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ABSTRACT: The phase separation of biomolecules has become
the focus of intense research in the past decade, with a growing
body of research implicating this phenomenon in essentially all
biological functions, including but not limited to homeostasis,
stress responses, gene regulation, cell differentiation, and disease.
Excellent reviews have been published previously on the
underlying physical basis of liquid—liquid phase separation
(LLPS) of biological molecules (Nat. Phys. 2015, 11, 899—904)
and LLPS as it occurs natively in physiology and disease (Science
2017, 357, eaaf4382; Biochemistry 2018, 57, 2479—2487; Chem.
Rev. 2014, 114, 6844—6879). Here, we review how the theoretical
physical basis of LLPS has been used to better understand the
behavior of biomolecules that undergo LLPS in natural systems
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and how this understanding has also led to the development of novel synthetic systems that exhibit biomolecular phase separation,
and technologies that exploit these phenomena. In part 1 of this Review, we explore the theory behind the phase separation of
biomolecules and synthetic macromolecules and introduce a few notable phase-separating biomolecules. In part 2, we cover
experimental and computational methods used to study phase-separating proteins and how these techniques have uncovered the
mechanisms underlying phase separation in physiology and disease. Finally, in part 3, we cover the development and applications of
engineered phase-separating polypeptides, ranging from control of their self-assembly to create defined supramolecular architectures
to reprogramming biological processes using engineered IDPs that exhibit LLPS.

1. INTRODUCTION TO PHASE SEPARATION

Liquid—liquid phase separation (LLPS) is the phenomenon
wherein a heterologous mixture of two or more molecular
species—components—spontaneously separates into two or
more homogeneous “phases”, and where each phase is enriched
in one of the molecular species. An illustrative example of such a
phase transition is that of salad dressing—a single phase—
separating into an oily phase and an aqueous phase. The
analogous LLPS behavior of interest here is that of a class of
intrinsically disordered proteins and protein polymers that
exhibit similar behavior in a biological milieu. The study of this
phase separation behavior in biology is grounded in the well-
established body of knowledge on the phase separation of
synthetic polymers in solution. In part 1 of this Review, we
describe the foundational polymer physics theory underlying
polymer phase separation and some of its modern expansions in
section 1.1, describe a few examples of synthetic polymers that
phase-separate in section 1.2, and finally discuss a few examples
of phase-separating proteins and the role that this phase
separation plays in their function in section 1.3.

1.1. Thermodynamics of Phase Separation. The
foundational theory behind LLPS in polymers was first
introduced by Flory and Huggins"” and has become the
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groundwork upon which the study of the phase separation of
macromolecules has been built. Flory—Huggins theory
describes how the LLPS of a polymer is driven by the balance
between the entropy of mixing and the energetic interactions
between the polymer and solvent. For polymers dissolved in a
solvent, the entropy of mixing is always positive,* so whether or
not the mixture will undergo phase separation is dictated solely
by the energetic contributions. The entropic and enthalpic
contributions of mixing are typically calculated per site on a
lattice that models the polymer—solvent system. After
calculating the entropic and enthalpic contributions per site,
one can calculate the Helmholtz free energy of mixing per lattice
site. From the free energy, one can determine the binodal phase
boundary (Figure 1a), below which the system can phase-
separate, and the spinodal phase boundary (Figure 1a) which
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Figure 1. The phase diagram. (a) The phase diagram can be plotted by finding the free energy of the solution at a given T* temperature and polymer
concentration (¢). The binodal boundary (green line) is constructed by finding the local minima (green dots represent local minima at a given T*) of
the free energy as a function of temperature, and the spinodal boundary (dotted red line) is constructed by finding the inflection points of the free
energy (red dots represent inflection points at a given T*) as a function of temperature. (b) UCST and LCST behavior of protein polymers can be
determined by plotting the turbidity (absorbance at 350 nm) of the polymer as a function of temperature. For UCST polymers, the turbidity is high
below the T as the polymers phase-separate out of solution but drops as the polymers dissolve. For LCST polymers, the turbidity is low below the T,
but sharply increases as the polymers phase-separate at the T.. Turbidity data of synthetic protein polymers with sequences noted adapted from

Chilkoti et al.* with permission.

determines the stability of the phase-separated system and
predicts how phase separation occurs, as a function of polymer
concentration and environmental—solution—parameters such
as temperature, pH, or salt. Within the spinodal phase boundary,
the system will spontaneously phase-separate because of small
fluctuations in composition, whereas, in the region between the
spinodal and binodal boundaries, the system is metastable and
will phase-separate upon the occurrence of sufficient nucleation
events.
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1.1.1. Flory—Huggins Theory to Describe Phase Separation
in Polymer Solutions. The Flory—Huggins theory, utilizing a
lattice model for calculations rooted in statistical mechanics,
relies on a key assumption, namely, that the volume before and
after mixing stays constant. This is not always true for the
dissolution of polymers in a solvent, as the expulsion of solvent
from the condensed phase changes the volume of lattice sites
within the condensate. In practice, however, the Flory—Huggins
theory models experimental data very well and has been
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effectively used as a basis for describing the phase behavior in
biological systems.”

Each lattice site volume is typically defined as the volume of
the smallest molecular unit in the system, whether being a
solvent molecule or roughly the excluded volume of one Kuhn
monomer unit.” Assuming the lattice has # sites, the entropy of
mixing is

ASix = nAS, + n,AS,

where n is the number of occupied lattice sites, AS is the entropy,
and the subscripts p and s refer to polymer and solvent,
respectively. The number of sites occupied by the solvent
molecules is equivalent to the volume fraction of the system that
is solvent, ¢, multiplied by the total number of sites 1, n, = ¢n,
since each solvent molecule occupies one site by definition. The
number of sites occupied by the polymer molecules is the
volume fraction of the system that is polymer divided by the
number of monomers in each polymer chain, ¢P/ N, giving the
volume fraction of the system that is polymer monomers,

. . _%
multiplied by the total number of sites n, n, = Fpn. Flory—

P

Huggins theory assumes that each repeat unit in the polymer
occupies one lattice site even if they are different in size from the
solvent molecules.

Thus, for polymer solutions, the entropy of mixing per lattice

o AS L 4
site —== is
n

AS k (bp b+ PP
mix/site —  KB| + sts
NP P

The energy of mixing per site can be expressed as a combination
of interaction energies u;_; within the polymer—solvent system:

z
A[]mix/si'ce = E%(I - ¢P)(2up—s U T MP_P)
This is then expressed as
A[]mix/site = )(¢P(l - d{,)kBT

where the empirically determined interaction parameter y
describes the difference of interaction energies within the system
where each site interacts with z neighboring sites:

z
2k, T

){ = (zup—s - us—s - up—P)
Together, the Helmholtz free energy of mixing per site for
polymer solutions, also called the Flory—Huggins equation for
polymer solutions, is expressed as

AFm = A[]m - TASmix/site

ix/ site ix/ site

)
kBTﬁf;ln%+ (1-¢)In(1 - ¢)

+x9(1 - )

The first two terms describe the entropic contributions, while
the third term describes the energetic contributions contained in
X. As y grows, the energetic contributions begin to rival the
entropic contributions, and at a critical point y,, the system
becomes energetically unstable due to the energetic contribu-
tions outweighing the entropic ones. At this point, the system
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phase-separates into two phases, which together are more
energetically favorable than a single phase of polymer dissolved
in solvent.*

1.1.2. Phase Diagram. For a polymer solution, the binodal
boundary is determined by finding the two equilibrium
concentrations ¢, < @, of AF /. as a function of
temperature (T). These concentrations are found at the two

=0 and

.. . 4
local free energy minima, i.e., where ﬁAFmix/site
P

P
WAFmix/site
P

concentration as a function of temperature ¢P7e1(T) and qbp‘ez(T)
can then be used to construct the binodal phase boundary on a
plot of T vs ¢, The interaction parameter y can then be
determined by calculating the common tangent line connecting

7 ) ]
0_4%AFmiX/Site|(/{):[ﬁp,el - O_%AFmix/Sitelf.bp:f/{,’ez and SOlVlng for Xbinodal*

> 0 (Figure 1a). The relationships of equilibrium

By solving a—zzAF

o mix/site

P
determine the spinodal boundary as a function of T and ¢, as
follows. The interaction parameter y can be expressed as a
function of temperature through y(T) = A + ?, where A and B

=0 for ¥ = Yyinoday ONE can then

can be experimentally determined through a plethora of

mix/site — 0 in

2
different techniques.” The solution to %AF
P

terms of Ynoda Can be rewritten in terms of T and the
experimentally determined A and B:

B
%[1/(1\%) +1/(1-¢)l - A

’I;pinodal =

Note that a polymer solution will only phase-separate above a
critical concentration, ¢, > ¢, which can be calculated from

9 1 1 1 .
()—q%lspinodal =0= E{_W + m] For a polymer solution,

1
\/‘Np+1

that critical concentration is ¢ = . As N, is generally very

1
N
the polymer is small, the critical concentration for phase
separation will be higher, and vice versa. This theoretical result is
often—but not always—reflected in experimental data, as will
be discussed in section 1.2.

Using the critical concentration, the critical temperature T, at
which the solution will phase-separate can be predicted.
Substituting ¢ into ynoqn one gets the critical interaction

large, ¢ = and thus scales with the size of the polymer. If

2
1 1 .
parameter Y . 4, = E(ﬁ + 1) , which when expressed as

B "
(T ) spinodat = A + 7 can be rearranged to define the critical

temperature T, = #.

S/ N +1P -4
The phase diagram is an incredibly useful tool for under-
standing the behavior of polymer solutions. It allows one to
predict the temperature at which a polymer solution of a given
concentration will phase-separate or, conversely, at which
concentration a polymer solution at a given temperature will
phase-separate. In practice, for a biopolymer in solution, the
higher equilibrium concentration ¢,., describes its concen-
tration in the dense condensate phase, while the dilute, lower
equilibrium concentration ¢, corresponds to the concen-
tration of individual biomolecules remaining in solution after

https://doi.org/10.1021/acs.jpcb.1c01146
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phase separation has occurred. The following sections describe
how this theoretical understanding of the balance between
entropic and energetic contributions that drive liquid—liquid
phase separation has been applied to understand the behavior of
synthetic and biological systems that exhibit LLPS.

1.1.3. Flory—Huggins Description of UCST/LCST Behavior.
Polymers exhibit two types of phase behavior: upper critical
solution temperature (UCST) and lower critical solution
temperature (LCST) phase behavior (Figure 1b). Polymers
that transition at all T < T exhibit UCST behavior, where the T.
is the highest temperature at which the polymer will phase-
separate. UCST behavior can be directly predicted by and
modeled by the Flory—Huggins theory described above. In

general, from the experimentally determined y ~ A + ?, if B >

0, then y decreases with increasing temperature and the system
exhibits UCST behavior.* From Flory—Huggins theory, we see
that UCST behavior typically arises from the energetics of
polymer—polymer, polymer—solvent, and solvent—solvent
interactions outweighing the entropic contributions to sol-
ubility.*” Polymers that transition at all T > T exhibit LCST
behavior—the T, is the lowest temperature at which the
polymer will phase-separate. In general, if B < 0, then y increases
with increasing temperature and the system exhibits LCST
behavior. This phase separation is driven by the increase in
entropy of the system resulting from the expulsion and release of
water molecules from the polymer molecules’ hydration shells
upon condensation.™®

1.1.3.1. Extensions of Flory—Huggins Theory. Modeling
LCST behavior has been done by extending the Flory—Huggins
lattice-based theory described above to a liquid-lattice model
that incorporates vacant sites and thus the compressibility of the
mixture.'’ This extension is important, as it has been recognized
that LCST behavior is correlated with variable density within the
system, a modular parameter that is not explicitly included in the
original formulation of the Flory—Huggins theory. Specifically,
the expulsion of solvent from the dense polymer phase changes
the density within the dense phase condensate.'’ Although
UCST phase behavior follows more readily from Flory—
Huggins theory and is somewhat more intuitive, LCST behavior
of polymers has been significantly better characterized
experimentally, and thus we will discuss it first.

Beyond extensions to accommodate LCST phase transitions,
many subsequent improvements in theoretical descriptions of
polymers have made the Flory—Huggins predictions more
accurate. Overbeek and Voorn expanded Flory—Huggins theory
to describe complex coacervation by considering the mixing of
polyelectrolytes and their electrostatic interactions'”'” and
Koningsveld and Staverman expanded Flory—Huggins theory
from a two-component homopolymer solution to encompass
multicomponent polymer solutions'*—two expansions which
are integral for studying how proteins, large and complex
polyelectrolytes, behave in highly heterogeneous multicompo-
nent protein condensates.'' For example, Lin et al. applied
polymer physics theory that accounted for electrostatic
interactions in polyampholyte solutions to predict the phase
behavior of the DDX4 nuage protein (described later in this
paper)."* Other corrections to Flory—Huggins theory help
reconcile differences between general mean-field theory and
experimental results as a result of scaling factors'>'® or
fluctuations in the concentrations of phase-separated polymers
around the critical demixing point.'” Further discussion on the
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physics of biological phase separation has been covered in other
excellent reviews.”' "’

1.2. Liquid—Liquid Phase Separations in Vitro. The
following section describes synthetic macromolecules that
exhibit LCST and UCST phase behavior and discuss the
various parameters that influence their phase behavior.

1.2.1. Synthetic Polymers That Exhibit LCST and UCST
Phase Behavior in Aqueous Solvents. Poly(N-isopropylacry-
lamide) (PNIPAM) is a canonical—and extensively studied—
example of an LCST synthetic polymer. Aqueous solutions of
PNIPAM phase-separate as the solution is heated up to its T,
(~31-33 °C), with the interesting property that this LCST
phase transition is independent of the concentration of PNIPAM
or the molecular weight of the polymer.”” This lack of
dependence of the T, on these two parameters indicates that
the entropic effects of hydrophobic hydration of the polymer
and subsequent release of bound water from the polymer chains
on phase separation are the primary forces that drive phase
separation of PNIPAM. The concentration of PNIPAM within
the dense phase is 0.4 g/mL, and this concentration of the dense
phase is also independent of the aqueous PNIPAM concentration
in the single phase prior to phase separation.”

Poly(oligoethylene glycol methyl ether methacrylate) (PO-
EGMA) is a methacrylate polymer with oligo(ethylene glycol)
(OEG) side chains appended to the methacrylate repeat unit.”’
Like PNIPAM, POEGMA exhibits LCST behavior in aqueous
solution. The T, at which POEGMA phase-separates is highly
dependent on the length of the OEG side chains,”' with
POEGMA polymers with OEG repeats with length 2—10 EG
units in the side chain exhibiting T\ ranging from 26 to 90 °C.*'
In the case of POEGMA, the Helmholtz free energy of phase
transition is based on the balance between the hydrophobic
methacrylate backbone and the hydrophilic OEG side chains. A
molecular dynamics study of POEGMA found that, below the
T., POEGMA chains in an aqueous solvent are solubilized
through hydrophobic hydration around the OEG side chains
forming a “cage” around the backbone, but as the temperature is
increased, the bound water molecules are released, increasing
the entropy through reduction in water-ordering around the
polymer and in turn driving its phase transition.”” With this
understanding, one finds that the T, of POEGMA increases as
the OEG chains are elongated; however, the T, of POEGMA
does not change significantly with increasing polymerization of
OEGMA blocks.” In addition, the LCST of POEGMA
increases only slightly with a decrease in concentration.”’

Interestingly, POEGMA exhibits a UCST phase transition in
aliphatic alcohols. The UCST phase separation T is a function
of the POEGMA molecular weight, concentration, OEG end
group, and structure of the alcohol. Increased alcohol chain
length increases the UCST cloud point, while increasingly
hydrophobic OEG end group modifications decrease the UCST
cloud point in alcohol and the LCST cloud point in water.”' The
dependence of UCST on OEG end group and solvent alcohol
structure highlights the importance of molecular interactions
between the polymer and solvent on UCST behavior.

Poly(ethylene glycol) (PEG), a workhorse polymer with
myriad applications in many fields, when dissolved in water
demonstrates “closed loop” LCST and UCST phase behavior.**
A solution of PEG in water first undergoes an LCST transition
by demixing of a single soluble phase into two immiscible
phases. As the temperature is raised further, PEG undergoes a
UCST phase transition, becoming soluble again. This closed
loop phase behavior has been attributed to intermolecular

https://doi.org/10.1021/acs.jpcb.1c01146
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Figure 2. Phase separation of proteins. Intrinsically disordered proteins, selected sequence portions of the relevant disordered regions, and their phase
separation behavior. DDX4 contains a large N-terminal intrinsically disordered region (IDR) and a DEAD Box RNA Helicase consensus sequence. In
response to a temperature shock, DDX4 droplets rapidly condense in HeLa cells. Adapted with permission from Nott et al.** Copyright 2015 Elsevier.
FUS contains a prion-like domain (PLD) and an RGG binding domain. FUS selectively phase-separates with RNA. Adapted with permission from St
George-Hyslop et al.”” Copyright 2018 Elsevier. ELF contains a poly-Q domain within a larger PLD—the pol-Q domain is integral for phase
separation. Upon temperature increase, ELF3 phase-separates to form intracellular granules. Adapted with permission from Springer: Nature, Jung et
al. (2020).* The MaSp2 spidroin contains an aliphatic consensus sequence enriched in G, Q, and A. Upon addition of phosphate, MaSp2 phase-
separates—these condensates are then soluble at low temperatures and condensed at high temperatures. Adapted with permission from Malay et al.*®
Copyright 2017 PLOS One. The N protein of the SARS-CoV-2 virus phase-separates with viral genomic RNA. Adapted with permission from Iserman

et al.>” Copyright 2020 Elsevier.

interactions that depend on a specific orientation—in the case of
PEG, the hydrogen bonds between the end groups.”* The LCST
phase behavior of PEG is highly dependent on both the MW of
the polymer and the salt concentration of the water, decreasing
from 172 down to 101 °C with increasing MW and salt
concentration of the polymer.”*** The UCST cloud point has
been found to increase with increasing MW of the polymer.”*
These results imply that the entropic drivers for phase transition
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of PEG lie in the unfavorable energetic interactions between the
PEG chains and water at high temperatures.

In general, the UCST phase behavior of polymers is strongly
dependent on energetic interactions, such as hydrogen bonding
or Coulombic interactions between functional groups in the
polymer and the solvent.” For example, zwitterionic copolymers
of poly(ethylene glycol) (PEG) and sulfobetaine or sulfabetaine
methacrylates exhibit UCST phase behavior in water or saline
medium based on the absence or presence of an oxygen atom

https://doi.org/10.1021/acs.jpcb.1c01146
J. Phys. Chem. B 2021, 125, 6740—-6759
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within non-PEG polymer blocks. Specifically, polymers with
polysulfobetaine methacrylate blocks exhibited UCST behavior
only in water, while polymers with polysulfabetaine methacry-
late blocks exhibited UCST behavior only in saline solution.*®
Another example is poly(N-acryloylglycinamide) (PNAGA),
which displays UCST phase behavior in water. The introduction
of even a trace of ionizable groups into the polymer, however,
abolishes UCST behavior, while adding counterions in the form
of salt can counteract these effects’” by shielding the ionizable
groups in the polymer from the solvent and short-range
intermolecular interactions between ionizable groups in the
polymer.

1.3. Phase Separation of Proteins. 1.3.1. Introduction to
Phase-Separating Proteins. From this understanding of
canonical phase separation, we proceed to the phase separation
of proteins. Over the past decade, many newly described
intracellular condensates that form through phase separation
have been reported in different biological systems and have been
the subject of multiple studies that further our knowledge of
their formation and function. The nucleolus and Cajal bodies
were the first intracellular condensates discovered almost a
century a§0,28’29 but their liquid-like nature was only suggested
in 2005°” and experimentally shown in 2009.>" The list of
intracellular condensates has greatly expanded since then.*>****
For instance, nuclear speckles are membrane-less nuclear bodies,
while stress granules (SGs), processing bodies (PB),** germ
granules, and the centriole are examples of cytoplasmic
condensates.*>*°

Many naturally occurring proteins that phase-separate contain
intrinsically disordered regions, IDRs, comprising stretches of
amino acids which are not predicted to fold into a specific 3D
structure.”” " IDRs within IDPs contain distributed weakly
interacting motifs' """ that provide the driving force in the
formation of condensates of an IDP. Bioinformatic searches of
eukaryotic genomes have predicted extensive IDRs"' in diverse
proteins, and these phase-separated protein condensates of IDPs
play myriad roles in physiology, from controlling cellular noise**
and modulating gene expression when phase-separated with
RNA™™* to catalyzing biochemical reactions by bringing dilute
proteins in close proximity.*®*” The following sections describe
a few examples of proteins with IDRs that have been shown to
undergo liquid—liquid phase separation in vivo and provide a
brief description of the impact of electrostatic interactions on
protein—protein and protein—RNA phase separation.

1.3.2. Proteins with Intrinsically Disordered Regions (IDRs).
The DDX4 family of proteins exhibit phase-separation behavior
mediated by IDRs (Figure 2). These proteins form membrane-
less organelles in a variety of organisms, such as the nuage in
mammals** and P-granules in C. elegans.** Proteins in the DDX4
family contain an RNA helicase sequence flanked by long N- and
C-terminal IDRs, containing 8—10 amino acid repeats of
alternating charge. The positively charged regions are rich in FG,
GF, RG, and GR amino acid motifs. Indeed, DDX4 tagged with
YFP exhibits UCST behavior—at high temperatures, DDX4
condensates solubilize, while, at lower temperatures, the
condensates reform as a dense, water immiscible phase.**

Many proteins associated with diseases have also been shown
to phase-separate, *” > implying a potential connection between
phase separation and disease. One of the most extensively
studied examples is the Fused in Sarcoma (FUS) protein that is
involved in many RNA-related activities such as transcription,
splicing, and transport in the cell’* (Figure 2). FUS exhibits
LLPS within the cell and has a low-complexity IDR rich in S, Y,

6745

G, and Q residues”” and a region rich in RGG repeats*’ that
binds RNA. Recent studies have shown that inter- and
intramolecular interactions between the IDR and RGG residues
are important for the UCST phase behavior exhibited by FUS>*
and that FUS preferentially phase-separates at high salt
concentration and in the presence of RNA.*

The in vivo LLPS of proteins is not only restricted to UCST
phase behavior. A prion-like domain in the protein Early
Flowering 3 (ELF3) drives LCST phase separation of an
“evening” complex in Arabidopsis thaliana composed of ELF3,
ELF4, and LUX, a transcription factor* (Figure 2). The LCST
phase separation of this complex allows transcription of genes
driving the flowering of the plant, thus acting as a thermosensor
for elevated temperature. This LLPS is facilitated by a
polyglutamine repeat embedded in a prion-like domain in
ELF3; deletion of this poly-Q repeat abolishes the phase
separation behavior and temperature responsiveness of the
evening complex.”

The formation of spider silk as well involves LCST phase
transitions of spidrion silk precursors™> (Figure 2). The dragline
silk protein major ampullate spidroin 2 (MaSp2) contains an
amphiphilic tandem repeat domain rich in glutamine, alanine,
and glycine residues, and solutions of MaSp2 undergo LCST
phase separation into a dense condensate upon the introduction
of phosphate ions.”*® This condensate then rapidly assembles
into spider silk fibrils upon acidification. In essence, the LLPS of
spidroin precursors into a dense condensate facilitates the
creation of fibrils, underscoring the significance of phase
separation in the processing of silk into fibers.

The viral SARS-CoV-2 N protein undergoes LCST phase
separation as part of the capsid packaging process, preferentially
forming a condensate with its own viral genome RNA and
excluding the rest of the RNA within the cell’”** (Figure 2). The
N protein structure includes two RNA-binding domains
(RBDs), an N-terminal RBD, and a C-terminal RBD that also
acts as a dimerization domain, a disordered serine-rich linker,
and N- and C-terminal IDRs.””*® Phosphorylation of the serine-
rich linker drives N protein—RNA assembly from a gel-like state
to one reminiscent of LLPS.*® Indeed, the phase separation of N
protein together with the SARS-CoV-2 genomic RNA increases
in efficiency as the temperature rises from a normal body
temperature of 37 °C to more febrile temperatures of 40—45
°C.”” The LCST phase behavior of the N protein may indicate
that the SARS-CoV-2 virus takes advantage of fever resulting
from a host immune response to increase the efficiency of
functions associated with its replication.

1.3.3. Electrostatic Interactions in Biological LLPS. A feature
common to proteins which undergo UCST phase transitions is
the presence of charged residues (e.g, lysine, arginine) that
facilitate the electrostatic intermolecular interactions that are
implicated in UCST phase behavior. The patterning of these
residues affects the structure and compactness of phase-
separated proteins,” while the overall distribution of positive
and negative charge along a protein’s amino acid sequence may
be the driving force for LLPS, rather than the specific protein
sequence.”” Further reading on the subject can be found in an
excellent review by Bianchi et al.'

These electrostatic interactions also underlie the influence of
RNA on phase-separating protein—RNA condensates. Many
proteins, including the DDX4, FUS, and SARS-CoV-2 N
proteins mentioned above, interact with RNA when they phase-
separate to form ribonucleoprotein (RNP) granules—mem-
brane-less organelles rich in protein and RNA that have myriad
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roles in biological systems. A slew of recent research has
demonstrated that, beyond the constituent proteins, RNA also
plays a key role in modulating the structure and phase separation
behavior of these RNP granules. RNA has been shown to
determine the size of intracellular condensates, wherein a larger
RNA:protein ratio led to smaller yet more numerous RNP
granules.”” This result agrees with numerous studies demon-
strating that RNA is able to buffer and even dissolve RNP
granules. At low RNA concentrations, the RNA molecules drive
nucleation and assembly of protein—RNA condensates;
however, as the RNA concentration increases further, the
condensates begin to dissolve.”® This phenomenon is rooted in
the balance between short- and Iong-ranége electrostatic and
sequence-encoded cation—pi interactions.”* This has a partic-
ularly poignant role in the formation of condensates by proteins
encoding prion-like domains (PLDs); PLD-containing proteins
which undergo phase separation such as FUS and TDP43 have
been implicated in a number of neurodegenerative diseases.””*°
Mabharana et al. showed that high nuclear concentrations of RNA
prevent aberrant phase separation of proteins containing PLDs
but lower concentrations of RNA mislocalized to the cytoplasm
actually serve to nucleate aberrant intracellular condensates.”’
Further details on the role of RNA in LLPS can be found in an
excellent and thorough review on the subject by Roden and
Gladfelter.”®

2. METHODS TO STUDY LIQUID-LIQUID PHASE
SEPARATION IN PROTEINS

In this section, we give an overview of the experimental and
computational techniques used to quantify and study the phase
separation of proteins and refer the reader to many other
excellent reviews that have been written covering these
techniques in more details.""

2.1. Experimental Methods. The phase diagram of
protein—nucleic acid assemblies in solution has been mapped
as a function of temperature, pH, concentration, salt type and
concentration, cosolutes, and the volume excluded by other
macromolecules.”****°*7~7*> Droplets that form through
LLPS have been directly imaged—and studied—in live cells
by fluorescence microscopy, high speed atomic force micros-
copy (AFEM), and fluorescence recovery after photobleaching
(FRAP).”* FRAP, in particular, is a very useful technique to
study the molecular dynamics and mobility of phase-separated
domains and has been used to monitor droplet maturation and
investigate the diffusion of macromolecules in LLPS drop-
lets.”*~7°

NMR spectroscopy has also been used to investigate how
different domains of a protein contribute to the formation of
phase-separated condensates of an IDP.*”**”” The lack of
persistent secondary and tertiary structure found in IDPs and
IDRs that exhibit LLPS is not an impediment to NMR studies, in
contrast to X-ray crystallography, and enables NMR to provide
information on the local structure of proteins undergoing LLPS
and information about the inter- and intramolecular interactions
that drive LLPS.”® For instance, measurements of H1-exchange
rate, chemical shifts, and residual dipolar coupling (RDC) have
been used to investigate the transient secondary structural
elements of disordered segments ns LLPS domains,”’ while
paramagnetic relaxation enhancement (PRE)® and pulse-field
gradients (PFGs) have been used to investigate the long-range
interactions of IDPs (up to 25 A).>>>*817%°

Other structural characterization methods can be combined
with NMR analysis to study the phase separation of IDPs. Small
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angle X-ray scattering (SAXS) and small angle neutron
scattering (SANS) can complement NMR and provide the
three-dimensional protein structure.”*™®’ Forster resonance
energy transfer (FRET) can also provide information on the
distance between pairs of fluorescently labeled amino acids in
IDPs.”® Raman spectroscopy has also been used in combination
with NMR to characterize the interactions within an IDP
condensate.”* Recently, a method for microrheological measure-
ments of phase-separated coacervates has been developed that
uses optical tweezers to determine the elastic modulus, viscosity,
and surface tension of a coacervate. This method was used by the
Hyman group to characterize phase-separated droplets of the C.
elegans PGL-3 protein.”’

Differential scanning calorimetry (DSC) is another useful
technique which can provide valuable information on the
intrinsic disorder of proteins.”” In this technique, the heat
capacity difference between the protein solution and a reference
isrecorded at constant pressure accompanying uniform heating/
cooling cycles. DSC can provide accurate analysis of the folding
and phase transition of IDPs and partially disordered proteins
and facilitates the understanding of their stability and energetic
profiles.”> ™" DSC is best suited for relatively small and
structurally cooperative proteins; the technique is limited in
extracting structural information from large, multidomain
proteins in which each domain has different structural
cooperativities.92

DSC has also been used with other calorimetric and
spectroscopic methods to study LLPS in IDPs. For instance,
DSC has been employed with pressure perturbation calorimetry
(PPC) and FT-IR to investigate the phase separation behavior of
insulin.”” Tt has also been used with 'H NMR to study the water
and ion-binding properties of the full transactivation domain
(TAD) of pS3, an intrinsically disordered domain within the full
tumor suppressor protein. Tompa et al. showed that the
combination of DSC and NMR can distinguish between IDPs
and folded, globular proteins and furthermore can also
differentiate between the disordered wild type and ordered,
helical mutant variants of the intrinsically disordered TAD
peptide portion of the p53 TAD protein.”

Electron paramagnetic resonance (EPR) spectroscopy is
another magnetic resonance technique similar to NMR in which
energy is absorbed by the magnetic moments of unpaired
electrons. As unpaired electrons are rare in biological molecules,
this technique exhibits very low background signal for in vivo
imaging.”” The combination of EPR with site-directed spin
labeling (SDSL-EPR) provides a useful technique for the
characterization of the structural behavior and dynamics of
proteins lacking a well-defined 3D structure (IDPs) under
physiological conditions.'”'"!

Florescence correlation spectroscopy (FCS) is another
powerful technique that provides information about small
molecular ensembles by measuring the spontaneous fluorescent
intensity fluctuations of fluorescent particles.'’> FCS has been
frequently used to study biological condensates and soluble
aggregates.””'*® For instance, Alshareedah et al. incorporated
FCC, combined with microrheology and optical tweezer
induced droplet fusion, to quantify the viscosity, surface tension,
and diffusion of protein—nucleic acid condensates.'** In another
example, Peng et al. used the dual-color fluorescent cross-
correlation spectroscopy (dcFCCS) method to study the
formation, size, and growth rate of nanoscale condensates.
They also used this method to investigate the binding affinity of
molecules within the condensates.'” Ultrafast-scanning FCC
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has also been used to measure second virial coeflicients,
molecular diffusion, and binodal coexistence curves of C. elegans
proteins in the presence and absence of RNA.'%

2.2. Computational Methods. The major limitation of
experimental techniques used to characterize the LLPS of
macromolecules'®” is that they cannot provide detailed
information on the interactions of components in the complex
environment within LLPS condensates, especially the conforma-
tional ensembles and the dynamics of disordered proteins at the
molecular level. Theoretical and computational tools can
provide complementary information about conformational
ensembles of macromolecules across short length and time
scales that are not accessible by experimental methods and
access to the structural details of condensates that are difficult to
obtain by experimental methods, and information about the
thermodynamics and kinetics of phase separation.'*~""*

The majority of computational studies on IDPs and proteins
containing IDRs employ coarse-grained (CG) models in which
individual proteins are treated as colloidal particles based on
Debye—Hiickel electrostatics and empirical contact poten-
tials.'*~'"> CG methods are able to qualitatively analyze the
sequence-dependent properties of IDP/IDRs and in some
instances can provide results in close agreement with
experimental results.'' CG methods have also been used to
calculate the phase diagrams of coexisting systems such as FUS
and the DEAD-box helicase protein LAF-1."> CG methods have
been used to relate protein sequence to its phase-separation
behavior by quantifying the correlation between the temper-
ature of chain collapse, self-associating temperature, and the
critical temperature for phase se})aration in dilute solution.*> As
summarized by Paloni et al,''” modeling the organization of
membrane-less organelles and describing the role of phosphor-
ylation on LLPS are other examples of CG simulations that have
expanded our knowledge of LLPS.

Molecular dynamics (MD) and Monte Carlo (MC)
simulations are two other computational methods that are
useful for studying LLPS at the molecular level." "' MD and
MC simulations are based on a force-field energy function that
includes both bonded and nonbonded interactions and thus
have the advantage of being able to account for detailed
intermolecular correlations. MD has the ability to predict
dynamic properties such as nucleation kinetics and transport
coeflicients and also provides a direct computational route to
investigate structurally disordered states at the atomic level,
paving the way for elucidation of the structural dynamics of
folded, disordered, and partially disordered proteins.'”'*' The
quality of MD simulations, however, is hi%hly dependent upon
an accurate physical force-field model.'”® The MC methods
overcome this problem by utilizing discontinuous force-fields
such as particle swaps in multiphase systems'** summarized in
ref 110.

3. FROM LLPS PRINCIPLES TO APPLICATIONS

As the body of research on LLPS in biology grows in scope and
significance, there has been a simultaneous push to under-
standing the phase behavior in bioinspired materials. Diverse
artificial polypeptides have been shown to exhibit LCST and
UCST phase behavior.'*’ This phase behavior has been typically
found in repetitive polypeptides with high levels of intrinsic
disorder, termed artificial intrinsically disordered proteins (A-
IDPs). The canonical LCST exhibiting IDPs are made out of
repeat units Valine-Proline-Glycine-Valine-Glycine and exhibit
LCST phase transitions at ~30 °C."**'** This (VPGVG), motif

6747

was originally derived from the observation that the motif recurs
multiple times and is highly conserved within the hydrophobic
re%ign of the tropoelastin protein across all species that produce
it."*> Tropoelastin is a protein with a high level of structural
disorder that in humans polymerizes to form elastin; the
inspiration of polymers of this class of peptide motif from elastin
has led them to be named elastin-like polypeptides (ELPs).

For a long time, there was a dogmatic belief that the fourth
position in the pentapeptide repeat was the only position that is
tolerant to substitution without abolishing the LCST phase
behavior of ELPs. This led to the generalization of this motif to
(Valine-Proline-Glycine-Xaa-Glycine),, where Xaa is any amino
acid except proline. The T, of the polymer can be tuned by
modulating the hydrophobicity or hydrophilicity of the guest
residue Xaa."”’ In addition, there was a persistent notion that the
VPGXG motif uniquely conferred LCST phase behavior to
peptide polymers. That this notion was simply dogma was
suggested by the observation that (IPGVG),, with a valine to
isoleucine substitution at the first residue of the repeat unit,
departs from the canonical VPGXG sequence yet still exhibits
LCST phase behavior.

Further advances in multiplexed IDP gene synthesis laid the
groundwork for the discovery of new phase-separating IDP
sequences that diverged from the canonical (VPGXG), motif.
Overlap extension rolling circle amplification (OERCA), a novel
method that uses rolling circle amplification to multiplex the
assembly of repetitive genes that encode for A-IDP oligomers
ranging in size from 10 repeats to over 80, was used to generate a
library of nine A-IDP genes with various alanine insertions and
substitutions in the (VPGVG), motif."*® Four new motif-
s—(AVPGVG),, (VPAGVG),, (VPGAVG),, and
(VPGVAG),—were discovered that also undergo phase
separation, confirming that there exists a large A-IDP sequence
space of LCST phase behavior beyond the canonical (VPGXG),
motif.

This sequence space has since been extensively explored
through the generation of even more complex A-IDPs with
varying repeats of the form P-X, -G, n = 0—4, separated by 3—15
various amino acid residues.” This novel sequence heuristic has
given rise to a plethora of phase-separating A-IDPs which
undergo both LCST and UCST phase transitions. Identified
LCST phase-separating A-IDPs were shown to demonstrate a
range of hysteretic phase separation behaviors, further building
on the characterization of this large sequence space and
demonstrating the wide functionality of protein phase
separation.'”” Identified UCST phase-separating A-IDPs are
based on a GGRPSDSYGAPGGGN core sequence and are
inspired by resilin, a disordered protein found in insect wings,
earning them the name resilin-like polypeptides (RLPs).>"*"

3.1. Phase Behavior in Artificial IDPs. Similar to naturally
occurring IDPs that exhibit LCST and UCST phase behavior, A-
IDPs based on ELPs and RLPs exhibit phase behavior and are
structurally disordered. Despite the extreme simplicity of these
systems—composed as they are of only a few amino acids in a
repetitive arrangement—they recapitulate notable features of
IDPs found in nature. RLPs, notably, share the same prevalence
of glycine, arginine, and tyrosine residues as many IDPs
mentioned in Figure 2. Many variants of RLPs also contain
glutamine, an amino acid highly prevalent in natural IDPs. In
fact, A-IDPs have been engineered which form intracellular
condensates with tunable C,, size, and formation temperatures
in vivo and subsequently increase enzymatic conversion of a
desired reaction within the intracellular condensate,”” two
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PixELLs system based on P1xE and PixD (reprinted from Dine et al.'**), the Corelets system based on a ferritin core and iLID/SspB optical switch

(adapted from Bracha et al."

partitioning at microtubule plus ends (from Reinkemeier et al."*

%), and a membrane-less organelle used for orthogonal translation, containing kinesin-targeting domains for spatial
*). De Novo IDP systems are engineered with fully exogenous condensates, including

ELPs fused to RNA-binding peptides for temperature-dependent sequestration of RNA from translation machinery in proto-cells (reprinted from
Simon et al."*”), and a split -galactosidase system with acceleration of enzymatic activity in RLP condensates as demonstrated in E. coli (adapted from

Dzuricky et al.*’).

important properties of naturally occurring IDPs that phase-
separate in vivo."”"*’ Because the phase behavior of these A-
IDPs can be tuned by systematic changes in their sequence and
MW, they offer a potentially useful system to tease out the

13
molecular grammar

such as FUS.
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®—how residues, motifs, and IDP blocks
come together to impart phase behavior—of phase behavior in
far more structurally complex and heterogeneous native IDPs
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A-IDPs that undergo LLPS have found myriad applications
across diverse fields. Engineering of such systems relies on
knowledge of the factors that affect their LLPS. Because of their
simplicity, the phase diagram of repetitive A-IDPs can be
rationally optimized for an application by modulating their
genetically encodable molecular parameters—sequence, com-
position, and MW—that dictate their phase behavior. As ELPs
are among the best characterized A-IDPs, they have largely
monopolized several areas in which IDPs find applications.

In the following sections, we give an overview of applications
where A-IDPs that undergo LLPS have found use. These include

the control of cellular processes (3.1.1), biomolecule capture

and purification (3.1.2), drug delivery (3.1.3), and the
hierarchical self-assembly of macromolecular materials (3.1.4).

3.1.1. Control of Intracellular Condensates. Engineering
cellular condensates has great potential for the control of
processes that are regulated by condensates and for treatment of
diseases that are caused by dysregulation of condensate
formation. Due to the relative youth of this field, most recent
efforts have been focused on modulating and understanding the
behavior of native intracellular liquid phases under various
conditions. The understanding accrued from these studies
should, however, allow rational design of bespoke condensates
in the future. Even at this early stage, there are now extant
examples in which artificial condensates have been designed de
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novo and used for molecular sequestration, for translation, or as
reaction crucibles in a cell-like environment—commonly called
protocells—and in live cells.

The Brangwynne group has developed several optically
controlled protein tools that facilitate the interrogation of
phase boundaries and condensate function in eukaryotic cells.
The blue-light-inducible Cry2 oligomerization domain from
Arabidopsis thaliana was fused to IDRs of native condensates to
create what is termed the optoDroplet system, which accesses a
range of liquid and solid-like states depending on levels of
supersaturation'”" (Figure 3). A next generation system dubbed
Corelets (Figure 3) was developed using a “core” composed of
the 24-mer ferritin complex and the light-inducible interaction
partners iLID and SspB,'*” in which ferritin monomers were
fused to iLID and the native IDR of interest was fused to SspB.
Both systems give researchers spatiotemporal control over
condensate formation in cells by initiating the intermolecular
interactions that drive condensate formation with light. As
optoDroplets are prone to irreversible aggregation and gelation,
they have largely been used to investigate disease states
associated with gel-like condensates, while more reversible
Corelets have been used to precisely map phase boundaries in
living cells."*” A third optical system known as PixELLs (Figure
3) uses a protein oligomerization pair that dissolves upon
illumination with light and reassociates in the dark, so that
stimulation with blue light dissolves the protein dense
coacervate phase in a two-phase system and the removal of
light allows LLPS to occur."*" Finally, dCas9 fused to light-
activated IDRs and guide RNA can localize condensates to
specific regions of the genome in response to stimulation by light
as well as restructure chromatin'>® (Figure 3).

In these previous examples, exogenous proteins were fused to
native IDRs to engineer condensates that are reminiscent of the
IDPs they are derived from. In contrast, the de novo engineering
of condensates using A-IDPs—which offer more tunability in
their phase behavior than native IDPs—offers new oppor-
tunities for bottom-up reprogramming of cellular functions via
customized functional condensates. In an example of this
approach, RLPs—a class of A-IDPs that exhibit UCST phase
behavior—were expressed in E. coli and observed to retain
reversible temperature-dependent phase separation and phase
boundaries that were similar to those observed in vitro (Figure
3). Furthermore, these exogenous condensates could recruit
proteins and accelerate the activity of an enzyme, f-
galactosidase.”” Temperature control of other processes within
cells has also been achieved by fusion of an ELP to signaling
proteins. Epidermal growth factor receptor (EGFR) was fused to
an ELP by Li et al. to enable dynamic control of receptor
clustering and downstream kinase modulation that is triggered
by the LCST phase transition of the EGFR—ELP fusion in
mammalian cells."*® Another emerging area of interest involves
reversible, phase-transition-triggered sequestration of RNA
from the cytoplasm within intracellular condensates for post-
transcriptional control of protein expression. An ELP fused to a
promiscuous RNA binding domain was leveraged for temper-
ature-tunable inhibition of protein expression by sequestering
the RNA from the translational machinery in an in vitro
setting'”” (Figure 3). Finally, in what is perhaps the most
complete de novo engineered organelle system to date,
Reinkemeier et al. created an orthogonal mRNA translation-
capable organelle in mammalian cells by fusing various
translation machinery to phase-separating and spatially targeted
protein domains (Figure 3). In addition, they selectively
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recruited target mRINA transcripts to such organelles via RNA
MS?2 loops that bind MCP protein domains in the organelles.
This allowed them to achieve enhanced efficiency in creating
polypeptides with unnatural amino acids within these
membrane-less organelles, a feat that is often hampered by
cross-talk between native and exogenous translation factors.'*
These studies were all published between 2016 and 2020,
demonstrating the youth of this field and the rapid rate at which
it is evolving.

3.1.2. LLPS for Purification of Recombinant Proteins.
Proteins are typically purified by chromatographic methods,
but these methods have issues with scalability, throughput, and
cost of stationary phase materials. In comparison, purification of
biomolecules via LLPS is readily scalable, rapid, and often
achievable with a centrifuge or tangential flow filter and common
laboratory supplies. The purification process is conceptually
extraordinarily simple—it simply requires a means of selectively
separating the moiety of interest into the polymer-rich phase,
followed by a method to recover the moiety from the dense
phase. Phase-separating polypeptides offer an elegant method of
selectively sequestering molecules of interest using fusions to
other polypeptides at the genetic level, and thus protein fusions
to IDPs with LLPS properties has become an attractive method
for recombinant protein purification'*” (Figure 4).

There are two major strategies for the ELP-mediated
purification of polymers: direct purification and purification by
affinity capture methods. The first method simply requires the
gene-level fusion of an ELP to the desired protein and has two
constraints—first, that the ELP fusion is expressed as a soluble
protein in the expression host and, second, that the fused partner
not abolish the LCST phase behavior of the ELP (Figure 4a).
After expression, the host cells are lysed and the LCST transition
of the ELP fusion is triggered thermally by heating the solution
above the T, of the fusion or isothermally by addition of a
kosmotropic salt to depress the T, below the solution
temperature. This causes LCST phase separation of the ELP
fusion into a protein-dense phase that contains most of the ELP
fusion and a protein-depleted aqueous phase. The ELP fusion
can be removed from the protein-depleted phase that contains
the bulk of the cellular contaminants by centrifugation or by
tangential flow filtration. The dense protein phase is then
resuspended in cold buffer to reverse the phase transition and
solubilize the ELP fusion (Figure 4b). This process—termed
inverse transition cycling (ITC)—can be repeated as many
times as is needed to yield increasingly pure protein. We have
found that proteins fused to the ELP that are hydrophilic and do
not contain significant hydrophobic patches on their surface can
be purified to homogeneity with only a few rounds of ITC,
whereas more hydrophobic proteins tend to attract contami-
nants and hence require a greater number of rounds of ITC to
attain sufficient purity. At this time, our group has purified >30
proteins by this method and ITC has allowed the purification of
a number of refractory proteins. ELP fusions and their
purification by ITC are not, however, a panacea, as this
methodology only applies to proteins that can be expressed as
soluble protein.

In many instances, the final product of interest is the protein
sans the ELP tag, and to isolate the protein without the fused
ELP, a protease cleavage site can be introduced between the ELP
and recombinant protein to enable the cleavage of the ELP tag
from the fusion by a protease of interest (Figure 4c). We have
developed and used a number of such systems including
thrombin,"*° sortase,"*" and self-cleaving inteins.'**  After
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cleavage, an additional ITC step can be carried out to separate
the cleaved ELP (Figure 4d). Although other phase-separating
polypeptides have been used to similar effect, such as an RLP
exhibiting a UCST transition,'” and various polyelectrolyte
protein—polymer combinations that result in complex coac-
ervation,'** ELPs remain by far the most developed system for
purification of recombinant proteins.

The second LLPS-mediated purification strategy relies on
affinity capture of a target protein by an ELP fusion. This
method relies on selective binding between the ELP fusion
partner and the target, making selection of binding partner pairs
highly important for this application. Unlike direct purification
of ELP fusion proteins, affinity capture phase separation is not
limited to polypeptide-based targets and can be used to purify
any target molecule for which a suitable ligand with high binding
affinity and selectivity—preferably one that can be recombi-
nantly synthesized as a fusion with an ELP—exists. Early work
by the Chen group used fusions of ELP and protein A in order to
capture and purify monoclonal antibodies from hybridoma
lysates'* and later optimized the efficiency and yield by
replacing protein A with the smaller Z-domain derived from
protein A.'** The same group also developed a recyclable
plasmid purification system based on the affinity of the bacterial
metalloregulatory protein MerR for its promoter sequence on
the target plasmid."”’ A short list of other peptide affinity tag
pairs that have been explored for affinity precipitation include
SH3 and proline-rich domains, streptavidin and nanotag-15, and
flag peptide and antiflag M2."**'* Compared to direct
purification of ELP fusion proteins, affinity capture followed
by phase separation has the advantage that it does not require
the target molecule to be modified by fusion to an ELP, although
it requires additional steps that may lower its efficiency.

3.1.3. LLPS and Drug Delivery. Drug delivery systems are
designed to increase drug solubility, decrease rate of clearance by
the kidneys, and in some cases shield the drug from adverse
immune recognition.'*” Polypeptides based on ELPs can impart
each of these functions and have the additional benefit of
degradation into nontoxic byproducts."*" For applications in
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drug delivery, polymers that undergo LLPS have been leveraged
to modulate the pharmacokinetics and in vivo biodistribution of
drugs. In the two most common embodiments of LLPS for drug
delivery, phase separation is used either to control the formation
of drug depots within the body for sustained release of the drug
or to engineer functional particles of defined size and
architecture that sequester drug and have extended blood
circulation.

Drugs can be attached to an ELP by several methods.
Genetically encodable peptide and protein drugs can be fused to
an ELP at the gene level, whereas small molecule drugs can be
chemically conjugated to the ELP. The design of ELPs as drug
carriers requires a systematic approach to optimization of guest
residues and molecular weight to tune the transition temper-
ature for its intended application with the additional caveat that
the attachment of a drug can alter the phase diagram of the
ELP,">? which must hence also be taken into account in the ELP
optimization process.

Perhaps the most straightforward LLPS application in drug
delivery relies on the LCST transition from room temperature to
body temperature to create an injectable depot for sustained
release of a peptide or protein drug fused to an ELP (Figure
Sab). In this design, an ELP is fused to a drug that, upon
subcutaneous injection, forms an insoluble depot at the site of
injection but that dissolves over time at a predictable rate with
zero order kinetics and thereby releases the ELP fusion into
circulation (Figure Sc,d). While they have been explored for a
number of applications, >'** this approach is especially useful
for treatment of diseases that require a baseline dose of the drug
at all times—type 2 diabetes is perhaps one of best exemplars of
this need. To this end, depots formed by ELP fusions to peptide
drugs GLP-1">° and FGF21'*° have been shown to be effective
for 5—10 days in murine models of type 2 diabetes. This
approach has also been used to create a bispecific drug where
two different protein drugs with complementary pharmacology
are fused with an ELP to create a ternary fusion. In the first
demonstration of this approach, GLP-1 was fused with FGF-21
via an ELP linker to create a GLP1-ELP-FGF21 fusion. This
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bispecific ELP fusion outperformed an equimolar mixture of the
GLPI1-ELP and ELP-FGF21 fusions, which demonstrated the
pharmacological advantages of a unimolecular bispecific drug
wherein both drugs are presented from a single molecular
scaffold. ELPs have also been used for brachytherapy—
intratumoral radiation therapy—wherein a radionuclide is
chemically conjugated to a depot-forming ELP, such that,
upon injection of the radionuclide—ELP conjugate into a solid
tumor, the conjugate phase-separates into an insoluble
coacervate that is discretely localized within the tumor and
irradiates the tumor from the inside out'*”">® (Figure Se,f).

Thermally sensitive ELP—drug conjugates can also be
engineered to be soluble at body temperature but undergo
LLPS-triggered accumulation in tissues that are transiently
heated to slightly above body temperature. By externally heating
solid tumors to 42 °C, an ELP conjugate with a T; value of ~40
°C phase-separates into an aggregate in the tumor, which results
in increased tumor localization—even upon the cessation of
heati_n%—compared to an ELP control with a T, value of >42
°C,"71%" and demonstrates that thermal targeting of tumors is
possible by mild focused hyperthermia of a solid tumor.

The coacervation of IDPs can also be exploited to trigger self-
assembly of nano- and mesoscale structures that carry drugs and
present targeting peptides and proteins (Figure S, inset). This
approach requires imparting sufficient amphiphilicity to an ELP
to drive its self-assembly into micelles or vesicles. There are
three approaches by which this has been achieved. In the first
approach, an ELP is fused to a short (CGG)g peptide tag, and
attachment of hydrophobic molecules with an octanol—water
partition coeflicient of approximately >1.5 imparts sufficient
amphiphilicity to the conjugate to trigger its self-assembly into
micelles.'®" Attachment driven assembly of micelles has been
used to package a number of hydrophobic small molecule drugs
that suffer from poor delivery. For hydrophilic molecules with
logD < 1.5, whose conjugation to the Cys residues does not
trigger self-assembly of the ELP into micelles, a hydrophobic
(GGX)g segment (where X =Y, F, or W) is genetically appended
to the polypeptide to drive micelle assembly.'®> Adding a drug
attachment (CGG),; block between the ELP and the self-
assembly domain then results in a triblock copolypeptide, and it
has been shown that conjugation of hydrophilic small molecule
drugs to the Cys residues in the (CGG)z domain does not
abolish self-assembly into micelles, thereby providing a way to
package hydrophilic drugs into nanoparticles."®> Micelles of
these diblock copolypeptides have been used to deliver a range
of anticancer chemotherapeutics, such as doxorubicin, paclitax-
el, and gemcitabine, in which the conjugated drugs are
sequestered in the hydrophobic core of the micelle. In all
cases, the nanoparticle formulation of these drugs showed
significantly better efficacy than the free drug,

The desolvation of an ELP chain that drives its LCST phase
behavior can also be profitably employed to drive temperature-
triggered self-assembly. In a diblock ELP (ELPy.) in which one
ELP block is significantly more hydrophobic than the second
ELP block, with an increase in temperature, the more
hydrophobic segment preferentially desolvates and becomes
increasingly hydrophobic, and at a critical temperature—the
critical micellization temperature (CMT)—the ELPy. self-
assembles to form a micelle, with the hydrophobic block in the
core, while the solvated, hydrophilic block forms the corona that
shields the hydrophobic core. This strategy for ELP self-
assemblgr into micelles was first demonstrated by the Conticello
group,'®* and our group then explored this phenomenon in
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greater detail."®> ELP micelle size can be tuned by varying the

block pattern of multiblock ELPs to enable the study of size-
dependent nanoparticle tumor accumulation.'*®

ELP sequences have been combined with RLPs to form ELP—
RLP diblocks. Because RLPs are intrinsically more hydrophobic
than ELPs, combining RLP and ELP sequences into block
copolymers provides a new approach for self-assembly. Fusing
RLP and ELP domains in a diblock sequence results in UCST
and LCST behavior within the same molecule and self-assembly
into a micelle driven by the architecture of the diblock
copolymer. A notable architecture obtained with RLP—ELP
conjugates is an elongated cylindrical (“wormlike”) micelle.'®”

Nanoparticles of A-IDPs can also help solve a universal
limitation of most systemically administered nanoparticles that
they are preferentially taken up by macrophages that are
prevalent in the reticuloendothelial system—mainly in the liver
and spleen, causing a high level of accumulation in these organs
that can cause significant off-target toxicity. The exterior of these
nanoparticles can be engineered to solve this problem by two
approaches. The first approach seeks to leverage the fact that
albumin has exceptionally long blood circulation and is not
taken up to a significant extent in the liver and spleen. To confer
these attributes to drug-loaded ELP micelles, an ELP with a
(GGC)g drug attachment segment on its C-terminus was
appended—at the gene level—with a small albumin binding
protein domain at the N-terminus. Upon drug attachment, the
ELP—drug conjugate self-assembles into micelles, wherein the
exterior of the micelles is studded with multiple copies of the
albumin-binding protein domain.'®® Upon systemic adminis-
tration of these drug-loaded ELP nanoparticles, they are
immediately coated with an albumin corona, owing to the
high—nanomolar—affinity of the albumin binding domain for
endogenous serum albumin. These drug-loaded ELP nano-
particles have much longer blood circulation, accumulate in
tumors to a much greater extent than undecorated ELP
nanoparticles, and show better tumor regression than the
control ELP nanoparticles and free drug. A complementary
approach simply re-engineers the ELP sequence to incorporate a
zwitterionic KE dipeptide in each repeat unit, inspired by the
observation that certain zwitterionic polymers have long
circulation in blood."®’

These nanoparticles can also be targeted to specific tissues
and cell types by decorating the hydrophilic corona of these
particles with peptide or protein ligands that bind specific
receptors on the surfaces of cells.'”’ Surprisingly, worm-like
micelles decorated with fibronectin type 3 (FN3) domains had
increased avidity for their binding partners, and consequently
greater uptake in cells overexpressing integrin receptors
compared to unimers, spherical micelles, and even antibodies
that targeted the same domains."”'

3.1.4. Macromolecular Materials from Phase-Separating
Polymers. While the reversibility of the LLPS of native and
artificial IDPs is invaluable for certain applications, such as the
purification of biomolecules, there are other applications of IDPs
that require solid materials with structural integrity. Polymers
with LCST or UCST transitions can be covalently cross-linked
as soluble species to form gels, while still retaining their
temperature-sensitive ability to exclude solvent. These gels no
longer undergo a true phase transition but experience reversible
volumetric changes upon reaching their LCST or UCST.'””
PNIPAM,'”® ELP,"”* and many other natural and synthetic
polymers'”® have been engineered into such gels, which are
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useful as tissue engineering scaffolds,'’*"”” for toxin uptake and
drug release,'”® and the formation of artificial muscles.'”®

Researchers have engineered polypeptides with custom
LLPS-driving disordered regions and structure-directing
domains to precisely control intermolecular interactions to
yield solid materials. Peptides that form coiled-coils were
conjugated to PEG and ELP to create network hydrogels with
tunable viscoelasticity upon hydration transitions in the gel.'””
Loosely inspired by tropoelastin that has structurally ordered
and disordered domains, the inclusion of periodic oligoalanine
helices in an ELP scaffold yielded A-IDPs that we termed
partially ordered polymers (POPs). POPs exhibit LCST phase
behavior similar to ELP but with two important differences.
First, POPs have thermal hysteresis in their LCST phase
behavior that can be tuned by the fraction of oligoalanine helices
in the POP. Second, triggering its phase transition into a
coacervate phase does not lead to LLPS; instead, aqueous
demixing creates two phases, where the protein-rich phase is a
porous solid with a fractal-like structure that is stabilized by
intermolecular interactions between the oligoalanine helices in
the POP. POPs may prove to be useful as injectable biomaterials
for in vivo tissue regeneration, as the porous solid matrix is
minimally immunogenic and promotes spontaneous vasculari-
zation in mice."®” Motifs from silk proteins have also been
combined with a wide variety of ELPs to control the mechanical
stiffness'®" in the hybrid silk-elastin-like proteins.

The phase behavior of A-IDPs and the resultant structures
formed upon phase separation can also be modulated—as in
native IDPs—Dby post-translational modification. While post-
translational modification introduces an additional synthetic
step following translation, modification can be carried out by
coexpressing the enzyme in the same cell as its IDP substrate,
effectively making the system entirely genetically encoded. A
diblock polypeptide consisting of a C-terminal ELP and a short
(5—10 amino acid) N-terminal peptide that both serves as a
myristoylation substrate by N-myristoyl transferase (NMT) and
as a f-sheet-directing peptide were coexpressed with yeast NMT
inE. coli. NMT appended a myristoyl group at the N-terminus of
the polypeptide, yielding a fatty-acid-modified ELP (FAME).
Depending on their precise sequence, FAMEs can exhibit
hierarchical assembly into long tangled fibrils upon the
triggering of the LCST transition of ELP, wherein the peptide
amphiphile composed of the myristoyl group and p-sheet
peptide forms the fibril core, and the ELP forms the hydrophilic
corona. The reversibility and hysteresis of these constructs is
dependent on the processing temperature, as the FAMEs
undergo a reversible transition up to 30 °C but exhibit
irreversible or hgrsteretic assembly above 45 °C depending on
their sequence.'*

4. CONCLUDING REMARKS

In this Review, we have summarized the underlying physics of
aqueous demixing phase behavior, described the experimental
methods to characterize and computational methods to simulate
this behavior, and followed with illustrative examples of native
and artificial IDPs that exhibit LCST and UCST phase behavior
and the applications of these proteins in biotechnology and
medicine. This field has provided new molecules to engineer
phase separation in vitro and within cells, such as artificial
IDPs—ELPs and RLPs as two prototypical examples—and
elegant light triggered systems such as optoDroplets and
Corelets. An emerging—and particularly exciting—new effort
in this area lies in the engineering of condensates to control

6753

biological function and treat disease, applications that are
currently at the proof-of-concept stage and that we foresee will

begin to have societal impacts in the next decade.
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