Energy Efficient Merkle Trees for Blockchains

Cesar Castellon
School of Engineering
University of North Florida
Jacksonville - USA
n01453427 @unf.edu

Ayan Dutta
School of Computing
University of North Florida
Jacksonville - USA
a.dutta@unf.edu

Abstract—Blockchain-powered smart systems deployed in dif-
ferent industrial applications promise operational efficiencies and
improved yields, while mitigating significant cybersecurity risks
pertaining to the main application. Associated tradeoffs between
availability and security arise at implementation, however, trig-
gered by the additional resources (e.g., memory, computation)
required by each blockchain-enabled host. This paper applies an
energy-reducing algorithmic engineering technique for Merkle
Tree root calculations, a principal element of blockchain com-
putations, as a means to preserve the promised security benefits
but with less compromise to system availability. Using pyRAPL, a
python library to measure computational energy, we experiment
with both the standard and energy-reduced implementations of
the Merkle Tree for different input sizes (in bytes). Our results
show up to 98% reduction in energy consumption is possible
within the blockchain’s Merkle Tree construction module, such
reductions typically increasing with larger input sizes. The pro-
posed energy-reducing technique is similarly applicable to other
key elements of blockchain computations, potentially affording
even “greener” blockchain-powered systems than implied by only
the Merkle Tree results obtained thus far.

Index Terms—Merkle Tree, Blockchain, Energy.

I. INTRODUCTION

Blockchain technology, popularized by different crypto-
currency systems, is seeing extensive use in different fields.
Advocates for such uses cite the blockchain’s inherent prop-
erties of a decentralized structure alongside enhanced security
with mechanisms for privacy and non-repudiation [1], [2],
[3], [4]. One particularly promoted use case is the Internet of
Things (IoT) [5], [6], [7], which embodies the vision by which
different computing devices may communicate with each other
to map a physically connected world onto its digital mirror.
The IoT vision also motivates prospects of so-called smart
systems [8] e.g., smart cities, smart homes, smart grid, smart
health, smart agriculture. The potential uses and benefits of
smart systems recognizably also raises critical security and
privacy challenges to be addressed, which motivates the vision
of blockchain-powered smart systems.
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Smart and secure systems implemented upon IoT tech-
nology require device inter-connectivity for extended time
frames, delivering continuous data. Such operations demand
constant power supply [8]—within a world that demands more
environmentally-friendly (or “green”) solutions, in general,
IoT realizations also face the challenge of energy efficiency
i.e., minimizing their energy footprint. Thakore et al. [9]
acknowledge the additional energy optimization requirements
that blockchains require when implemented together with IoT.
Depending on the specific type of blockchain-IoT combina-
tion, precise analysis of performance and energy requirements
becomes critical [10]. As an example of these challenging
tradeoffs, consider a particular blockchain-IoT implementation
with a fixed power budget. To be viable for an application that
values autonomy for greater lengths of time, the system must
be configured to make more efficient use of energy. Disabling
the blockchain will certainly save energy, but also weaken
security: it is in such contexts that the exploration of ways to
reduce energy consumption of blockchain functionality alone
can be of tremendous practical significance.

A. Related Work

Energy efficiency in computation is a widely studied topic,
with numerous points-of-view: hardware-specific platforms,
operating systems, hypervisors and containers [11]; software
development and security [12]; and algorithms [13], [14]. En-
ergy measurements are sometimes obtained by uniquely instru-
mented equipment [15], while other times can leverage hard-
ware providers’ Application Programmer Interfaces (APIs) in
which firmware counters are recalled to provide near real-
time information e.g., Running Average Power Limit (RAPL)
technology [16]. Blockchain implementations are actively un-
der study as providing a decentralized ledger (i.e. record of
transactions) by which to optimize energy management in a
variety of scenarios (e.g., generation & distribution [17], [18],
micro-grid networks [19], [20], [21] and smart contracts [22]).
In contrast to our motivation, however, these studies define



the optimized management objectives such that the energy
footprint of the blockchain itself is out of scope.

There are past studies who also recognize that the
blockchain itself will draw energy away from any symbiotic
system it is integrated with. Examples include Sankaran et
al. [10] and Sanju et al. [23], who perform power mea-
surements and evaluate real experiments on the energy con-
sumption of two different blockchain implementations, namely
Ethereum and Hyperledger. A similar analysis of energy con-
sumption is presented in [15] for XRP validation, which is a
key element of decentralized consensus processes within many
Internet services. A particularly novel theoretical approach
is reported by Fu et al. [24], first modeling a blockchain-
IoT caching infrastructure and posing its energy optimization
within a geometric programming formulation whose solu-
tions allocate resources accordingly. A recent performance
evaluation survey, also conducted by Fu et al. [1], illus-
trates how diverse and sophisticated current implementations
of blockchain ledgers are. Despite this diversity, however,
all existing implementations at their core remain faithful to
Nakamoto’s original blockchain concept [25], within which
the Merkle Tree construction module is essential.

B. Our Scope and Contributions

We study the extent to which Merkle Tree construction, a
principal element of blockchain computations, can be made
more energy efficient. Our approach employs an energy-
reducing algorithmic engineering technique, based upon an
Energy Complexity Model (ECM) proposed by Roy et al. [13],
[14], on the SHA256 encryption algorithm, which is central to
the Merkle Tree. Using pyRAPL, a python library to measure
an executable’s Runtime Average Power Limit, we experiment
with both the standard and energy-reduced implementations of
the Merkle Tree for input sizes (in bytes) that are commonly
seen within blockchain implementations. Our results show
significant reductions in energy consumption, up to 98% but on
average 50% across the tested input sizes. At present, it is only
a conjecture that reduced energy consumption in the Merkle
Tree construction module itself extrapolates to comparable
reduction of a blockchain on the whole. In any case, to
the best of our knowledge our work is the first to address
energy optimization of blockchains by re-engineering the
implementation of one of its component algorithms. Moreover,
the proposed energy-reducing technique is similarly applicable
to other key elements of blockchain computations, potentially
affording even “greener” blockchain-IoT systems than implied
by only the Merkle Tree results obtained thus far.

II. METHODOLOGY

This section describes our application of the Energy Com-
plexity Model (ECM) [13], [14] to the Merle Tree (MT) root
construction module of the blockchain. Described first is the
process by which a block of the blockchain is computed based
on the MT root, in which so-called hash calculations play a
central role, followed by a summary of how the ECM works,
in general. This section ends with a detailed description of

how the central hash calculations of the MT are re-engineered
based on the ECM.

A. Merkle Tree Based Block Generation

A graphic representation of a simple block generation in a
blockchain is shown in Fig. 1. The bottom layer shows the
stored transactions (e.g., 7001) for the block, which later are
converted to their SHA256 Hash signatures (e.g., H001) and
represent the Merkle Tree leaves. Merkle Tree root calculations
involves the recursive hash computation starting from these
leaves until a final hash determines the Merkle Tree root
(labeled TX_ROOT in Fig. 1).

|

Block n
HASH @-1) | [ miMEsTamp |

) ([ woxce ]

Block n+1
( Hasn(nﬂ[ TIMESTAMP |

Block n-1

TX_ROOT
TX ROOT

' [ rxroor | wNonce |

L b

ETrET=T

(
\

HO1

Hoo1 |[ 'Hoo2 |ees [ Ho99 | H100

( 001 ][ To02 Jese( 1099 ]( Ti0O ]

Figure 1: Basic Block Generation in Blockchain.

Conceptually, the process of Merkle Tree calculation
through hashing can be viewed as a state transition in which
an investment of computational resources is required e.g.,

f(T
FREACRIG )
T = costlenergy,time] 2)

That is, the block generation is represented by the state
transition in (1), which depends upon a function f(T') with
parameter 1" denoting the cost as represented by (2). This cost
has two main components: one is the energy consumed by the
hardware devices to compute the hash of the input vectors,
while the other is the execution time of those computations.
This paper strives to reduce the overall transition cost 7' by
reducing the energy consumption of the hardware devices,
employing a technique based upon the ECM next described.

B. The Energy Complexity Model (ECM)

The ECM developed in [13] is built upon an abstraction of
the Double Data Rate Synchronous Dynamic Random Access
Memory (DDR SDRAM) architecture [26], which is illustrated
in Fig. 2. Main memory in DDR is divided into banks, each of
which contains a certain number of chunks'. Data is allocated

IThe term “block” is used in DDR specifications, but we use the term
”chunk” to avoid confusion wiithin our blockchain context.



over chunks in each bank, and each bank also contains a
special chunk called the sense amplifier. When data needs to
be accessed, the chunk containing the data is fetched into the
sense amplifier of the corresponding bank. The sense amplifier
can only hold one chunk at a time, so the current chunk has
to be put back to its bank before the next one can be fetched
for access. While only one chunk of a particular bank can be
accessed at a time, chunks of different banks (each with their
own sense amplifier) can be accessed in parallel. Therefore, if
the DDR memory is organized into P banks (where P = 4 in
Fig. 2), then P chunks can be accessed at a given time. In the
popular DDR3 architecture, the DDR1 notion of the per-bank
sense amplifier is referred to as the per-bank cache, albeit still
only capable of accessing one chunk at a given time.
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Figure 2: Internal DDR SDRAM memory chip block diagram.

The ECM denotes the P banks of a given DDR3 SDRAM
resource by My, Ms, ..., Mp, each such bank M, comprised
of multiple chunks of size-B (in bytes) and its own cache C;.
The illustrative example of Fig. 3 assumes P = 4 banks, as
was the case in Fig. 2, with just four chunks per bank, assign-
ing numerical labels 1,2, ..., 16 to the memory’s collection of
data chunks. Heeding the DDR constraint that each cache C;
may access exactly one chunk at a time, the access patterns
(1,2,3,4) or (5,6,7,8) imply a completely serial execution,
while the access patterns (1, 5,9, 13) or (3,8, 10, 13) are each
completely parallel. The authors of [13] discovered two key
properties of DDR memory: firstly, the difference in power
consumption between the same number of chunks accessed
sequentially or in parallel is not significant; however, the
execution time of an algorithm when chunks are accessed in
parallel is significantly lower than when chunks are accessed
sequentially. Because the associated energy consumption de-
pends upon both power and time, it follows that parallelizing

chunk accesses offers the potential for energy reduction of
any algorithm! More formally, as derived by Roy et al. [13],
the energy consumption (in Joules) of an algorithm A with
execution time 7, assuming a P-bank DDR3 architecture with
B bytes per chunk, is given by

E(A) =7+ (P x B)/I 3)

where I denotes the so-called paralielization index, essentially
the number of parallel block accesses across memory banks
per P block accesses made by A on the whole. That is, under
the ECM, an algorithm’s potential for energy reduction is
inversely proportional to the degree to which it can be re-
engineered for parallelization of its memory accesses.
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Figure 3: ECM for DDR3 Resource with P = 4 Banks

C. Re-engineering Hash Calculations Using ECM

In this work, we engineer the hash algorithm of Merkle
Tree (MT) construction based on ECM to reduce energy
consumption. First, we briefly describe how any algorithm
A can be parallelized based on ECM. We then illustrate
how MT’s hash calculation, specifically the SHA encryption
algorithm, is re-engineered for parallelization.

1) Parallelizing any algorithm: Given an algorithm A, the
input to A is considered to identify the most common access
sequence in A. The required level of parallelism for the vector
formed by the desired access sequence is then engineered
using a logical mapping over chunks of memory that store
data accessed by A. As mentioned above, the order of chunk
accesses is different for different levels of parallelization. But
the physical location (chunks) of the input in the memory
is static, and is handled by the memory controller of DDR.
Therefore, to implement parallelization of access over physical
chunks, a different page table vector V is generated for each
level of parallelization, which defines the ordering among the
chunks to be accessed (see Fig. 4).

For 1-way access, the page table vector V has the pat-
tern (1,2,3,4,...) and for 4-way access it has the pattern
(1,5,9,13,...). A function is then created to map the pattern
of the page table vector V to the original physical locations of
the input. Algorithm 1 shows the function to create an ordering
among the chunks. The ordering is based on the way we want
to access the chunks (P-way would mean full parallel access).
The page table is populated by picking chunks with jumps.
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For P-way access, jumps of P are selected that ensure the
consecutive chunk accesses lie in P different banks. Going
by the above example, for P = 1, jumps of 1 ensure that 4
consecutive chunk accesses lie in the same bank (bank 1 of
Fig. 3). On the other hand, for P = 4, jumps of 4 ensures that
4 consecutive chunk access lie in 4 different banks (banks 1
through 4 of Fig. 3).
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Figure 5: SHA256 for Merkle Tree Calculation
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if i > 1 and (i x jump) mod % =0 then

‘ factor = factor +1,;

end

V,; = (i x jump + factor) mod %;
end
Algorithm 1: Create a Page Table for N Chunks

2) Parallelizing SHA Encryption: As described earlier,
Merkle Tree construction performs its hash calculations via re-
peated use of the SHA256 encryption algorithm. Specifically,
as shown in Fig. 5, the input is partitioned into fixed size mes-
sage blocks, presented in sequence to separate compression
functions. This block sequence is identified in correspondence
with the access pattern of the SHA256 algorithm, which we
subject to re-engineering based on the ECM. The input vector,
in a Merkle Tree being the concatenation of three strings
(see Fig. 5), is pre-processed into another vector by applying
Algorithm 1. The mapping is then stored in a page table to
be used in subsequent hash calculations. An example of this
operation for 16 blocks and a parallelization index (jump) of
4 is shown in Fig. 6.

Fig. 7 shows the outcome of re-engineering the SHA256
algorithm based on ECM. In our experimentation, an 8-bank
DDR3 SDRAM is used and the parallelization index is set
to I = 8. This essentially means that for any set of eight
consecutive block access in SHA256, we created a virtual
mapping using techniques described in [14] to ensure that each
size-8 access occurs across all eight banks.
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Figure 6: Mapping of SHA Input Blocks based on ECM.
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III. EXPERIMENTS

We now proceed to describe computer experiments designed
to quantify the energy savings of the methodology detailed in
the previous section. By virtue of the ECM’s formulation, the
enhanced implementation requires computer hardware using
a DDR RAM architecture. Maximum energy reduction is
promised by a parallelization index taken to equal the number
of memory banks, which depends upon the DDR version: 4
for DDR2, 8 for DDR3 and 16 for DDR4 and higher. The
machine used for our experiments features a 64-bit dual-core



processor (Intel i5-2410M @ 2900MHz with cache size L2
256KB and L3 3072KB), running Linux Mint version 19.3
with a 8GB DD3 RAM and 500GB SSD storage. We use
pYRAPL, a software toolkit to measure a host machine’s
energy footprint along the execution of a piece of Python
code, to compare energy consumptions between the standard
and ECM-enhanced implementations. pyRAPL is built upon
Intel’s Running Average Power Limit (RAPL) technology that
estimates a CPU’s power consumption; depending on the
hardware and operating system configurations, pyRAPL can
measure energy consumption of the following CPU domains:
CPU socket, GPU, and DRAM [16].

A. Implementation Details and Setup

Our experimental objectives could not be met by using
the SHA256 function in the Hash Python library. This is
because memory management in Python involves a private
heap, containing all objects and data structures. The control of
this private heap is ensured internally by the Python memory
manager, with different components dealing with sharing,
segmentation, pre-allocation or caching. Our ECM-enhanced
implementation of SHA256 requires greater control over
memory allocation than Python’s memory manager permits.
Such low-level control on memory management is possible in
the standard C programming language. We thus implement
the standard and ECM-enhanced versions of the SHA256
algorithm within separate C programs, which are called from
a Python script (upon importing the ctypes module) as
an external routine. This permits the use of pyRAPL for
the needed energy measurements without denying low-level
memory control to implement the ECM-enhanced SHA256
functionality during Merkle Tree calculations.

Our experiments simulated the Merkle Tree calculation with
Python code that runs 103 consecutive two-leaves-input hashes
with pyRAPL invoked. Each execution of the code yields
an energy measurement, but because the instrumentation is
subject to noise we invoke 5000 repetitions and report the
average energy (mean and deviation). Our experiments also
vary the input size (i.e., the compounded-leaf size) to the
Merkle Tree calculations, choosing 1, 64, 96, 128, 512, 1024,
16384 and 262144 bytes motivated as follows:

1) the 1B input is the bare minimum that the ECM permits
for any algorithm [13];

2) the 64B, 96B and 128 inputs are common in blockchain
applications [6];

3) the 512B and 1024B inputs are common in file hashing
applications [27]; while

4) the 16384B and 262144B inputs are common in the
Interplanetary File System (IPFS) [28], [29].

B. Results and Discussion

Recall that our experimental setup features two implemen-
tations of Merkle Tree (MT) calculations, the standard one
(which we label by “O” as it uses the original SHA256)
and the re-engineered one using ECM (which we label by
“E” as it uses the enhanced SHA256), as well as eight

different input sizes. Per implementation and per input size,
our experimental Python script leverages the pyRAPL toolkit
to measure the average energy (mean and deviation over
5000 trials) of simulated Merkle Tree calculations. Fig. ener
summarizes the sixteen average energy measurements in two
bar charts, per input size comparing the Standard MT (O) and
the Enhanced MT (E) average energy (in pJoules). Fig. 8(a)
renders the comparison over the six smallest input sizes (using
a linearly-scaled vertical axis), while Fig. 8(b) is over the
two largest input sizes (using a log-scaled vertical axis). It
is seen that the ECM-enhanced implementation consistently
requires less energy that the standard implementation, the
difference being increasingly significant with the larger input
sizes that befit file hashing applications (i.e., 512B and above)
(but still meaningful for input sizes 64B, 96B and 128B that
befit blockchain applications). This observed dependence on
input size may be a consequence of CPU memory caching.
DRAM memory often allows the memory controller to op-
timise accesses by L1/L2/L3 caching of data. With smaller
inputs, such caching enables parallelization of bank accesses
even in the standard implementation. The comparison for
the 1B input size corroborates this point, where we observe
the enhanced implementation consume more energy than the
standard implementation!
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Figure 8: Comparison of Average Energy Consumption

Fig. 9 presents the average energy comparison on more
relative terms, namely as a percent reduction achieved by



the enhanced implementation over the standard implemen-
tation versus all eight input sizes. The energy savings for
the blockchain-motivated input sizes range between 19% and
34%, while the energy savings for the file-system-motivated
input sizes range between 69% and 98%, the case of 16384B
exhibiting that maximum 98% savings. As noted in Fig. §,
the 1B input renders a savings of -4%, meaning the standard
implementation is more energy-efficient by virtue of the paral-
lelism invoked within the CPU’s L1/L2/L3 cache in this case.
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Figure 9: Comparison of Energy Savings

IV. CONCLUSION

This work considers reducing the energy consumption of
Merkle Tree (MT) calculations within blockchains by re-
engineering the core hashing algorithm, namely SHA256 en-
cryption, via the Energy Complexity Model (ECM) [13]. The
ECM-enhanced implementation was compared to the standard
implementation via experimental energy measurements with
various input sizes of practical significance. The results show
up to 34% energy savings are possible for input sizes typically
used by blockchains, while up to 98% is possible for input
sizes used in other applications (e.g., file systems). It remains
conjecture that reduced energy consumption in the Merkle
Tree construction module itself extrapolates to comparable
reduction to the blockchain on the whole. Future work can also
assess the energy saving opportunities in other applications
of Merkle Trees e.g. authentication schemes [29], healthcare
systems [30], embedded systems [31], network protocols [32],
[33]. Also of interest is the exploration of parallelized hash
calculations to reduce energy consumption of the blockchain
Proof-of-Work (PoW) algorithm. Similarly, because the pro-
posed energy-reducing technique and energy measurement
instrumentation may be applicable to other key computations,
similarly “greener” solutions may be possible within Internet-
of-Things (IoT) technology and envisioned smart systems.
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