Model: Sampling Rate
We model the cyber system as a set of task execution

rates of mission critical tasks. In a complete co-regulated
framework,

Ẋc = AcXc +BcUc

would consist of task rates for the complete set of mission crit-
ical tasks (e.g., navigation, image processing, communication,
control, sensing, planning, etc.) and would be co-regulated
alongside, and in response to, system performance. Since the
execution rate of tasks other than physical controller will not
influence the system stability, in this paper we focus on just
the control task sampling rate. We model it as

ẋc = uc, (3)

where xc is the sampling rate or execution frequency of the
computational control task, and uc acts as a control input to
adjust this rate. The sampling rate xc will increase when the
control input uc is positive, while negative uc will cause the
sampling rate xc to drop. This single integrator formulation
allows control task execution rate to move rapidly in response
to the control effort, uc, similar to how a real-time task
schedule might be dynamically manipulated [9], [13].

C. Physical System Control
For digital controller design, we need to discretize the

system for a given sampling period. In the most general
case, the discrete system matrices may vary due to parameter
changes, uncertainty in dynamics, or in our case, a time-
varying sampling rate [13]. While we have explored several
control strategies for this type of co-regulated system [12]–
[14], for a quadcopter Unmanned Aircraft Systems our Gain-
Scheduled Discrete Linear Quadratic Regulator (GSDLQR)
provides excellent performance [14]. In that strategy, we
first define a finite set of fixed sampling rates fi(i =
1, 2, 3, . . . , N) as operating points. We assume that f1 is
the lowest sampling rate while fN is the highest. We then
discretize the system at each operating point to obtain
corresponding discrete system matrices �p [fi] and �p [fi].

Under this approach, all the possible sampling rate values
that can be applied for the physical system during runtime
are included in a discrete set

⌃ ✓ {f1, f2, . . . , fN} , (4)

where f1 is given by the minimum rate that can guarantee
stable control, and fN corresponds to the maximum sampling
rate corresponding with available slack in the real-time
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Rate xc Gain Kp [k]

xc = xc,min Hz Kp [k] = DLQR @xc,min Hz

xc = 10Hz Kp [k] = DLQR @10Hz

xc = 11Hz Kp [k] = DLQR @11Hz

...
...

xc = xc,max Hz Kp [k] = DLQR @xc,max Hz

TABLE I: GSDLQR at Different Sampling Rates

schedule1. The density of the operating points in [f1, fN ]
should be chosen based on modes of the dynamics [1] while
ensuring stability. For example, in gain scheduling control,
operating points are chosen to be close enough to each other
to ensure that the variation of the scheduling variable is
“slow” [33]. The theory for choosing “dense enough” operating
points is explored in [34]–[36].

Since the sampling rate is dynamically evolving and
the discretized physical system model is unique for each
sampling rate, the resulting system is a discrete-time-varying
system [14]. So the discrete-time system model dynamically
changes with the sampling rate applied at each time step. To
obtain the system model at each sampling rate, the system is
discretized by using a zero order hold (ZOH) approximation,
in which the control inputs are held constant between updates.
The discrete system at each sampling rate can be obtained by

�p = eApTd , and �p =

Z Td

0
eAp⌘Bpd⌘. (5)

Since we will change the sampling rate dynamically at discrete
intervals, the system matrices �p and �p will be recalculated
as the sampling rate varies. Thus the system matrices become
functions of the time step k. The discrete-time system model
is then,

Xp[k + 1] = �p[k]Xp[k] + �p[k]Up[k] (6)

with control input

Up[k] = �Kp[k]Xp[k]. (7)

The design of feedback controllers for a system that can
dynamically adjust its own sampling rate is a relatively new
area for research [14]. In previous work we employed a
discrete-time-varying control strategy by gain scheduling a
discrete linear quadratic regulator controller (GSDLQR) at
a series of sampling rates [14]. First, we design DLQR
controllers for the quadrotor at discrete operating points
between the upper and lower bounds, then, we “schedule”
the appropriate DLQR gains for the quadrotor corresponding
to the commanded sampling rate as in Table I. This paradigm
ensures that the DLQR gain used to compute the next control
input corresponds with the newly commanded sampling period
for the control task.

D. Cyber System Control
For the discrete-time-varying co-regulated system, we have

developed a coupled GSDLQR physical system controller,

1We assume schedule slack is a bounded value that can be obtained before
runtime.

which calculates a gain based on the time-varying sampling
rate xc. A second controller is now needed to calculate the
coupled computational control input uc, which adjusts the
sampling rate, in real time, as the dynamics of the system
change [14]. In previous work we presented two cyber system
control laws [14]. The cyber control law consists of two
components. The first component scales the error between
the current sampling rate and a desired reference rate. This
has the effect of pushing the sampling rate toward the desired
reference rate. The second component scales the difference
between the current physical state to the reference physical
state. This pushes the sampling rate faster to provide better
control authority when needed. The computational control
law is represented as

uc = Gcp (Xp �Xp,ref )� gc (xc � xc,ref ) .

The coupling gain, Gcp, is used to increase the sampling rate
of the system in response to physical state error. The gain, gc,
drives xc toward the desired reference sampling rate xc,ref .
To find cyber gains Gcp and gc, we employ an optimization
scheme presented in [14].

The discrete-time cyber control law with respect to time
step k is then

xc[k + 1] = xc[k] +
1

xc[k]
uc[k], (8)

with control input
uc[k] =Gcp (Xp[k]�Xp,ref [k])

� gc (xc[k]� xc,ref [k]) .
(9)

However, under this cyber controller the sampling rate
could change continuously in the pre-defined interval fi 2
[fmin, fmax], indicating the system will operate under infi-
nitely many possible sampling rates. This leads to difficulty in
developing stability guarantees. Here we simplify analysis by
changing the structure of our previous cyber controller, and
let the sampling rate discretely switch among a finite number
of states in the interval. We therefore add a constraint to
locate each xc[k] on the nearest pre-defined operating points:

xc[k] = fi, (10)

where

|Xc[k]� fi|  |Xc[k]� fj | 8fi, fj 2 ⌃. (11)

That is, the cyber state (sampling rate), which is decided by
the cyber controller, changes discretely in a closed interval
with a finite number of different states.

E. Finite-State, Co-regulation Model for Stability Analysis
Combining the physical control model with the cyber

control model, a holistic model of finite-state, co-regulated
system for stability analysis can be achieved. The system
model can be described by

Xp[k + 1] = A[k]Xp[k] (12)

where
A[k] = �p[k]� �p[k]KP [k]. (13)

Based on our co-regulation strategies, we first discretize the
system at each operating point to obtain �p[fi] and �p[fi].
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We then design a set of controller gains KP [fi] which are
mapped to a set of fixed sampling rates, where fi 2 ⌃.
As a result, A[k] in Equation (13) has a finite number of
possible values corresponds to the value of fi which denotes
different operating points. The discrete, closed-loop model
in Equation (13) can be represented as

Xp[k + 1] = A[fi]Xp[k]

A[fi] = �p[fi]� �p[fi]KP [fi]

fi 2 ⌃.

(14)

We define each operating point as an “operating mode” of
the co-regulated system. For stability analysis, we treat the
finite-state, co-regulated system in Equation (14) as a switched
system. A switched system is a dynamical system that consists
of a finite number of “subsystems” and a logical rule that
orchestrates switching between these subsystems [37]. The
physical system at each operating mode can be represented
by a subsystem, and the system evolves by switching among
different subsystems along a trajectory that is decided by the
cyber controller. Therefore, each closed-loop system evolution
will be characterized by an infinite product of closed-loop
matrices taken from A[fi], where fi 2 ⌃.

The co-regulated system could be stable or unstable when
operating at a single operating mode depending on the system
characteristics and the physical controller. For example, in
our previous work, a co-regulated system of a small satellite
(CubeSat) has unstable operating modes that must be avoided
by the co-regulated system [12]. In the case of a co-regulated
quadcopter UAS, all the individual operating modes can be
exponentially stabilized by a DLQR controller design [14].
However, even when all the subsystems of a switched system
are exponentially stable, it is still possible to construct
a divergent trajectory from any initial state with a poor
switching function [37]. Therefore, the stability of the co-
regulated system at each operating mode is not sufficient
to assure stability since the system could destabilize under
arbitrary operating mode switching.

III. STABILITY ANALYSIS

In this section, we introduce four different criteria to
evaluate the stability for the class of finite-state, co-regulated
systems, and provide corresponding proofs.

A. Common Quadratic Lyapunov Functions

This criteria provides a sufficient condition for the stability
of finite-state, co-regulated systems based on the existence
of Common Quadratic Lyapunov Functions (CQLF).

Theorem 1: The finite-state, co-regulated system (14) is
asymptotically stable under arbitrary switching trajectories if
all of its operating modes are asymptotically stable and there
exists a common positive definite symmetric matrix P for all
operating modes that satisfies

AT [fi]PA[fi]� P < 0; 8fi 2 ⌃. (15)
Proof: For the finite-state, co-regulated system (14), we

define a candidate Lyapunov function

V (Xp[k]) = Xp[k]
TPXp[k]

where P > 0. Then
V (Xp[k + 1])� V (Xp[k])

= Xp[k + 1]TPXp[k + 1]�Xp[k]
TPXp[k]

= Xp[k]
T (AT [fi]PA[fi]� P )Xp[k].

If the condition in (15) holds, then

V (Xp[k + 1])� V (Xp[k]) < 0, 8fi 2 ⌃

implying the finite-state, co-regulated system is asymptotically
stable [37].

The conditions in (15) can be expressed as linear matrix
inequalities (LMIs) [38]. The LMI form of (15) is:


A[fi]TPA[fi]� P 0

0 �P

�
> 0, 8fi 2 ⌃. (16)

The equations in (16) from all operating modes are then
combined to form a set of LMIs. If a common solution
matrix, P , to the combined LMIs is found, then the condition
in Theorem 1 is met and the co-regulated system is stable
under arbitrary switching trajectories.

B. Lie Algebraic Approach

Another approach is to provide a Lie algebraic condition for
the finite-state, co-regulated system based on the solvability
of the Lie algebra generated by the states’ matrices. It was
shown that if the Lie algebra associated with a family of
stable matrices is solvable, then there exists a CQLF [38].
We provide a theorem/proof for application of this concept
to a finite-state, co-regulated system.

Theorem 2: The finite-state, co-regulated system (14) is
asymptotically stable under arbitrary switching trajectories
if all of its operating modes are asymptotically stable and
there exists an invertible matrix T 2 Cn⇥n for all operating
modes that satisfies

T�1A[fi]T is upper triangular; 8fi 2 ⌃. (17)
Proof: For the finite-state, co-regulated system (14),

we assume (17) is satisfied. Thus there exists an invertible
matrix T such that T�1A[fi]T is upper triangular for fi 2 ⌃.
That is, each matrix A[fi] is similar to an upper triangular
matrix under a common similarity transformation T [39]. In
matrix terms, the existence of T is equivalent to the argument
that the Lie algebra generated by this group of matrices
A[fi], fi 2 ⌃, is solvable [39]. Then, the Lie algebraic
solution of the matrices guarantees the existence of a CQLF
for the system [38]. Based on Theorem 1, the corresponding
finite-state, co-regulated system is asymptotically stable.

As an extension to Theorem 1, the Lie algebraic approach
provides an alternative way to verify the existence of a CQLF
for the finite-state, co-regulated system.

C. Switched Quadratic Lyapunov Functions

This criteria provides a sufficient condition for the stability
of finite-state, co-regulated systems based on the existence
of Switched Quadratic Lyapunov Functions (SQLF). And
similarly, if a SQLF exists for a finite-state, co-regulated
system, we can conclude that the system is stable for all
switching trajectories.
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When compared with the CQLF method, the existence of
SQLF is a less conservative condition for stability analysis
for switched linear systems [37], [40], [41], and could be
used as an alternative way to check the finite-state, co-
regulated system stability when the CQLF check fails. Since
the structure of the SQLF is more complex, the results
proposed in this section can be considered as a tradeoff
between highly conservative methods (those using CQLF) and
less conservative but numerically hard to check methods [41].
However, the SQLF method provides a stronger stability
result in that if a SQLF exists, the switched system is not
only asymptotically stable but also exponentially stable [42].

We start with an indicator function

⇠(k) = [⇠1(k), ..., ⇠N (k)]T (18)

where the equation shown below holds

⇠i(k) =

(
1, when system is described by state A[fi]

0, otherwise
(19)

8i = 1, ..., N . Then the finite-state, co-regulated system
model denoted by Equation (12) can be represented as:

Xp[k + 1] =
NX

i=1

⇠i(k)A[fi]Xp[k] (20)

Then we define the switched Lyapunov function as:

V (Xp[k]) = Xp[k]
TP (⇠(k))Xp[k]

= Xp[k]
T

 
NX

i=1

⇠i(k)P [fi]

!
Xp[k]

(21)

with P [f1], ..., P [fN ] symmetric positive-definite matrices. It
has been shown that if such a positive definite Lyapunov
function exists and

�V = V (Xp[k + 1])� V (Xp[k]) < 0 (22)

along the solution of Equation (20), then the system is globally
asymptotically stable [41].

In the following theorem, we give a necessary and sufficient
condition based on LMI for the existence of a Lyapunov
function of the form (21) whose difference is negative definite,
proving asymptotic stability of the finite-state, co-regulated
system. A similar theorem can be found in the switched
system research area [41].

Theorem 3: The finite-state, co-regulated system (14) is
asymptotically stable under arbitrary switching trajectories if
there exists N symmetric matrices P [f1], ..., P [fN ] satisfying


P [fi] A[fi]TP [fj ]

P [fj ]A[fi] P [fj ]

�
> 0, 8fi, fj 2 ⌃. (23)

Proof: Here we want to prove that if the conditions
in (23) are satisfied for all operating modes in a co-regulated
system, then there exists a Lyapunov function of the form (21)
whose difference is negative definite as (22), thus prove the
stability of the co-regulated system.

For the finite-state, co-regulated system (14), we as-
sume (23) is satisfied for all i = 1, 2, ..., N and j =
1, 2, ..., N . Now we have a set of N2 inequalities.

For each i, multiply the j = 1, 2, ..., N inequalities by
⇠j(k+1) and sum, then we can get a result of N inequalities
indexed by i:
"

P [f1]
PN

j=1 ⇠j(k + 1) A[f1]T
PN

j=1 P [fj ]⇠j(k + 1)

A[f1]
PN

j=1 P [fj ]⇠j(k + 1)
PN

j=1 P [fj ]⇠j(k + 1)

#
> 0,

"
P [f2]

PN
j=1 ⇠j(k + 1) A[f2]T

PN
j=1 P [fj ]⇠j(k + 1)

A[f2]
PN

j=1 P [fj ]⇠j(k + 1)
PN

j=1 P [fj ]⇠j(k + 1)

#
> 0,

..."
P [fN ]

PN
j=1 ⇠j(k + 1) A[fN ]T

PN
j=1 P [fj ]⇠j(k + 1)

A[fN ]
PN

j=1 P [fj ]⇠j(k + 1)
PN

j=1 P [fj ]⇠j(k + 1)

#
> 0.

Then, multiply the resulting i = 1, 2, ..., N inequalities by
⇠i(k) and sum. The result can be denoted as:
" PN

i=1

PN
j=1 P [fi]⇠j(k + 1)⇠i(k)

PN
i=1

PN
j=1 A[fi]TP [fj ]⇠j(k + 1)⇠i(k)PN

i=1

PN
j=1 A[fi]P [fj ]⇠j(k + 1)⇠i(k)

PN
i=1

PN
j=1 P [fj ]⇠j(k + 1)⇠i(k)

#
> 0.

Since
PN

i=1 ⇠i(k) =
PN

j=1 ⇠j(k + 1) = 1, we get
" PN

i=1 P [fi]⇠i(k)
PN

i=1 A[fi]T ⇠i(k)
PN

j=1 P [fj ]⇠j(k + 1)PN
j=1 P [fj ]⇠j(k + 1)

PN
i=1 A[fi]⇠i(k)

PN
j=1 P [fj ]⇠j(k + 1)

#
> 0.

Based on the definition of the indicator function
in (18) (19) (20), we can rewrite the inequality as:

P (⇠(k)) AT (⇠(k))P (⇠(k + 1))
P (⇠(k + 1))A(⇠(k)) P (⇠(k + 1))

�
> 0,

which is equivalent by the Schur complement [43] to

Xp[k]
T (P (⇠(k))�AT (⇠(k))P (⇠(k+1))A(⇠(k)))Xp[k] > 0.

Then, 8Xp[k] 2 Rn

�V = V (Xp[k + 1])� V (Xp[k])

= �Xp[k]
T (P (⇠(k))�AT (⇠(k))P (⇠(k + 1))A(⇠(k)))Xp[k] < 0.

Thus the co-regulated system is asymptotically stable.
We mention that when P [fi] = P [fj ] for all fi, fj 2 ⌃, the

switched quadratic Lyapunov function becomes the CQLF.
The SQLF method is more flexible in some ways when

compared to CQLF method. A SQLF can be used to add
restrictions on switching trajectories, such that only stable
sequences are allowed. This can be achieved by identifying
all possible unstable switching sequences and remove the
corresponding unstable state switch from the LMI conditions.
As an example, if the switch between f1 and f10 is not stable
while all the other switches are stable, a CQLF to verify
system stability doesn’t exist. However, a SQLF with i = 1
and j = 10 excluded from Equation (23) can be found and
guarantee system stability. This allows us to avoid unstable
switches such as those that were found in our co-regulated
CubeSat system [12].

D. Minimum Dwelling Time
The CQLF and SQLF methods mentioned above pro-

vide sufficient conditions for the stability of finite-state,
co-regulated systems under arbitrary switching trajectories.
However, while the system may fail to preserve stability under
arbitrary switching of the discrete working modes, it may
be stable under restricted switching signals. Moreover, based
on the cyber controller design, a designer may have prior
knowledge about possible switching logic in the co-regulation
including restrictions on the switching signals. For example,
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there is likely certain bounds on the time intervals between
two successive switchings. This could result from the physics
of state trajectories that take finite, nonzero time traveling
from the initial set to certain guard sets [37]. Such a priori
knowledge about the switching signals can allow us to derive
stronger stability results for a given finite-state, co-regulated
system than in the arbitrary switching case where we use, by
necessity, worst case arguments.

The switching trajectories through a set of stable subsys-
tems may cause an unstable result because of the failure to
absorb the energy increase caused by switching [44], [45].
By studying the system characteristics when working under
different operating modes, we can add constraints to the cyber
controller to restrict the switching trajectories to the stability
guaranteed switching sequences. The method discussed in
this section focuses on the design of time domain restrictions
that can be applied to the cyber controller.

Intuitively, in the Minimum Dwell Time (MDT) strategy
for finite-state, co-regulated systems, we assume all of the
individual operating modes are stable, so that if the system
remains in a stable operating mode long enough and switches
less frequently one may trade off the energy increase caused
by switching and maintain stability [37].

Since for each fixed sampling rate, each discrete-time
closed loop system is stable, there exists a Lyapunov function
for each system satisfying

AT [fi]P [fi]A[fi]� P [fi] < 0; 8fi 2 ⌃. (24)

As an example, assume there are two different operating
states of the co-regulated system where the sampling rates
are f1 and f2, respectively. Define the system when working
in the operating mode at a sampling rate f1 as ⌃1, and
similarly define ⌃2 when the sampling rate is f2. Define two
positive definite matrices P [f1] > 0, P [f2] > 0, and assume
P [f1] > P [f2]. We construct a piecewise quadratic Lyapunov
function [46] V (Xp[k]) as

V (Xp[k]) =

(
Xp[k]TP [f1]Xp[k], when working at ⌃1

Xp[k]TP [f2]Xp[k], when working at ⌃2.
(25)

Since each mode of the co-regulated system is stable, the
Lyapunov function (25) decreases while staying at one
operating mode. However, when switching from one operating
mode to another, the Lyapunov function might increase [46].
Therefore, to guarantee the overall decrease of the Lyapunov
function, the system must remain sufficiently long either with
⌃1 before switching to ⌃2 or with ⌃2 before switching to
⌃1. In this example, since we assume P [f1] > P [f2], the
Lyapunov function V (Xp[k]) decreases when switching from
⌃1 to ⌃2, whereas the Lyapunov function increases when
switching from ⌃2 to ⌃1, which can lead to instability.

As illustrated in [46], to guarantee stability, the system
should either stay in ⌃2 for at least m sampling intervals
before switching or stay in ⌃1 for at least n sampling intervals
after switching. In both cases, the decrease in energy along the
Lyapunov function during the dwell time in either operating
mode is larger than the increase caused by the switch from ⌃2

to ⌃1. Thus, the decrease of the overall piecewise Lyapunov
function is ensured resulting in a stable response. We describe
this more succinctly in Theorem 4.

Theorem 4: For the finite-state, co-regulated system (14),
the switching between any two operating modes, 8fi, fj 2 ⌃,
is stable if the operating mode at fi is active for at least n
cycles or the operating mode at fj is active for at least m
cycles. The numbers, m and n, are positive integers satisfying

(A[fi]
n)TP [fi]A[fi]

n � P [fj ] < 0 (26)
(A[fj ]

m)TP [fi]A[fj ]
m � P [fj ] < 0, (27)

where P [fi] and P [fj ] are positive definite symmetric
matrices satisfying

AT [fi]P [fi]A[fi]� P [fi] < 0,

AT [fj ]P [fj ]A[fj ]� P [fj ] < 0.

Here we define the fi as the lower sampling rate, so P [fi] >
P [fj ].

Proof: We construct a piecewise quadratic Lyapunov
function as (25):

V (Xp[k]) =

(
Xp[k]TP [fi]Xp[k], when f = fi
Xp[k]TP [fj ]Xp[k], when f = fj .

(28)

When switching from fi to fj ,
�V (Xp[k]) = V (Xp[k + 1])� V (Xp[k])

= Xp[k]
T (P [fi]� P [fj ])Xp[k].

Since P [fi] > P [fj ], �V (Xp[k]) < 0, and the system is
stable.

When switching from fj to fi, we check the value change
of the Lyapunov function (25) before and after the switching
process. There are two approaches based on the conditions
in (26) and (27).

Approach 1: If the system stays in operating mode at fi
for n cycles after switching,
�V (Xp[k]) = V (Xp[k + n+ 1])� V (Xp[k])

= Xp[k]
T ((A[fi]

n)TP [fi]A[fi]
n)Xp[k]�Xp[k]

TP [fj ]Xp[k]

= Xp[k]
T ((A[fi]

n)TP [fi]A[fi]
n � P [fj ])Xp[k].

If the condition in (26) holds, �V (Xp[k]) < 0, and the
system is stable.

Approach 2: If the system stays in operating mode at fj
for m cycles before switching,
�V (Xp[k]) = V (Xp[k + 1])� V (Xp[k �m])

= Xp[k �m]T ((A[fj ]
m)TP [fi]A[fj ]

m)Xp[k �m]�Xp[k �m]TP [fj ]Xp[k �m]

= Xp[k �m]T ((A[fj ]
m)TP [fi]A[fj ]

m � P [fj ])Xp[k �m].

If the condition in (27) holds, �V (Xp[k]) < 0, and the
system is stable.

The switching trajectory of the sampling rate is decided by
the cyber controller (9) of the co-regulated system. Sensible
restrictions based on Theorem 4 can be imposed to the
scheduling strategy to ensure the stability of each switch.
This approach can be applied to the finite-state, co-regulated
system by calculating the MDT constraints for each possible
switching sequence. For example, suppose that the sampling
rates are given as in Equation (4). And P [fN ] is associated
with fN which is the fastest sampling rate. Then the MDT
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for all other system sampling rates that can guarantee the
stable switching with fN can be calculated as follows: for
all fi 2 ⌃, solve iteratively for each mi which satisfies

(A[fi]
mi)TPfNA[fi]

mi � Pfi < 0. (29)

By solving the LMIs, we obtain mi for each operating
mode which can then be included as limitations on the cyber
controller or real-time scheduler. The corresponding minimum
dwelling times for each possible sampling rate, fi, are given
by mi/fi. Then the stability of the holistic system is guaranteed
when switching among sampling rates, fi.

IV. DISCUSSION

Based on the stability analysis in Section III we present a
general discussion about the application of these methods to
the stability analysis for finite-state, co-regulated systems.

For finite-state, co-regulated systems with no restrictions
on the switching trajectories among operating modes, the
existence of CQLF or SQLF can provide a guarantee of
system stability for arbitrary switching sequences. The LMI
based approach in Theorem 1 and the Lie algebraic approach
in Theorem 2 provide two different ways to check the
existence of CQLF. The CQLF method has the lowest
computational complexity compared with other conditions in
this paper, and hence should be tried first. For a co-regulated
system with N operating modes, we can check the existence
of CQLF by looking for a combined solution from N LMIs
or by checking the Lie algebraic solvability of N matrices.

When compared with the CQLF-based method, the SQLF-
based method in Theorem 3 is more computationally complex.
For a co-regulated system with N operating modes, we need
to look for a combined solution from N2 LMIs to check the
existence of SQLF. However, the existence of SQLF is a less
conservative condition for finite-state, co-regulated system
stability analysis. It could be used as an additional method
to check system stability when there does not exist a CQLF
for the system. The benefit of these strategies is that the
finite-state, co-regulated system can be will be proved to be
asymptotically stable under arbitrary switching trajectories
if any of Theorems 1, 2, or 3 is satisfied.

If the system fails to preserve stability under arbitrary
switching, we may still preserve stability under restricted
switching sequences. If appropriate timing limitations can
be added to the cyber controller, the MDT condtions in
Theorem 4 should be followed to find constraints for the
cyber controller. In that case the minimum dwelling time for
each operating mode under each possible switching sequence
can be calculated, and system stability is guaranteed.

A. Stability of Multicopter UAS

We used the stability criteria presented in this paper to
verify stability of our co-regulated multicopter UAS [14]. The
system state consists of the vehicle’s position X̃p = (x, y, z)T ,
orientation in roll (�), pitch (✓), and yaw ( ) angles, velocity
in R3, and angular rate of change in roll, pitch, and yaw,

Xp =
⇣
x, y, z,�, ✓, , ẋ, ẏ, ż, �̇, ✓̇,  ̇

⌘T
.

The input vector, Up, consists of independent torques in roll
(⌧�), pitch (⌧✓), and yaw (⌧ ), and a net thrust (N )

Up = (⌧�, ⌧✓, ⌧ , N)T .

The physical system model, corresponding to (2), is Ẋp =
ApXp +BpUp where

Ap =

2

66664

06⇥6 I6⇥6

0 g 0 �Dx
m 0 0

03⇥3 �g 0 0 0 �Dy

m 0 03⇥3

0 0 0 0 0 �Dz
m

03⇥6 03⇥6

3

77775

Bp =

2

66664

08⇥4

0 0 0 1/m
I�1
xx 0 0 0
0 I�1

yy 0 0
0 0 I�1

zz 0

3

77775

and m and g are the mass of the vehicle and acceleration due
to gravity, Dx, Dy , and Dz are the coefficients of drag force
acting in each of the coordinate axes, and Ixx, Iyy and Izz
are the inertial moments of the multicopter’s body about the
pitch, roll and yaw axis respectively. The cyber system model
is the same as (3). The GSDLQR controller is designed as
shown in Table I and the cyber controller is designed as
in (9). We have verified that this co-regulated system satisfies
the CQLF and SQLF criteria in Theorems 1, 2, and 3. The
satisfaction of either theorem can guarantee the stability of
the finite-state, co-regulated system.

V. CONCLUSION

In this paper, we provide four methods for assessing
stability of a subclass of co-regulated systems – finite-state,
co-regulated systems. First, a common quadratic Lyapunov
function method can be used to check system stability under
arbitrary switchings. Second, a condition based on the Lie
algebraic solvability of the state matrices group is introduced
as an alternative stability criteria. Then, a switched quadratic
Lyapunov function criteria is introduced as a less conservative
method to evaluate stability while providing its potential value
in designing state space restrictions for the cyber controller
to guarantee system stability. Finally, a minimum dwelling
time method is presented to add time domain restrictions to
the cyber controller to achieve stable switching trajectories
if the previous tests fail. The two Lyapunov based methods
were used to conclude asymptotic stability of the finite-state,
co-regulated multicopter UAS system presented in [14].

This work lays the foundation for the penultimate goal of
providing a complete analytical framework for co-regulated
systems described by Equations (1). Future work will focus on
a framework for system stability analysis for the infinite-state,
co-regulated systems where the sampling rates are continu-
ously changing. A more complete analytical framework will
lead to control synthesis strategies allowing designers to more
readily apply co-regulation strategies.
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