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As the rehabilitation of infrastructure is outpaced by changes in
the profile, frequency, and intensity of extreme weather events,
infrastructure’s service disruptions and failures become
increasingly likely. Safe-to-fail approaches for infrastructure
planning and design improve the capacity of cities to adapt for
uncertain climate futures by identifying social, ecological, and
technological systems (SETS) capabilities to prepare for
potential failure scenarios. In this paper, we argue for
transforming infrastructure planning and design to effectively
utilize safe-to-fail approaches by navigating the opportunities
and trade-offs of SETS resilience capabilities. From a
technological vantage point, traditional infrastructure planning
approaches account for social and ecological domains as
external design conditions rather than embedded system
characteristics. Safe-to-fail approaches directly challenge the
isolation of the technological domain by necessitating a
recognition that SETS domains are interconnected and
interdependent in infrastructure systems, as such risks and
system capabilities for resilience must be managed cohesively.
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Introduction

Climate change and extreme weather events continue to
challenge the ability of infrastructure systems to manage
resources, supply critical services like energy and water,
and protect human habitats from environmental hazards.
Environmental hazards — for example, extreme heat and
heavy precipitation — increasingly disrupt infrastructure
services in cities, making the design and retrofitting of
infrastructure to withstand, readily recover, and adapt (i.e.
infrastructure resilience) an imperative for urban sustain-
ability [1]. Safe-to-fail infrastructure (STF) planning and
design is emerging as a framework to manage unpredict-
ability and build infrastructure that is more adaptable to a
myriad of shocks, surprises, and environmental hazards
under changing climate conditions [2°,3,4°°].

Traditionally, infrastructure systems are designed by
technocentric approaches that configure the capacity of
physical components to resist failure against expected
environmental risks, such as risk-based designs that are
focused on probability predictions and advanced calcula-
tions (i.e. fail-safe infrastructure; FS) [2°,5°]. An incom-
plete consideration of system responses and enhance-
ment of system rigidity via technocentric approaches in
infrastructure planning has caused cities to experience
substantial damages, sometimes even cascading across
social, ecological, and technological systems (SETS)
when infrastructure failures occur. While the primary
design goal of both STF and FS is in risk mitigation,
STF design expands the infrastructure design consider-
ation by including the management of system failure and
its consequential impacts across SE'TS.

The main difference between STF and FS is in their
response behavior to hazards that exceed their design
envelope (e.g. a storm beyond a designed 100-year return
period). S design primarily focuses on maintaining the
system structure or functions based on hazard predictions.
Thus, the FS response to ‘beyond-design’ hazards often
results in shutting down the system function to avoid
structural or physical failure. The FS response to hazards
is often based on historical data. Therefore, catastrophic
system failure for traditional infrastructure becomes
increasingly likely in the face of anomalous climate con-
ditions and uncertainty [5°%,6]. The FS design focus on
system rigidity is misaligned with climate change in that
current and future conditions are increasingly
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2 The role of infrastructure in societal transformations

characterized by non-stationarity, where the magnitudes
of risks are likely to significantly shift beyond predicted
design envelopes within the infrastructure life span [7]. In
this paper, we argue for transforming infrastructure plan-
ning and design to effectively utilize STF approaches by
navigating the opportunities and trade-offs of SETS
resilience capabilities.

Why SETS resilience?

Urban systems are composed of intertwined SE'T'S sub-
systems that collectively produce essential functions and
resilience dynamics characteristic of a city. Technological
systems (T-systems) — such as infrastructure and the
built environment — are embedded in social (e.g. institu-
tions and infrastructure management) and ecological sys-
tems (e.g. natural resource processes). Simultaneously, T-
systems shape social systems (e.g. the distribution of
public services to people and protection of communities
from climate hazards) and ecological systems (e.g. modi-
fying natural resource processes and enhancing ecosys-
tem values via engineered solutions), such that we cannot
understand cities’ resilience capabilities (i.e. system
capacity and behavior in responding to disturbances) to
climate hazards without an understanding of the interac-
tions within and between each SE'T'S domain [8-10].

In response to climate hazards, T-focused approaches for
infrastructure resilience often emphasize recovery of
physical components and mechanical processes to ensure
the provision of critical services in cities (e.g. back-up
electrical transmissions and redundant water supply
mains). In this way, infrastructure’s aftermath response
emphasizes ‘bouncing back’ from a perturbation, where
the disturbed object’s inherent materiality is restored to
provide critical functions like electricity and potable
water [11-13]. Studies providing definitions and guide-
lines for infrastructure resilience abound in the engineer-
ing resilience literature, which supports the planning of
T-systems that are robust to disturbances [14,15]. Engi-
neering resilience studies tend to focus on reinforcing the
ability of infrastructure systems to withstand predeter-
mined hazard envelopes or analyzing risks to infrastruc-
ture performance in terms of probability predictions [16—
19]. Such technocentric approaches are often aligned with
FS design in their view of infrastructure systems resil-
ience. Risk management decisions made without consid-
ering the social or ecological context of infrastructure
often affect the overall adaptive capacity to climate
hazards in cities and overlook potential impacts on other
systems. For instance, elevated levees cannot control the
damages to homes and ecosystems if floods overflow the
levee or if the levee itself breaches [20,21°]. In addition,
social factors affecting T-systems, such as limited funding
available for an infrastructure project and the socially
acceptable safety in design, largely contribute to infra-
structure performance and their capacity to reduce vul-
nerability from climate hazards [22]. Hence, a few studies

have advocated for a need to evaluate infrastructure
systems in consideration of the interactions with social
systems such as political, financial (financing and afford-
ability), governance, community engagement, equity,
decision-making, public health, education, and so on
[22,23,24°,25]. 'The SE'T'S perspective adds explicit con-
sideration of these additional systems, and their dynam-
ics, which may have been overlooked or considered in
isolation previously.

The SE'TS perspective builds upon social-ecological sys-
tems (SES) literature, which has critically framed resil-
ience in terms of the sustainability of human-environ-
ment interactions [26,27]. With the rapidly growing
number of cities experiencing extreme weather events,
the importance of understanding urban systems as SES
and their resilience to climatic hazards has followed,
which may help contextualize infrastructure systems
[27,28]. A few key studies have extended the SES per-
spective to include the role of built infrastructure as a
means for delivering and managing ecosystem services for
society [28-31]. However, a limitation of the SES per-
spective in addressing urban resilience is that it overlooks
T-systems as a mediating actor in complex urban systems
and underrepresents technology in SES sustainability
dialogue [32°]. For example, SES-based institutional
analysis and development framework only consider T-
systems to be contextual factors defining biophysical
conditions, rather than viewing technological, social,
and ecological systems as commensurate in shaping the
dynamics of cities [33,34]. SES interactions with T-sys-
tems have often been marginalized in the design and
management of infrastructure systems. In responding to
Hurricane Maria, for example, Lugo (2020) outlines the
lack of ecological monitoring and administrative capaci-
ties (e.g. emergency sensors, institutional information
flows, decision autonomy) that led to insufficient antici-
patory efforts, further failures, and repair delays for elec-
trical systems in Puerto Rico [35°]. At the same time, SES
perspectives usually view T-systems as a subset of social
systems [28,36°°,37]. However, as components of infra-
structure systems are entangled among SE'T'S compo-
nents, T-systems must be addressed alongside SES. The
SETS view of urban systems is necessary to uncover the
synergies and conflicts across SE'T'S domains in addres-
sing climate challenges through infrastructure systems.

Problem framings of infrastructure systems that are
approached with narrow technocentric solutions are
becoming increasingly insufficient under non-stationary
climate. SETS resilience approaches challenge such
framings by prioritizing agility (e.g. adaptive planning)
to surprises over robustness and rigidity [38]. For exam-
ple, Kim ez al. leveraged a safe-to-fail infrastructure (STF)
approach to frame resilient infrastructure development as
planning for system failure during design to elucidate new
solution pathways that minimize the impacts when
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Infrastructure transformation and resilience via safe-to-fail design approach Kim et al. 3

infrastructure fails (e.g. traffic service disruptions due to
storm drainage overflows) [4°°]. The STF response to
‘beyond-design’ hazards focuses on comprehensive risk
management across SE'TS. Thus, ‘anticipated’ structural
or functional system failure may occur based on the SETS
risk management decisions in order to minimize damages
to people, the economy, or ecosystems. In this paper, we
argue that STF planning and design unveils the SETS
view of urban systems resilience in responding to climate
hazards as it requires decisions for prioritization of SE'TS
capabilities and potential impact transfers from one
domain to another upon system failure.

Addressing SETS irreducibility through safe-
to-fail infrastructure

The STF infrastructure planning and design incorporate
resilience strategies with a consideration of how SETS
and their subsystems interact with the infrastructure
[2°,4°°]. We define this STF design process as ‘leveraging
SETS resilience capabilities’, that is, identifying compo-
nents and functions across SE'TS that can be substituted
to deal with critical service loss or system failure impacts,
to proactively plan for infrastructure failures for compre-
hensive risk management in urban areas. Unlike tradi-
tional infrastructure planning that follows a set of techni-
cal design specifications for safety management, STF
planning and design requires an understanding of
regional SET'S capabilities (e.g. identification of socio-
economic vulnerability to climate risks, institutional read-
iness to extreme weather events, financial capacity for
recovery, adequate infrastructure system, ecosystem
responses to hazards, emergency planning, etc.) and
trade-offs (i.e. risk management decisions that compro-
mise incompatible SE'T'S resilience capabilities; vulnera-
bility transfers among affected SE'T'S) within the decision
context for improved adaptive capacity and more com-
prehensive urban climate risk management. In compari-
son to FS approaches, STF urges stakeholders to critically
examine trade-offs across SE'TS due to the unintended
transfer of vulnerability from one domain to another or
within components of each SETS domain. For instance, a
dense city experiencing housing problems may allow
developments close to floodplains and vegetated flood
mitigation buffers to overflow but equip the area with
advanced flood warning systems and flood insurance
programs [39,40]. Thus, the risk of physical damage in
the ecological and built environment domain is substi-
tuted by additional institutional capacities in the social
domain. In Table 1, we summarize the design principles
of traditional infrastructure (i.e. FS) and STF in respond-
ing to climate hazards.

STF approaches address the irreducibility of SETS
through #he Infrastructure Trolley Problem [4°°]. The Infra-
structure Trolley Problem, where there is a strategic choice
between what and who is impacted by a failure, reveals
the inherent moral dilemma of incorporating failure in

design and planning. It also underscores the potential
consequences of infrastructure failures that may be expe-
rienced differently by SET'S attributes in a city. In other
words, the consequences of STF infrastructure failure
will have varying levels of impact and be judged by
different values along SE'T'S dimensions in cities. Infra-
structure managers implementing a STF approach must
identify potential disturbances and associated failure
consequences, prioritize diverse values of stakeholders,
and navigate the associated trade-offs to implement a
design [4°°,6]. This navigation encourages infrastructure
managers to prioritize impacts and identify trade-offs
across SE'TS. However, infrastructure managers must also
adhere to rules and regulations that lower risks, such as
emphasizing public safety and reducing environmental
impact [41,42]. Therefore, infrastructure failure is addi-
tionally defined by the consequences on the social and
ecological domains — again highlighting the irreducibil-
ity of SE'TS systems. Failure management is not a simple
task given the complex urban systems in which infra-
structure operates, requiring STF approaches to be itera-
tive with reassessments of prioritizations and trade-offs
throughout the infrastructure systems life. Ultimately, for
resilience efforts and objectives to be fully realized, SES
frameworks should strive to more explicitly recognize and
consider the influence and importance of technological
systems (i.e. move from SES to SETS perspectives),
while T-systems should strive to more explicitly antici-
pate, consider, and balance the social and ecological
impacts that can arise from failure (i.e. move from FS
to STF perspectives).

As a process of navigating tensions across SE'TS resilience
capabilities, which remains largely unexplored, the STF
approach provides a critical opportunity to incorporate
SE'T'S dynamics into the system design and planning. For
instance, infrastructure has empowered humans to live in
harsh environments (e.g. large-scale movement of water
via canals and pipelines in dry areas, implementation of
dams and levees in flood-prone areas, and adoption of
refrigeration and air conditioning in hot areas), connect
distant and remote locations (e.g. transportation of people
and goods via ship, rail, road, and air), and create global
economies (e.g. identification, extraction, and transforma-
tion of natural resources into products). Thus, under-
appreciation of T-systems can translate to an underap-
preciation of risks/vulnerabilities within the urban
system, as well as mechanisms by which resilience can
be enhanced. In addition, given the role of infrastructure
as a key intermediary in connecting social and ecological
systems, risk and resilience principles (or lack thereof)
within T-systems are implicitly integrated into the
broader SES dynamics. Therefore, SES approaches to
resilience appear to be unwittingly underappreciating
sources of catastrophic failure by underappreciating the
influence of T-systems across SETS. Conversely, tech-
nocentric FS approaches overappreciate T-systems and
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4 The role of infrastructure in societal transformations

Table 1

Design principles of fail-safe and safe-to-fail infrastructure and examples showing how these design approaches leverage social,
ecological, and technological systems (SETS) capabilities for infrastructure resilience

Fail-safe Safe-to-fail
Design principle - Preservation of status quo - Adaptation to changing conditions
- Failure prevention - Failure impacts management
Design focus - Advanced risk probability calculations & safety margins - Comprehensive risk impact assessments
- System shut-down for a rare, catastrophic event - Compromised system function for a rare, catastrophic
event
Failure response - Rebuild - Recovery

- Back to normal or decision limited by lock-in

Example of SETS
capabilities/trade-
offs in design

drainage pipelines

Strengthen/back-up engineered system capabilities (T) to
maintain the system function or to avoid structural failures
such as dam/levee spillways and oversized/backup storm

- Adapting to new normal

Lowered and reinforced road sections (T) in floodplains that
are designed to allow the controlled overflow of stormwater
drainage systems during the intense flooding and direct them
to wetlands and recharges (E) despite the traffic disruption (S,
trade-off).

account for social and ecological domains as external
design conditions rather than embedded system charac-
teristics. STF approaches directly challenge the reduc-
tion of complex urban systems as narrowly technological
or as strictly socio-ecological systems, and necessitate a
recognition that SE'T'S domains are interconnected and
interdependent [36°°,43-45]. Because of this level of
complexity, it is necessary to anticipate that known
and unknown hazards will occur, which highlights the
irreducibility of SE'TS resilience considerations in STF
infrastructure planning and design.

Challenges and opportunities of safe-to-fail
infrastructure transformation

Several questions for constructing and operating STF,
with a SE'TS lens, still need to be answered to address the
issues related to resilience governance [46], including
(but not limited to): 1) who is responsible for navigating
trade-offs of SE'TS resilience capabilities?; ii) how to
engage with stakeholders for prioritizing decisions in
addressing the Infrastructure Trolley Problem?; and iii)
how might the role of institutions change to encourage
STF approaches? With the necessity for considering
failure consequences in STF infrastructure development,
practitioners need to decide whom, where, and why
people and infrastructure systems experience certain
failure outcomes. In addition, these decisions must entail
how resources across SE'TS will be provided and how the
community will respond after the failure (e.g. emergency
response plan). FS decisions allow decision-makers to
transfer the responsibility of failing infrastructure systems
to technological capabilities based on design manuals and
climate prediction models or to those that own, operate, or
use them. On the other hand, STF infrastructure devel-
opment allocates the responsibility to domain experts and
stakeholders across SETS dimensions. While this

distribution of power allows for clearer understandings
of dynamics between the domains and potential conse-
quences of infrastructure failure, it also diffuses respon-
sibility for that failure. In turn, this diffusion of responsi-
bility can confound recovery efforts if the domain experts
and stakeholders remain isolated from one another.
Therefore, in order to provide space for effective STF
planning and design — and acknowledge the irreducibil-
ity of SE'TS — infrastructure organizations should re-
evaluate their organizational structures and relationships
with stakeholders to support collaboration.

Who is responsible for navigating trade-offs of SETS
resilience capabilities?

A STF approach asserts that stakeholders — willing to
participate across SE'T'S domains and from varying levels
of authority — are responsible for the effective operations
of infrastructure services. Therefore, stakeholder engage-
ment (i.e. knowledge co-production) is critical for asses-
sing SETS resilience capabilities and trade-offs within
STF planning and design. For instance, when considering
climate hazard impact profiles, tangible costs of infra-
structure failure, like property loss, can be easily assumed
in absolute economic terms, but additional impact cate-
gories considered in SETS capabilities are not easily
captured without the inclusion of broad stakeholder
opinion or valuing [47-49]. Infrastructure failure conse-
quences such as displacement, homelessness, livelihood
damage, unemployment, environmental losses, and
health impacts may be uniquely experienced depending
on the affected stakeholders’ capacity to respond and
adjust to each disturbance [4°°,50]. Thus, two challenges
emerge: 1) ensuring social equity in risk mitigation [51]
and 11) providing equitable opportunities for all stake-
holders wishing to contribute to decision-making pro-
cesses [32°,52]. Stakeholders affected by development
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decisions across SE'TS domains must be informed and
consulted in the decision-making process, which will
require active deconstruction of existing power dynamics
regarding ownership of infrastructure systems [22]. For
example, if stakeholder engagement is not effective at
including vulnerable populations who have a lower capac-
ity to respond to health issues or unemployment caused
by infrastructure failures, then SET'S trade-off decisions
may make the same people more vulnerable to planned
failures [53]. Notably, complete stakeholder engagement
is an inherent challenge, especially in cities with large,
diverse populations [23,54,55].

How to engage with stakeholders for prioritizing
decisions in addressing the infrastructure trolley
problem?

Several studies have demonstrated approaches for inte-
grating diverse stakeholder views to help assess risk
vulnerability, prioritize decisions with diverse objec-
tives, and elucidate the SETS resilience capabilities
for climate risk management, that is, addressing #e
Infrastructure Trolley Problem. Walpole et al. incorporated
practitioners’ mental models into ecological restoration
decisions [56] and Kim ¢ a/. addressed the practitioners’
shared/discrete views in implementing resilience strate-
gies for infrastructure development [57]. Bessette e7 a/.
developed a values-informed mental model for under-
standing communities’ climate risk management deci-
sions [49] and York ¢z @/. demonstrated an inter-level
feedback process for collective climate actions decision-
making across individuals and organizations [58]. Partic-
ularly, Perrone ¢ a/. demonstrated the value of stake-
holder engagement in evaluating the causes, conse-
quences, and policies for flood management from both
environmental and socio-economic perspectives through
a participatory modeling approach for the Bradano River,
Italy [59°°]. In an effort to engage historically underrep-
resented communities and address social equity in urban
adaptation planning, Amorim-Maia ez a/. proposed the
adoption of place-based and place-making approaches,
as well as the promotion of cross-identity climate action
and community resilience building [60]. Nonetheless, an
exhaustive study for integrating SE'TS resilience capa-
bilities, revealed through stakeholder engagement, into
infrastructure decisions appears warranted for future
STF planning.

How might the role of institutions change to encourage
STF approaches?

Institutions that manage infrastructure systems will need
to adapt to accommodate STF infrastructure transforma-
tion. Whereas current infrastructure regulations focus on
refining design guidelines for system construction and
maintenance, STF regulations may also require addi-
tional governance capabilities such as community-build-
ing (internal and external) and knowledge sharing so
organizations may learn from one another [61]. For

example, STF development may require sharing of data
on infrastructure performance, decision criteria for priori-
tizing the SETS capabilities, protocols for emergency
system operation, and compensation of failure impacts.
One regulatory shift that promotes STF development is
for city governments to require insurance companies to
provide accumulated information on infrastructure risks
and damages experienced in the region. This information
may be shared with the city government and the affected
stakeholders to assess the current SE'TS capabilities
based on the empirical data. Shifts in one sector (e.g.
design firms) will require shifts in other sectors, like
governmental organizations, utilities, insurance compa-
nies, operation, and regulation [62].

"T'ransformation to infrastructure solutions that incorporate
SE'TS resilience capabilities with STF design is steadily
occurring. Incremental adaptation (organic but gradual sys-
tem evolution that is tightly coupled to established paths, for
example, strengthening infrastructure) and transformation
(intentional deviations from the status quo during ‘windows
of opportunity’ often found in the aftermath of extreme
disturbances, for example, rapid adoption of an emergent
technology) are two mediums for infrastructure transforma-
tion [63,64°,65]. Similarly, resilient infrastructure planning
methods are being developed to incorporate SE'T'S thinking
into future solutions [66]. While STF infrastructure trans-
formation is happening in the course of incremental adapta-
tion, it is challenging because it requires design practices to
be less path-dependent than previously established
approaches. The most approachable window of opportunity
for the rapid adoption of STF infrastructure would be when
existing infrastructure systems reach design capacity and
need to be upgraded or replaced, but technological solutions
are not always ideal candidate solutions. While projects can
focus myopically on efficient optimization for infrastructure
planning, commonly featuring path dependency and busi-
ness-as-usual solutions [65], SE'T'S thinking uses a larger
toolset of solution possibilities, which ought to increase the
probability of reaching a sustainable solution. For example,
as summer temperatures increase in Phoenix, Arizona, cool-
ing and electrical demand loads increase, pushing the power
grid closer to critical limits [67]. Power failure during critical
summer temperatures can have impacts that ultimately lead
to human deaths. T'echnical solutions such as updating aging
power lines and adding backup generators, while a necessary
component of the solution, cannot be the only solution
considering costs and technical thresholds for extreme tem-
peratures [68]. The city has been working with vulnerable
communities to diversify responses to power system failures
that leverage the various components of SE'TS capabilities.
Social programs included educational programs to show
children how to operate safely in the heat during summer
break and providing funding for residents to improve insu-
lation in homes. Ecological solutions included strategic
green-space development to decrease ambient air tempera-
tures and increase shade. Technological solutions included
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installing strategically placed drinking fountains and con-
structing splash pads. This example shows how SETS
resilience capabilities are leveraged to provide safe-to-fail
infrastructure responses to deal with extreme heat for the
identified communities [69].

Conclusions

Leveraging the resilience capabilities across SETS
domains in STF approaches appears to support graceful
extensibility in resilience engineering. Contemporary
framings of infrastructure resilience describe strategies
when systems are perturbed within and beyond their
design conditions [70]. Within their design conditions,
rebound (bouncing back) and robustness (hardening) are
appropriate. However, when perturbations exceed design
conditions then extensibility becomes appropriate —
extending adaptive capacity in the face of surprise.
Extending the capacity of such large and extensive infra-
structure systems is a monumental challenge. If the
extension is viewed purely through a technological lens,
then few options exist — for example, how do you provide
water through an alternative technology to millions of city
residents when the primary drinking water system has
failed? Or how do you decide on the size of drainage pipes
when the intensity of a 100-year storm keeps changing?
STF leveraging SE'T'S resilience capabilities offers path-
ways towards graceful extensibility by leveraging social
and ecosystem capabilities in anticipating and planning
for failure. For example, The Netherlands’ Room for the
River calls on social systems when rivers flood and infra-
structure fail, to subsidize farmers for lost crops — far
cheaper than elevating and maintaining levees [71].
Arizona’s Indian Bend Wash has initially leveraged eco-
system capabilities to attenuate flooding when monsoon
rains overwhelm the stormwater system [72]. And more
recently, the City of Scottsdale is working on an updated
master plan for infrastructure through multiple rounds of
community feedback, which not only responds to the
shifting hydrologic risks by updating aging infrastructure
for flood management, but also asks the question of how
social and ecological values of Indian Bend Wash as
recreational parks and aquatic centers might affect the
community when they are compromised by overflow [73].
In contrast to how other resilience frameworks incorpo-
rate capabilities of the three domains, STF appears to be
better suited for leveraging SE'T'S capabilities during the
design phase to open up new adaptation strategies and
infrastructure transformations — aligning it with traits of
graceful extensibility upon surprises.

STF infrastructure planning and design offer transforma-
tional opportunities for infrastructure systems to evolve
from a techno-centric or SES-centric solution space to an
interactive system leveraging various SETS resilience
capabilities — presenting new strategies for navigating
uncertainties and disasters in the Anthropocene. External
shocks such as extreme weather phenomena are not only

disrupting the infrastructure system itself, but also the
urban environment including people and property.
Despite traditional infrastructure protection achieved
by ensuring the robustness of built systems, climate
change is altering the perspectives of cities to recognize
infrastructure risks that are not predicted with climate
models. Thus, there is a coupling between STF infra-
structure planning, SE'TS climate adaptations, desired
urban futures, and the likelihood of unprecedented non-
stationary weather events. Major institutional and tech-
nological changes happening with national and interna-
tional climate adaptation plans should give cities a chance
to adapt to the change by transforming the processes that
have contributed to vulnerability rather than focusing on
reducing specific risks of climate change by a set of
interventions [74]. Hence, infrastructure transformations
towards resilience in the face of climate uncertainties and
non-stationarity must take what we know now and pro-
ceed to STF approaches that incorporate SETS
capabilities.
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