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Abstract— In a coordinated multi-robot information sam-
pling scenario, robots often share their collected information
with others for a better prediction. As with any other online
data sharing technique, data integrity is a concern, but it has
not yet been addressed in the multi-robot information sampling
literature. In this paper, we study how to secure the information
being shared among the robots in such a multi-robot network
against integrity attacks and what is the cost of integrating
such security techniques. To this end, we propose a Blockchain-
based information sharing protocol that helps the robots reject
fake data injection by a malicious entity. On the other hand,
optimal information sampling is a compute-intensive technique
and so are the popular Blockchain-based consensus protocols.
Therefore, we also study the impact of adding such a security
protocol on the execution time of the sampling algorithm,
which in turn effects the energy spent by the robots. Results
show that our proposed technique is effective against such data
tampering attempts while the effect of the added computation
varies largely on the consensus protocol used.

I. INTRODUCTION

In today’s era of automation, mobile robots are being
deployed for collecting meaningful information from an
environment. This has high practical relevance in precision
agriculture, search and rescue, monitoring, among others [6],
[10]. Such information collection helps human users to make
more informed decisions/actions. A single robot usually does
not have enough capabilities to complete all the relevant tasks
and, therefore, multiple low-cost robots are being used. This
poses additional challenges of coordination and communica-
tion. In this paper, we study such a multi-robot coordination
problem, namely multi-robot information sampling where
the objective is the following: Given n mobile robots and
a budget B, plan n B-length paths for the robots such that
the collected information is maximized [6], [7], [18], [24].
Each robot is equipped with an information collection sensor
(e.g., camera, radiation detector) and they sense information
along their paths. The plan is adaptive in a sense that past
observations made by the robot(s) affect the future decision
making about where to collect more information. In a multi-
robot system, a single robot’s future planning is not only
affected by its own past sensed data, but also the observations
made by the other robots. To plan such optimal paths is
proven to be NP-Hard and, therefore, greedy heuristics for
navigation are popularly employed [6], [10], [13], [26].
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Fig. 1. An instance of a data integrity attack, showing the observed data
and the corresponding IDs beside the nodes (with n = 4). The red circled
robot has been compromised and the malicious actor sends tampered data
to its neighbor robots (green circled) – the measured information in location
v1 is 12, but the communicated measurement (displayed on the edges) is
15.7. This, in turn, can lead to degraded future estimates of the underlying
information field. The uncompromised green robots broadcast their true
collected measurements, but its not shown for brevity.

Navigation planning aside, the multi-robot setting typically
assumes the observed data is shared among the robots,
which is vulnerable to cyber attacks. Such attacks can have
significant financial and ecological impacts [9]. For example,
in precision agriculture, farmers use robots’ collected data to
decide where to spray herbicides in the field to kill weeds.
However, if a malicious entity breaches the integrity of the
collected data, the farmers can use other physical systems
to spray herbicides on good crops and kill them instead
of the unwanted vegetation. The problem of multi-robot
information collection is under active study but, to the best
of our knowledge, how to formally maintain the integrity of
the collected information against adversarial influence (see
Fig. 1) has not yet been studied.

To this end, we propose a Blockchain-based secure
multi-robot information sampling framework that is resilient
against such data integrity attacks. We employ two popu-
lar Blockchain consensus protocols, namely Proof-of-Work
(PoW) and Proof-of-Stake (PoS), that help the robots to
make decisions based only on the untampered data [3],
[8], [11], [16]. The tampered data is detected using the
above-mentioned consensus protocols and removed from the
database. Integrating such Blockchain-based security proto-
col comes with a cost—the consensus protocols (especially
PoW) are known to be compute-intensive and in themselves
drain from the robots’ on-board power sources. We thus also
analyze the additional energy consumption implied by secure
sampling, assessing also the cost of our achieved resilience.



For information collection, we employ a popular greedy
strategy that is known to yield theoretically-bounded per-
formance [2], [6], [26]. However, it is worth noting that
our proposed security technique is generic in nature and
can easily be integrated with more sophisticated algorithmic
sampling approaches. We test our proposed framework in
simulation with up to ten robots and benchmarked the
results against an insecure baseline, where data integrity
attacks are not prevented. The results show that our proposed
technique is always able to detect malicious data received
from a compromised robot and then discard it. On the other
hand, the added time consumption by our secure variant is
significantly higher—up to 46.91 times using PoW.

In summary, this paper’s main contributions are:
1) To the best of our knowledge, the first work that studies

the secure multi-robot information sampling problem,
which is significant due to its sheer practical relevance.

2) A first integration of information sampling and
Blockchain-based security techniques, the latter using
two consensus protocols (PoW and PoS) and studying
via simulations the benefit and cost of each.

II. BACKGROUND

Mobile robots with on-board sensors (e.g., radiation de-
tectors, hyperspectral cameras) can be deployed to collect
information from an unknown environment. The robots visit
B “best” information collection locations such that a given
optimization criterion, (e.g., entropy or mutual information)
is maximized. In this paper, we employ a myopic greedy
entropy maximization technique for such sampling, which
has been shown in the literature to be efficient [2], [6], [13],
[26]. Such models often use a Gaussian Process regressor
to integrate the observations made by the different robots
into a shared model. In the face of model uncertainty,
Gaussian mixture-based coordination strategies have also
been proposed [7], [17]. In this paper, we assume complete
communication connectivity among the robots in this paper,
as illustrated in Fig. 1. Exploration while maintaining such
connectivity under limited communication ranges is studied
in [6], using a graph theoretic technique. For conflict-free,
multi-robot informative path planning, the authors in [18]
have used a bipartite matching-based technique while adapt-
ing it to handle the spatio-temporal dynamics. However, none
of these works study how exchanged data among the robots
might withstand data integrity attacks.

Recently, a collective decision making technique for a
multi-robot system using blockchains has been studied in
[25] albeit not for information sampling. The authors have
used Proof-of-Work (PoW) as their implemented consensus
protocol. PoW is used by popular crypto-currencies such
as Bitcoin and Ethereum [19]. However, it is known to be
resource-intensive [4], [5]. A quantification metric to mea-
sure the effect on the carbon cost of such crypto-currencies
is studied in [14]. Recently, a significantly less resource-
intensive consensus protocol, namely Proof-of-Stake (PoS),
has been introduced. Ethereum, the second most popular
crypto-currency, has announced that its second generation

(2.0) will shift from PoW to PoS for verification purposed
and, consequently, will consume a fraction (0.0001) of the
current energy1. While originating for transaction verification
in crypto-currencies, blockchain-based security techniques
are being employed in many other contexts e.g., vaccine
distribution, degree credentials, food trust, supply chain
management, among others2. A comprehensive survey on
consensus protocols for blockchain can be found in [22].

III. PROBLEM SETUP

We have a set of n robots R = r1, r2, · · · rn. The robots
are homogeneous, localized using a GPS, and move in a
shared environment. The environment is discretized into a
graph Gp = {V,E}, where the node set V represents the
information collection locations and the connections among
them are denoted by the edge set E. Each robot ri has its
unique sub-region for exploration, Vi, and Vi∩Vj = ∅. Vi can
be calculated in a pre-processing stage by applying Voronoi
partitioning [27] or K-medoids clustering [12]. W.l.o.g., we
assume that ∪ni=1Vi = V . The action set of the robots is
denoted by A. For example, in a 8-connected grid Gp, A will
hold the motor commands to move to all the eight neighbors.
ri is equipped with an on-board sensor using which it can
sense and collect information (e.g., radiation detector). The
robots’ observations are modeled to be noisy. A robot ri
starts from a node v0i ∈ Vi. We assume that a robot ri can
communicate with rj , ∀rj ∈ R \ ri after collecting data at
any node, i.e., the robots maintain a continuous connectivity
throughout the exploration [1]. The algorithmic details of
maintaining such a network is out of scope for this work; an
example of techniques that can be used are the ones proposed
in [6]. The robots are sensing an ambient phenomenon Z that
varies with the location, with Z(v0i ) being the (scalar real)
value at node v0i .

A. Prediction via Gaussian Processes (GPs)

We use a Gaussian Process (GP) to model the uncertain
environment. Let X denote a Gaussian random vector of
length |V | with prior mean vector µ and covariance matrix
Σ, where µ and Σ represent the prediction in node set
V and its corresponding uncertainty, respectively [21]. The
volumetric measure of this uncertainty is calculated by an
information theoretic metric, (differential) entropy, which is
formally defined as H(X) = 1

2 log |Σ|+ |V |
2 log(2πe). Each

robot starts with a common initial GP model, GP 0, and
then takes measurement Z(v0i ) at the start node v0i ∈ V .
We assume the measurements are subject to additive white
Gaussian noise ε ∈ N (0, σ). The updated local GP, GPi, for
robot ri is then given by the posterior statistics:
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where C
(
v0i
)

denotes the length-|V | row vector of all zeros
except for a one in component v0i and C

(
v0i
)′

is its matrix
transpose. The reader is referred to [7] for more details.

It is a standard assumption in kernel-based parametriza-
tions of GPs that the the correlation between two nodes are
inversely proportional to the distances between them [7],
[13], [21]. We exploit this property when computing en-
tropy by approximating the computationally intensive matrix
determinant |Σ| by the product of the per-node variances
(σ2

v) along the diagonal of Σ. In turn, the associated entropy
H(X) decomposes additively across the nodes, each per-
node term (H(Xv)) given by

H(Xv) =
1

2
log

(
2πeσ2

v

)
. (2)

The next section utilizes these per-node entropies to drive
the robots to opportune locations for information collection.

IV. ALGORITHMS

In the following we present our method that modifies the
type of algorithms described in [6], [26] to provide resilience
against the insertion of false data into the information model.
In algorithms such as these, where the path of the robots is
driven by the information model, fake data inserted in the
model will send the robots to incorrect paths. For instance, an
opponent can insert data to change the GP to high confidence
about a given area, preventing the robots to explore it.
The protection against fake data must be implemented at
data collection time, because even if the fake information
is discovered at the post-processing step, the damage had
already been done in form of suboptimal paths.

The pseudo-code of our approach is presented in Algo-
rithm 1. Before deployment, each robot is given training data
D to initialize its local GP model GPi and, consequently,
the corresponding prior statistics are calculated. After the
measurement is complete in the initial location and GPi is
updated according as described in Section III-A, each robot
calculates the per-node entropies using Eq. 2 and updates
the rewards. In a greedy and deterministic step, robot ri will
choose to move next to the node v∗i which maximizes the
entropy among its neighboring locations, i.e.,

v∗i = arg max
v∈neigh(v0

i )
H(v|D ∪ Z(v0i )), s.t. v ∈ Vi (3)

After a sense-and-move step, the robots share their obser-
vation with all the other robots. Because the robots are
exploring their own unique sub-regions in the environment,
the observations are non-overlapping. The robots add the
newly received data points to their local GP models, evolv-
ing the associated statistics accordingly. This <move-sense-
communicate-estimate> cycle continues until their allocated
budget runs out. Such greedy strategies were proven to
be effective approximations given the NP-Hardness of the
studied problem [2], [13], [24].

When sharing their sensed information, the robots are vul-
nerable to cyber attacks such as data integrity attacks, denial
of service and radio frequency jamming [9], [15]. In this

Algorithm 1: Secure Multi-robot Information Sam-
pling

Input: Vi ← A region assigned to ri ∈ R to explore;
v0i ← Starting location of robot ri s.t. v0i ∈ Vi, ∀ri ∈ R;
D ← Initial training data provided to all ri ∈ R;
Ci ← ri’s local blockchain;

1 /* ri follows a <move-sense-communicate-estimate> cycle
*/

2 Each robot 1) begins with the same prior GP learned from
D, 2) updates GPi with v0i , and 3) predicts per-node
entropies;

3 v∗i ← Choose the next location to move to using Eq. 3;
4 while B > 0 do
5 Move to the next node v∗i and Sense information in v∗i ;
6 Broadcast v∗i and Z(v∗i );
7 {Ṽ ∗, Z̃} ← receive similar information from

∀rj ∈ R \ ri;
8 Secure. Decide to add {Ṽ ∗, Z̃} to Ci or not based on

either PoW (Algo. 2) or PoS (Algo. 3) technique;
9 Estimate. update GPi with the new data in Ci (Eq. 1)

and update the entropies (Eq. 2);
10 Select v∗i based on the updated entropies;

paper, we focus on data integrity attacks with an attack model
that assumes a malicious entity periodically broadcasting
falsified measurements along the visited locations. In order
to protect the shared data against such malicious attacks,
permitting the uncompromised nodes to reject that data in
further decision making, we employ a Blockchain-based data
security technique. Blockchain is a tamper-resistant digital
ledger that the robots maintain in a distributed fashion. In a
blockchain the data is stored in discrete units, called blocks,
that are linked (chained) to each other by having the hash of
one block be part of the data of the next block. What a block
contains depends upon the application. In our formulation,
each robot maintains a local blockchain Ci. Each block in
Ci hold the following data: < D, τ, idx,N, Hlast >, where
D denotes the data collected in that round, τ indicates the
timestamp, idx is the index of this particular block in Ci,
N is a special number called nonce, and Hlast represents
the previous block’s hash. At the beginning, Ci is initialized
with a genesis block (bg) [20]—the first block—which is not
hashed and does not contain any collected information data
D. The main advantage of using Blockchain to prevent data
integrity attacks is its chained architecture—if an attacker
successfully modifies the data in the block bidx, then its
corresponding hash will also change and, consequently, it
will not match the Hlast hash stored in the block bidx+1,
and so on.

A. Consensus Protocol: Proof-of-Work

After a robot measures information Z(v∗i ) at location v∗i ,
it puts Z(v∗i ) and v∗i into a data structure D and creates a
block for its local blockchain Ci along with the other relevant
data as mentioned above. Initially, the robot sets the nonce
N to 0 and finds the hash of the entire block, H(bidx). One
such hash function is SHA256. If the resulting hash does
not match the appropriate difficulty d(·), i.e., have enough



Algorithm 2: Multi-robot Proof-of-Work (PoW)
Consensus Protocol

Input: Ci ← ri’s local blockchain;
Crj ← received blockchain from rj ;

1 if len(Crj ) > len(Ci) AND CHECKCHAINVALIDITY()
then

2 Ci ← Crj ;

3 Procedure checkChainValidity()
4 H(bidx)← hash of block bidx;
5 Hlast(bidx)← hash of the previous block bidx−1

stored in bidx;
6 for each block b ∈ Crj do
7 if ISVALIDBLOCK(bidx) is false OR

Hlast(bidx) 6= H(bidx−1) then
8 return false

9 return true

10 Procedure isValidBlock()
11 d(bidx)← difficulty of block;
12 dmin ← minimum valid difficulty;
13 if d(bidx) ≤ dmin then
14 return true
15 else
16 return false

Algorithm 3: Multi-robot Proof-of-Stake (PoS) Con-
sensus Protocol

Input: Ci ← ri’s local blockchain;
K ← A set of n public keys for n robots;
mi ← ∅;

1 e← e+ 1;
2 Cli ← Subset of Ci for committee selection;
3 mi ← Decide committee members from Cli;
4 Broadcast mi;
5 Receive mj , ∀rj ∈ R \ ri;
6 Verify that received mj’s match mi;
7 if ri ∈ mi then
8 pi ← Decide the block proposer for this epoch;
9 Broadcast pi;

10 Receive pj , ∀rj ∈ R \ ri;
11 Verify that pj’s match pi;
12 else
13 wait;

14 if ri is the block proposer then
15 Create a new block c and append it to Ci;
16 Broadcast Ci;
17 else
18 Receive C from p;
19 if CHECKCHAINVALIDITY() (Algo. 2) then
20 Accept the received C and overwrite Ci;
21 else
22 Reject it and keep Ci;

leading zeros, the nonce is increased by one and a new
hash is calculated. This continues until the resulting hash
has the appropriate number (selected by the user) of leading
zeros. This process is known as mining. The coordination and
the corresponding block verification happens in a sequence.
We generate a random order of the robots to emulate mea-

surement and/or communication lag. Next, the robots, in the
generated order, create a block with the newly observed data,
mine it, and place it in its local blockchain. Thereafter the
robot sends the block to its neighbors. The process repeats
until each robot has had a turn, and the end result is that each
robot is left with a blockchain that contains every robot’s
new data, plus the original data that existed before the robots
began communicating (lines 1− 3 in Algorithm 2).

While finding the proper nonce is time-consuming, ver-
ification is quick and easy, with robots simply taking the
given nonce and calculating the hash for themselves. Because
our adversary is assumed to be unaware of the blockchain,
its false data is detected simply via the efficient check that
the received block shows no signs of proof-of-work i.e.,
the difficulty of the hash is lower than the minimum target
difficulty dmin and so the block is rejected (lines 11− 16 in
Algorithm 2).3 The pseudocode for this consensus protocol
is presented in Algorithm 2.

Difficulty. One of the biggest challenges one faces in
implementing PoW is deciding what the difficulty should
be. In a hexadecimal hash there are, naturally, 16 possible
options per digit, with only one of them being 0. An
implementation of PoW with a difficulty of 1 runs the
possibility that an attacker who does not implement PoW
still has a probability of 1

16 of ending up with a hash
that satisfies the difficulty condition, which is considerably
high when security is concerned. Increasing the difficulty
increases security, but at the cost of increasing the amount
of time and energy robots spend attempting PoW and, in
turn, reducing efficiency. Most crypto-currencies have a set
time frame that they want mining to take (known as the
block time) and automatically alter the difficulty level over
time to match this. For example, Bitcoin has a block time
of roughly 10 minutes, while Ethereum has a block time of
around 13 seconds4. As one might expect, Bitcoin is known
as being more secure than Ethereum, but also less efficient
and more harmful to the environment due to it being so
resource-intensive [4], [5], [22].

B. Consensus Protocol: Proof-of-Stake

Next, we discuss the second Blockchain-based consensus
protocol that we have employed, namely Proof-of-Stake
(PoS). The complexity of PoS is relatively lower than PoW
and known to be more energy-efficient than PoW in large
networked systems – this is particularly motivating for us
due to the limited on-board power supply of the robots [23].
The pseudocode of the PoS protocol used in this paper
is inspired by the Snow White PoS, a provably secure
consensus protocol [3] and is shown in Algorithm 3.

3One could also consider an advanced adversary who does understand that
there is a blockchain and, knowing also the difficulty level, performs the
time-consuming proof-of-work step at the subverted node just as the non-
subverted nodes must do. Preserving data integrity in this case would require
additional security measures and likely a trusted hardware assumption for all
nodes e.g., a Public-Key-Infrastructure (PKI) in which private key signatures
cannot be neither falsified or spoofed—such an adversary is beyond the
scope of this paper.

4https://econ.st/3zfzx7o



Similar to PoW, each robot starts with its local blockchain
Ci. The robots are given a common private seed P . The
consensus happens by means of selecting a committee after
every round of information collection. These rounds are
called epochs and denoted by e. Each block in Ci holds
the following information < D, τ, idx,Hlast, pki >, where
D, τ, idx, and Hlast are defined as before, and pki ∈ K is
the public key of the robot that added the particular block
to Ci. First, the robots select a committee to decide which
robot will become the next block proposer, i.e., the only robot
capable of adding new blocks to the blockchain. Ideally,
this would be the robot that has the highest ‘reputation’,
i.e., the one that contributed the most blocks to the robots’
current blockchains. To decide on the committee, ri first
considers the last 2l blocks in Ci, where l = length(Ci)/k,
where k is an integer. Let Cli denote this Blockchain-subset.
The robots that contributed more blocks within Cli , have a
higher probability of being selected as part of the committee.
For example, if there are three robots and they have con-
tributed 15, 5, and 10 blocks respectively to Cli , then their
probabilities of being part of the committee in that epoch
would be 0.5, 0.167, and 0.333 respectively. To ensure that
a robot ri has some chance to be part of a committee even
if it has not contributed any block to Cli so far, we pro-
pose a technique based on Laplace smoothing: we consider
that every robot has virtually contributed one block to the
blockchain, and thus, in the previous example, the modified
block contributions would be 16, 6, and 11. ri selects the
committee members this way while seeding the random
number generator with (P+e) to have a commonality across
the robots. Once the committee is decided, ri broadcasts it to
the network and receives similar committee selections from
∀rj ∈ R. The sent and the received committee memberships
are verified to ensure that no ‘man-in-the-middle’ adversary
has tampered with this data.

If ri is selected to be a part of the committee, it randomly
selects pi ∈ mi to be the block proposer. It is the only robot
that can add new blocks to the current blockchains. Like
earlier, the random selection is seeded with (P + e) to have
a commonality among the robots. Next, ri broadcasts the
block proposer’s identity. On the other hand, if ri is not part
of the committee, it waits during this period. Once the block
proposer p is selected, it creates a new block c and appends it
to Ci. Note that the block proposer will add all the observed
data since the last time it has been selected as a block
proposer to the D field of the block. Thereafter, the block
proposer robot broadcasts Ci. The receiving robots (R\p) use
the CHECKCHAINVALIDITY() function to check whether the
received blockchain is valid or not. If the function returns
true, ri 6= p overwrites Ci with the received Blockchain;
otherwise rejects it and keeps its own intact.

V. EXPERIMENTS

A. Settings

We have implemented the proposed secure multi-robot
information sampling approaches in simulation using MAT-
LAB. We have tested the algorithms with up to 10 robots.

The robots locations are drawn from a uniform random
distribution representing an 8-connected 14× 14 unit-length
square grid environment. A robot only explores within its
allocated region Vi. The budget is set to 20 node visits.
We have sampled our underlying ground truth information
for 196 grid locations from a zero-mean Gaussian random
vector, where the covariance matrix represents an expo-
nential kernel function: specifically, for any pair of nodes
vs and vt, the covariance between them is represented by
β2 exp (−||vs − vt||/`), where hyperparameters β > 0 is
the local standard deviation and ` is the exponential rate of
diminishing covariance between increasingly distant nodes.
In our experiments, β and ` are set to 1 and 25 respectively.
The additive white Gaussian noise ε ∈ N (0, 0.25).

The adversarial influence is modeled as commanding
the same subverted node to falsify its measurement only
periodically, leaving that node’s measurements and behavior
unaltered otherwise. More specifically, all experiments with
adversarial influence assume one specific node is subverted,
falsifying its measurement only every four rounds. The
falsification process itself is also simplistic; specifically, the
adversary first chooses a magnitude uniformly from the range
[1, 10], then chooses its sign as positive or negative with
equal probability. Observe that this falsification scheme is
consistent in the mean with the untampered measurement
process, but of course results in potential degradation of
prediction due to inconsistency in the covariance. Moreover,
a more damaging (but also, in the long run, more detectable)
adversary is one who has subverted multiple nodes, attacks
with shorter periods or falsifies using larger magnitudes;
while interesting, this paper’s brevity must leave experimen-
tal studies as a function of adversary to future work.

We have compared our proposed PoW and PoS-based
algorithms against two benchmarks: 1) No Attack. in this
baseline, no data integrity attack happens, and therefore, the
robots share their true collected data; and 2) Insecure. in this
baseline, data tampering happens similarly to our proposed
secure methods, however, there is no security in place to save
the robots from such data integrity attacks. Each test is run
five times.

B. Results

First, we are interested in investigating the effect of the
security attacks on the quality of the information model
estimated by the robots. For this purpose, we have calculated
the Mean Square Error (MSE) between the ground truth
information model and the average predicted model by the
robots. The results are presented in Fig. 2. The shaded
regions indicate the standard deviations. For PoW, we have
varied the difficulty level between [1, 5], i.e., between one
and five leading zeros in the hash. We see that with more
robots, the average effect of the data integrity attacks on
MSE, usually minimizes. As we only have one robot that
sends tampered data to the other robots, with n = 2, that
accounts for 50% robots being malicious, whereas with n =
10, it only accounts for 10%. For example, the final MSE
with these two values of n are 0.78 and 0.19 respectively.
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Fig. 2. MSE comparison (lower the better) between our proposed secure
techniques and the implemented benchmark algorithms.

In any case, the MSE goes down as the robots make more
observations [2], [13], [6]. However, if we have an insecure
system and there is such an integrity attack, we see the MSE
values jump to higher numbers any time there is an injection
of tampered data. As the attack happens periodically, in
every fourth iteration, therefore, the spikes in the plots are
also periodic. We also observe that if the difficulty in PoW
is low, e.g., 1, the attacker might get ‘lucky’ due to the
high probability of the hash being found, and consequently,
the security breaking down (Section IV-B). Since there are
16 possible hash values per digit and only one digit is an
acceptable value for the prefix (0), the probability that the
hash satisfies the difficulty 1 condition is 1

16 . For difficulty
2, this would probability is ( 1

16 )2 = 1
256 ; for difficulty 3,

( 1
16 )3 = 1

4096 , and so on. In our experiments, there were
a total of 375 attacks with difficulty level 1; 28 of those
attacks succeeded in successfully tampering the data and
letting other robots use that for estimation, which has a
probability of 28

375 ≈
1

13.4 . This is evident from the periodic
spikes with n = 6 in Fig. 2.(b). However, when we increase
the level of the difficulty, e.g., 5, the MSE values coincide
with the MSE values in the no attack scenario.

On the other hand, when we have used PoS to secure
the shared information, we see the MSE values are higher
than the no attack scenario as well as the PoW technique.
The main reason for that is the shared blockchain in case of

PoS is dominated by the robot(s) that has contributed more
to the chain thus far. This potentially starves some robots,
and consequently, the estimation of the sensor measurements
in the unvisited locations might heavily depend on a few
robots while the others might have very low contributions.
For example, with n = 10, the final average MSE values
using PoW (with difficulty level 5) and PoS are 0.08 and
0.14 respectively. This “rich gets richer” is a known property
of PoS, which has a significant effect on the final information
model estimation [3]. When investigated, we found that in
our experiments, a robot has contributed 3.33 blocks to the
shared blockchain on average with the maximum, minimum,
and the standard deviation being 4.2, 2.8, and 0.47 respec-
tively. We can also observe the effect of this on the MSE
metric in regards to the no attack scenario. As there is no
security protocol in place, the average MSE value with no
attack is noticeably lower than that with the PoS mechanism.
This is unlike PoW as all the robots equally contribute to
the shared blockchain, and therefore, the average MSE with
PoW, difficulty level 5, coincide with the no attack model.

(a) (b)
Fig. 3. Run time comparison between our proposed secure techniques and
the implemented benchmark algorithms.

As discussed earlier, although the PoW and PoS-based
consensus protocols allow us to achieve secure information
collection, they also consume a significant amount of re-
sources. To measure such effects, we investigate the run time
metric next. We see that with a higher difficulty level in
PoW, the run time significantly increases. For example, with
difficulty 1, the run time is 19.18 sec. whereas with difficulty
5, the run time is 694.74 sec. with n = 10. This is due to
the fact that each attempt at satisfying a difficulty 1 hash
has a 1

16 chance of succeeding, while satisfying a difficulty
5 hash has a ( 1

16 )5 = 1
1,048,576 ≈ 9.54 × 10−7 chance

indicating more attempts must be made. On the other hand,
in the insecure scenario, the corresponding run time is 15.02
sec. We can see that there is an increment of 46.25 times
in the execution times to protect the information against
data tampering attempts with difficulty 5. As found in the
literature, PoS incurs a significantly lower time-cost than
PoW. For the same setting above, PoS incurs a time cost of
15.88 sec., which is 43.75 times lower than PoW (difficulty
5), but 1.03 times higher than the corresponding insecure
version.

VI. CONCLUSION AND FUTURE WORK

In this paper we considered the task of multi-robot adap-
tive information sampling, in a setting where the robots



are collaborating to obtain a high quality global model by
updating a Gaussian Process-based estimate of the inves-
tigated phenomena. We have shown that such systems are
vulnerable to opponents inserting fake information into the
model, because the path planning decisions of the robots
depend on the current model. We proposed a secure multi-
robot information sampling algorithm where the robots rely
on a blockchain-based technique to accept or reject incoming
observations. We proposed and implemented two variations
of the blockchain technique based on the Proof-of-Work and
Proof-of-Stake approaches respectively. Experiments show
that both algorithms can significantly improve the quality
of the information model in the presence of a persistent
attacker. However, there is a tradeoff between the number
of zeros requested in the hash for the PoW algorithm and
thus implicitly the quality of the model and the computational
cost. Overall, we found that the proposed algorithms while
effective against the considered attack, add a significant
computational overhead to the robot.

Our results suggest several future directions of research.
Depending on the particular scenario it might be possible to
determine in real time the optimal choice of the difficulty in
the blockchain algorithm for a specific balance of the com-
putational cost and model accuracy. A better understanding
of the relationship between model and the path chosen by
the robots could also allow for a partial offloading of the
blockchain computations to the cloud, after the data sampling
had been completed.
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