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Abstract— We study the problem of information sampling
of an ambient phenomenon using a group of mobile robots.
Autonomous robots are being deployed for various applications
such as precision agriculture, search-and-rescue, among others.
These robots are usually equipped with sensors and tasked with
collecting maximal information for further data processing and
decision making. The studied problem is proved to be NP-Hard
in the literature. To solve the stated problem approximately, we
employ a multi-agent deep reinforcement learning framework
and use the concepts of mean field games to potentially scale
the solution to larger multi-robot systems. Simulation results
show that our presented technique easily scales to 10 robots in
a 19 x 19 grid environment, while consistently sampling useful
information.

I. INTRODUCTION

Exploring an unknown environment for sampling infor-
mation about an ambient phenomenon is a fundamental task
of a multi-robot system. This has numerous potential real-
world applications including search-and-rescue, monitoring,
precision agriculture, among others. Robots equipped with
sensors can be deployed to collect useful information (e.g.,
images, videos) and communicate back to a base station
for future decision making [3]. However, such information
collection using a multi-robot system in an optimal fashion is
proved to be an NP-Hard problem [6]. On the other hand, if
multiple mobile robots are deployed, they need to effectively
coordinate among each other to collect non-redundant infor-
mation. Researchers in this domain have mostly modeled the
underlying information via Gaussian Processes (GPs) and
posed the maximal information collection objective as an
entropy maximization problem [3], [9], [12], [14], [16].

Learning the model of a singular ambient phenomenon
using multiple entities poses its own set of challenges, includ-
ing joint action learning for intelligent coordination among
the robots while ensuring non-redundant path planning. To
this end, we propose a novel multi-agent reinforcement learn-
ing framework where each robot learns its best local actions
using a deep recurrent neural network [4] and an intelligent
coordination strategy among the agents is developed using
Mean Field games [19], a game theoretical concept. Joint
multi-agent reinforcement learning, similar to our problem
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setting, is shown to lack scalability as it aims to learn the
best joint-action of all the involved agents [2]. Combined
with the fact that multi-robot information collection itself is
computationally intractable, most existing solutions either do
not scale well with the number robots or employ greedy-like
techniques that may not realize enough value of cooperation.
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The key idea in a Mean Field game (MFG) is to forego
learning as a function of all other robots’ actions, learning
rather as a function of the mean action of all other robots.
In effect, the n-agent learning problem reduces to a 2-robot
learning scenario, making it highly scalable, but the exact
details of this reduction can impact whether the resulting
strategy remains effective. Our proposed solution uses the
MFG ideas along with a Recurrent Neural Network (RNN)
for effective multi-robot information sampling. An overview
of the proposed system is shown in Fig. 1. Results show
that the presented technique consistently outperforms other
existing sampling solutions in terms of collected information,
while not requiring the robots to run compute-intensive
prediction algorithms on-board during deployment.

This paper’s contributions are summarized as follows:

o The first work to use the ideas of multi-agent learning
and mean field reinforcement learning for multi-robot
informative path planning.

e The first work to integrate recurrent neural networks
with mean-field reinforcement learning, although convo-
lutional neural neural networks and mean field learning
have been recently considered [19].

o Numerical results that show our proposed strategy easily
scales up to 10 robots, while yielding higher reward than



comparable techniques.

II. RELATED WORK

Although multi-robot path planning has been studied for
decades, only recently have researchers looked into a more
applied variant—multi-robot informative sampling. The ear-
liest work is due to [11], which proposed a branch-and-
bound solution for multi-robot informative path planning
under limited budget constraints. It is an offline approach,
meaning the robots commit to the paths before making
any actual observations. This is possible due to the non-
adaptive nature of their optimization metric. The authors used
a Gaussian Process to model the underlying phenomenon.
Online, adaptive and decentralized solutions have also been
proposed: in [14], the authors have accounted for noisy
sensors and the robots sample the same location multiple
times to learn the noise model, while in [15] the authors
have used a wind field model to test the proposed approach.
Dutta et al. have proposed a solution for online informative
path planning with a continuous connectivity constraint i.e.,
the robots have to be within each other’s communication
ranges throughout exploration [3]. A similar study appears in
[5] except that robots are constrained to regain connectivity
only periodically, otherwise free to explore individually.

Recently, Wei and Zheng [17] have presented a reinforce-
ment learning technique for informative sampling with a sin-
gle robot. Our paper extends this reinforcement learning idea
to n robots, also using the game-theoretic concepts of mean
field games (MFGs) [7] to permit larger n. Mayya et al. used
mean field approximations to model inter-robot collisions
as sources of information [10]. Our paper uses mean field
approximations to model multi-agent reinforcement learning,
inspired by the approach taken in [19] albeit their reward
function does not express informative sampling objectives.
Finally, Li et al. [8] used MFG to maximize driver efficiency
in ride-share dispatching by a deep-() actor-critic system.
The mean field force is called the “average response” in this
case and is the ratio of agents/orders in a locale centered on
the agent. The mean field was not used in online planning,
but was used in the training of the centralized critic network.

III. PROBLEM SETUP

We have a set of n mobile robots R = {ry,---,r,}
exploring a polygonal environment E' to collect information.
As detailed further in Subsection III-A, the environmental
information is modeled over a finite set of discrete Points
Of Interest (POIs). The POIs (as vertices) induces a physical
movement graph G, = {POIs,e, w}, where e represents
the edges (logical routes among the POIs) and w repre-
sents the edge weights (travel distances among the POIs).
Specifically, from any POI v, graph G, implies the available
action set A(v) of movement directions by which the robot
traverses to a neighboring POI—if POIs lie on a grid, for
example, then action set A(v) specializes to the cardinal
directions. The robots start exploration from unique locations
S = {s1,---,sn} C POIs, each ending its exploration
upon expiring a given budget B (e.g., bound on total travel

distance). Let P; denote the path (i.e., ordered set of vertices
in POIs starting from s;) followed by robot r; such that
cost(P;) < B, where cost is calculated as the sum of the
edge weights in G, along path P;. As detailed further in Sub-
section III-B, during exploration the robots make movement
choices sequentially with time. The associated opportunities
for a robot r; to coordinate subsequent exploration with other
robots R_; = R\r; will be featured in Section IV.

A. Environmental Information as a Gaussian Process

The environment’s information is modeled using a Gaus-
sian Process (GP), which associates to the collection loca-
tions (POIs) a Gaussian random vector Z having covariance
matrix > (and zero mean). Its (differential) entropy, a volu-
metric measure of the prior uncertainty, is given by

H(Z) = %log |2] + |PC2)71S| (1+1log(2m))

where |POlIs| denotes set cardinality but |X| denotes matrix
determinant. We assume each robot’s sensing process (e.g.,
camera) exhibits negligible noise, so that merely moving to
any particular POI resolves all uncertainty in that location. It
follows that the POIs can always be partitioned into subsets
U and V, corresponding to locations that are unvisited and
visited, respectively. The Gaussian random vector ZU|V,
characterizing all uncollected information upon visiting lo-
cations V, has (posterior) covariance matrix

Suv = Zvu — SuvEpy Sve

in terms of prior statistics organized into the corresponding
block form with respect to U and V ie.,

5 Yvv Yuv
Svu Xyv |’
The implied posterior entropy is
1]
2
and, in turn, the reduction of uncertainty in the uncollected

information Zy due to the collected information Zy is
measured by their mutual information

1
H(Zyv) = 5 log [Sy v | + (1+log(2m))

I(Zy;Zv) = H(Zv) — H(Zyv) = 1log ( Py ) (D
2 1S vl

It should be noted that the above information model
captures two alternative objectives that are common in the
informative sampling literature. The objective to decrease
overall uncertainty involves choosing visited points V' such
that the posterior entropy H(Zgy) is maximized. On the
other hand, the objective to inform predictions of uncollected
information is achieved by maximizing mutual information
I(Zy; Zy), which also involves leaving unvisited points U
that are highly uncertain to begin with (as quantified by
H(Zy), the marginal prior entropy). However, the above
model does not explicitly capture the common objective of
optimal prediction in the minimum root-mean-square-error
sense, which is given by the posterior mean and depends
upon the observations realized online. This is because the



informative sampling problem formulated in Section IV is an
offline learning approach, optimizing with respect to the GP’s
ensemble of realizations, not just one specific realization.
A final remark concerns the determinant being an ex-
pensive computation, scaling roughly cubically with matrix
dimensions. It is common (e.g., in kernel-based parametriza-
tions of the GP) that there are dimishing correlations among
POIs as the distance between them grows. This induces a
diagnonally-dominant covariance matrix and, in turn, moti-
vates approximation of its determinant by the product of the
per-POI variances 0%,03,03, ... along its diagonal e.g.,

Ul

> log(ar)
u=1

The approximation is, in fact, an upper bound on the true
determinant (via Hadamard’s inequality), achieving equality
if and only if the GP’s covariance matrix is truly diagonal.

log [Xyy| =~

B. Informative Sampling as a Dynamic Program

Given the physical movement graph G, and starting
locations S of the robots, denote by P;(s;; B) for robot
r; the set of all paths in G, that are admissible (i.e., start
from location s; and respect the budget cost(P) < B). In
turn, denote by P(S; B) = P1(s1;B) X - - X Pp(sy; B) the
set of all admissible multi-robot plans, takmg for granted
online collision avoidance (and inter-robot coordination)
when multiple robots are simultaneously commanded to the
same location. Observe that any path P; in P;(s;; B) implies
a subset of visited locations V' (P;) C POIs. In turn, any plan
P in P(S;B) implies the corresponding subset V(P) =
U,V (P;), leaving U(P) = POIs\V(P) as the subset of
unvisited locations. Now, also appealing specifically to Eq. 1,
our multi-robot informative sampling problem is stated as

P*=arg max I(Zyp);Zv(p)) (2)

PecP(S;B)

The problem cannot be solved as stated, of course, due to
the enormous cardinality of the plan set P(S; B), especially
as the number of robots n gets large. The approximate
solution we describe in Section IV starts by casting Eq. 2 into
its sequential counterpart, invoking the theory of discrete-
time dynamic programming. Specifically, let state x(¢) de-
note the plan as followed by the robots up until timestep
t, the associated set of visited cells denoted by V(x(t)),
and let a(t) denote the joint action the robots next take.
Observe that the component state x;(¢) implies robot r;’s
current location, call it v;, from which the movement graph
G, implies its admissible actions A(v;) and, in turn, upon
taking any such action a; € A(v;) the subsequent location
V(a;). The set of admissible joint actions is then expressed
by A(x(t)) = A(v1) x --- x A(v,), where for each such
joint action a = (aq,as,...,a,) the associated subsequent
locations are denoted by V' (a) = U,V (a;). It follows that
Vx(t+ 1) = V(x(t)) U V(a(t )) comprises the visited
locations up until timestep ¢ + 1, leaving unvisited locations
U(x(t + 1)) = POIs\V(x(t + 1)). Altogether, there then

exists a function QF (x(¢),a(t)) by which
a*(t) = arg  max

ax Qi ().

because (i) the state evolution constraint is iterative over
time, where the per-stage system equation is specifically
the form of x(t + 1) = F(x(t),a(t)), and (ii) the mutual
information objective in Eq. 1 decomposes additively over
time, where the per-stage reward equation is specifically

a) 3)

G(x(t),a(t)) = I (Zux@+1)v ) Lviam)v ) -
4

While the optimal Q-function in Eq. 3 is known to obey
a certain recursion (involving per-stage equations F' and
G), its computation scales exponentially with the number
of timesteps and robots, prohibiting its application here.

IV. INFORMATIVE SAMPLING VIA MEAN FIELD
REINFORCEMENT LEARNING

Because our reward function (i.e., mutual information
Eq. 4) depends only on the environment’s statistics (e.g., the
covariance matrix), it can be calculated offfine, or without
making the robots explore the environment in reality [6],
[17]. In a single-robot setting, the sequential counterpart
to the offline informative sampling problem of Eq. 2 can
be expressed as a(t) = argmaxg,ea(a, ) Qf (7i(t), a;).
However, in a multi-robot scenario, a robot r;’s learning
will be affected not only by its own actions a; but also the
actions of the other robots R_;. For example, if the robots
are too close, they will miss exploring a major portion of
the environment. On the other hand, if they are too far (e.g.,
exploring along the opposite boundaries), the uncertainty
in the middle would be too high. Hence, we pose it as
a multi-agent reinforcement learning problem, where each
robot learns from its own as well as other robots’ actions
and seeks a policy that maximizes the joint reward.

A. Mean Field Game Formulation

Modeling the information collection problem as a multi-
agent learning scenario still faces the challenge that the joint
action set a grows exponentially with n, the number of
robots. In turn, it quickly becomes intractable to learn using
the standard @Q-function presented in Eq. 3. To this end, we
use the concepts of mean field games [13], [19] to reduce
the problem to pairwise action learning as follows:

Q; (x(1), ZQ

rjER]

),aia—;),  (5)

7’L

where a_; denotes the mean action taken by the robots r; €
R_,. This pairwise approximation can be used while reduc-
ing the complexity of joint-action learning significantly [1],
[19], where all other robots’ actions are similarly averaged:

a; = ‘R ; > 6)
ri€R_;

Each robot r; stores a vector of all the past mean actions
(a_;) calculated from the actions of other robots in R_;. In
other words, this pairwise QQ-function helps each robot r; to



learn the best action based on the virtual mean agent that is
abstracted by the mean effect of all the robots in R_;. Then,
each robot’s local pairwise (Q-function, called the mean field
Q-function, is updated recursively from the training episodes
as in classical @Q-learning:

Qi (x(t+1),ai,a-) = (1 — a)Qj(x(t), as, a;)+
a(G(x(t),a(t)) + v max Qy(x(t +1),a5,a";) (7)
where o and ~y represent the learning rate and the discount
factor, respectively; refer to [19] for more details.

B. Deep Q-Learning Implementation

Due to the recent advancement in the field of deep
learning and consequently deep reinforcement learning, the
Q-function (Eq. 5) can be approximated using a deep neural
network — a function approximator. As the robots’ future
locations for exploration depend on the visited locations in
the environment so far, each robot uses a Recurrent Neural
Network (RNN) [4] instead of a traditional Convolutional
Neural Network (CNN) such as used in [19]. RNNs have
been shown to be useful specifically for sequential data
sets, such as the robots’ (mean) actions in our setting. We
have used a hyperbolic tangent activation function (tanh).
The following notations are adopted from [4], [18]. Let !
and y' denote the input and output at timestep t. Let h?
denote the hidden state of the network at timestep ¢ and it
is defined as follows: tanh(b + Wh!~! + Uz!). The output
then is defined as y* = ¢ + Vh!, where b and c are the
bias vectors and W,V, and U denote the weight matrices.
Output y* can be probabilities in a normalized form, for
example. In our setting, the output is a probability vector
of performing discrete actions. We use Long Short Term
Memory (LSTM) networks as our RNN architecture. These
networks are mostly useful for remembering long history of
data. The main idea is to maintain a cell state—data addition
or deletion to which is regularized by a gate. The input  to
the robots’ RNNSs is a tuple containing their locations and the
mean actions of the neighboring robots, a_;. The output of
a robot’s RNN is a length-|A| vector, each element holding
the probabilities of taking actions in timestep (¢ + 1).

The pseudocode of the process is given in Algorithm 1.
In each episode of the exploration process, a robot finds a
B-length path. In every timestep of the episode, each robot
predicts the sensor measurements in the unvisited POIs U.
Based on this prediction, they decide the rewards for all the
neighbor POls, i.e., the POIs that they share edges with in
G,. If the prospective POIs are already visited by any of the
robots previously, including the robots’ current locations, we
assign zeros as rewards; otherwise the corresponding mutual
information values are calculated (Eq. 4). The robots use
a e-greedy policy to explore the environment. Once every
robot takes an action and move to the next POI to collect
information, the actions are shared with other robots R_;.
Next, the mean action of the robots in R_; is calculated and
stored in a tuple to be used as an input to the RNN.

The state transition tuples, i.e., the experiences, are
stored in a memory buffer D = {ej,es, - e},
namely a priority memory replay, where e is a tuple
(x(t),a(t), G(x(t),a(t)),x(t+1)). Batches from D are sam-
pled to update the network parameters at the end of every
episode. While training the network, a random batch of
episodes are selected and the experiences generated from
those episodes are used to update the @* function with
gradient decent-based optimization with mean square error
acting as the loss function as follows:

ﬁ({xlaxzv T 7$t}a {y17y27 T 7yt}a0) =
Ex(t)a,cx(t+ 1)~y — Q*(x(t),a(t)),0)%],
where we collectively denote the weights and biases in the

network with 6. The episode yielding the highest reward is
stored as the final solution.

Algorithm 1: Mean Field Reinforcement Learning
for Multi-Robot Information Sampling

Input : R <A set of robots; B +Budget; D + 0;
1 for each episode do

2 Episode experience list e < (;

3 Initialize robots’ starting locations S

4 while B > 1 do

5 for ; € R do

6 v; < Current location of 7;;

7 Initialize the robot’s current reward vector G;
8 for ai € A(v;) do

9 v, <— potential location of r; after

executing action ag;
10 if v; has been visited by a robot r; € R
then

11 | G+« 0;

12 else

13 | G « reward based on Eq. 4;

14 Decide action a; based on e-greedy policy;
15 Execute a;;

16 Update the current location to v; <+ V' (aj);
17 Compute the mean action a—; (Eq. 6);

18 Update the state x < (v;,a—;);

19 Update the experience tuple e;

20 B+ B-—1;
21 Store e in D;
22 Sample batch of previous episode experiences from D;
23 Update Q™ with loss £ and Adam optimizer;

V. EXPERIMENTAL STUDY

In this section we describe a series of experiments that
study the training cost and performance of our approach
compared with baselines. We consider n robots moving on
a rectangular grid. At every time step, a robot can move to
any of the 8 neighboring cells. The centers of the grid cells
are considered the nodes of the G),. For each exploration
episode the robots start at a random position and follow their
movement policy for the number of steps specified by the
energy budget B.



(a) Episode 46

Fig. 2. Three examples of the residual uncertainty the end of an exploration
episode. Left: proposed algorithm early in the training, center: proposed
algorithm after 4253 training episodes, right: the baseline SSPG algorithm.

The objective of the exploration is to reduce uncertainty
about the values of a scalar field mapped to the environment.
We represent the uncertainty in the form of a Gaussian
process, with observation points (POIs) located at the cells.
The uncertainty starts at a maximum value; whenever a
cell is visited, the uncertainty, indicated by the variance
of the Gaussian process, is reduced to zero. However, the
uncertainty also decreases at the nearby points by a factor
described by the squared exponential kernel ksg(c,c¢’) =

o2 exp (b |C§;2l|2 . The reward obtained by the robot(s) is

defined by Eq. 4. Figure 2 shows the residual uncertainty at
the end of exploration episodes for different algorithms.

A. Baselines

We compare our proposed method with two baselines:

Random Waypoint (RW): each robot moves towards an
independently selected random neighboring waypoint. For
this algorithm the robots do not need to communicate and
they also don’t need information about the Gaussian process
and its kernel size.

Shared State Predictive Greedy (SSPG): each robot
chooses the next action that maximizes the immediate re-
ward. The robot must have access to the Gaussian process
in real time and the Gaussian process must be updated after
every action taken by every robot. This requires extensive
communication between the robots or between the robots
and a centralized controller. Furthermore, SSPG requires the
robot to predict the values of the Gaussian function for each
possible action it can take.

In contrast to SSPG, our proposed approach does not re-
quire real time access to the Gaussian process. The Gaussian
process is only used for the calculations of the reward during
training and only for the actions actually performed.

B. Experiments

The first set of experiments investigate the scalability of
the proposed approach, for which a key contributor is the
computational cost of a training episode in a typical scenario
with a certain number of robots. Naturally, the training times
also vary as a function of the size and shape of the envi-
ronment and the energy budget of the robots; systems with
more robots are usually deployed in larger environments,
where the recalculation of the Gaussian Process adds to
the training cost. Figure 3 shows the measured per-episode

25
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Fig. 3. Per episode training time for typical environment configurations
with different number of robots. We find that the training cost is approxi-
mately linear with the number of robots.
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Fig. 4. The convergence of 7 different robots for budget percentage of 40.

training times on a Nvidia Tesla V100 PCle GPU with 16GB
of RAM. We find for typical configurations that the per-
episode computational cost increases approximately linearly
with the number of robots, a favorable scalability result.

An associated question is the number of episodes neces-
sary for the learning to converge. Figure 4 shows the reward
obtained per-robot after a given number of training episodes
on a scenario involving 7 robots and a budget of 40% of the
maximum. We find that the performance reaches a plateau
for all robots at approximately 1500 iterations. The reward
collected by the individual robots varies with as much as
50%, due to the initial location of the robots.

Finally, let us compare the performance of our algorithm
against the baseline algorithms RW and SSPG. Figure 5
compares the total reward obtained by the three algorithms
for two scenarios and a varying number of robots. We notice
that, in general, a larger number of robots leads to a larger
reward for all algorithms (although occasional variations
caused by the random starting locations are possible). We
also find that our algorithm outperforms the baselines for the
cases with more than three robots. For the case with 3 robots,
the SSPG algorithm narrowly outperforms our approach, at
the cost of maintaining a Gaussian process at test time.

Finally, we study the distribution of the collected reward
among the participating robots. In the scenario shown in
Figure 6, we find that for our algorithm there can an as
high as 2.5x variation between the reward collected by the
different robots. However, this variation is as high as 6x
for the SSPG algorithm, due to the myopic nature of greedy
trajectories. The random nature of RW, on the other hand,
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Fig. 6. Reward distribution for seven robots with a budget percentage 50.

creates a more uniform distribution but lower overall reward.
V1. CONCLUSION AND FUTURE WORK

We proposed a solution to the multi-robot information
sampling problem combining recent works in multi-agent
learning and mean field reinforcement learning. Multi-agent
learning problems are known to become especially challeng-
ing as the number of robots increases: our mean field ideas
essentially approximate the n-agent problem by a crafted 2-
agent problem. This 2-agent approximation is deliberately
formulated to be compatible with contemporary reinforce-
ment learning approaches, but the exact details of the reduc-
tion impact whether the resulting strategy remains effective
with respect to the original information sampling objectives:
our deep Q-learning implementation employs a recurrent
neural network with long-short-term-memory architecture,
leveraging state-of-the-art deep learning tools during training
via offline information collection simulations. The presented
experiments study the training cost and sampling quality of
our approach, where the results suggest (i) training times
scale approximately linearly with the number of robots and
(ii) the resulting strategy consistently achieves a higher
total reward than a random-waypoint baseline as well as a
less-volatile per-robot reward than a shared-state-predictive-

greedy baseline. Moreover, these performance comparisons
with the two baseline strategies are seen to become more
significant as the number of robots increases, consistent with
our original motivation to tackle larger-scale information
collection scenarios. Future work may consider expanded ex-
perimentation, including variable environmental parameters
(e.g., size, uncertainty) and training parameters (e.g., rate,
discount), as well as alternative mean-field reinforcement
learning approximations to the one analyzed here.
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