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ABSTRACT: The ability to manipulate C−C bonds for selective chemical transformations is challenging and represents a growing
area of research. Here, we report a formal insertion of diazo compounds into the “unactivated” C−C bond of benzyl bromide
derivatives catalyzed by a simple Lewis acid. The homologation reaction proceeds via the intermediacy of a phenonium ion, and the
products contain benzylic quaternary centers and an alkyl bromide amenable to further derivatization. Computational analysis
provides critical insight into the reaction mechanism, in particular the key selectivity-determining step.

Synthetic approaches to organic compounds are grounded
in the combination of nucleophiles and electrophiles.1 For

example, benzyl halide derivatives may participate in classical
reactions such as nucleophilic substitution and electrophilic
aromatic substitution (Figure 1A).2 The advent of reactions
that unlock “nonclassical” transformations of common building
blocks provides opportunities to reimagine and/or streamline
synthetic strategies. “Nonclassical” reactions may be described
as those reacting at a traditionally inert functionality, for
example, insertion into the C(sp2)−C(sp3) bond of a benzyl
halide derivative (Figure 1B). Cascade reactions that effect
formal C−C bond insertion reactions via skeletal rearrange-
ments represent an appealing approach toward such a goal.3,4

Herein, we describe the development of a homologation
reaction of electron-rich benzyl bromide derivatives involving
formal insertion of diazo compounds into the C(sp2)−C(sp3)
bond (Figure 1C).5

Cognizant of the ionic reactivity of diazo compounds with
sp2-hybridized electrophiles (e.g., carbonyl derivatives),6 we
questioned whether electron-rich benzyl bromide A would
react with diazo B, via the intermediacy of a stabilized benzylic
carbocation, to generate alkyl diazonium ion C (Figure 1C).7

Loss of nitrogen would then trigger neighboring group
participation of the aryl ring, resulting in phenonium ion
D.8,9 The bromide leaving group from the first step could then
engage the putative spirocyclopropane at the less substituted
position to afford the desired product E.10 Tertiary bromide F
was considered a potential side product accessible via
competitive intermolecular displacement of nitrogen in
diazonium C or nucleophilic opening of phenonium ion D at
the more substituted position. The desired product E contains
an acyclic, benzylic tertiary or quaternary centermotifs
present in many pharmaceutical and agrochemical molecules
(Figure 1D)11,12while retaining the alkyl bromide as a
functional handle for further derivatization.13,14 This method
enables programmable introduction of trifluoromethyl, ester,
amide, ketone, and sulfone functional groups via a unified
approach. In particular, the incorporation of trifluoromethyl

groups into molecules continues to be important in medicinal
chemistry,15 and the use of substituted trifluoromethyl diazo
derivatives is particularly underexplored in this regard.16

4-Methoxybenzyl bromide 1 and trifluoromethyl diazo 2
were chosen as parent substrates for reaction discovery and
optimization. After surveying a series of Lewis acids under
different reaction conditions, it was found that SnBr4 (50 mol
%) in CH2Cl2 at −78 °C afforded bromide 3a in 75% isolated
yield (Figure 2A).17 With the optimized conditions in hand,
the scope of the reaction was evaluated with respect to both
substituents on the diazo and the benzyl bromide derivative.
Several different electron-withdrawing groups worked well in
this process (Figure 2A). Alkyl-substituted diazo derivatives
containing an ethyl ester (3b), benzyl ester (3c), redox-active
ester (3d), and a nitrile (3e) were all effective in this reaction.
With ester derivatives, minor quantities of isomer 3′ are
observed in the 1H NMR spectrum of the crude reaction
mixture. For completeness, the ratio of 3:3′ in the isolated
material is quoted in parentheses, and the ratio in the crude
reaction mixture is quoted in brackets below. The use of
monosubstituted diazo derivatives to generate tertiary benzylic
centers is also possible and further highlights the range of
electron-withdrawing substituents amenable in this reaction
(Figure 2B). An ethyl ester (3f), benzyl ester (3g), tert-butyl
ester (3h), amide (3i), ketone (3j), trifluoromethyl group
(3k), and a sulfone (3l) all worked well to give the requisite
tertiary benzylic centers.
Trifluoromethyl-substituted diazo 2 was employed to

evaluate a number of electron-rich benzyl bromide derivatives
in the homologation reaction (Figure 2C). In all cases, the
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regioselectivity of phenonium ion opening was high (>20:1).
Alkoxy substituents such as allyl (3m), propargyl (3n), benzyl
(3o), and alkyl ester (3p) all deliver the desired products in
good yields. Disubstituted arenes containing veratrole (3q) as
well as 3-bromo and 4-methoxy (3r) motifs were tolerated. A
dihydrobenzofuran derivative worked well (3s), and incorpo-
ration of an aryl ether is possible (3t). A rare example of an
“indolyl” phenonium ion was demonstrated through use of a 3-
bromomethylindole derivative (3u),18 and a 4-dimethylamino-
substituted benzyl chloride afforded chloride 3v in acceptable
yield. Here, SnCl4 was employed as the catalyst to avoid
halogen crossover. Under these conditions, the use of benzyl
bromide itself resulted in no reaction and recovered bromide
(vide inf ra).19

Next, attention was turned to exploring the functional group
tolerance of the reaction with respect to the alkyl substituent
on the diazo derivative (Figure 2D).20 Here, benzyl
diazoacetate derivatives were employed to facilitate substrate
synthesis and handling. Many different functional groups were
tolerated in this reaction, including nitrile (3w), ester (3x, 3y),
phthalimide-protected amine (3z), sulfone (3aa), and bromide
(3ab). A pendant phenyl ring was tolerated (3ac), and an allyl-
substituted diazo afforded the desired product 3ad in modest
yield. A diazo derived from the amino acid leucine also worked
well (3ae). Remarkably, use of a tert-leucine-derived diazo
compound afforded 3af which contains vicinal quaternary
centers. The modest yield of this reaction (22%) results from a
competitive methyl shift at the stage of phenonium ion
formation (see the Supporting Information for details).
Saturated heterocycles such as a tetrahydropyran and
piperidinecommonly found in medicinally relevant com-
poundscould be incorporated in the diazo starting material
and afforded the desired products (3ag, 3ah) in good yield.
Use of benzyl-substituted diazo compounds opens the
possibility of competitive aryl migration at the stage of the
putative alkyl diazonium C (see Figure 1C). In both cases, the
reaction proceeds in high yield, and the more electron-rich
arene migrated selectively (3ai, 3aj).21

One enabling feature of this reaction is the retention of the
alkyl bromide as a functional handle for further manipulation.

For example, substitution of the bromide with azide delivers
β2,2-amino acid derivative 4 in 68% yield (Figure 2E).22

Displacement with 1,2,4-triazole gave 5 in 55% yield.23 1,2,4-
Triazoles are emerging as privileged scaffolds in medicinal
chemistry24 and also represent a core component of many
agrochemical compounds (e.g., fenbuconazole, Figure 1D).
Use of cyanide as the nucleophile afforded nitrile 6 in 92%
yield.
Quantum chemical calculations (ωB97X-D/def2-QZVPP//

ωB97X-D/6-31+G(d,p) with an SMD description of dichloro-
methane) were used to study the multistep mechanism
between 4-methoxybenzyl bromide and benzyl 2-diazobuta-
noate (as a model substrate) catalyzed by SnBr4 (Figure 3A).

25

The initial nucleophilic displacement to form Int-II is
computed to proceed most favorably in an SN1 fashion, with
a barrier height of 18.5 kcal mol−1 for TS-II (vs 29.7 kcal mol−1

for the uncatalyzed SN2 pathway). This is the rate-determining
step, for which lower barriers are obtained with electron-rich
benzyl bromide derivatives (Figure 3B). Coordination of the
bromide and Lewis acid results in a SnBr5

− leaving group in
TS-I. After TS-II is crossed, the sequential loss of dinitrogen
and phenonium ion formation proceeds through separate C−
N breaking (TS-III) and C−C forming (TS-IV) TSs in a
highly exergonic fashion (Grel = −32.3 kcal mol−1) to produce
the phenonium Int-IV. The intervening intermediates, alkyl
diazonium Int-II and tertiary carbocation Int-III, exist as local
potential energy minima with extremely small exit barriers of
just 0.3 and 2.0 kcal mol−1, respectively. Compared to
phenonium formation, competing 1,2-hydride shifts (TS-VI
and TS-VII) have higher barriers of 3.4−3.6 kcal mol−1. On
the basis of these small barrier heights, we expect Int-II and
Int-III to be short-lived, potentially preventing equilibration of
atomic motions and the surrounding solvent, which limits the
applicability of transition-state theory (TST).26 We therefore
initiated quasi-classical molecular dynamics trajectories27 in the
region of TS-II. Many of these trajectories evolved to
phenonium Int-IV, passing through Int-II with an extremely
short average lifetime (262 fs, only a few complete C−N
vibrations occurred in many trajectories)28 and Int-III, which
had a longer lifetime of 439 fs, confirming the existence of

Figure 1. Nonclassical insertion of diazo compounds into C−C bond of benzyl bromide derivatives.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.1c11503
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c11503/suppl_file/ja1c11503_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c11503?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c11503?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c11503?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c11503?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c11503?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dynamic intermediates. Although the potential energy surface
is formally stepwise, we observed high fidelity transfer of
stereochemical information from the starting material through
to the phenonium configuration in MD trajectories that
followed the main pathway.29

Regioselectivity is determined by nucleophilic phenonium
opening via TS-V (Figure 3A). Nucleophilic attack by the
pentavalent SnBr5

− anion is energetically favored over the free
bromide anion by over 4 kcal mol−1 for TS-V-A (see the
Supporting Information, Figure S5) and C−Br formation
occurs irreversibly (ΔG = −16.4 or −17.3 kcal mol−1). The
fleeting intermediacy of acyclic Int-III and the much greater

stability of Int-IV mean that direct addition of bromide before
phenonium formation is unlikely. The direct trapping of
tertiary carbocation (Int-III) by SnBr5

− is less favorable than
phenonium formation by 1.5 kcal mol−1 (see Figure S3). This
minor pathway could nonetheless provide a direct route to
product B in addition to the opening of phenonium through
TS-V-B. We then compared DFT-computed selectivities
arising from the competing TSs for seven substrate
combinations with experiment. The trends and regioselectiv-
ities were well reproduced (see Figure S7). Compared to the
favored ring-opening pathway TS-V-A, which involves
nucleophilic attack at the methylene group, the less-favorable

Figure 2. Reaction scope and demonstration of product utility.
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TS-V-B requires greater elongation of the cyclic C−C bond
(by 0.26 Å) to reach the TS, which is looser and more
“exploded” than its more stable counterpart.30 Similarly,
greater C−C bond breaking in the minor vs major TS was
observed for all substrates considered.
To further investigate the relationship between structure of

the phenonium intermediate and experimentally observed
regioselectivity, we performed a statistical analysis. Structural,

electronic, and chemical bonding parameters of 25 phenonium
intermediates were selected as key descriptors (Figure 4A and
Figure S9). Inspired by Sigman and Doyle’s application of a
single-node decision tree to infer mechanistic information, we
sought to identify a single descriptor able to function as a
classifier separating highly regioselective from unselective
substrates.31 The use of a classification model, rather than
(non)linear regression model, is also particularly well-suited

Figure 3. (A) Computed Gibbs energy profile at −78 °C, 1 M standard state. DFT calculations were performed at the ωB97X-D/def2-QZVPP//
ωB97X-D/6-31+G(d,p) (def2-SVPD for Sn during optimization) level of theory. Ph groups are omitted for clarity. (B) Relative energies of diazo
addition to benzyl bromide derivatives.

Figure 4. Selectivity of phenonium ion opening. (A) Phenonium descriptors considered. (B) Classification of selectivity using CA−CC antibonding
energy establishing a threshold value. (C) Experimental validation of the model.
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here since several substrates produce a single regioisomer
(>20:1), preventing an exact value of ΔΔG‡ being assigned.
We therefore split the experimental data into high and low
selectivity values, with an experimental r.r. of 13:1 (ΔΔG‡ = 1
kcal mol−1) serving as this cutoff. We identified a chemical
bonding feature, the energy of the natural CA−CC σ* orbital,
performed best and allowed us to identify a “threshold” energy
(0.183 au) below which all substrates react with high
regioselectivity (Figure 4B). Phenonium ions with CA−CC
σ* energies below this threshold universally give experimental
selectivities >13:1, while of those with energies above this
threshold 11/14 (79%) give low selectivities. This is the bond
cleaved irreversibly in the transition structure, leading to the
formation of the major (i.e., homologated) regioisomer.
To validate this model, seven out-of-sample substrates

bearing different substituents to those used during training
were designed theoretically with predicted selectivities ranging
from high (7−9) to low (10−13). These predictions generated
by the classifier were consistent with the experimental results
(Figure 4C).
In conclusion, we report a homologation reaction of benzyl

bromides with diazo derivatives. This reaction exploits the
classical reactivity of benzyl halides (as electrophiles) and
aromatic rings (as nucleophiles) to achieve formal insertion of
a diazo into the C(sp2)−C(sp3) bond. Computational analysis
of the reaction coordinate revealed a rate-determining SN1
mechanism for the initial C−C bond formation followed by a
cascading sequence of cationic intermediates leading to a
phenonium ion. Insights into the regioselectivity of phenonium
ion opening were gained and enabled a priori prediction of
reaction outcomes for new substrate combinations. Overall,
this work provides a modular method for constructing acyclic,
benzylic quaternary centers from readily accessible starting
materials which we anticipate may find utility in drug discovery
programs.
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