Topics in Catalysis (2022) 65:165-186
https://doi.org/10.1007/511244-021-01521-1

ORIGINAL PAPER q

Check for
updates

Modeling Catalysis in Allosteric Enzymes: Capturing Conformational
Consequences

Heidi Klem' - Martin McCullagh? - Robert S. Paton’

Accepted: 11 October 2021 / Published online: 9 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Greater understanding of enzymatic mechanisms aids the discovery of new targets for biologics, the development of bio-
catalytic transformations, and de novo enzyme design. Methods using quantum mechanical (QM) potentials, such as den-
sity functional theory, have enabled complex multistep enzymatic mechanisms to be studied, often in quantitative detail.
Nevertheless, the dynamic interconversion of enzyme conformations between active and inactive catalytic forms, involving
length- and timescales inaccessible to QM treatments, presents a formidable challenge for the development of computational
models for allosterically modulated enzymes. We present an overview of the key concepts underlying multistate models of
enzyme catalysis, enzyme allostery, and the challenge that large-scale conformational changes pose for methods using QM,
QM/MM, and MM potentials. Structural clustering is highlighted as a valuable approach to bridge molecular dynamics
conformational sampling of MM potentials and quantum chemical cluster models of catalysis. Particularly relevant to this
discussion is structural allostery, which serves as the exemplar of conformational consequences. Here, a well-characterized
allosteric enzyme, imidazole glycerol phosphate synthase, is used to showcase the importance of multiple conformations
and guide a new direction for qualitative understanding and quantitative modeling in enzyme catalysis.

Keywords Biocatalysis - Allostery - Conformational ensembles - Molecular modeling - Molecular dynamics -
Computational chemistry - Reaction mechanisms

1 Introduction

Enzymes carry out the homogeneous catalysis of many
essential biological transformations and industrial processes,
yielding kinetic rate enhancements of up to 26 orders of
magnitude [1]. The quantitative understanding of enzymes
has expanded drastically, propelled by biophysical, biochem-
ical, and theoretical studies. Fischer’s “lock and key” model
became the foundation for understanding enzyme—substrate
mechanics in 1894 [2]. Koshland modified this model in
1958, accounting for enzyme flexibility in developing the
induced fit model [3]. The field of enzymatic catalysis has
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since evolved to account for critical contributions of confor-
mational substates [4]. Additional current topics of interest
are enzyme preorganization, reorganization, near attack con-
formations, desolvation effects, transition state stabilization
(TSS), reactant state destabilization (RSD), and dynamic
contributions [5-9]. The reader is directed towards reference
[10] and references therein for a historical perspective on
modeling enzyme catalysis. In this perspective, we focus on
enzymes for which conformational changes are critical to (a)
understanding the catalytic mechanism and (b) computing
quantitatively accurate barriers and energy changes.

Three classes of potentials are commonly employed in
computational studies of enzymes: quantum mechanics
(QM) only, hybrid QM and molecular mechanics (QM/
MM), and fully MM calculations. QM potentials are typi-
cally used to study stationary points on the potential energy
surface, while computationally less-expensive MM poten-
tials can be used to explore enzyme structure and motions
across different timescales, such as in molecular dynamics
(MD) simulations. QM-only approaches (Sect. 4.1), nota-
bly the cluster approach, are now routinely used to study
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reactions using a reduced active site model consisting of up
to 200-300 atoms. The protein environment is accounted
for by a continuum dielectric model, assuming the sur-
rounding can be approximated as a homogeneous polariz-
able medium with a constant dielectric [11]. High levels of
quantitative accuracy have been demonstrated with reduced
active site models: for example, Himo and co-workers have
successfully modeled competing enzymatic pathways lead-
ing to enantiomeric products (i.e., asymmetric biocatalysis),
where energy differences on the order of 1-2 kcal/mol must
be captured [12—-14]. Cluster models have similarly been
used to study how enzyme active sites control regioselec-
tivity, for example, in facilitating intrinsically disfavored
epoxide-opening pathways [15]. A related QM-only method,
the theozyme approach, has been used to model a theoreti-
cal enzyme active site as a selection of functional groups
directly involved in catalysis [16]. Houk and co-workers
have used theozyme models to illustrate how side-chain
motions are minimized in the multistep serine esterase cata-
lytic cycle [7] and in the computational design of enzymes
for abiological reactions [17].

To study enzymes where long-range interactions (e.g.,
electrostatic interactions in particular) play a fundamental
role in the catalytic mechanism, the substrate and active site
residues directly involved in the reaction can be described
with QM, and the remaining protein and solvent can be mod-
eled with classical (MM) force fields (Sect. 4.3). This QM/
MM hybrid approach has yielded high quantitative accuracy
of enzymatic reaction barriers. For example, Mulholland,
Thiel, Werner, and co-workers have shown that systematic
improvements to the QM level of theory, using LCCSD(TO0)
[18], provide near-quantitative results for the activation
enthalpies and free energies of the reactions catalyzed by
chorismate mutase and para-hydroxybenzoate hydroxylase
[19]. MD simulations employing a QM/MM potential are
more expensive than with classical force fields, although
sampling times of nanoseconds are now attainable. While
such timescales are insufficient to explore large and slow
enzyme conformational changes, these may be addressed
with classical simulations, as discussed in Sect. 5. As with
the selection of a QM cluster model, the choice of QM/MM
boundary and how MM partial point charges at the bound-
ary are described should be handled with care and validated
[20].

Classical MD (MD applied to classical force fields) can
be used to study whole enzyme mechanics on timescales
ranging from the nanosecond-microseconds regime. There
may be many thermally accessible conformations sampled
by a protein, one or more of which are essential to the cata-
lytic mechanism and for which MD simulation provides one
of the few ways to identify and quantify their involvement
in atomistic detail. The ability of proteins to redistribute
conformational populations to influence function in response
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to perturbations is a leading hypothesis in the fields of struc-
tural allostery [21-23] and, most recently, in directed evolu-
tion [24-26]. MD has proven to be especially apt at sampling
“local” conformational diversity in enzymes such as the dif-
ferent rotamer states adopted by side-chains. However, some
conformational changes necessary to achieve a catalytically
competent active site, such as those involving loop and helix
motions, occur on the millisecond timescale [27, 28]. In such
cases, enhanced sampling MD methods can be used.

Of significance to enzyme catalysis is the ability of MD
simulation to provide statistical details for catalytically rel-
evant conformations. In general, this is aided by clustering
the MD snapshots into structurally similar groups to yield
populations of significant enzyme conformations (Sect. 5).
While classical MD simulations excel in conformational
sampling, conventional MM potentials do not describe the
breaking and forming of bonds along a reaction pathway. In
contrast, while low-cost QM potentials are gaining traction,
high-accuracy QM approaches are ill-suited to large-scale
conformational analyses. Therefore, the combination of QM
and classical MD approaches to study enzyme catalysis in
the context of the conformational ensemble is of great inter-
est to the community [29, 30].

A single enzyme conformation taken from an X-ray crys-
tal structure might be an excellent starting point for the com-
putational study of enzyme catalysis. However, it is vital
to consider the assumptions being made. Mainly, that the
single conformation is catalytically relevant, and no other
conformations are important for catalysis [31]. The validity
of these assumptions is difficult to test unless apriori knowl-
edge or hypotheses regarding the catalytic mechanism exist.
Thorough investigations of catalysis will evaluate mechanis-
tic possibilities indicated in the literature and preliminary
results. In Sect. 3, we discuss myriad enzymatic reactions
now known for which these simplifying assumptions do not
hold. These systems present challenges for computational
chemistry to incorporate rigorous analyses of conforma-
tional ensembles alongside high-accuracy potentials to study
reaction mechanisms. Improvements in conformational
sampling techniques, accurate force field parameters, and
quantum mechanical treatments have accelerated progress
towards this goal. Section 6 describes how computational
workflows based on macromolecular conformational sam-
pling with MD, structural clustering to obtain ensemble pop-
ulations, and QM calculations are poised to accelerate the
study of enzyme catalysis further. The explicit consideration
of multiple enzyme conformations to support mechanistic
conclusions and calculate barrier heights has now been used
in multiple studies [28, 32-35].

The main goal of perspective is to illustrate the role of
conformational effects upon enzymatic catalysis. We pro-
vide a brief account of the main computational approaches,
procedures, and limitations and discuss their relevance
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in modeling protein motions that occur across different
timescales. We introduce fundamental concepts of protein
allostery and discuss how these systems present a unique
challenge for computational chemistry and conformational
sampling. We suggest that a combination of cutting-edge
techniques in MD sampling and QM modeling provides a
particularly appealing approach to study enzyme catalysis.
Clustering methods are discussed as a means to bridge the
results of classical simulations with QM-cluster models. The
final section outlines the case study of glutamine hydrolysis
performed by the allosterically-regulated glutamine ami-
dotransferase (GAT) imidazole glycerol phosphate synthase
(IGPS). This system beautifully illustrates the importance of
conformational changes in catalysis, the existence of inac-
tive and active forms in the solid-state and solution, and
the importance of computational sampling of the enzyme’s
conformational space. The rate of glutamine hydrolysis in
IGPS is critically dependent on the presence of the allosteric
ligand over 25 A away from the glutamine binding site [36].
Until recently, the atomic changes that yield the hydrolysis
rate enhancement were not realized due to the absence of an
observed catalytically active conformation.

2 Enzyme Catalysis: The Reaction
Coordinate and Protein Dynamics

A fundamental understanding of enzyme mechanics has long
been the goal of many chemical and biological scientists.
Accomplishing this goal requires answering how the enzyme
performs its function. To begin formulating an answer to this
question, a simple enzyme mechanism can be considered:

E+S§ES£>E+P, 1)
-1
where E indicates the enzyme, S the free substrate, ES the
enzyme-—substrate complex, and P the product after its
release from the enzyme. In the steady-state approximation,
where the substrate concentration is saturating and therefore
negligible, there are two kinetic parameters used to describe
enzyme performance: the maximum rate of product forma-
tion, k,,,, and the Michaelis—Menten constant, K,,. From
Eq. 1, the steady-state kinetic parameters are defined as
koy=k, and K, = (ky+k_)/k;.

However, a more realistic enzyme model to that presented
above accounts for additional elementary mechanistic steps
such as the following:

ky ky ks
E+S=ES—SEX—E+P, 2)
1

where EX is an intermediate state distinguished by a unique
chemical species (i.e., involving a change in bonding relative

to ES) or a kinetically significant conformation distinct from
ES. With the expanded mechanistic scheme in Eq. 2, the
steady-state parameters are defined as k., = k,k+/k, + k5 and
K, = (ky+k_ )ks/(k, + k3)k,. Although the expressions for
k., and K, differ between Eqs. 1 and 2, laboratory obser-
vations of steady-state kinetics cannot distinguish between
these two mechanistic scenarios. If the goal is to deter-
mine an enzyme’s substrate specificity, then simplification
to Eq. 1 is sufficient. However, computational analysis of
individual reaction steps (including all relevant reactants,
intermediates, and products) provides the basis to under-
stand the enzyme’s mechanism and the atomistic factors
influencing rate and selectivity. Importantly, a measured k_,,
often reflects several elementary rate constants in the overall
mechanism. Although, for example, in Eq. 2, if k, > >k,
simplification to k., =k, is justified. It is important to note
that k_,, is not necessarily solely defined by “chemical”
steps, such as where product inhibition occurs. However,
we limit the scope of this perspective to examples for which
the rate-determining step is associated with bond formation
or cleavage.

One critical enzyme attribute missing from Eqgs. 1 and
2 is conformational heterogeneity. Much of the focus of
enzyme catalysis in the twenty-first century has been on the
role of conformational changes involving both experimental
and computational expertise [4, 10, 27, 30, 37]. The free
energy landscape, a multi-dimensional construction of the
intermediate and transition states available to an enzyme
before, during, and after catalysis, is particularly useful to
conceptualize the relationship between the conformational
ensemble and the chemical reaction coordinate (Fig. 1) [38].

Equations 1 and 2 do not account for the possibility of
interconverting conformers (e.g., of the free enzyme, E)
that may possess different reactivities along parallel reac-
tion pathways, as described by Hammes-Schiffer and co-
workers [38]. Consequently, quantitative agreement of

Fig. 1 Enzyme free energy landscape projected onto the reaction
and conformational coordinates. Adapted with permission from [38].
Copyright 2021 American Chemical Society
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computed reaction barriers with experiment may require
explicit consideration of the enzyme’s conformational
ensemble. In contrast to the weak coupling of the reaction
and conformational coordinates depicted in Fig. 1, strong
coupling can arise where even qualitative agreement with
experiment requires consideration of the ensemble [27, 28].
Construction of the free energy landscape for large systems
is a laborious task. As discussed above, such studies require
computational methods in classical simulation techniques,
while the reaction coordinate may be more amenable to QM
approaches. As a result, a combination of distinct computa-
tional methodologies and expertise is often required.

2.1 The Enzymatic Reaction Coordinate

Catalytic mechanisms are often illustrated by (Gibbs) energy
profiles, characterized by relative free energies of intermedi-
ate and transition state (TS) structures that culminate in the
transformation of reactant into product within the enzyme
complex (ES and EP, respectively), as illustrated in Fig. 2.
Multiple factors can influence the quality of the Gibbs
energy profile and its mechanistic interpretation [39]. While
computations can be used to provide evidence in favor of
or against a particular reaction pathway, a reaction mecha-
nism can never be conclusively proven, only experimentally
corroborated [40]. With much success, contemporary QM
approaches have been used to describe chemical reactions by
calculating observables, such as energy barriers, kinetic iso-
tope effects, and product selectivities that can be validated
with experiments [41].

In comparing the computed catalytic (Gibbs) energy
with experiment, the concepts and language introduced by

Gy (kcal/mol)
N

_41 DI

Intl  TS1 Int2  TS2 Int3  TS3 Int4  TS4  Int5S

Fig.2 Example reaction coordinate, created with GoodVibes [42],
for a multistep enzymatic chemical reaction showing several minima
and transition structures proceeding from enzyme-substrate (ES) to
enzyme-product complex (EP). Turnover determining intermediate
(TDI), Int2, and transition state (TDTS), TS3, define the energetic
span and apparent activation energy of the cycle, AG*
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Kozuch and Shaik are both illuminating and influential [43].
In contrast to using rate constants to define a catalytic cycle
(the k-representation), computational studies generate state
energies (the E-representation). The apparent activation bar-
rier is then represented by the energetic span of the catalytic
cycle, defined by the difference (AG¥) between the lowest
energy, turnover determining intermediate (TDI), and the
highest energy, turnover determining TS (TDTS) (Fig. 2).
The value of AG* can then be used to calculate a theoreti-
cal rate constant based on Eyring’s transition state theory
equation:

kk,T AG
ke = — exp(ﬁ) 3)

where « is the transmission coefficient, kzis Boltzmann’s
constant, T is temperature, h is Planck’s constant, and R
is the gas constant. It is common to set k=1, but more
advanced techniques have been developed to evaluate non-
equilibrium effects and the contributions of recrossing and
tunneling to enzymatic rate constants [44, 45]. In the case
of enzyme models, computed activation barriers for cata-
lytic cycles have reached impressive levels of accuracy. For
example, by using relatively large QM regions optimized at
the DFT (B3LYP-D3(BJ)/TZVP) level of theory and per-
forming DLPNO-CCSD(T) single-point energy calculations,
Neese and co-workers have demonstrated accuracies within
1 kcal/mol of experimental enzyme-catalyzed barriers. Even
without high-level coupled-cluster corrections, B3LYP-D3
provides qualitatively correct results [46]. As cautioned by
Kozuch and Shaik, care must be taken when calculating AGH
to be used in Eq. 3. In some situations the internal energy
can be a fair approximation for this value, however in other
cases either additional methods or thermal and entropic cor-
rections should be made.

Computational studies of enzyme catalysis are routinely
performed using (1) QM-only approaches, which include
cluster models [47] and theozyme [16] approaches, and (2)
mixed QM/MM studies. These approaches are surveyed
in Sect. 4. More detailed technical summaries of these
approaches can be found elsewhere, e.g., in reference [31].
Herein, we focus on basic concepts to emphasize what infor-
mation can be gained and how QM approaches can sup-
plement a multiscale computational integration to model
enzyme catalysis, particularly in the context of a conforma-
tional ensemble.

2.2 The Conformational Coordinate

Introductions to biochemistry emphasize that structure leads
to function. However, this is an oversimplification, and
there are many macromolecules where the interconversion
between different structures influences overall biological
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function. Proteins are known to populate multiple metasta-
ble structures (the conformational ensemble) under typical
physiological conditions [48]. Mounting evidence suggests
that the ensemble nature of proteins is intricately tied to their
function [49, 50]. From a statistical mechanics perspective,
it is the probability and properties of the microscopic struc-
tural states that dictate the macroscopic properties of the
protein. Consequently, the determination of the conforma-
tional ensemble, specifically the distribution of microscopic
structural states, of enzymes is of utmost importance. One
of the challenges in this field is the variety in timescales
associated with motions, which ultimately dictates the most
appropriate method used to study the underlying dynamics
(Fig. 3).

Experimental techniques used to probe protein ensembles
include X-ray crystallography, nuclear magnetic resonance
(NMR) [50], small-angle X-ray scattering (SAXS), atomic
force microscopy (AFM) [51-53], and more recently, cryo-
genic electron microscopy (cryoEM) [54—57]. Each of these
methods has its own set of advantages and disadvantages.
X-ray crystallography, for example, typically determines a
single structure that represents a minimum energy struc-
ture under crystallization conditions. Recent advances in
the field include the advent of room temperature crystal-
lography [58] and recognition that a given crystal likely
has multiple structures in the unit cell [59, 60]. Protein
NMR is inherently an ensemble measurement that can be
done under solution conditions. However, the measurement
timescale of NMR dictates that the resulting values, for

example, chemical shifts [61] and dipolar couplings [62],
are ensemble averages over multiple metastable states. NMR
has successfully been coupled to SAXS [63, 64], spectro-
scopic techniques, and molecular simulations [65—-67] to tie
the average values to the microscopic ensemble. AFM can
provide structural trajectories of proteins but does not have
atomic resolution. CryoEM stands out as one of the most
promising approaches, with recent advances in image cap-
turing hardware and software driving the resolution down
to the atomic scale [54-57]. CryoEM is, however, devoid of
temporal information.

Molecular modeling and in silico simulations can provide
atomic-level protein ensemble data to complement experi-
ment. A robust approach is to use all-atom force fields to
model the protein and the solvent environment. MD simu-
lations provide time-dependent trajectories of the system
of interest. In the theoretical limit of infinite sampling and
accurate force fields, these data would represent a complete
atom-level picture of the protein ensemble. Practically,
improvements to both force fields and sampling protocols
continue to improve agreement between simulation and
experiment, yet room for improvement still exists [68]. Other
than reparametrization of standard functional forms, new
directions in force field development include polarizable
[69] and machine-learned force fields [70]. Regardless of
the specific force field details, sufficient ensemble sampling
is also an ongoing concern in the field. Typical timescales
for conventional molecular-dynamics (cMD) on medium-
sized proteins are in the tens of microseconds range. While

Enhanced sampling MD |

| QM/MM
I Classical MD |
H-D exchange
Residual dipolar couplings |
I NRM relaxation I
| Fluorescence I
| Raman/Ultraviolet/Infrared spectroscopy I
| Laue X-ray crystallography I
fs ps ns us ms s
A—
Bond Methyl Loop Large domain motion
vibration rotation motion
C—
e transfer Side chain rotation Catalysis, ligand binding, allostery

Fig. 3 Methods for studying dynamic processes in proteins ranging from femtosecond to second timescales. Experimental and computational

techniques are shown in blue and green, respectively
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this can adequately sample the conformational ensemble of
small globular proteins near their native state, it is insuffi-
cient for large proteins and processes such as protein folding.
Techniques to overcome this shortcoming include the devel-
opment of specialized hardware [71] or enhanced sampling
techniques. The latter is a more approachable solution and
includes techniques such as replica exchange [72, 73], meta-
dynamics [74], and adaptive sampling [75-77]. A recent
study of the conformational ensemble of an intrinsically
disordered protein demonstrated that cMD was adequate to
reproduce the NMR chemical shifts (an ensemble property)
but not the SAXS data (influenced by the distribution of
molecular sizes). Enhanced sampling was shown to improve
the agreement with SAXS data [78].

Characterizing the conformational ensemble is essential
to fully understand the relationship between enzyme struc-
ture, dynamics, and the catalytic mechanism. Recently, con-
sideration of the conformational ensemble has been pivotal
in determining how the sampling of distinct conformations
influences different catalytic properties in the directed evolu-
tion of various enzymes [24, 25, 79-81], and a direct cor-
relation between reaction rate and active conformation popu-
lation influenced by different allosteric ligands and enzyme
mutations has been quantified [28].

Allosteric enzymes exemplify the importance of confor-
mational ensembles [3]. Allosteric regulation occurs when
a perturbation at a site distant from the primary active site
modulates a protein’s function. As the simplest case, we
can consider a two-state model (Fig. 4), characterized by
an active and inactive conformation. Although a variety of
perturbations may influence the free energy landscape, such
as mutations in directed evolution, in the context of allostery,

“ == |nactive (70%) Active (30%)
\ = |N@ctive (35%) Active (65%)

Free energy

Active

Inactive

Y

Conformational coordinate

Fig.4 A free energy profile projected onto a two-state conformational
coordinate. The blue line and toy enzyme model illustrate a system
without the allosteric effector bound. Orange corresponds to a system
with the allosteric effector bound. The legend shows relative popula-
tions of the active and inactive states that result from different ligand
states
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we consider the binding of a small molecule distal from the
enzyme’s primary active site as the perturbation. Upon bind-
ing the allosteric ligand, the energy landscape is altered, and
the resulting inactive and active conformation populations
are altered. This conformational shift phenomenon is often
used in discussions of structural allostery but is not limited
to such enzymes.

3 Allostery in Enzyme Catalysis

The long-ranged coupling of sites in an allosteric system can
be explained through short-range interactions linking the
distant sites [82]. This mode of regulation has been referred
to as the second secret of life, behind the central dogma
that describes information transfer between DNA, RNA,
and proteins [83]. Biological systems harness allostery to
respond to changes in their environment. This is recognized
in various biological processes such as signal transduction
[84, 85], transcriptional regulation [86, 87] and metabolism
[88]. It has been proposed that any system can be allos-
terically regulated; it becomes a matter of how to probe the
interactions that couple binding sites [85]. In 2011, Huang
and co-workers created the Allosteric Database (ASD) to
provide a comprehensive collection of allosteric data [89].
Presently, the ASD contains 1,949 allosteric proteins and
82,070 allosteric modulators [90, 91]

3.1 Categorizing Allostery

In allosteric regulation, the binding of an effector molecule
alters an enzyme’s activity towards its natural substrate. This
is illustrated by the thermodynamic cycle shown in Fig. 5. In
the absence of the allosteric effector, X, the basal substrate-
binding dissociation/affinity constant K;, and rate constant
k., are observed. Enzyme allostery is classified by the pro-
cess of activity alteration. In K-type allostery, the allosteric
response to effector binding is a change in the affinity, K,
for the substrate, A. This system is the most commonly stud-
ied, and an effective allosteric coupling constant, defined by
the ratio of substrate binding affinity in the absence versus
presence of the effector K,/K; . or equivalently K, /K, . as
defined in Fig. 5, has been developed to quantify the allos-
teric effect of a K-type system [83]. There exist experimen-
tal and computational techniques to measure the allosteric
coupling constant in a K-type system. In V-type allostery,
binding of the effector causes a change in the catalytic activ-
ity, k.- An allosteric coupling metric analogous to a K-type
system could be based on k., with and without the effec-
tor bound (k,,/k.,.). Although there exist computational
methods to measure k_,,, as previously mentioned, this is

relatively unexplored in the context of allostery.



Topics in Catalysis (2022) 65:165-186

171

® @)
Kla kcat
E+A —_— EA E
Kix [ +X Kiva || +X +X
Kianx Keatix
XE+A =~ XEA XE
® ® ®
() O

Fig.5 Complete thermodynamic cycle of an allosteric enzyme, E.
The top row represents the enzyme in the presence of only substrate,
A. The bottom row represents the enzyme in the presence of the sub-
strate and allosteric effector, X. Binding of X modifies the activity of
E by either altering the binding affinity of E for A, as in K-type allos-
tery, or influencing the rate-determining step, as in V-type allostery.
Nomenclature from Ref. [83] is used here for consistency

3.2 The Ensemble Model of Allostery

The so-called ‘concerted” Monod, Wyman and Changeux
(MWC) model of allostery, established in 1965, states that
most allosteric proteins are oligomers involving multiple
identical protomers and thus have an axis of symmetry; the
quaternary structures of such systems are altered by allos-
teric interactions; there exist at least two states that differ by
the distribution and/or energy of interactions at the protomer
interface(s); these interactions alter the affinity of the bind-
ing site towards its corresponding ligand, and the effector is
not chemically identical to the substrate [92]. These state-
ments were developed from observations of known allos-
teric systems at that time, with hemoglobin serving as the
hallmark allosteric system, given that an X-ray structure was
established for this protein [93]. It was observed that in apo-
hemoglobin (absence of effector), there exists an equilibrium
between two states, historically known as the constrained
and relaxed states. The MWC model claims that effector
binding shifts the equilibrium. In 1966, Koshland, Nemethy
and Filmer (KNF) composed an alternative model [94]. This
model favors an “induced fit” mechanism, whereby the apo-
protein binds the effector, which induces a conformational
transition to the holo-protein. The MWC and KNF model
share a static view of allostery, dependent upon noticeable
conformational differences in apo- and holo-structures.

A dynamic model of allostery was proposed in 1984 by
Cooper and Dryden, which argues that large-scale confor-
mational changes are not a requisite for allosteric regulation

[95]. Instead, changes in thermodynamic fluctuations could
mediate the coupling of binding sites. More recently, evi-
dence has shown the importance of functional states unre-
lated to the so-called “tense” or “relaxed” states that belong
to the MWC model [96]. In this more dynamics-driven view
of allostery, a protein exists as an ensemble of states, and
binding of an effector results in a global redistribution of
protein fluctuations and thus alters the relative entropy of the
ensembles. This ensemble model of allostery is favored in
the literature today [23, 85, 88, 97, 98]. Allostery research,
which traditionally emphasized static comparisons, is cur-
rently faced with the challenge of leveraging the ensemble
nature of allostery [99]. Although this challenge is now
considered fundamental in the field of allostery, it applies
to enzymes in a general way. More recently, enzymes engi-
neered through directed evolution have achieved higher cata-
lytic efficiency by redistributing the energy landscape [25].

Restructuring of the energy landscape in response to
allosteric ligand binding or a relevant mutation is expected
to be the driving force that alters enzyme function, mean-
ing multiple conformations and their populations are crucial
to consider. Population shifts have been found to directly
influence functional change in enzymes [28, 95]. The whole-
scale enzymatic influence on the chemical rate in V-type
allosteric systems is particularly intriguing in this regard.

Enzymatic catalytic activity is typically compared against
the background reaction rate in (aqueous) solution to inves-
tigate catalytic origins [8]. Alternatively, one could compare
the same reaction in enzymes with different activities. Such
an approach can be adopted in evaluating V-type allosteric
enzymes. To evaluate the source of an allosteric effect in
catalysis, one must consider the reaction with and without
the allosteric effect. In many cases, this means considering
the enzyme in the presence and absence of the allosteric
ligand and comparing the relative energy barriers result-
ing from the two systems. From a computational perspec-
tive, this is an attractive comparison of relative rather than
absolute barrier heights. This, in addition to the biologi-
cal relevance of allostery, makes allosteric systems ideal to
explore and evaluate computational approaches for enzyme
conformational ensemble modeling.

4 Quantum Mechanics for Enzyme Catalysis
4.1 The Cluster Approach

The quantum chemical cluster approach explicitly models
the critical features of a biologically relevant active site
using QM while typically accounting for the remainder of
the protein with homogeneous dielectric continuum models
[47]. This approach has been pioneered in the study of bio-
logically relevant metal centers by Siegbahn and Blomberg,
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with model sizes around 60-70 atoms [100], and by Himo,
who has used cluster models that can be much larger, even
surpassing 300 atoms [11]. For more focused reviews on the
quantum chemical cluster approach, we urge the interested
reader to explore several excellent reviews [11, 47, 101].
Here, we summarize the steps taken in building a quantum
chemical cluster model.

4.1.1 Model Selection

Once a biological target has been chosen, a deep dive into
the literature is worthwhile to explore what is known,
unknown, and theorized about the system. Most cluster
models are designed from crystal structure coordinates.
There may be attributes of the crystal structure that do not
align with the system desired to be modeled, such as residue
mutations, and alternative substrates bound. In some cases,
it may be necessary to manually alter the structure to match
the intended system of study, which will require longer
MD simulation to allow the structure to properly relax. The
primary literature may describe artifacts in the crystallo-
graphic model and whether specific residues are essential
for catalytic activity (e.g., through the experimental study of
enzyme mutants). Depending on the research goal, multiple
crystal structures, sometimes with different ligand states, are
important to consider. Additionally, the protonation states of
some residues, particularly Glu, Asp, and His may be impor-
tant to consider. If this information is not already available,
it may be necessary to consider all the possibilities [102]. If
crystallographic waters or ions are present in the active site,
they may need to be explicitly included in the model as well
[103]. It is typical to test various sizes of clusters, ranging
from 100 to 300 atoms [11]. Convergence studies suggest
that QM-cluster models give reliable energetics when the
model size is large enough [47, 104-108]. Including addi-
tional residues beyond those immediately in contact with
the substrate may be crucial to avoid unrealistic, extensive
conformational reorganization of the active site following
geometry optimization [109], however, it has been proposed
that informed residue selection should take priority over a
simple distance cutoff [110].

4.1.2 Model Truncation

The cluster approach requires cuts or truncations to be
made since only a subset of the protein’s atoms will be
included. The most common approach is to residues at
the alpha carbon by removing all peptide bond atoms and
capping the alpha carbon with hydrogens. The methyl-
capping approach is performed when the N-C, and C,-CO
peptide bonds on either side of the R chain are cut. There
may be situations where peptide bond atoms are involved
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in the reaction, such as forming H-bonds to the substrate.
In such cases, residues will be cut at either the N-terminus
(N’), N-C,bond or C-terminus (C’), C_,-CO bond, and the
truncated ends will need an additional hydrogen to achieve
saturation (“hydrogen-capping”). During this step, impor-
tant considerations include atoms that influence catalysis
to ensure the atom caps are neither artificially influencing
the mechanism nor significantly altering the electronic
structure, such as changing atomic hybridization or cut-
ting across a highly polar bond. The effects of different
truncation schemes are evaluated in Sect. 6.2.2.

4.1.3 Coordinate Locking

In most cluster models, it is necessary to lock or freeze
certain atoms to preserve the active site geometry, main-
tain side-chain rotamer states along the reaction coordi-
nate, and limit the model from accessing geometries that
would not be possible inside the protein environment. As
the structure is not fully optimized, evaluating the full QM
partition function, including vibrational effects to thermo-
chemistry, is challenging. Therefore, potential energies,
rather than Gibbs energies, are often reported. There are
methods to approximate entropic effects, such as project-
ing out the frozen coordinates from the Hessian [111]. The
effects of coordinate locking have been explored in Ref.
[112], where the authors studied phosphotriesterase using
a cluster model of 82 atoms. The authors found locking
induced significant strain, altering some geometric param-
eters. However, these did not influence the conclusions
regarding the reaction mechanism and only altered the
calculated barrier by 2 kcal/mol. The authors also noted
that in this particular application, the truncation method
resulted in a model that was too rigid. For example, a His
residue in the cluster was modeled only as an imidazole
ring, where one atom from the ring was locked, signifi-
cantly hindering the motion of that group. However, the
strain induced by coordinate locking is expected to reduce
with larger models.

Freezing the alpha carbons of each truncated residue
is a good choice. However, in some models, this might
allow too many degrees of freedom resulting in inconsist-
ent side-chain conformations along the pathway. Lock-
ing up to two hydrogens of the alpha carbon to restrict
more degrees of freedom [11] or not locking residues that
directly interact with the substrate [113] may be necessary.
The more frozen atoms, the more rigid the model, which
may influence energetics. Therefore, the coordinate lock-
ing scheme must be balanced, achieved through trial and
error, between maintaining a reliable structure and allow-
ing flexibility for energy minimization during geometry
optimization.
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4.1.4 Model Chemistry

In common with contemporary QM studies of organic and
inorganic reactivity, dispersion-corrected density functionals
such as B3LYP-D3 or o¥B97XD are now commonly used for
geometry optimizations of cluster models. In many cases,
dispersion effects are expected to influence cluster geom-
etry, such that Grimme’s zero-damped and Becke-Johnson
damped (D3 and D3(BJ), respectively) corrections are rec-
ommended with typical GGA (generalized gradient approxi-
mation) or hybrid-GGA density functionals such as B3LYP
[114]. While valence double-zeta basis sets are often suit-
able for geometry optimization, single-point energy correc-
tions with solvent models and larger basis sets are generally
employed to account for electrostatic effects and approach
more accurate energies. A dielectric constant close to 4 (c.f.
diethyl ether, for which € =4.24) is expected to mimic the
relatively hydrophobic protein interior, although examples
in the literature have evaluated cluster model energetics
with multiple dielectrics to investigate their sensitivity to
this value [47, 105]. Significant changes in relative energies
at different dielectric values may indicate that the cluster is
too small, and more residues or active site water molecules
should be included.

4.2 Application of the Quantum Cluster Approach:
Benzoylformate Decarboxylase

Benzoylformate decarboxylase (BFDC) is a thiamine
diphosphate (ThDP)-dependent enzyme that catalyzes the
decarboxylation of benzoylformate into benzaldehyde and
carbon dioxide in a critical step of the mandelic acid degra-
dation pathway [115, 116]. Additionally, BFDC can enan-
tioselectively catalyze carboligation reactions, depending
on the substrate. X-ray structures of enzymes in the ThDP-
dependent decarboxylase family show common features such
as the presence of ThDP, an almost invariant glutamate, two
ionizable acidic residues, and two proximal histidine resi-
dues on an ordered loop termed the HH-motif. However,
the first X-ray structure of BFDC contains serine (Ser26) as
the only ionizable acidic residue in the active site, and the
two proximal histidines (His70, His281) belong to separate
monomers rather than an ordered loop.

Himo and co-workers used the cluster approach to study
BFDC-catalyzed decarboxylation. Their model consisted of
307 atoms and an overall — 1 charge. Geometry optimiza-
tions were performed at the B3LYP-D3(BJ)/6-31G(d,p) level
of theory, with 6-311+ G(2d,2p) single-point corrections
using the SMD solvation model with a dielectric of e=4.
While entropy changes along the reaction coordinate are
often neglected in studies using cluster models, the release
of CO, gas involves a significant increase in translational
entropy. This was calculated to be 11.3 kcal/mol, and so this

value was included in each step after CO, formation, in line
with previous estimation methods [13, 117]. The key roles
of active site residues were identified, and the authors also
identified a kinetically relevant off-cycle species produced
by intramolecular cyclization of the cofactor [118].

In a subsequent study, Himo and co-workers focused
on enantioselective catalysis by BFDC [119]. Following
benzoylformate decarboxylation, the (Breslow) enamine
intermediate can participate in a benzoin condensation with
benzaldehyde or acetaldehyde electrophiles. Interestingly,
these transformations proceed with an opposite sense of
enantioselectivity. The computed energy difference between
competing TSs in the enantioselectivity determining step for
benzaldehyde addition (TS3, Fig. 6) is 9.3 kcal/mol, consist-
ent with complete stereocontrol observed experimentally.
Steric interactions between substrate and multiple residues
contribute to the higher energy of the disfavored pathway.
For acetaldehyde, the energy difference (0.3 kcal/mol) favors
the (S)-product, consistent with the contrast in selectivity
observed for the two substrates. This, and other studies by
Himo, illustrate the importance of a reasonably large cluster
to capture the multiple steric and other noncovalent inter-
actions influencing enantioselectivity in enzyme catalysis.

4.3 QM/MM Approaches

Standing as an alternative to the truncation schemes dis-
cussed above, hybrid QM/MM approaches enable a small
portion of the enzyme, typically in the active site region, to
be treated by QM, while the remaining larger part of the sys-
tem is described by MM. Compared to QM cluster models,
the QM/MM approach explicitly represents the steric effects
(e.g., via mechanical embedding) of an inhomogeneous pro-
tein, alongside noncovalent interactions such as long-range
electrostatics between the QM and MM subsystems (e.g., via
electronic embedding). QM/MM methods are widely-used
across organic and organometallic chemistry, and are par-
ticularly well-established in the study of enzymatic reaction
mechanisms [29, 120-128].

The explicit inclusion of the extended protein environ-
ment can quantitatively impact relative energetics, or indeed,
fundamentally alter a computed energy profile. For example,
electrostatic effects contribute several additional kcal/mol in
QM/MM studies of dioxygen binding energies in JMID2A
[129]. Further, the role of protein reorganization along the
reaction coordinate, which can be consequential, may also
be captured and quantified [130]. Readers are referred to
detailed reviews on the status of QM/MM approaches in
modeling enzymatic catalysis [120, 127, 131, 132]. QM/
MM models, which typically also include explicit solvent
molecules as well as the enzyme and substrate, are much
larger than those used in QM-only models. Geometry opti-
mizations become more challenging for large system sizes
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Fig.6 Optimized geometries of selectivity-determining transition
state structures for a (R)-benzoin and b (S)-benzoin in the BFDC car-
boligation reaction. The benzaldehyde acceptor and enamine donor
are shown in orange and pink, respectively. The blue lines in the

and so may be performed with (partially) fixed surrounding
atoms. Even so, more energy minima are possible with these
larger models, and the importance of extensive configura-
tional sampling becomes paramount.

For example, using energy minimization to gener-
ate potential QM/MM energy surfaces for an enzymatic
reaction while starting from a single protein structure has
been shown to produce severe errors in activation bar-
rier heights and binding free energies. Averaging results
over several protein configurations generated by long MD
simulations has been recommended [120, 133, 134]. The
computational demands of QM/MM simulations can be
influenced by choice of the QM region’s size and by using
low-cost semi-empirical QM (SQM) schemes in place
of more expensive DFT calculations. In the first respect,
many of the chemical and physical considerations rele-
vant to the choice of cluster models stand; the QM region
should be evaluated for convergence [135-138], and atten-
tion to the region definition is also required [139-142].
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lower panel of (b) indicate the steric clashes from Ala460, Leud61,
Phe464 that drive stereoselectivity. Asterisks designate the atoms fro-
zen during calculations. All non-polar hydrogens are hidden for sim-
plicity. Figure adapted from [112]

Although, compared to QM-only models, Warshel has
demonstrated a relative lack of sensitivity to including
more distal groups in the QM region [143]. The use of
SQM methods generally requires careful benchmarking
or parameterization against more expensive QM results
[144]. Nevertheless, typical QM/MM simulations are run
for timescales on the order of nanoseconds. Enhanced
sampling techniques have been applied to compute the free
energy profiles of reactions in QM regions, but, even in
these cases, sampling of the rest of the protein is limited
to the nanosecond timescale [145-147]. While this may be
sufficient to sample side-chain rotamer preferences, pro-
tein conformational changes required to reach a catalyti-
cally active state (e.g., involving loop and helix motions)
routinely take place on timescales several orders of mag-
nitude slower [148]. Classical MD simulations over micro-
second timescales, inaccessible while employing QM/MM
potentials, have been necessary to observe binding site
formation, for example, in bromodomains [149].
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4.4 QM Approaches Using Multiple Conformations

In contrast to using an X-ray structure as a starting
point for QM studies, a short MD simulation can be
used (500-1000 ps) to generate an initial geometry
[150]. This will relax the structure towards a local
minimum, potentially reducing crystalline artifacts.
However, this approach is unlikely to help when the
X-ray structure is sufficiently far from the catalytically
relevant conformation(s). QM/MM approaches often
incorporate multiple conformations as initial geom-
etries for modeling, usually taken as a series of random
or evenly spaced snapshots from an MD simulation.
The question of how to combine the results from sev-
eral QM or QM/MM models has been addressed by
various approaches. An assortment of averaging tech-
niques have been explained elsewhere [151]; how-
ever, questions continue to be raised, such as what is
required to converge energies in this approach [104]
and how to account for conformations with differing
reactivities [30, 152, 153]. Alternatively, the Boltz-
mann ensemble can be evaluated with a combination
of extended MD and structural clustering. In such an
approach, the average structures and populations can
be used to generate and weight energy barriers result-
ing from either the QM-only or QM/MM calculations.
The details of this approach are outlined in the next
section.

5 Structural Clustering with Molecular
Dynamics

Structural clustering is a necessary and often overlooked
component of describing the conformational ensemble of a
protein. To illustrate the need for structural clustering, we
consider a set, X, of N configurations of a protein system,
X={X,%,, ..., Xy}, where ¥, is the ith configuration of the
system. The expected value of an observable, M, can be
computed as an average over this set,

Y M(%)P,

%P

where P,denotes the probability of configuration i and is
equivalent to L in conventional MD sampling. The observ-
able denotes any property of interest that depends on the
conformation of the system, such as the electrostatic poten-
tial at the active site or the rate constant of a chemical reac-
tion. If N is small and M(%,) is cheap to compute, Eq. 4 can
be used directly to estimate the property of interest. When N
gets large and/or M(X,) is expensive to compute, clustering

(M) = @

approaches are employed to approximate Eq. 4. Clustering is
particularly necessary and challenging for MD descriptions
of protein ensembles due to the sheer size of the data sets: it
is not uncommon to have millions of protein configurations
in a trajectory [71] or combined trajectories [154]. Given a
clustering of a conformational ensemble into K < N clusters
with well-defined average (or mediod) structures, observable
can be estimated as

Z;(M<<}>j>Pj
= %P

where (X); is the average structure and P;is the probabil-
ity of cluster j. The accuracy of Eq. 5 depends on several
factors, including the conformational heterogeneity of clus-
ters and the sensitivity of the observable to conformational
heterogeneity.

The goal of structural clustering is to combine configura-
tions into clusters that have similar values of the observable
of interest. In the context of enzyme catalysis, the active
site is an obvious focal point. Therefore consideration of
only active site residues for structural clustering may be suf-
ficient. The results of clustering are a set of K macrostates,
made from MD snapshots, or microstates, and their associ-
ated populations, {P;}. There are numerous clustering meth-
ods employed in the field and, unfortunately, no consistent
best choice. Here, we describe five steps that most clustering
protocols follow: (1) choosing a coarse-grained description
of the protein, (2) picking features to describe the coarse-
grained protein, (3) dimensionality reduction of the features,
(4) clustering in reduced dimensions and (5) analysis of the
results. We note that while this is a typical order of the steps,
it is not unique. It is possible, for example, to cluster first
and then perform dimensionality reduction (swapping steps
3 and 4).

&)

5.1 Step 1: Choose a Coarse-Grained Description
of the Protein

Atomistic descriptions of a protein and its environment must
be coarse-grained to make the conformational ensemble a
tractable object. In a typical aaMD simulation of a protein,
there are ~ 100 K total atoms and thus 300 K degrees of
freedom. It is intractable to consider each degree of free-
dom of the system, even with millions of frames. Luckily,
many of these degrees of freedom are of the solvent and
thus only implicitly important in determining the protein
conformational ensemble. Thus, a natural coarse-graining
of the system is to ignore the solvent degrees of freedom
and only analyze the atoms of the protein. Even this yields
exceptionally high-dimensional data sets that are intractable
to analyze. Additional coarse-graining of a protein is almost
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always performed. Common examples of coarse-grained
protein descriptions are backbone atoms, CA atoms, center-
of-mass (COM) of residues, and/or secondary structural
elements.

A good choice of the coarse-grained description of the
protein depends on the application. For example, if one is
interested in protein folding, the coarse-grained description
should include all protein residues. Typical coarse-grain-
ing for this application includes all backbone atoms, only
CA atoms, or COM of residues. A depiction of this type
of coarse-graining is given in the first two panels of 7. The
top-left panel depicts the folded state of a small, fast-folding
protein (Trp-cage) in a box of water. The protein is coarse-
grained in the top-middle panel by only choosing the CA
atoms of each residue. The choice of all CA atoms is trac-
table for this small protein but will become intractable for
larger proteins. In the case of enzymes will well-defined
active sites, it is natural to choose a more detailed descrip-
tion of the active site while ignoring protein residues far
away from the active site.

5.2 Step 2: Choosing Features
With a coarse-grained mapping chosen, one must then

choose features or coordinates to describe these coarse-
grained structures. A good set of features can discern

between the important metastable conformations. For
example, the features in a two-state protein folding prob-
lem must differentiate between folded and unfolded states.
There are two natural choices for features: internal coor-
dinates and positions. Each has its advantages and dis-
advantages that will be described below. There are also
combinations of internal coordinates or positions called
collective variables (CVs, e.g., helical content, RMSD
of substructures, etc.) that we will not discuss in detail.
Generally, these CVs have similar advantages and disad-
vantages to the internal coordinates or positions used to
compute them.

Internal coordinates of a macromolecule include dis-
tances (two-body terms), angles (three-body terms), dihedral
angles (four-body terms), and higher-order terms. Within the
context of all-atom simulations of proteins, most force fields
only include up to four body terms, and thus it is uncommon
to consider terms higher than four bodies. Internal coordi-
nates have the advantage of being the natural coordinates of
the Hamiltonian of the system: they are rotationally invariant
and can uniquely describe each structure. The downside of
these features is feature space size, and the mixing of fea-
tures can limit the types of clustering algorithms that can be
employed. The choice of all pairwise distances for the Trp-
cage example is depicted using blue lines between CA atoms
in the top-right panel of Fig. 7. With 20 residues (and thus

-
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Fig.7 Five-step schematic for structural clustering from all-atom
molecular dynamics trajectories. Starting from the top left, the first
step is to choose a particle coarse-grained mapping and apply it to
an explicit solvent all-atom trajectory. From there, a set of features
to describe the system, such as all pairwise distances, are chosen. A
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trajectory of these features is then passed through an unsupervised
dimensionality reduction algorithm (e.g., principal component analy-
sis) and projected onto reduced dimensions. A clustering algorithm is
applied in reduced dimensionality space to classify each frame of the
trajectory. Finally, the structural clusters are analyzed (bottom left)
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CA atoms) in the Trp-cage protein, there are 190 pairwise
distances to consider.

Particle positions are also a natural choice of features to
cluster trajectory data of macromolecular systems. Advan-
tages of these features include no significant over-determina-
tion of the system, coordinates are directly output by simula-
tion software, and coordinates can differentiate between all
configurations observed. A significant limitation of particle
positions is that they are defined in the lab frame and thus
are not immediately rotationally invariant. This leads to
equivalences in particle positions that make them challeng-
ing to deal with [155].

5.3 Step 3: Dimensionality Reduction

Despite an initial particle coarse-graining (Step 1), the
remaining degrees of freedom after featurization are often
too large to consider in full-dimensional space. Take, for
example, the folding and unfolding of an alpha helix coarse-
grained into 12 beads. If we choose all pairwise distances
as our features (Step 2), there are 66 degrees of freedom to
describe each simulation frame. To make any sense of these
dimensions that are often coupled, dimensionality reduc-
tion is performed. The goal is to determine a small subset of
degrees of freedom that retain the essential information of
the full-dimensional space.

Multiple dimensionality reduction methods have been
used on MD data. These methods differ based on what they
define as important information. Principal component analy-
sis (PCA), for example, determines the linearly independent
coordinates that retain the most variance in the data. It is
not uncommon to see trajectory data projected onto the first
two principal components with the largest variances. Time-
lagged independent component analysis (tICA) determines
the linear combination of coordinates that rank the time-
scale of collective motions [156]. tICA is often coupled with
Markov State Modeling (MSM) to determine rates of transi-
tions between metastable states [157]. Other dimensionality
reduction methods have been employed, such as Sketch Map
[158] and UMAP [159], to achieve specific properties in the
reduced space. The outcome of any dimensionality reduction
technique will be a description of each trajectory frame in
reduced dimensions.

5.4 Step 4: Clustering Algorithm

Clustering algorithms are typically applied following
dimensionality reduction methods to assign each frame to
a conformational state. A variety of clustering algorithms
have been applied in this context. The types of algorithms
can be broken down into two categories: hierarchical and
non-hierarchical. Both types have been used though more

recent efforts have focused on non-hierarchical clustering
algorithms.

Hierarchical clustering algorithms start with each frame
in its own cluster and iteratively group similar frames
together. This results in a dendrogram structure of the clus-
tering. Different distances can be used to define similarity.
Methods differ in how they join clusters together and the
resulting distance used between clusters. Advantages of
hierarchical methods include that the methods are fast, can
be used to determine macroclusters and subclusters, and are
easy to implement. The major disadvantage of hierarchical
methods is that they are greedy: once clusters have been
formed, they will not be broken apart to find a more global
minimum. Examples of hierarchical methods include Ward,
average linkage, and minimum linkage.

Non-hierarchical clustering methods are the most com-
monly employed for MD trajectory data. The most com-
mon example is k-means clustering and its variants. k-means
determines the means and trajectory partitionings that mini-
mize the summed distances between frames and associated
means. This method works well for well-separated spheri-
cal distributions of points. Other density-based fitting algo-
rithms include Gaussian mixture modeling (GMM) and
DBSCAN, both of which have been employed to trajec-
tory data projected onto reduced dimensional space with
reasonable success [160]. These methods are not as greedy
as hierarchical methods: frames can move from one cluster
to another during the iterations until a (local) minimum in
the algorithm metric is reached. A significant drawback to
such methods is the computational cost and the difficulty in
determining the appropriate number of clusters.

No single best method works for all trajectory data. An
often overlooked aspect, however, is to consider the under-
lying assumptions of the clustering algorithm. GMMs, for
example, work under the assumption that the probability of
the density can be represented as a sum (mixture) of Gauss-
ian functions. In a recent study of clustering algorithms,
Westerlund and Delemotte showed that GMMs do not work
well when the density in reduced dimensional space is non-
Gaussian [160]. It is not immediately clear whether we
should expect MD data to be Gaussian in these spaces and
almost assuredly depends on the features chosen and dimen-
sionality reduction technique employed.

5.5 Analysis of Resulting Data

The result of a clustering algorithm is an assignment of
each frame into a conformational state. With this infor-
mation in hand, one can analyze different aspects of the
clusters. The specific analysis employed will depend on
the application. For example, one might build an MSM
based on conformational clustering and determine the
rates and associated structural mechanisms if one cares
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about folding rates. If one cares about catalysis, it is rel-
evant to compute the relative reaction rate in each confor-
mational state. The implicit assumption is that the value
of a macroscopic property does not vary significantly
within a given cluster. This assumption can be tested to
assess the validity of the clustering.

6 Unexplored Land in Computational
Catalysis: A Case Study on IGPS

In this section, we focus on the mechanism of glutamine
hydrolysis by the allosterically regulated enzyme IGPS.
This system illustrates particular challenges for computa-
tion, such as catalytically-inactive crystal structures, the
presence of active and inactive enzyme conformations,
and allosteric rate enhancement.

HisF

HisH

Fig.8 IGPS from T. maritima and overview of glutaminase and
cyclase coupled reactions. HisH is shown in green, and HisF is shown
in blue. In HisH, glutamine reacts with water to form glutamate and
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6.1 Imidazole Glycerol Phosphate Synthase (IGPS)

Efficient transportation of a reaction product from one loca-
tion to be used as a reactant in the next is a critical step in
biological pathways. In some cases, the efficiency depends
on whether or not that product must travel through bulk sol-
vent to arrive at its next stop. The glutamine amidotrans-
ferase (GAT) family of enzymes produce ammonia through
hydrolysis of glutamine and utilize the ammonia in a subse-
quent reaction, harnessing several traits to ensure their effec-
tiveness in biochemical pathways. The bienzyme imidazole
glycerol phosphate synthase (IGPS) is a GAT composed of
glutaminase and cyclase subunits, nominally known as HisH
and HisF in T. maritima (Fig. 8). It operates in histidine and
purine biosynthesis in plants, fungi, bacteria, and archaea.
In the glutaminase subunit, IGPS performs the hydrolysis
of glutamine to form glutamate and ammonia, the latter of
which goes on to react with the allosteric ligand (phosphor-
ibulosyl-formimino-AICAR-phosphate, PrFAR) over 25 A

Glutamate
HisH NHa
>25A PO
HO.,
NHy O~/ ~OH
HisF
)
/4
N
HO_ /~nH 5 o
ho{ N7 Pom‘NMNHZ
: \=N
HO
PO igp OH prrAR

Glutaminase Active Site

ammonia, which is shuttled over 25 A to the cyclase active site in
HisF, where it reacts with PrFAR to form AICAR and ImGP
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away in the cyclase active site. The binding of PrFAR results
in a 4500-fold increase in glutamine hydrolysis, making
IGPS a V-type allosteric system [36]. The mechanism of
allosteric regulation in IGPS and how the two active sites
are coupled through residue pathways has received intense
interest from experimentalists and theoreticians alike [67,
82,161, 162].

Until 2021, it was unclear how conformational ensem-
bles impact allosteric regulation of IGPS and if changes to
the conformational equilibrium occur when PrFAR binds.
Furthermore, it was unknown whether PrFAR binding
induces specific changes to catalytic residues involved in
glutaminase activity. Comparison of IGPS to similar GATs
suggested the conformation of a conserved oxyanion strand
(P49 G50 V51 G52) to be critical to the rate enhancement.
The formation of an oxyanion hole, a catalytic motif that
stabilizes a substrate’s developing negative charge through
hydrogen-bonding interactions, has been a leading theory
to account for rate enhancement in GAT mechanisms. It
has been proposed that for many GAT enzymes (e.g., pyri-
doxal 5’-phosphate synthase and IGPS from 7. maritima)
[65, 163], binding of the effector induces a backbone flip
in the oxyanion strand, forming an emergent oxyanion hole
that stabilizes an oxyanion tetrahedral intermediate. Visual
inspection of the apo and ternary IGPS crystal structures,
3zr4 [161] and 1ox5 [164], respectively, shows the Val51
backbone has not flipped in either case, suggesting either
the flip in the Val backbone is not induced by effector bind-
ing or the crystal structure with PrFAR bound is not in the
catalytically enhanced state, as proposed from solution NMR
and MD studies [65].

In 2021, an IGPS crystal structure from Sprangers and
co-workers showed the oxyanion hole fully formed, with
the Val51 amide flipped (Fig. 9) [28]. Furthermore, the
authors observed that both glutamine and PrFAR ligands
must be present for the catalytically competent state to be
reached. Numerous structural changes occur, breaking the
hydrogen bond between P10 and V51 in HisH, a critical
interaction stabilizing the backbone conformation of the
oxyanion strand. Consequently, the V51 backbone is free to
flip, accessing a conformation in which the backbone N-H
is favorably oriented towards the carbonyl group of the sub-
strate. The dynamic equilibrium between inactive and active
IGPS conformations was found to occur on the millisecond
timescale, explaining the difficulty of observing all confor-
mational transitions in previous computational studies. Of
particular importance, this study shows a direct correlation
between the equilibrium of the active versus.

inactive states and glutamine turnover, just as the ensem-
ble model of allostery predicts. The population of the active
conformation can be manipulated experimentally by distant
mutations. In these studies, a linear relationship is observed
between destabilization of the active conformation and
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Fig.9 Aligned crystal structure conformations of IGPS in ball-and-
stick representation. All oxygen, nitrogen, and polar hydrogen atoms
are colored red, blue, and white. Orange carbons correspond to the
catalytically inactive conformation, chains AB from crystal structure
7ac8. Green carbons correspond to the catalytically active conforma-
tion, chains EF from crystal structure 7ac8. The V51 backbone flip
is highlighted with a red arrow. This dihedral flip leads to a strong
hydrogen bond ( 1.7 ;\) between the V51 amide and the oxygen atom
of the bound Gln substrate

In(k,,,), as predicted by the ensemble allostery model [28].
Furthermore, k_,, is directly influenced by the population of

the active conformation.

6.2 Glutamine Hydrolysis in IGPS — Key
Considerations for Future Computational
Studies

Glutamine hydrolysis in IGPS occurs via a multistep mech-
anism; however, no previous quantum chemical or QM/
MM studies have been conducted. Before 2021, the active
enzyme conformation had not been captured crystallographi-
cally, and as outlined above, the millisecond timescale of
conformational transitions between inactive and active states
is challenging to sample with cMD simulations. In the fol-
lowing sections, we discuss current prospects for modeling
glutamine hydrolysis in IGPS and identify the challenges
ahead.

In IGPS, a catalytic triad (Glul80, His178, and Cys84)
performs glutamine hydrolysis. These residues would be the
minimal ingredients of a QM region. However, as outlined
above, catalytic activity results from large-scale conforma-
tional changes leading to a backbone flip, and the substrate
is in contact with several additional residues in the active
site. For this reason, a physically realistic active site model
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of IGPS involves over 200 atoms. We suggest QM treatment
of the following residues are necessary: 98D, £123Q, h10P,
h11G, h12N, h50P, h51G, h52V, h53G, h84C, h85L, h88Q,
h96E, h141H, h142T, h143Y, h176H, h178E, along with the
glutamine substrate. Additionally, inactive (Chains A and
B) and active conformations (Chains E and F) can be found
from the 7ac8 crystal deposition. The overall charge of this
223-atom active site model is -3. For modeling via the QM-
cluster approach, different truncation schemes (Sect. 4.1) can
be considered for IGPS (Fig. 10), of which some illustrative
examples are discussed below.

wB97XD/6-31 + G(d) optimizations of different trun-
cated models of the FHPEK stand in the IGPS active site,
in which all C, atoms and capping hydrogens were frozen,
reveal the importance of decisions made during this stage of
the modeling process. Terminating the side-chains by methyl
groups leads to much greater atomic displacement relative
to a model in which the polypeptide backbone is preserved
(Fig. 10a—c). This disrupts an H-bond between His178 and
Glul180, which is preserved in the more conservative cap-
ping scheme. While the impact of these structural differ-
ences upon the reaction mechanism has not been studied,

a.) Hydrogen capping

d.) FHPEK optimized geometries

®
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HZN—CHE—N—CH(“T—NQ CHy  CHp
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b.) Mixed capping
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Fig. 10 Truncation schemes applied to peptide sequence FHPEK
from the IGPS HisH subunit. a Hydrogen capping: the terminal ends
are cut, and a single hydrogen is added to each end. b Mixed cap-
ping: the peptide backbone atoms are removed from the terminal
residues and the alpha carbons are capped, creating methyl groups,
His and Glu are hydrogen capped at the N and C-terminus, respec-
tively. ¢ Methyl capping: all peptide backbone atoms are removed
from each residue and the alpha carbons methyl capped. d Optimized
geometries of each truncation scheme. The translucent red structure
is the methyl capping scheme, the translucent blue is the mixed cap-
ping scheme, and the solid atom-colored model is the hydrogen cap-
ping scheme. The table shows Ol and O2 distances from the His 8H
resulting from different truncation schemes
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various schemes may need to be examined in models of
catalysis in the active site of IGPS.

6.3 Connecting Macroscopic Turnover Frequency
to the Microscopic Conformational Ensemble

IGPS and other enzymes explore multiple conformations
with different levels of catalytic activity. One such example
is the acyltransferase, LovD, which is part of the lovasta-
tin biosynthetic pathway. Exploring these conformational
dynamics is essential to model reactivity. For example, the
directed evolution of LovD produces a favorably mutated
version (LovD9), whose catalytic performance can only be
captured by microsecond MD simulations [32]. The over-
all catalytic activity is influenced by the populations of dif-
ferent conformational states and their interconversion, and
the intrinsic reactivity (i.e., catalytic activation barrier) of
these states. Therefore, a multistep computational work-
flow can be envisaged for modeling catalysis in allosteric
enzymes such as IGPS (Fig. 11). First, explicitly-solvated
aaMD simulation of the four different substrate states (E,
E+X, E+ X, E4+X+Y9) is required. Statistically meaning-
ful sampling of the dynamic equilibrium between inactive
and active IGPS states is nontrivial and will undoubtedly
require enhanced sampling techniques. Second, structural
clustering of trajectories will be performed to yield repre-
sentatives of each cluster, along with populations. Third,
multistep reaction Gibbs energy profiles for glutamine
hydrolysis will be generated for each conformational clus-
ter from MD. Fourth, individual k_,, values are weighted

®

Calculate observed turnover

k _AG?
Kear (3))) = e T

Fig. 11 A stepwise workflow combining MD simulation, conforma-
tional clustering, and QM calculations to calculate catalytic turnover.
The first step is to simulate the system with explicit solvent all-atom
MD. Next, structural clustering of the trajectory yields populations,
P; and cluster average structure coordinates, (X);. These coordinates
are used to generate models for QM calculations of barrier heights of
each cluster, AG*. The macroscopically observed turnover frequency,
k,;, can be calculated as an expected value of k,,,,; averaged over the
conformational ensemble

car’j
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according to conformational populations to predict overall
turnover frequency according to Eq. 5.

7 Conclusions and Future Directions

The combination of MD sampling of the protein conforma-
tional ensemble and QM modeling of the enzymatic reac-
tion provides a practical framework for modeling enzymatic
mechanisms. In particular, catalytically-inactive X-ray struc-
tures, long timescales associated with protein motions, and
conformational landscapes influenced by allosteric ligands
present challenges for QM-only approaches that require the
intervention of protein sampling. In this perspective, we
have emphasized that a bridge between MD simulations and
QM cluster models comes in the form of conformational
clustering and analysis since this generates a tractable num-
ber of states that could then be used in QM cluster models.
This integrated approach is also suitable for use with QM/
MM generated barriers. The choice of approach to calculate
the reaction barriers may be based on user preference as well
as attributes of the system of study. As the combination of
MD sampling, conformational clustering, and subsequent
energy barrier calculations are increasingly pursued, com-
putational chemists will be able to access new mechanistic
information about allosteric enzymes. Although the compu-
tational framework discussed herein applies to V-type allos-
teric systems, it can also be applied more generally to study
the enzyme conformational ensemble and its importance for
enzyme catalysis. While this approach is computationally
demanding, the advent of GPU accelerated MD and QM
approaches makes this tractable for numerous enzymes.

The empirical correlation between active conforma-
tion population and catalytic activity in IGPS shows the
value in using MD and structural clustering to account for
the influence of conformational heterogeneity on enzyme
catalysis. This behavior is expected to be consistent among
other enzymes that follow the ensemble model of allostery.
Furthermore, the concept of free energy redistribution is a
more general concept that numerous enzymes have exhib-
ited as a way to regulate catalytic activity. Therefore, the
workflow illustrated in Fig. 11 may be applicable across
various enzymatic systems, although there may be cases
where the results are consistent with single-conformation
studies, particularly in more rigid systems.

Using a combined MD/QM conformational ensemble
approach, computational studies of enzyme catalysis will
address critical open questions. These include:

1. What are the relative rates of conformational sampling
and enzymatic reactions for specific enzymes?

2. Can a single “active” conformation capture observed
catalytic properties, or do enzymatic reactions proceed
from various enzyme—substrate conformations?

3. Are there general mechanisms that can be applied to
classes of enzymes? For example, do V-type allosteric
enzymes all conform to the ensemble model of allos-
tery?

Additionally, several assumptions underlying such
approaches require further interrogation, such as (i) whether
a single structure from a conformational cluster can be used
to compute the energy barrier for a reaction, as in Eq. 5; and
(i) whether different enzymatic reactions progress within
the same conformational state, or whether in the limit of rel-
atively fast conformational transitions, the Curtin-Hammett
principle of chemical reactivity can be applied to enzyme
catalysis. Further exploration of these questions will pro-
vide insightful results that propel the field of computational
enzyme catalysis towards a land of opportunities.
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