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ABSTRACT
Many naturally occurring elastomers are intrinsically disordered proteins (IDPs) built up of repeating units, and they can demonstrate two
types of thermoresponsive phase behavior. Systems characterized by lower critical solution temperatures (LCSTs) undergo phase separation
above the LCST, whereas systems characterized by upper critical solution temperatures (UCSTs) undergo phase separation below the UCST.
There is congruence between thermoresponsive coil–globule transitions and phase behavior, whereby the theta temperatures above or below
which the IDPs transition from coils to globules serve as useful proxies for the LCST/UCST values. This implies that one can design sequences
with desired values for the theta temperature with either increasing or decreasing radii of gyration above the theta temperature. Here, we show
that the Monte Carlo simulations performed in the so-called intrinsic solvation (IS) limit version of the temperature dependent self-Assembly
of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian (ABSINTH) implicit solvation model yield a useful heuristic for
discriminating between sequences with known LCST and UCST phase behavior. Accordingly, we use this heuristic in a supervised approach,
integrate it with a genetic algorithm, combine this with IS limit simulations, and demonstrate that novel sequences can be designed with LCST
phase behavior. These calculations are aided by direct estimates of temperature dependent free energies of solvation for model compounds
that are derived using the polarizable atomic multipole optimized energetics for biomolecular applications forcefield. To demonstrate the
validity of our designs, we calculate coil–globule transition profiles using the full ABSINTH model and combine these with Gaussian cluster
theory calculations to establish the LCST phase behavior of designed IDPs.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037438., s

INTRODUCTION

Intrinsically disordered proteins (IDPs) that undergo ther-
moresponsive phase transitions are the basis of many naturally
occurring elastomeric materials.1 These naturally occurring scaffold
IDPs2 serve as the basis of ongoing efforts to design thermorespon-
sive materials.3 Well-known examples of disordered regions derived
from elastomeric proteins4 include the repetitive sequences from

proteins such as resilins,5 elastins,6 proteins from spider silks,7 titin,8

and neurofilament sidearms.9 Elastin-like polypeptides have served
as the benchmark systems for the development of responsive dis-
ordered proteins that can be adapted for use in various biotechnol-
ogy settings.10 The multi-way interplay of sequence-encoded inter-
molecular interactions, chain–solvent interactions, and chain and
solvent entropy gives rise to thermoresponsive phase transitions that
lead to the formation of coacervates.1 Here, we show that one can
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expand the “materials genome”11 through de novo design strategies
that are based on heuristics anchored in the physics of thermore-
sponsive transitions and efficient simulation engines that apply the
learned heuristics in a supervised approach. We report the develop-
ment of a genetic algorithm (GA) and show how it can be applied
in conjunction with multiscale computations to design thermore-
sponsive IDPs with lower critical solution temperature (LCST) phase
behavior.

Conformational heterogeneity is a defining hallmark of IDPs.12

Work over the past decade-and-a-half has shown that naturally
occurring IDPs come in distinct sequence flavors.12 Indeed, IDPs
can be distinguished based on their sequence-encoded interplay
between intramolecular and chain–solvent interactions that can be
altered through changes in solution conditions. Recent studies have
shown that IDPs can be drivers or regulators of reversible phase
transitions in simple and complex mixtures of protein and nucleic
acid molecules.13 These transitions are driven primarily by the
multivalence of interaction motifs that engage in reversible physi-
cal cross-links.14 IDPs can serve as scaffolds for interaction motifs
(stickers), interspersed by spacers. Alternatively, they can modulate
multivalent interactions mediated by stickers that are situated on the
surfaces15 of autonomously foldable protein domains.16

Thermoresponsive phase transitions arise either by increasing
the solution temperature above a lower critical solution temperature
(LCST) or by lowering the temperature below an upper critical solu-
tion temperature (UCST).1 Many systems are capable of both types
of thermoresponsive transitions, although only one of the transi-
tions might be accessible in the temperature range of interest. Here,
we leverage our working knowledge of the sequence features that
encode driving forces for thermoresponsive phase transitions17 to
develop and deploy a GA for the design of novel IDPs characterized
by LCST behavior. Inspired by work on elastin-like polypeptides,3

we focus on designing IDPs that are repeats of pentapeptide motifs.
The amino acid composition of each motif contributes to the LCST
behavior, and the number of repeats determines the multivalence of
stickers that drive phase transitions with LCST behavior.

The GA we adopt for this work is driven by advances that
include the following: (a) an improved fundamental understanding
of the physics of LCST phase behavior;18 (b) experiments show-
ing that many IDPs undergo collapse transitions with increased
temperature;19 (c) a generalization of the ABSINTH implicit sol-
vation model and forcefield paradigm20 to account for the tem-
perature dependence of chain solvation; (d) a growing corpus of
information regarding the sequence determinants of LCST phase
behavior in repetitive IDPs;17 and (e) the prior demonstration that
a GA-based method known as Genetic Algorithm for Design of
Intrinsic secondary Structure (GADIS)21 can be combined with effi-
cient, ABSINTH-based simulations to design IDPs with bespoke
secondary structural preferences.

Studies of synthetic polymer systems have helped in elucidating
the origins of the driving forces and the mechanisms of LCST phase
behavior.22 A well-known example is poly-N-isopropylacrylamide
(PNIPAM).23 Here, the dispersed single phase is stabilized at tem-
peratures below ∼32 ○C by the favorable hydration of amides in the
side chains. Solvation of amides requires that the solvent be orga-
nized around the hydrophobic moieties that include the backbone
carbon chain and the isopropyl group in the side chain. The entropic
cost for organizing solvent molecules around individual chains

increases with the increasing temperature. Accordingly, above the
LCST of ∼32 ○C and for volume fractions that are greater than a
threshold value, the system phase separates to form a polymer-rich
coacervate phase that coexists with a polymer-poor dilute phase. The
driving forces for phase separation are the gain in solvent entropy
through the release of solvent molecules from the polymer and the
gain of favorable inter-chain interactions, such as hydrogen-bonding
interactions between amides in the polymer.

Tanaka and co-workers developed a cooperative hydration
approach, inspired by the Zimm and Bragg theories for helix–coil
transitions,24 to model the physics of phase transitions with LCST.25

Cooperative hydration refers to the cooperative association (below
the LCST) or dissociation (above the LCST) of water molecules that
are bound to repeating units along the polymer chain.26 Cooperativ-
ity is captured using the Zimm–Bragg formalism by modeling each
repeating unit as being in one of two states, viz., solvated or desol-
vated. In the solvated state, the repeating unit has a defined interac-
tion strength with solvent molecules. In the desolvated state, pairs of
such repeating units have defined exchange interactions. In addition,
desolvation is associated with a gain in solvent entropy. The three-
way interplay of direct solvent–chain interactions, the interactions
among desolvated pairs of units, and the gain in solvent entropy
above the LCST can be captured in a suitable physical framework
that can be parameterized to describe system-specific phase tran-
sitions. Accordingly, if one has prior knowledge of the interaction
energies associated with each repeat unit, one can use the framework
of Tanaka and co-workers to design novel sequences with LCST
behavior.

An alternative approach, which we adopt in this work, is to
leverage the corollary of LCST behavior at the single chain limit.27

At temperatures that are proximal to the LCST, the chain of interest
will undergo a coil-to-globule transition in a dilute solution.28 This is
because chain collapse is a manifestation of the physics of phase sep-
aration in the single chain limit. Here, we leverage this connection
between phase separation and chain collapse of isolated polymer
chains in ultra-dilute solutions to design novel IDPs that are pre-
dicted to undergo phase transitions with LCST phase behavior. We
do so by using a multi-pronged approach that starts with improved
estimates of the temperature dependencies of free energies of solva-
tion of model compounds that mimic the amino acid side chain and
backbonemoieties. For this, we use free energy calculations based on
the atomic multipole optimized energetics for biomolecular applica-
tions (AMOEBA) forcefield,29 which is a second-generation, molec-
ular mechanics based, polarizable model for water molecules and
proteins. We incorporate these temperature dependent free ener-
gies of solvation into the ABSINTH implicit solvation model and
show that thermoresponsive changes to chain dimensions, calcu-
lated in the “intrinsic solvation (IS) limit,”30 yield robust heuristics
that discriminate sequences with known LCST phase behavior from
those that show UCST behavior. We then describe the develop-
ment of a GA, an adaptation of the GADIS approach, to design
novel sequences that rely on all-atom simulations, performed using
the ABSINTH model in the IS limit, and learned heuristics as fit-
ness scores. Distinct classes of designed sequences emerge from our
approach, and these are screened to filter out sequences with low
disorder scores as assessed using the IUPRED2 algorithm.31 The
resulting set of sequences are analyzed using simulations based on
the full ABSINTH model, which show that the designed sequences
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do undergo collapse transitions above a threshold temperature. The
contraction ratio, defined as the ratio of chain dimensions at tem-
perature T to the dimensions at the theta temperature, computed
as a function of simulation temperature, is analyzed to extract tem-
perature dependent two-body interaction parameters and athermal
three-body interaction parameters that are used in conjunction with
the Gaussian Cluster Theory (GCT)32 to calculate system-specific
phase diagrams.28 The upshot is a multiscale pipeline, whereby a
GA, aided by a derived heuristic and IS limit simulations, leads to
the design of novel sequences with predicted LCST phase behavior.
Following a post-processing step that selects for sequences with a
high confidence of being intrinsically disordered, we combine all-
atom ABSINTH-T based simulations with Gaussian cluster theory
to obtain sequence-specific phase diagrams. These last two steps
allow further pruning of the sequence space derived from the designs
and provide further confidence regarding the authenticity of the
predicted LCST phase behavior.

Temperature dependent free energies of solvation are central
to accurate descriptions of LCST behavior. Each protein may be
viewed as a chain of model compounds, and measured/calculated
temperature dependent values of temperature dependent free ener-
gies of hydration ∆μh for fully solvated model compounds can be
used as the reference free energies of solvation (rFoS) in implicit
solvation models such as EEF133 or ABSINTH.20 Where possible,
the ABSINTH model20,34 uses experimentally measured free ener-
gies of solvation for model compounds. In the original formalism,
Vitalis and Pappu20 adopted experimentally derived rFoS values at
298 K and assumed these values to be independent of tempera-
ture. This approach was generalized by Wuttke et al.,19 to calcu-
late temperature dependent rFoS values, using data from calori-
metric measurements made by Makhatadze and Privalov35 for the
enthalpy and heat capacity of hydration at a reference temper-
ature. These values were augmented by those of Cabani et al.36

for naphthalene, which is used as a model compound mimic of
tryptophan. Wuttke et al.19 incorporated the enthalpy and heat
capacity of hydration estimated at a reference temperature into an
integrated version of the Gibbs–Helmholtz equation to yield a ther-
modynamicmodel for temperature dependent rFoS values for all the
relevant model compounds. In this formalism, rFoS(T) or∆μh(T) is
written as

Δμh(T) =
[Δμh(T0) − Δh]T

T0
+ Δh + ΔcP[T(1 − ln

T
T0
) − T0]. (1)

Here, ∆h is the enthalpy of solvation (hydration) at a reference
temperature T0, which is typically set to be 298 K, and ∆cP is the
molar heat capacity change associated with the solvation process.
Based on measurements, the assumption is that ∆cP is independent
of temperature.37

We built on the approach ofWuttke et al.19 to incorporate tem-
perature dependent rFoS values in ABSINTH. This is implemented
in a version that we refer to as ABSINTH-T. The issues we faced
in developing ABSINTH-T were two-fold. First, the values for ∆cP
and ∆h that were used by Wuttke et al. rely on decompositions of
measurements for model compounds into group-specific contribu-
tions. In contrast, the ∆μh values used in ABSINTH are for model
compounds and explicitly avoid the group-specific decompositions
made by Makhatadze and Privalov.35 This choice reflects the fact
that group-specific decompositions are not measured. Instead, they

are derived quantities that are based on empirical reasoning. This
creates a mismatch with the paradigm that underlies the ABSINTH
framework.20 Put simply, we require values of ∆μh, ∆cP, and ∆h
that correspond to model compounds as opposed to group-specific
decompositions.

Second, model compounds that mimic the side chains of ioniz-
able residues pose unique challenges. For any solute, including ions,
the free energy of hydration at a specific temperature and pressure is
defined as the change in free energy associated with transferring the
solute of interest from a dilute vapor phase into water.38 The accom-
modation of the solute into liquid water is associated with the cost
to create a cavity in the solvent,38 the electronegative cavity poten-
tial,39 the work to add soft dispersion interactions,40 and distribute
charges uniformly or non-uniformly across the solute.41 Vapor pres-
sure osmometry with radioactive labeling, as used by Wolfenden42

to measure free energies of hydration for polar solutes, including
neutral forms of ionizable species, cannot be used to measure free
energies of hydration of ions because of the ultra-low vapor pres-
sures and the confounding effects of ion-pairing in the gas phase.
Calorimetry, as used by Makhatadze, Privalov, and colleagues, pro-
vides an alternative approach.35,43 However, the large magnitudes of
free energies of hydration, which are expected to be on the order 102

kcal/mol,44,45 giving rise to even larger magnitudes for enthalpies
of hydration, make it impossible to obtain the numbers of interest
directly from calorimetric measurements. Measurements of activity
coefficients as a function of the concentration of whole salts in aque-
ous solutions can be used to place bounds on the values of ∆μh,46
but these are not direct measurements of ∆μh.

A key challenge is that stable solutions are electroneutral.45

Accordingly, all measurements aimed at estimating the free ener-
gies of hydration of ionic species have to rely on parsing numbers
derived from measurements on whole salts against those of ref-
erence salts44—see the work of Grossfield et al.41 and references
therein. Alternatives rely on referencing measurements for whole
salts against the free energy of hydration of the proton47—a quan-
tity plagued by considerable uncertainty, given the interplay between
the Zundel form and the Eigen form for the hydronium ion.48 One
can also use direct measurements of neutralized versions of ionic
species;35,42,43 however, extracting the parameters of interest ends up
relying on explicit or implicit assumptions regarding proton hydra-
tion free energies to extract estimates of the desired free energies of
hydration of ionic species. The upshot is that direct measurements
of free energies of hydration of ionic species are not feasible, and
hence, one has to rely on the validity of models that are used to parse
experimental data.

In 1996, in their work aimed at accounting for reaction-field
effects in calculations of hydration free energies in continuummod-
els, Marten et al.49 compiled a set of values for hydration free ener-
gies for all the relevant model compounds. In the original ABSINTH
model,20 the values tabulated by Marten et al. were used for all
uncharged solutes. For charged species, specifically the protonated
versions of Arg and Lys side chains and deprotonated versions of
Asp and Glu side chains, Vitalis and Pappu20 used the numbers
tabulated and parsed by Marcus50 for a reference temperature of
298 K.

Wuttke et al.19 used the rFoS values tabulated by Vitalis and
Pappu20 at 298 K and tested three different models for generat-
ing T-dependent rFoS values of model compounds used to mimic
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the charged versions of Arg, Asp, Lys, and Glu. Model 1 uses the
measured enthalpies and heat capacities measured for the neutral
compounds,35 i.e., protonated Asp and Glu and deprotonated Lys
and Arg. These were then scaled by the rFoS values used by Vitalis
and Pappu20 for the charged variants. The scaled enthalpies and
heat capacities were then deployed in Eq. (1). Model 2 of Wuttke et
al.19 uses the enthalpies of hydration estimated by Marcus51 and the
heat capacities of hydration tabulated by Abraham andMarcus.52 As
noted above, these numbers are not direct measurements. Instead,
they were derived frommeasurements of whole salts and then parsed
using differentmodels to arrive at a consensus set of estimates for the
enthalpies and heat capacities. Model 3 of Wuttke et al.19 uses the
same heat capacities as model 2, and empirical choices were made
for the enthalpies based on “expectations for a variety of charged
model compounds.”

The preceding discussion emphasizes the fact that direct mea-
surements of the rFoS values as a function of temperature or of the
enthalpies and heat capacities of hydration at reference temperatures
are unavailable for model compounds that mimic charged versions
of the side chains of Arg, Asp, Lys, and Glu. To put the challenge
into perspective, we note that models 1 and 2 of Wuttke et al.19 yield
values of 50.37 cal mol−1 K−1 and 5.30 cal mol−1 K−1, respectively,
for ∆cP of the acetate ion. The large variations are a reflection of the
challenges associated with estimating temperature-independent and
temperature rFoS values for charged species.

Here, we pursue a different approach: we use AMOEBA, which
is a second generation molecular mechanics based polarizable force-
field,29 in direct calculations of T-dependent rFoS values for all
the relevant model compounds. The AMOEBA water model repro-
duces the temperature dependent anomalies of liquid water53 and
yields accurate free energies of solvation for model compounds in
aqueous solvents.29,54,55 Our goal was to have a common source for
T-dependent rFoS values of the key model compounds that are
used in ABSINTH. The free energy calculations were performed
at specific temperatures, and the integrated version of the Gibbs–
Helmholtz equation was used to extract ∆h and ∆cP. The values
of ∆h and ∆cP in conjunction with Eq. (1) are used to calculate
T-dependent rFoS values in ABSINTH-T.

RESULTS AND DISCUSSION

Results from AMOEBA-based free energy calculations for model
compounds: We performed temperature dependent free energy cal-
culations based on the Bennett Acceptance Ratio (BAR) free energy
estimator56 for the direct investigation of how ∆μh varies with tem-
perature. These calculations were performed for 19 different model
compounds that mimic the 20 side chain moieties and the backbone
peptide unit. The details of the parameterization of the AMOEBA
forcefield for model compounds used in this study and the design
of the free energy calculations are provided in the section titled
“Methods.”

The temperature dependent values for ∆μh with error bars
are shown in Table S1 of the supplementary material. Figure S1
shows two sets of plots that compare the AMOEBA-derived rFoS
values at 298 K to direct measurements for uncharged molecules
and to inferred values from parsing of data for charged com-
pounds. The calculated values are in good agreement with exper-
imental data for uncharged molecules. This is reassuring because

AMOEBA is parameterized directly from ab initio quantum
mechanical calculations, and no knowledge is used with regard to
condensed phases or experimental data in condensed phases. We
do observe deviations between the AMOEBA-derived rFoS val-
ues of charged species and the inferred values from experimen-
tal data for whole salts (Fig. S1). These deviations are in accord
with the concerns expressed in the Introduction. Inasmuch as the
AMOEBA-derived values are direct calculations, we use these num-
bers as a self-consistent set for uncharged and charged molecules
alike.

The results from temperature dependent calculations of ∆μh
for the 19 relevant model compounds are shown in Fig. 1. The
enthalpy of hydration (∆h) at T0 = 298 K and the temperature inde-
pendent heat capacities of hydration (∆cP) were extracted for each
model compound by fitting the calculated temperature dependent
free energies of solvation to the integral of the Gibbs–Helmholtz
equation. The results are summarized in Table I. As expected,37 the
large positive heat capacity of hydration combined with the favor-
able enthalpies and unfavorable entropies leads to non-monotonic
temperature dependencies for model compound mimics of the

FIG. 1. Temperature dependent free energies of solvation ∆μh for model com-
pounds that mimic the side chain and backbone moieties. The dots show results
from free energy calculations based on the AMOEBA forcefield. These values are
then fit to the integral of the Gibbs–Helmholtz equation (see the main text), and
the results of the fits are shown as solid curves. Parameters from the fits, which
include estimates for ∆h and ∆cP , are shown in Table I. In the legends, we use
the three letter abbreviations for each of the amino acids. Here, BB in panel (d)
refers to the backbone moiety, modeled using N-methylacetamide, that mimics the
peptide unit.
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TABLE I. Results from free energy calculations that summarize values obtained for
∆μh at 298 K. Data for the temperature dependence of ∆μh were fit to Eq. (1), setting
T0 = 298 K, to extract values for ∆h and ∆cP .

∆μh ∆h ∆cP
Residue/unit Model compound kcal/mol kcal/mol cal/molK

Ala Methane 1.63 −2.57 48.93
Val/Pro Propane 1.85 −6.33 105.80
Leu 2-methylpropane 2.22 −5.92 109.38
Ile n-butane 2.00 −6.34 105.23
Met Ethyl methyl thioether −1.92 −10.11 71.10
Phe Toluene −0.17 −8.68 102.24
Cys Methanethiol −1.04 −5.84 43.61
Tyr p-Cresol −5.85 −15.62 71.09
Trp 3-methylindole −4.46 −12.67 108.10
Ser Methanol −5.08 −10.41 10.43
Thr Ethanol −4.98 −12.55 50.06
Asn Acetamide −8.61 −14.37 6.18
Gln Propionamide −8.39 −16.06 51.47
His 4-methylimidazole −10.04 −17.60 38.01
Backbone/Gly N-methylacetamide −8.33 −16.10 44.73
Arg n-propylguanidine −46.72a −57.4a 69.39
Lys 1-butylamine −60.49a −70.37a 29.98
Asp Acetic acid −89.91a −98.65a −44.97
Glu Propionic acid −86.16a −96.62a −8.75

aAs with the default ABSINTH model, in ABSINTH-T, the rFoS values and, there-
fore, the ∆h values we used for ionizable residues are offset from calculated ∆μh by a
fixed constant of −30 kcal/mol. This, as was shown in the original work, is required to
avoid the chelation of solution ions around ionizable residues. This “feature” remains
a continuing weakness of the ABSINTH paradigm and one that we hope to remedy
through suitable generalization of the model used in ABSINTH to interpolate between
fully solvated and fully desolvated states.

side chain moieties of Ala, Val, Leu, Ile, and Pro. Similar results are
observed for mimics of Phe, Tyr, and Trp. Of import are the differ-
ences in hydration thermodynamics of the model compounds that
mimic side chains of Lys, Arg, Asp, and Glu. The model compounds
1-butylamine and n-propylguanidine that mimic the side chains of
Lys and Arg feature a duality of favorable enthalpy of hydration and
large positive values for ∆cP. Finally, the deprotonated versions of
acetic acid and propionic acid that mimic the deprotonated versions
of Asp and Glu, respectively, have the most favorable free energies of
hydration across the temperature range studied. Interestingly, these
two solutes stand out for their distinctive negative heat capacities of
hydration. Inferences based on integral equation theories57 suggest
that negative heat capacities of hydration derive from a weakening
of the favorable solute–solvent interactions and a reduction in the
extent to which water molecules are orientationally distorted within
and in the vicinity of the first hydration shell.

Incorporation of T-dependent rFoS values into ABSINTH: In
the ABSINTH model, each polyatomic solute is parsed into a set
of solvation groups.20,34 These groups are model compounds for
which the free energies of solvation rFoS are known a priori. In
this work, we follow the work of Wuttke et al.19 and generalize
the ABSINTH model to incorporate temperature dependencies of
model compound rFoS values. In this ABSINTH-T model, the total
solvent-mediated energy associated for a given configuration of the

protein and solution ions is written as

Etotal =Wsolv(T) +Wel(T) +ULJ +Ucorr. (2)

Here, Wsolv({rFoS(T)},{r}) is the many-body direct mean field
interaction (DMFI) with the continuum solvent that depends on
{rFoS(T)}, the set of temperature dependent rFoS values of model
compounds that make up the solute and solution ions, and {r} is the
set of configurational coordinates for polypeptide atoms and solu-
tion ions. The term Wsolv({rFoS(T)},{r}) quantifies the free energy
change associated with transferring the polyatomic solute into a
mean field solvent while accounting for the temperature dependent
modulation of the reference free energy of solvation for each sol-
vation group due to other groups of the polyatomic solute and the
solution ions. Additional modulations to the free energy of solvation
of the solute due to interactions with charged sites on the polyatomic
solute are accounted for by the Wel term. In ABSINTH-T, the term
Wel({r},{υ},ε(T)) is a function of the set of configurational coordi-
nates {r}, solvation states {υ} of the solute atoms and solution ions,
and the temperature dependent dielectric constant ε(T). For ε(T), we
used the parameterization of Wuttke et al.19 The effects of dielectric
inhomogeneities, which are reflected in the configuration dependent
solvation states, are accounted for without making explicit assump-
tions regarding the distance or spatial dependencies of dielectric
saturation. The term ULJ is a standard 12-6 Lennard-Jones poten-
tial, and Ucorr models specific torsion and bond angle-dependent
stereoelectronic effects that are not captured by the ULJ term. The
ABSINTH paradigm is optimally interoperable with the Optimized
Potentials for Liquid Simulations-All Atom/with LMP2 corrections
(OPLS-AA/L) and the Chemistry at Harvard Molecular Mechanics
(CHARMM)58 family of forcefields, and we use the OPLS-AA/L59

forcefield.

Intrinsic solvation (IS) approximation of ABSINTH-T
as an efficient heuristic for discriminating IDPs
with LCST vs UCST behavior

In the single chain limit, accessible in dilute solutions, polypep-
tides that show LCST phase behavior undergo collapse above a
system-specific theta temperature, whereas polypeptides that show
UCST phase behavior expand above the system specific theta tem-
perature.1,28 A GADIS-like strategy21 for the de novo design of
polypeptide sequences with LCST phase behavior would involve
ABSINTH-T-based all-atom simulations to evaluate whether an
increase in temperature leads to chain collapse. In effect, the fitness
function in a GA comes from the evaluation of the simulated ensem-
bles as a function of temperature. Computationally, this becomes
prohibitively expensive. Accordingly, we pursued a pared down ver-
sion of ABSINTH-T, which is referred to as the intrinsic solvation
(IS) limit of the model.30 The IS limit was introduced to set up
sequence and composition specific reference models with respect
to which one can use mean-field models to uncover how desolva-
tion impacts IDP ensembles.30,60 In effect, the IS limit helps us map
conformations in the maximally solvated ensemble and assess how
this ensemble changes as a function of temperature. In the IS limit,
the energy in a specific configuration for the sequence of interest is
written as

EIS-limit =Wsolv(T) +ULJ +Ucorr. (3)

APL Mater. 9, 021119 (2021); doi: 10.1063/5.0037438 9, 021119-5

© Author(s) 2021

https://scitation.org/journal/apm


APL Materials ARTICLE scitation.org/journal/apm

The only difference between the full model [see Eq. (2)] and
the IS limit is the omission of the Wel term. This increases the
speed of simulations by 1–2 orders of magnitude depending on
the system. Next, we asked if ensembles obtained from temperature
dependent simulations performed in the IS limit could be used to
obtain a suitable heuristic that discriminates sequences with LCST
vs UCST behavior. These simulations were performed for a set of
30 sequences (see Table S2 of the supplementary material) that were
previously shown by Quiroz and Chilkoti to have LCST and UCST
phase behavior.17 The results are summarized in Fig. 2 and Figs. S2
and S3 of the supplementary material. As shown in panel (a) of
Fig. 2, the radii of gyration (Rg), suitably normalized for compar-
isons across different sequences of different lengths, appear to be
segregated into two distinct classes. To test this hypothesis, we com-
puted the slopes m for each of the profiles of normalized Rg vs tem-
perature. These slopes were calculated in the interval of simulation
temperatures between 230 K and 380 K. The results, shown in panel
(b) of Fig. 2, clearly indicate that there, indeed, are two categories of
sequences. Those that are known to show LCST phase behavior are
colored in red, and they fall into a distinct group characterized by
negative values of the slope m with an average value of −5.9 × 10−3

å K−1. Here, we use å to denote the units of Rg values normalized
by the square root of the chain length N. In contrast, the slope for
sequences that show UCST behavior is −1.4 × 10−3 å K−1. Given the
range of sequences covered in the calibration based on the IS limit,
we pursued an approach, whereby we use slopes of RgN−0.5 vs T as
a heuristic to guide the design of a genetic algorithm to find new
sequences with LCST phase behavior. It is worth noting that we use
the slopes of RgN−0.5 vs T plots instead of specific values of slopes
of RgN−0.5 because (a) a priori we would not know which tempera-
ture to choose for comparison of the Rg values and (b) there is the
formal possibility that the curves for RgN−0.5 vs T obtained for dif-
ferent constructs might cross one another, making the issue raised
in (a) more confounding.

GA for the design of IDPs that are likely to have LCST
phase behavior

We adopted the GADIS algorithm21 to explore sequence space
and discover candidate IDPs with predicted LCST phase behavior.

FIG. 2. Analysis of IS limit simulations yields a heuristic that discriminates
sequences with UCST vs LCST phase behavior. (a) Plots of RgN−0.5 vs temper-
ature, extracted from IS limit simulations, for sequences shown by Quiroz and
Chilkoti to have UCST (dashed lines) vs LCST (solid lines) phase behavior. The
sequences are shown in Table S1 of the supplementary material. (b) The slope m
of RgN−0.5 vs temperature profiles. These slopes fall into two distinct categories,
one for those with LCST phase behavior (blue) and another for those with UCST
phase behavior (red). The gray region corresponds to the values of m that clearly
demarcate the two categories of sequences.

To introduce the GA and demonstrate its usage, we set about design-
ing novel sequences that are repeats of pentapeptide motifs. We
focused on designing 55-mers, i.e., sequences with 11 pentapeptides.
To keep the exercise simple, we focused on designing polymers that
are perfect repeats of the pentapeptide in question. The GA used
in this work is summarized in Fig. 3, and the details are described
below.

The GA-based design process is initiated by choosing a random
set of 200 sequences. Next, for each of the random sequences, we
performed temperature-based replica exchange61 Metropolis Monte
Carlo simulations in the IS limit. The simulation temperatures range
from 200 K to 375 K with an interval of 25 K. From each converged
IS limit simulation, we computed the ensemble averaged Rg values
as a function of simulation temperature T. These data were then
used to evaluate the initial set of 200 values for the slope m using
the following relationship:

m = 1
N0.5(n − 1)

n−1

∑
i=1

Rg(Ti+1) − Rg(Ti)
Ti+1 − Ti

. (4)

Here,N is the number of amino acids in each sequence, n is the
number of replicas used in the simulation, and Ti is the temperature
associated with replica i. The slope m was used to select 100 out of
the 200 sequences that were chosen at random initially. The picking
probability p was based on the following criterion:

p∝ exp[−c(m −m0)]. (5)

Here, c = 400 in units that are reciprocal to m and m0 is set
to −6.9 × 10−3 å K−1. This choice enables an efficient evolution of
the GA and a strong selection for sequences with negative values

FIG. 3. Workflow of the GA. We use this approach to design sequences that are
predicted to have LCST phase behavior. A final post-processing step is added to
filter our sequences that do not have high disorder scores (see the main text).
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of m. The parameter c ensures numerical stability, guarding against
the unnormalized value of p becoming too large or too small.

The chosen parent sequences were used to generate 100 child
sequences by mutating a single, randomly chosen position to a ran-
domly chosen residue in the repeating unit. To avoid the prospect
of introducing spurious disulfide bonds, we do not include Cys
residues either in the original parent pool or for propagating the
child sequences. The GA was allowed to evolve for multiple iter-
ations until the convergence criteria were met. These include the
generation of at least 250 new sequences, each with a value of m
being less than −5.0 × 10−3 å K−1. For the results presented here,
six iterations were sufficient to meet the prescribed convergence
criteria. The picking probability p determines the selection pres-
sure encoded into the GA. There needs to be an optimal balance
between the two extremes in selection pressure. High selection pres-
sures can lead to early convergence to a local optimum, whereas low
selection pressures can drastically slow down convergence.62 The
use of a single evolutionary operator can lead to a single sequence,
becoming the dominant choice. The number of iterations that pass
before the emergence of a single sequence is known as the takeover
time.62 High selection pressures lead to low takeover times and vice
versa. The issue of a single dominant individual emerging is less of
a concern in the sequence design, given the high dimensionality of
sequence space. We tuned the choices for c and m0 to ensure that
candidate sequences with putative UCST phase behavior can be part
of the offspring, thus lending diversity to sequence evolution by the
GA.

Panel (a) in Fig. 4 quantifies the progress of the GA through
each iteration of the design process. The quantification is performed
in terms of cumulative distribution functions, which for each itera-
tion will quantify the probability that the emerging sequences have
associated slope values that are less than or equal to a specific value.
The rightward shift in each iteration is indicative of the improved
fitness vis-à-vis the selection criterion, which is the lowering ofm.

Finally, we added a post-processing step to increase the likeli-
hood that the designed sequences are bona fide IDPs. We used the

FIG. 4. Calibration of the performance of the GA and statistics for compositional
biases that emerge from the application of the design protocol. (a) The cumula-
tive distribution function (CDF) of the slope for sequences in each iteration. There
is an overall shift for these CDFs toward smaller m-values with each iteration
of the GA. (b) The mean number of each residue in the 64 designed IDPs that
are predicted to show LCST phase behavior. Residues in panel (b) are grouped
into categories based on their side chain chemistries, i.e., basic residues in blue
bars, acidic residues in red bars (although these are not visible since they are not
selected), polar residues in green, Pro and Gly in purple, and aliphatic and aro-
matic residues in cyan. Within each group, the bars are sorted in the descending
order of the mean numbers of occurrences in the designs.

disorder predictor IUPRED231 to quantify disorder scores for each
of the designed sequences. IUPRED2 yields a score between 0 and 1
for each residue, and only sequences where over half of the residues
in the repeat are above 0.5 were selected as the final set of designed
IDPs that are predicted to have LCST phase behavior. A particular
concern with designing sequences for experimental prototyping is
the issue of aggregation/precipitation. To ensure that designs were
unlikely to create such problems, we calculated predicted solubil-
ity scores using the CamSol program63 and found that all sequences
that were selected after the post-processing step also have high solu-
bility scores. This provides confidence that the designed IDPs are
likely to show phase behavior via liquid–liquid phase separation
above system-specific LCST values without creating problems of
precipitation/aggregation.

Panel (b) in Fig. 4 summarizes the mean number of each amino
acid type observed across the final tally of 64 designed sequences
that survive the post-processing step. These statistics are largely in
accord with the observations of Quiroz and Chilkoti.17 Essentially
every sequence has at least once Pro residue in the repeat. The beta
branched polar amino acid Thr is the other prominent feature that
emerges from the selection. The remaining selection preferences fall
into four distinct categories that include the following : (i) a clear
preference for at least one polar amino acid, viz., His, Ser, Thr,
Asn, and Gln; (ii) a clear preference for the inclusion of at least one
hydrophobic amino acid, viz., Ala, Ile, Met, and Val; (iii) negligi-
ble selection, essentially an avoidance of the acidic residues Asp and
Glu, as well as the aromatic residues Phe, Trp, and Tyr; and finally,
(iv) a weak preference for Arg over Lys, which is concordant with
the distinct temperature dependent profiles for ∆μh (Fig. 1) and the
large positive heat capacity of Arg (Table I). Interestingly, if we fix
the positions of Pro and Gly and select for residues in XPXXG or
other types of motifs that are inspired by previous work on elastin-
like polypeptides, the design process often converges on repeats that
are known to be generators of polypeptides with bona fide LCST
phase behavior (see Fig. S4 of the supplementary material). This
observation and the statistics summarized in Fig. 4(b) indicate that
the design process uncovers sequences that are likely to have LCST
phase behavior.

The designed sequences fall into distinct sequence classes:
To quantify the degree of similarity among the set of designed
sequences, we computed pairwise Hamming distances between all
pairs of the 64 sequences. The resulting Hamming distances were
then sorted, and sequences were clustered into distinct groups.
Highly similar sequences have low Hamming distances, whereas the
converse is true for dissimilar sequences. The resultant Hamming
distance map is shown in Fig. 5. The 64 sequences are unevenly
distributed across nine major clusters. The actual sequences of the
repeats, color-coded by their Hamming distance-based groupings,
are shown in Fig. 6. There are two features that stand out. First,
sequences deviate from being repeats of VPGVG, which is the
elastin-like motif. Second, we find that different sequence permuta-
tions on identical or similar composition manifolds emerge as can-
didates for LCST phase behavior. This observation suggests that at
least in the IS limit, it is the composition of each motif rather than
the precise sequence that underlies adherence to the selection pres-
sure in the GA. Interestingly, our observations are in accord with
results from large-scale in vitro characterizations of sequences with
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FIG. 5. Identification of distinct sequence classes using a Hamming distance-
based assessment of pairwise sequence similarities.

LCST phase behavior.64 These experiments show that composition,
rather than the precise sequence, is a defining feature of LCST phase
behavior—a feature that is distinct from sequences that show UCST
phase behavior.3

ABSINTH-T simulations of coil-to-globule transitions for select
sequences: We selected four sequence repeats, viz., (TPTGM)11,
(PTPLV)11, (LTPTA)11, and (RTAMG)11, for characterization using
the full ABSINTH-T model and the calculation of phase diagrams.
These sequences were chosen because they are representatives from
each of the four major classes that emerge from the design process.
Additionally, these sequences bear minimal resemblance to extant
designs or naturally occurring sequences that are known to have
LCST phase behavior.

Using all-atom, thermal replica exchange Monte Carlo simu-
lations and the full ABSINTH-T model, we performed simulations
to test for the presence of a collapse transition for each of the four
sequences. The results are shown in Fig. 7. All sequences show a clear
tendency to form collapsed conformations as temperature increases.
This is diagnosed by there being a clear preference for values of
RgN−0.5 being less than the theta state reference value of 2.5 at higher
temperatures and values of RgN−0.5 being greater than 2.5 at lower
temperatures.

FIG. 6. Sequences of 64 designed IDPs that emerge from the application of the GA. Different colors except black are used to label sequences in the same group.

FIG. 7. Profiles of normalized RgN−0.5

vs temperature for four IDPs designed
using the GA. The results shown here
use the full ABSINTH-T model. The theta
temperatures extracted from these simu-
lations are presented in the main text.
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FIG. 8. Results from the application of the Gaussian cluster theory for calculating full phase diagrams. Panels (a)–(c) show the contraction ratio profiles for (PTPLV)11,
(RTAMG)11, and (TPTGM)11, respectively. Blue dots represent the contraction ratios calculated from all atom simulations with ABSINTH-T at temperatures from 200 K to
350 K, and red curves represent fits to these data using the Gaussian cluster theory that lead to estimates of the sequence-specific values for the temperature dependent
two-body interaction coefficient B and the temperature independent three-body interaction parameter w. Panels (d)–(f) show the full phase diagrams, including the binodal,
spinodal, and the estimated location of the critical point for (PTPLV)11, (RTAMG)11, and (TPTGM)11, respectively.

Analysis of coil-globule transitions, extraction of parameters,
and calculation of phase diagrams using the Gaussian cluster theory:
The profiles of RgN−0.5 vs T were analyzed to extract the theta tem-
perature (Tθ) for each of the four sequences. For this, we used a
method that was described recently by Zeng et al.28 Only three of
the four sequences have coil–globule transition profiles for which a
robust estimate of the theta temperature can be made. The extent of
expansion at low temperatures is modest and suggests that apparent
Tθ for (LTPTA)11 is outside the window where converged simu-
lations can be performed. For the other three sequences, namely,
(PTPLV)11, (RTAMG)11, and (TPTGM)11, the estimated Tθ values
are 210 K, 210 K, and 200 K, respectively.

Next, we used the estimates of Tθ in conjunction with the
Gaussian cluster theory of Guido and Allegra.32 We extracted the
two- and three-body interaction coefficients by fitting the contrac-
tion ratio αs calculated from simulations using the formalism of the
Gaussian cluster theory, and this yields sequence-specific estimates
of B, the two-body interaction coefficient, and w, the three-body
interaction coefficient [see panels (a)–(c) of Fig. 8]. These param-
eters were then deployed to compute full phase diagrams using the
numerical approach developed by Zeng et al.28 and adapted by oth-
ers.65 The results are shown in panels (d)–(f) of Fig. 8. The abscis-
sas in these diagrams denote the bulk polymer volume fractions,
whereas the ordinates quantify temperature in terms of the thermal
interaction parameter τB

√
nK . Here, τ = ( T−Tθ

T ), which is positive
for T > Tθ, B is the temperature dependent two-body interaction
coefficient inferred from analysis of the contraction ratio, and nK is
the number of the Kuhn segment in the single chain, which we set

to be 11. Note that B is negative for temperatures above Tθ. Accord-
ingly, the thermal interaction parameter is positive above Tθ and the
critical temperature Tc. Therefore, comparative assessments of the
driving forces for LCST phase behavior can be gleaned by comparing
the sequence-specific values of τB

√
nK and the volume fraction at

the critical point. It follows that the sequences can be arranged in the
descending order of the driving forces as (TPTGM)11, (RTAMG)11,
and (PTPLV)11, respectively. Importantly, full characterization of
the phase behavior using a combination of all-atom simulations and
numerical adaptation of the Gaussian cluster theory shows that, in
general, sequences designed to have LCST phase behavior do match
the predictions (see Fig. 8).

DISCUSSION

In this work, we have adapted a GA to design novel sequences
of repetitive IDPs that we predict to have LCST phase behavior. Our
method is aided by a learned heuristic that was shown to provide
clear segregation between sequences with known LCST vs UCST
phase behavior. This heuristic is the slopem of the change in RgN−0.5

vs T from simulations of sequences performed in the IS limit of the
ABSINTH-T model. We use the heuristic in conjunction with IS
limit simulations to incorporate a selection pressure into the GA,
thereby allowing the selection of sequences that are “fit” as assessed
by the heuristic to be predictive of LCST phase behavior.

Here, we presented one instantiation of the GA and used it to
uncover 64 novel sequences that can be grouped into four major
classes and several minor classes (Fig. 6). We then focused on four
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sequences, one each from each of the four major classes, and charac-
terized temperature dependent coil–globule transitions. These pro-
files, analyzed in conjunction with recent adaptations of the Gaus-
sian cluster theory,32 allowed us to extract sequence-specific val-
ues for theta temperatures, temperature dependent values of the
two-body interaction coefficients, and three-body interaction coeffi-
cients. We incorporated these parameters into our numerical imple-
mentation28 of the Gaussian cluster theory to calculate full phase
diagrams for three sequences. These affirm the predictions of LCST
phase behavior and demonstrate sequence-specificity in control over
the driving forces for thermoresponsive phase behavior.

Our overall approach is aided by the following advances: We
used the AMOEBA forcefield29 to obtain direct estimates of tem-
perature dependent free energies of solvation for model compounds
used to mimic the side chain and backbone moieties. These tem-
perature dependent free energies of solvation were used in conjunc-
tion with the integral of the Gibbs–Helmholtz equation to obtain
model compound specific values for the enthalpy and heat capacity
of hydration.

The methods we present here are a start toward the integration
of supervised learning to leverage information gleaned from sys-
tematic characterizations of IDP phase behavior and physical chem-
istry based computations that combined all-atom simulations with
improvements such as ABSINTH-T and theoretical calculations that
allow us to connect single chain coil–globule transitions to full phase
diagrams.28 The heuristic we have extracted from IS limit simula-
tions helps in discriminating sequences with LCST vs UCST phase
behavior. These simulations are sufficient for IS limit driven and GA
aided designs of sequences that are expected to have LCST phase
behavior. This is because composition as opposed to the syntactic
details of sequences plays a determining role of LCST phase behav-
ior.3 Recent studies have shown that even the simplest changes to
sequence syntax can have profound impacts on UCST phase behav-
ior.66 This makes it challenging to guide the design of sequences with
predicted UCST phase behavior that relies exclusively on IS limit
simulations.We will need to incorporate simulations based on either
transferrable67 or learned coarse-grained models68 as a substitution
for the IS limit simulations. This approach comes with challenges
because one has to be sure that the coarse-grained models afford
the requisite sequence specificity without compromising efficiency.
The work of Dignon et al.69 is noteworthy in this regard. Their
coarse-grained model, which is based on knowledge-based poten-
tials parameterized to have temperature dependent interactions, has
been shown to be very effective in discriminating sequences that
are shown to have UCST vs LCST phase behavior.69 The concep-
tual underpinnings of their approach and that presented here derive
from the work of Wuttke et al.19 It would be interesting to com-
bine or compare our approach to that of Dignon et al. in the con-
text of designing novel IDPs and characterizing their phase behav-
ior. We view these approaches as being complementary rather than
competing ones, and we expect that the approaches will have dis-
tinct advantages in different settings. The specific feature of our
approach is that the calculations, at least for designing sequences
with LCST phase behavior, do not ever become more complex
than single chain simulations. This has the value for achieving
design objectives. It also has the value for designing sequences that
are not only thermoresponsive but also responsive to changes in
pH, pressure, and other solvent parameters, especially since recent

studies suggest that solution space scanning is a way to obtain effi-
cient delineation of the desirable conformational and phase equilib-
ria for IDPs.70

The design of sequences with UCST phase behavior or
sequences that combine UCST and LCST phase behavior, going
beyond simple block copolymeric designs, will be of utmost inter-
est for developing new IDP based materials. Additionally, we hope
to build on improved understanding71 of the impact of pH on con-
formational72 and phase equilibria73 of IDPs and the impact of metal
chelation sites on phase behavior74 to design sequences that combine
the ability to exhibit phase behavior in response to orthogonal stim-
uli. Such efforts are of direct relevance to engineering orthogonal
biomolecular condensates into simple unicellular prokaryotic and
eukaryotic cells, as has been demonstrated recently with the engi-
neering a protein translation circuit into protocells based on a ther-
moresponsive elastin-like polypeptide.75 Of course, the proof of the
validity/accuracy of designs and predictions will have to come from
experimental work geared toward testing the predictions/designs.
These efforts—that leverage the high-throughput expression of these
de novo sequences in E. coli and in situ characterization of their phase
behavior—are underway.76 The initial experimental investigations
suggest that the designs reported here and those that will emerge
from the application of the methods deployed in this work do indeed
show LCST phase behavior. Detailed reports of these experimental
characterizations will follow in separate work.

METHODS
AMOEBA forcefield parameterization for the model
compounds of interest

To obtain values of free energies of solvation from AMOEBA
simulations, we first derived the AMOEBA forcefield parameters for
the model compounds listed in Table I of the main text. The param-
eters for N-methylacetamide, methane, methanol, ethanol, toluene,
and p-Cresol are taken from previous work,55 which was released
in the amoeba09.prm parameter file in the TINKER package.77

The parameters for other model compounds are derived following
the standard automated protocol that has been established for the
AMOEBA forcefield.78 Briefly, the protocol involves the following
steps: Quantum chemical calculations were utilized to derive the
electrostatic parameters; these include atom-centered partial charges
and dipole and quadrupole moments. The molecular structures
were fully optimized at the MP2/6-31G∗ level of theory79 followed
by MP2/cc-pvtz calculations to obtain the electron density of the
molecules. Then, the initial multipole parameters were determined
via distributed multipole analysis calculation via the Gaussian Dis-
tributed Multipole Analysis (GDMA) program.80 With the charges
being fixed, the dipole and quadrupole moments were further fit to
the electrostatic potential generated at the MP2/aug-cc-pvtz level on
a grid of points outside of the molecules, where the least-squares
restrained optimization was used to keep the multipole moments
close to their Distributed Multipole Analysis (DMA) derived val-
ues while providing improved electrostatic potentials. The poledit
and potential programs of the TINKER package77 were used in this
process.

The Thole damping81 value of 0.39 and the standard AMOEBA
atomic polarizabilities were assigned for each atom. Valence and
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van der Waals (vdW) parameters were directly assigned from the
existing small molecule library and Molecular Mechanics 3 (MM3)
forcefield, and the equilibrium values for bond lengths and bond
angles were calculated from the above QM-optimized geometry.
Torsional parameters of rotatable bonds were obtained by compar-
ing the conformational energy profile of QM and AMOEBAmodels,
which includes electrostatics, polarization, vdW, and valence terms.
The dihedral angle was scanned by minimizing all torsions about
the rotatable bond of interest at 30○ intervals with restrained opti-
mization at the HF/6-31G∗ level of theory. The QM conformational
energy was obtained as the single point energy at the ωB97XD/6-
311++G(d,p) level of theory.82 Torsions about the same rotatable
bond that are also in-phase are collapsed into one set of parameters
for the fitting, and the contributions are distributed evenly among
the parameters. AMOEBA uses the traditional Fourier expansion up
to six-fold. Here, the force constant parameters were fit using one- ,
two- , and three-fold trigonometric forms. All the quantum calcula-
tions were performed using the Gaussian 09 software package.83 The
parameterization process has been automated in the Poltype (ver-
sion 2) software.78 All the parameters derived above are appended as
part of a separate text file in the supplementary material.

Setup of molecular dynamics simulations using
AMOEBA

All AMOEBA simulations were performed using the TINKER-
OpenMM package.84 Each model compound was solvated in a cubic
water box with periodic boundary conditions. The initial dimen-
sions of the central cell were set to be 30 × 30 × 30 Å3. Fol-
lowing energy minimization, molecular dynamics simulations were
performed using the reversible reference system propagator algo-
rithm (RESPA) integrator85 with an inner time step of 0.25 ps
and an outer time step of 2.0 fs in the isothermal–isobaric ensem-
ble (NPT) with the target temperature being between 273 K and
400 K depending on the temperature of interest and the target
pressure being 1 bar. The temperature and pressure were con-
trolled using a stochastic velocity rescaling thermostat86 and aMonte
Carlo constant pressure algorithm,87 respectively. The particle mesh
Ewald (PME) method88 with PME-GRID being 36 grid units, an
order 8 B-spline interpolation,89 with a real space cutoff of 7 Å
was used to compute long-range corrections to electrostatic inter-
actions. The cutoff for van der Waals interactions was set to be
12 Å. This combination of a shorter cutoff for PME real space and
a longer cutoff for buffered-14-7 potential has been verified90 for
AMOEBA free energy simulations.91 Snapshots were saved every ps.
In simulations performed along a prescribed schedule for the Kirk-
wood coupling parameters (see below), we use the same solvent box
across the schedule. However, the velocities were randomized at the
start of each simulation, and the first 1 ns of data were set aside as
equilibration and not used in the free energy estimations.

Free energy calculations

We used the Bennett Acceptance Ratio (BAR)56 method to
quantify the free energies of solvation for the model compounds of
interest. This method has been shown to be superior to other free
energy estimators in terms of reducing the statistical errors in cal-
culations of free energies of solvation.92 The solute is grown using
two different Kirkwood coupling parameters λvdW and λel that scale

the strengths of solute–solute and solute–solvent van der Waals and
electrostatic interactions. A series of independent molecular dynam-
ics simulations were performed in the NPT ensemble for differ-
ent combinations of λvdW and λel. A soft-core modification of the
buffered-14-7 function was used to scale the vdW interactions as
implemented in Tinker-OpenMM.84 We used the following com-
binations for the scaling coefficients: [λvdW, λel] λ ≡ [0, 0], [0.1, 0],
[0.2, 0], [0.3, 0], [0.4, 0], [0.5, 0], [0.6, 0], [0.7, 0], [0.8, 0], [0.9, 0],
[1, 0], [1, 0.1], [1, 0.2], [1, 0.3], [1, 0.4], [1, 0.5], [1, 0.6], [1, 0.7],
[1, 0.8], [1, 0.9], [1, 1]. For each pair of λ values, we performed
simulations, each of length 6 ns, at the desired temperature and a
pressure of 1 bar. We then used the TINKER bar program to calcu-
late the free energy difference between neighboring windows defined
in terms of the scaling coefficients. For every combination of λvdW
and λel, we set aside the first 1 ns simulation as part of the equili-
bration process. Finally, for each model compound, we computed
free energies of solvation at six different temperatures, viz., 275 K,
298 K, 323 K, 348 K, 373 K, 398 K, thus giving us the direct estimates
of temperature dependent free energies of solvation that we sought
from the AMOEBA-based simulations. Note that 398 K is above the
boiling point of water. However, although the physical properties
of water are accurately captured by the AMOEBA model, the finite
size of the system, the starting conditions, and the finite duration of
the simulations, even though they are in the NPT ensemble, imply
that water at 398 K and 1 bar corresponds to superheated liquid
water.

The temperature dependent free energies of solvation were fit
to the integral of the Gibbs–Helmholtz equation—see Eq. (1) in the
main text. The free energy calculations provide us with direct esti-
mates for rFoS(T) at specific values for T. We set T0 = 298 K and
use the non-linear regression to fit Eq. (1) to the calculated values
for rFoS(T). The regression analysis provides estimates of ∆h and
∆cP, which we then use, in conjunction with Eq. (1) in the man-
ner prescribed by Wuttke et al.,19 for all the ABSINTH-T-based
simulations.

Setup of Monte Carlo simulations in the IS limit
and using ABSINTH-T

Thermal replica exchange61 Monte Carlo simulations were
performed using version 2.0 of the CAMPARI modeling soft-
ware (http://campari.sourceforge.net/). The temperature schedule
for thermal replica exchange simulations that use the full ABSINTH-
T model ranges from 200 K to 470 K with an interval of 25 K.
A total of 6 × 107 independent moves were attempted per replica.
For systems in Fig. 7, we performed three independent sets of ther-
mal replica exchange simulations. All the simulations are performed
within a spherical droplet with the radius of 100 Å. The other settings
were identical to those used by Zeng et al.28

The details of the simulations including parameters, move sets,
analyses, and the design of the simulations are identical to those
published in the recent work of Zeng et al.28 Briefly, we used the
ABSINTH-T implicit solvent model and forcefield paradigm. The
forcefield parameters are based on the abs_opls_3.2.prm set, and
they include the parameters for proline residues that were developed
by Radhakrishnan et al.93 However, they do not include the CMAP
corrections introduced by Choi and Pappu.34 The AMOEBA-
based rFoS values at 298 K were incorporated into the standard

APL Mater. 9, 021119 (2021); doi: 10.1063/5.0037438 9, 021119-11

© Author(s) 2021

https://scitation.org/journal/apm
https://www.scitation.org/doi/suppl/10.1063/5.0037438
http://campari.sourceforge.net/


APL Materials ARTICLE scitation.org/journal/apm

parameter file, and the temperature dependent rFoS values were
calculated using the model compound specific values for ∆h and
∆cP that were derived using the AMOEBA-based calculations of
∆μh(T0)—see Table I. As in our recent work,28 we used the tem-
perature dependent dielectric constant prescribed by Wuttke et al.19

Neutralizing counterions were added to the simulation droplet for
polypeptides with net charges to neutralize the system. For the
Na+ and Cl− ions, we use the following values for ∆μh at 298 K,
∆h, and ∆cP, respectively: {−74.6 kcal/mol, −80.2 kcal/mol, −18.4
cal/mol K} and {−87.2 kcal/mol, −99.2 kcal/mol, −11.7 cal/mol K}.
The Lennard-Jones parameters for Na+ and Cl− ions are default
parameters in the original work of Vitalis and Pappu.20

For the IS limit simulations, we turned off the Wel term by
setting the keyword SC_POLAR to be 0 in the key file. For each
of the systems shown in Fig. 2, we performed one set of replica
exchange simulations, and a total of 6 × 107 independent moves
were attempted per replica. The temperature schedule for the replica
exchange simulation is from 230 K to 380 K with an interval of 30 K.
Error bars in Fig. 7 and in Figs. S2 and S3 are reported as standard
deviations of the distribution of mean Rg values for each simulation
temperature.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) the sequences shown by
Quiroz and Chilkoti to have UCST and LCST phase behaviors that
were used for IS limit simulations in this study, (b) the tempera-
ture dependent free energies of solvation derived from free energy
calculations using the AMOEBA forcefield, (c) figures showing the
temperature dependent Rg profiles calculated in the IS limit, and (d)
figures quantifying the statistics for residues selected as part of the
design process directed toward the XPXXG system. A zip archive
appended to the supplementary material includes the parameter file
for the AMOEBA forcefield and a sample key file for performing free
energy calculations based on molecular dynamics simulations.
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