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Abstract
Greater understanding of enzymatic mechanisms aids the discovery of new targets for biologics, the development of bio-
catalytic transformations, and de novo enzyme design. Methods using quantum mechanical (QM) potentials, such as den-
sity functional theory, have enabled complex multistep enzymatic mechanisms to be studied, often in quantitative detail. 
Nevertheless, the dynamic interconversion of enzyme conformations between active and inactive catalytic forms, involving 
length- and timescales inaccessible to QM treatments, presents a formidable challenge for the development of computational 
models for allosterically modulated enzymes. We present an overview of the key concepts underlying multistate models of 
enzyme catalysis, enzyme allostery, and the challenge that large-scale conformational changes pose for methods using QM, 
QM/MM, and MM potentials. Structural clustering is highlighted as a valuable approach to bridge molecular dynamics 
conformational sampling of MM potentials and quantum chemical cluster models of catalysis. Particularly relevant to this 
discussion is structural allostery, which serves as the exemplar of conformational consequences. Here, a well-characterized 
allosteric enzyme, imidazole glycerol phosphate synthase, is used to showcase the importance of multiple conformations 
and guide a new direction for qualitative understanding and quantitative modeling in enzyme catalysis.

Keywords  Biocatalysis · Allostery · Conformational ensembles · Molecular modeling · Molecular dynamics · 
Computational chemistry · Reaction mechanisms

1  Introduction

Enzymes carry out the homogeneous catalysis of many 
essential biological transformations and industrial processes, 
yielding kinetic rate enhancements of up to 26 orders of 
magnitude [1]. The quantitative understanding of enzymes 
has expanded drastically, propelled by biophysical, biochem-
ical, and theoretical studies. Fischer’s “lock and key” model 
became the foundation for understanding enzyme–substrate 
mechanics in 1894 [2]. Koshland modified this model in 
1958, accounting for enzyme flexibility in developing the 
induced fit model [3]. The field of enzymatic catalysis has 

since evolved to account for critical contributions of confor-
mational substates [4]. Additional current topics of interest 
are enzyme preorganization, reorganization, near attack con-
formations, desolvation effects, transition state stabilization 
(TSS), reactant state destabilization (RSD), and dynamic 
contributions [5–9]. The reader is directed towards reference 
[10] and references therein for a historical perspective on 
modeling enzyme catalysis. In this perspective, we focus on 
enzymes for which conformational changes are critical to (a) 
understanding the catalytic mechanism and (b) computing 
quantitatively accurate barriers and energy changes.

Three classes of potentials are commonly employed in 
computational studies of enzymes: quantum mechanics 
(QM) only, hybrid QM and molecular mechanics (QM/
MM), and fully MM calculations. QM potentials are typi-
cally used to study stationary points on the potential energy 
surface, while computationally less-expensive MM poten-
tials can be used to explore enzyme structure and motions 
across different timescales, such as in molecular dynamics 
(MD) simulations. QM-only approaches (Sect. 4.1), nota-
bly the cluster approach, are now routinely used to study 

 *	 Martin McCullagh 
	 martin.mccullagh@okstate.edu

 *	 Robert S. Paton 
	 robert.paton@colostate.edu

1	 Department of Chemistry, Colorado State University, 
Fort Collins, CO 80523, USA

2	 Department of Chemistry, Oklahoma State University, 
Stillwater, OK 74074, USA

http://orcid.org/0000-0002-0104-4166
http://crossmark.crossref.org/dialog/?doi=10.1007/s11244-021-01521-1&domain=pdf


166	 Topics in Catalysis (2022) 65:165–186

1 3

reactions using a reduced active site model consisting of up 
to 200–300 atoms. The protein environment is accounted 
for by a continuum dielectric model, assuming the sur-
rounding can be approximated as a homogeneous polariz-
able medium with a constant dielectric [11]. High levels of 
quantitative accuracy have been demonstrated with reduced 
active site models: for example, Himo and co-workers have 
successfully modeled competing enzymatic pathways lead-
ing to enantiomeric products (i.e., asymmetric biocatalysis), 
where energy differences on the order of 1–2 kcal/mol must 
be captured [12–14]. Cluster models have similarly been 
used to study how enzyme active sites control regioselec-
tivity, for example, in facilitating intrinsically disfavored 
epoxide-opening pathways [15]. A related QM-only method, 
the theozyme approach, has been used to model a theoreti-
cal enzyme active site as a selection of functional groups 
directly involved in catalysis [16]. Houk and co-workers 
have used theozyme models to illustrate how side-chain 
motions are minimized in the multistep serine esterase cata-
lytic cycle [7] and in the computational design of enzymes 
for abiological reactions [17].

To study enzymes where long-range interactions (e.g., 
electrostatic interactions in particular) play a fundamental 
role in the catalytic mechanism, the substrate and active site 
residues directly involved in the reaction can be described 
with QM, and the remaining protein and solvent can be mod-
eled with classical (MM) force fields (Sect. 4.3). This QM/
MM hybrid approach has yielded high quantitative accuracy 
of enzymatic reaction barriers. For example, Mulholland, 
Thiel, Werner, and co-workers have shown that systematic 
improvements to the QM level of theory, using LCCSD(T0) 
[18], provide near-quantitative results for the activation 
enthalpies and free energies of the reactions catalyzed by 
chorismate mutase and para-hydroxybenzoate hydroxylase 
[19]. MD simulations employing a QM/MM potential are 
more expensive than with classical force fields, although 
sampling times of nanoseconds are now attainable. While 
such timescales are insufficient to explore large and slow 
enzyme conformational changes, these may be addressed 
with classical simulations, as discussed in Sect. 5. As with 
the selection of a QM cluster model, the choice of QM/MM 
boundary and how MM partial point charges at the bound-
ary are described should be handled with care and validated 
[20].

Classical MD (MD applied to classical force fields) can 
be used to study whole enzyme mechanics on timescales 
ranging from the nanosecond-microseconds regime. There 
may be many thermally accessible conformations sampled 
by a protein, one or more of which are essential to the cata-
lytic mechanism and for which MD simulation provides one 
of the few ways to identify and quantify their involvement 
in atomistic detail. The ability of proteins to redistribute 
conformational populations to influence function in response 

to perturbations is a leading hypothesis in the fields of struc-
tural allostery [21–23] and, most recently, in directed evolu-
tion [24–26]. MD has proven to be especially apt at sampling 
“local” conformational diversity in enzymes such as the dif-
ferent rotamer states adopted by side-chains. However, some 
conformational changes necessary to achieve a catalytically 
competent active site, such as those involving loop and helix 
motions, occur on the millisecond timescale [27, 28]. In such 
cases, enhanced sampling MD methods can be used.

Of significance to enzyme catalysis is the ability of MD 
simulation to provide statistical details for catalytically rel-
evant conformations. In general, this is aided by clustering 
the MD snapshots into structurally similar groups to yield 
populations of significant enzyme conformations (Sect. 5). 
While classical MD simulations excel in conformational 
sampling, conventional MM potentials do not describe the 
breaking and forming of bonds along a reaction pathway. In 
contrast, while low-cost QM potentials are gaining traction, 
high-accuracy QM approaches are ill-suited to large-scale 
conformational analyses. Therefore, the combination of QM 
and classical MD approaches to study enzyme catalysis in 
the context of the conformational ensemble is of great inter-
est to the community [29, 30].

A single enzyme conformation taken from an X-ray crys-
tal structure might be an excellent starting point for the com-
putational study of enzyme catalysis. However, it is vital 
to consider the assumptions being made. Mainly, that the 
single conformation is catalytically relevant, and no other 
conformations are important for catalysis [31]. The validity 
of these assumptions is difficult to test unless apriori knowl-
edge or hypotheses regarding the catalytic mechanism exist. 
Thorough investigations of catalysis will evaluate mechanis-
tic possibilities indicated in the literature and preliminary 
results. In Sect. 3, we discuss myriad enzymatic reactions 
now known for which these simplifying assumptions do not 
hold. These systems present challenges for computational 
chemistry to incorporate rigorous analyses of conforma-
tional ensembles alongside high-accuracy potentials to study 
reaction mechanisms. Improvements in conformational 
sampling techniques, accurate force field parameters, and 
quantum mechanical treatments have accelerated progress 
towards this goal. Section 6 describes how computational 
workflows based on macromolecular conformational sam-
pling with MD, structural clustering to obtain ensemble pop-
ulations, and QM calculations are poised to accelerate the 
study of enzyme catalysis further. The explicit consideration 
of multiple enzyme conformations to support mechanistic 
conclusions and calculate barrier heights has now been used 
in multiple studies [28, 32–35].

The main goal of perspective is to illustrate the role of 
conformational effects upon enzymatic catalysis. We pro-
vide a brief account of the main computational approaches, 
procedures, and limitations and discuss their relevance 
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in modeling protein motions that occur across different 
timescales. We introduce fundamental concepts of protein 
allostery and discuss how these systems present a unique 
challenge for computational chemistry and conformational 
sampling. We suggest that a combination of cutting-edge 
techniques in MD sampling and QM modeling provides a 
particularly appealing approach to study enzyme catalysis. 
Clustering methods are discussed as a means to bridge the 
results of classical simulations with QM-cluster models. The 
final section outlines the case study of glutamine hydrolysis 
performed by the allosterically-regulated glutamine ami-
dotransferase (GAT) imidazole glycerol phosphate synthase 
(IGPS). This system beautifully illustrates the importance of 
conformational changes in catalysis, the existence of inac-
tive and active forms in the solid-state and solution, and 
the importance of computational sampling of the enzyme’s 
conformational space. The rate of glutamine hydrolysis in 
IGPS is critically dependent on the presence of the allosteric 
ligand over 25 Å away from the glutamine binding site [36]. 
Until recently, the atomic changes that yield the hydrolysis 
rate enhancement were not realized due to the absence of an 
observed catalytically active conformation.

2 � Enzyme Catalysis: The Reaction 
Coordinate and Protein Dynamics

A fundamental understanding of enzyme mechanics has long 
been the goal of many chemical and biological scientists. 
Accomplishing this goal requires answering how the enzyme 
performs its function. To begin formulating an answer to this 
question, a simple enzyme mechanism can be considered:

where E indicates the enzyme, S the free substrate, ES the 
enzyme–substrate complex, and P the product after its 
release from the enzyme. In the steady-state approximation, 
where the substrate concentration is saturating and therefore 
negligible, there are two kinetic parameters used to describe 
enzyme performance: the maximum rate of product forma-
tion, kcat, and the Michaelis–Menten constant, Km. From 
Eq. 1, the steady-state kinetic parameters are defined as 
kcat = k2 and Km = (k2 + k−1)/k1.

However, a more realistic enzyme model to that presented 
above accounts for additional elementary mechanistic steps 
such as the following:

where EX is an intermediate state distinguished by a unique 
chemical species (i.e., involving a change in bonding relative 

(1)E + S
k1
⇌
k−1

ES
k2
⟶E + P,

(2)E + S
k1
⇌
k−1

ES
k2
⟶EX

k3
⟶E + P,

to ES) or a kinetically significant conformation distinct from 
ES. With the expanded mechanistic scheme in Eq. 2, the 
steady-state parameters are defined as kcat = k2k3/k2 + k3 and 
Km = (k2 + k−1)k3/(k2 + k3)k1. Although the expressions for 
kcat and Kmdiffer between Eqs. 1 and 2, laboratory obser-
vations of steady-state kinetics cannot distinguish between 
these two mechanistic scenarios. If the goal is to deter-
mine an enzyme’s substrate specificity, then simplification 
to Eq. 1 is sufficient. However, computational analysis of 
individual reaction steps (including all relevant reactants, 
intermediates, and products) provides the basis to under-
stand the enzyme’s mechanism and the atomistic factors 
influencing rate and selectivity. Importantly, a measured kcat 
often reflects several elementary rate constants in the overall 
mechanism. Although, for example, in Eq. 2, if k2 >  > k3, 
simplification to kcat = k2 is justified. It is important to note 
that kcat is not necessarily solely defined by “chemical” 
steps, such as where product inhibition occurs. However, 
we limit the scope of this perspective to examples for which 
the rate-determining step is associated with bond formation 
or cleavage.

One critical enzyme attribute missing from Eqs. 1 and 
2 is conformational heterogeneity. Much of the focus of 
enzyme catalysis in the twenty-first century has been on the 
role of conformational changes involving both experimental 
and computational expertise [4, 10, 27, 30, 37]. The free 
energy landscape, a multi-dimensional construction of the 
intermediate and transition states available to an enzyme 
before, during, and after catalysis, is particularly useful to 
conceptualize the relationship between the conformational 
ensemble and the chemical reaction coordinate (Fig. 1) [38].

Equations 1 and 2 do not account for the possibility of 
interconverting conformers (e.g., of the free enzyme, E) 
that may possess different reactivities along parallel reac-
tion pathways, as described by Hammes-Schiffer and co-
workers [38]. Consequently, quantitative agreement of 

Fig. 1   Enzyme free energy landscape projected onto the reaction 
and conformational coordinates. Adapted with permission from [38]. 
Copyright 2021 American Chemical Society
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computed reaction barriers with experiment may require 
explicit consideration of the enzyme’s conformational 
ensemble. In contrast to the weak coupling of the reaction 
and conformational coordinates depicted in Fig. 1, strong 
coupling can arise where even qualitative agreement with 
experiment requires consideration of the ensemble [27, 28]. 
Construction of the free energy landscape for large systems 
is a laborious task. As discussed above, such studies require 
computational methods in classical simulation techniques, 
while the reaction coordinate may be more amenable to QM 
approaches. As a result, a combination of distinct computa-
tional methodologies and expertise is often required.

2.1 � The Enzymatic Reaction Coordinate

Catalytic mechanisms are often illustrated by (Gibbs) energy 
profiles, characterized by relative free energies of intermedi-
ate and transition state (TS) structures that culminate in the 
transformation of reactant into product within the enzyme 
complex (ES and EP, respectively), as illustrated in Fig. 2. 
Multiple factors can influence the quality of the Gibbs 
energy profile and its mechanistic interpretation [39]. While 
computations can be used to provide evidence in favor of 
or against a particular reaction pathway, a reaction mecha-
nism can never be conclusively proven, only experimentally 
corroborated [40]. With much success, contemporary QM 
approaches have been used to describe chemical reactions by 
calculating observables, such as energy barriers, kinetic iso-
tope effects, and product selectivities that can be validated 
with experiments [41].

In comparing the computed catalytic (Gibbs) energy 
with experiment, the concepts and language introduced by 

Kozuch and Shaik are both illuminating and influential [43]. 
In contrast to using rate constants to define a catalytic cycle 
(the k-representation), computational studies generate state 
energies (the E-representation). The apparent activation bar-
rier is then represented by the energetic span of the catalytic 
cycle, defined by the difference (∆G‡) between the lowest 
energy, turnover determining intermediate (TDI), and the 
highest energy, turnover determining TS (TDTS) (Fig. 2). 
The value of ∆G‡ can then be used to calculate a theoreti-
cal rate constant based on Eyring’s transition state theory 
equation:

where κ is the transmission coefficient, kBis Boltzmann’s 
constant, T is temperature, h is Planck’s constant, and R 
is the gas constant. It is common to set κ = 1, but more 
advanced techniques have been developed to evaluate non-
equilibrium effects and the contributions of recrossing and 
tunneling to enzymatic rate constants [44, 45]. In the case 
of enzyme models, computed activation barriers for cata-
lytic cycles have reached impressive levels of accuracy. For 
example, by using relatively large QM regions optimized at 
the DFT (B3LYP-D3(BJ)/TZVP) level of theory and per-
forming DLPNO-CCSD(T) single-point energy calculations, 
Neese and co-workers have demonstrated accuracies within 
1 kcal/mol of experimental enzyme-catalyzed barriers. Even 
without high-level coupled-cluster corrections, B3LYP-D3 
provides qualitatively correct results [46]. As cautioned by 
Kozuch and Shaik, care must be taken when calculating ∆G‡ 
to be used in Eq. 3. In some situations the internal energy 
can be a fair approximation for this value, however in other 
cases either additional methods or thermal and entropic cor-
rections should be made.

Computational studies of enzyme catalysis are routinely 
performed using (1) QM-only approaches, which include 
cluster models [47] and theozyme [16] approaches, and (2) 
mixed QM/MM studies. These approaches are surveyed 
in Sect.  4. More detailed technical summaries of these 
approaches can be found elsewhere, e.g., in reference [31]. 
Herein, we focus on basic concepts to emphasize what infor-
mation can be gained and how QM approaches can sup-
plement a multiscale computational integration to model 
enzyme catalysis, particularly in the context of a conforma-
tional ensemble.

2.2 � The Conformational Coordinate

Introductions to biochemistry emphasize that structure leads 
to function. However, this is an oversimplification, and 
there are many macromolecules where the interconversion 
between different structures influences overall biological 

(3)kcat =
kkBT

h
exp

(
ΔG

‡

RT

)

Fig. 2   Example reaction coordinate, created with GoodVibes [42], 
for a multistep enzymatic chemical reaction showing several minima 
and transition structures proceeding from enzyme–substrate (ES) to 
enzyme-product complex (EP). Turnover determining intermediate 
(TDI), Int2, and transition state (TDTS), TS3, define the energetic 
span and apparent activation energy of the cycle, ∆G‡
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function. Proteins are known to populate multiple metasta-
ble structures (the conformational ensemble) under typical 
physiological conditions [48]. Mounting evidence suggests 
that the ensemble nature of proteins is intricately tied to their 
function [49, 50]. From a statistical mechanics perspective, 
it is the probability and properties of the microscopic struc-
tural states that dictate the macroscopic properties of the 
protein. Consequently, the determination of the conforma-
tional ensemble, specifically the distribution of microscopic 
structural states, of enzymes is of utmost importance. One 
of the challenges in this field is the variety in timescales 
associated with motions, which ultimately dictates the most 
appropriate method used to study the underlying dynamics 
(Fig. 3).

Experimental techniques used to probe protein ensembles 
include X-ray crystallography, nuclear magnetic resonance 
(NMR) [50], small-angle X-ray scattering (SAXS), atomic 
force microscopy (AFM) [51–53], and more recently, cryo-
genic electron microscopy (cryoEM) [54–57]. Each of these 
methods has its own set of advantages and disadvantages. 
X-ray crystallography, for example, typically determines a 
single structure that represents a minimum energy struc-
ture under crystallization conditions. Recent advances in 
the field include the advent of room temperature crystal-
lography [58] and recognition that a given crystal likely 
has multiple structures in the unit cell [59, 60]. Protein 
NMR is inherently an ensemble measurement that can be 
done under solution conditions. However, the measurement 
timescale of NMR dictates that the resulting values, for 

example, chemical shifts [61] and dipolar couplings [62], 
are ensemble averages over multiple metastable states. NMR 
has successfully been coupled to SAXS [63, 64], spectro-
scopic techniques, and molecular simulations [65–67] to tie 
the average values to the microscopic ensemble. AFM can 
provide structural trajectories of proteins but does not have 
atomic resolution. CryoEM stands out as one of the most 
promising approaches, with recent advances in image cap-
turing hardware and software driving the resolution down 
to the atomic scale [54–57]. CryoEM is, however, devoid of 
temporal information.

Molecular modeling and in silico simulations can provide 
atomic-level protein ensemble data to complement experi-
ment. A robust approach is to use all-atom force fields to 
model the protein and the solvent environment. MD simu-
lations provide time-dependent trajectories of the system 
of interest. In the theoretical limit of infinite sampling and 
accurate force fields, these data would represent a complete 
atom-level picture of the protein ensemble. Practically, 
improvements to both force fields and sampling protocols 
continue to improve agreement between simulation and 
experiment, yet room for improvement still exists [68]. Other 
than reparametrization of standard functional forms, new 
directions in force field development include polarizable 
[69] and machine-learned force fields [70]. Regardless of 
the specific force field details, sufficient ensemble sampling 
is also an ongoing concern in the field. Typical timescales 
for conventional molecular-dynamics (cMD) on medium-
sized proteins are in the tens of microseconds range. While 

Fig. 3   Methods for studying dynamic processes in proteins ranging from femtosecond to second timescales. Experimental and computational 
techniques are shown in blue and green, respectively
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this can adequately sample the conformational ensemble of 
small globular proteins near their native state, it is insuffi-
cient for large proteins and processes such as protein folding. 
Techniques to overcome this shortcoming include the devel-
opment of specialized hardware [71] or enhanced sampling 
techniques. The latter is a more approachable solution and 
includes techniques such as replica exchange [72, 73], meta-
dynamics [74], and adaptive sampling [75–77]. A recent 
study of the conformational ensemble of an intrinsically 
disordered protein demonstrated that cMD was adequate to 
reproduce the NMR chemical shifts (an ensemble property) 
but not the SAXS data (influenced by the distribution of 
molecular sizes). Enhanced sampling was shown to improve 
the agreement with SAXS data [78].

Characterizing the conformational ensemble is essential 
to fully understand the relationship between enzyme struc-
ture, dynamics, and the catalytic mechanism. Recently, con-
sideration of the conformational ensemble has been pivotal 
in determining how the sampling of distinct conformations 
influences different catalytic properties in the directed evolu-
tion of various enzymes [24, 25, 79–81], and a direct cor-
relation between reaction rate and active conformation popu-
lation influenced by different allosteric ligands and enzyme 
mutations has been quantified [28].

Allosteric enzymes exemplify the importance of confor-
mational ensembles [3]. Allosteric regulation occurs when 
a perturbation at a site distant from the primary active site 
modulates a protein’s function. As the simplest case, we 
can consider a two-state model (Fig. 4), characterized by 
an active and inactive conformation. Although a variety of 
perturbations may influence the free energy landscape, such 
as mutations in directed evolution, in the context of allostery, 

we consider the binding of a small molecule distal from the 
enzyme’s primary active site as the perturbation. Upon bind-
ing the allosteric ligand, the energy landscape is altered, and 
the resulting inactive and active conformation populations 
are altered. This conformational shift phenomenon is often 
used in discussions of structural allostery but is not limited 
to such enzymes.

3 � Allostery in Enzyme Catalysis

The long-ranged coupling of sites in an allosteric system can 
be explained through short-range interactions linking the 
distant sites [82]. This mode of regulation has been referred 
to as the second secret of life, behind the central dogma 
that describes information transfer between DNA, RNA, 
and proteins [83]. Biological systems harness allostery to 
respond to changes in their environment. This is recognized 
in various biological processes such as signal transduction 
[84, 85], transcriptional regulation [86, 87] and metabolism 
[88]. It has been proposed that any system can be allos-
terically regulated; it becomes a matter of how to probe the 
interactions that couple binding sites [85]. In 2011, Huang 
and co-workers created the Allosteric Database (ASD) to 
provide a comprehensive collection of allosteric data [89]. 
Presently, the ASD contains 1,949 allosteric proteins and 
82,070 allosteric modulators [90, 91]

3.1 � Categorizing Allostery

In allosteric regulation, the binding of an effector molecule 
alters an enzyme’s activity towards its natural substrate. This 
is illustrated by the thermodynamic cycle shown in Fig. 5. In 
the absence of the allosteric effector, X, the basal substrate-
binding dissociation/affinity constant Kia and rate constant 
kcat are observed. Enzyme allostery is classified by the pro-
cess of activity alteration. In K-type allostery, the allosteric 
response to effector binding is a change in the affinity, Kia, 
for the substrate, A. This system is the most commonly stud-
ied, and an effective allosteric coupling constant, defined by 
the ratio of substrate binding affinity in the absence versus 
presence of the effector Kix/Kix/a, or equivalently Kia/Kia/x as 
defined in Fig. 5, has been developed to quantify the allos-
teric effect of a K-type system [83]. There exist experimen-
tal and computational techniques to measure the allosteric 
coupling constant in a K-type system. In V-type allostery, 
binding of the effector causes a change in the catalytic activ-
ity, kcat. An allosteric coupling metric analogous to a K-type 
system could be based on kcat with and without the effec-
tor bound (kcat/kcat/x). Although there exist computational 
methods to measure kcat, as previously mentioned, this is 
relatively unexplored in the context of allostery.

Fig. 4   A free energy profile projected onto a two-state conformational 
coordinate. The blue line and toy enzyme model illustrate a system 
without the allosteric effector bound. Orange corresponds to a system 
with the allosteric effector bound. The legend shows relative popula-
tions of the active and inactive states that result from different ligand 
states
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3.2 � The Ensemble Model of Allostery

The so-called ‘concerted’ Monod, Wyman and Changeux 
(MWC) model of allostery, established in 1965, states that 
most allosteric proteins are oligomers involving multiple 
identical protomers and thus have an axis of symmetry; the 
quaternary structures of such systems are altered by allos-
teric interactions; there exist at least two states that differ by 
the distribution and/or energy of interactions at the protomer 
interface(s); these interactions alter the affinity of the bind-
ing site towards its corresponding ligand, and the effector is 
not chemically identical to the substrate [92]. These state-
ments were developed from observations of known allos-
teric systems at that time, with hemoglobin serving as the 
hallmark allosteric system, given that an X-ray structure was 
established for this protein [93]. It was observed that in apo-
hemoglobin (absence of effector), there exists an equilibrium 
between two states, historically known as the constrained 
and relaxed states. The MWC model claims that effector 
binding shifts the equilibrium. In 1966, Koshland, Nemethy 
and Filmer (KNF) composed an alternative model [94]. This 
model favors an “induced fit” mechanism, whereby the apo-
protein binds the effector, which induces a conformational 
transition to the holo-protein. The MWC and KNF model 
share a static view of allostery, dependent upon noticeable 
conformational differences in apo- and holo-structures.

A dynamic model of allostery was proposed in 1984 by 
Cooper and Dryden, which argues that large-scale confor-
mational changes are not a requisite for allosteric regulation 

[95]. Instead, changes in thermodynamic fluctuations could 
mediate the coupling of binding sites. More recently, evi-
dence has shown the importance of functional states unre-
lated to the so-called “tense” or “relaxed” states that belong 
to the MWC model [96]. In this more dynamics-driven view 
of allostery, a protein exists as an ensemble of states, and 
binding of an effector results in a global redistribution of 
protein fluctuations and thus alters the relative entropy of the 
ensembles. This ensemble model of allostery is favored in 
the literature today [23, 85, 88, 97, 98]. Allostery research, 
which traditionally emphasized static comparisons, is cur-
rently faced with the challenge of leveraging the ensemble 
nature of allostery [99]. Although this challenge is now 
considered fundamental in the field of allostery, it applies 
to enzymes in a general way. More recently, enzymes engi-
neered through directed evolution have achieved higher cata-
lytic efficiency by redistributing the energy landscape [25].

Restructuring of the energy landscape in response to 
allosteric ligand binding or a relevant mutation is expected 
to be the driving force that alters enzyme function, mean-
ing multiple conformations and their populations are crucial 
to consider. Population shifts have been found to directly 
influence functional change in enzymes [28, 95]. The whole-
scale enzymatic influence on the chemical rate in V-type 
allosteric systems is particularly intriguing in this regard.

Enzymatic catalytic activity is typically compared against 
the background reaction rate in (aqueous) solution to inves-
tigate catalytic origins [8]. Alternatively, one could compare 
the same reaction in enzymes with different activities. Such 
an approach can be adopted in evaluating V-type allosteric 
enzymes. To evaluate the source of an allosteric effect in 
catalysis, one must consider the reaction with and without 
the allosteric effect. In many cases, this means considering 
the enzyme in the presence and absence of the allosteric 
ligand and comparing the relative energy barriers result-
ing from the two systems. From a computational perspec-
tive, this is an attractive comparison of relative rather than 
absolute barrier heights. This, in addition to the biologi-
cal relevance of allostery, makes allosteric systems ideal to 
explore and evaluate computational approaches for enzyme 
conformational ensemble modeling.

4 � Quantum Mechanics for Enzyme Catalysis

4.1 � The Cluster Approach

The quantum chemical cluster approach explicitly models 
the critical features of a biologically relevant active site 
using QM while typically accounting for the remainder of 
the protein with homogeneous dielectric continuum models 
[47]. This approach has been pioneered in the study of bio-
logically relevant metal centers by Siegbahn and Blomberg, 

Fig. 5   Complete thermodynamic cycle of an allosteric enzyme, E. 
The top row represents the enzyme in the presence of only substrate, 
A. The bottom row represents the enzyme in the presence of the sub-
strate and allosteric effector, X. Binding of X modifies the activity of 
E by either altering the binding affinity of E for A, as in K-type allos-
tery, or influencing the rate-determining step, as in V-type allostery. 
Nomenclature from Ref. [83] is used here for consistency
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with model sizes around 60–70 atoms [100], and by Himo, 
who has used cluster models that can be much larger, even 
surpassing 300 atoms [11]. For more focused reviews on the 
quantum chemical cluster approach, we urge the interested 
reader to explore several excellent reviews [11, 47, 101]. 
Here, we summarize the steps taken in building a quantum 
chemical cluster model.

4.1.1 � Model Selection

Once a biological target has been chosen, a deep dive into 
the literature is worthwhile to explore what is known, 
unknown, and theorized about the system. Most cluster 
models are designed from crystal structure coordinates. 
There may be attributes of the crystal structure that do not 
align with the system desired to be modeled, such as residue 
mutations, and alternative substrates bound. In some cases, 
it may be necessary to manually alter the structure to match 
the intended system of study, which will require longer 
MD simulation to allow the structure to properly relax. The 
primary literature may describe artifacts in the crystallo-
graphic model and whether specific residues are essential 
for catalytic activity (e.g., through the experimental study of 
enzyme mutants). Depending on the research goal, multiple 
crystal structures, sometimes with different ligand states, are 
important to consider. Additionally, the protonation states of 
some residues, particularly Glu, Asp, and His may be impor-
tant to consider. If this information is not already available, 
it may be necessary to consider all the possibilities [102]. If 
crystallographic waters or ions are present in the active site, 
they may need to be explicitly included in the model as well 
[103]. It is typical to test various sizes of clusters, ranging 
from 100 to 300 atoms [11]. Convergence studies suggest 
that QM-cluster models give reliable energetics when the 
model size is large enough [47, 104–108]. Including addi-
tional residues beyond those immediately in contact with 
the substrate may be crucial to avoid unrealistic, extensive 
conformational reorganization of the active site following 
geometry optimization [109], however, it has been proposed 
that informed residue selection should take priority over a 
simple distance cutoff [110].

4.1.2 � Model Truncation

The cluster approach requires cuts or truncations to be 
made since only a subset of the protein’s atoms will be 
included. The most common approach is to residues at 
the alpha carbon by removing all peptide bond atoms and 
capping the alpha carbon with hydrogens. The methyl-
capping approach is performed when the N-Cα and Cα-CO 
peptide bonds on either side of the R chain are cut. There 
may be situations where peptide bond atoms are involved 

in the reaction, such as forming H-bonds to the substrate. 
In such cases, residues will be cut at either the N-terminus 
(N’), N-Cαbond or C-terminus (C’), Cα-CO bond, and the 
truncated ends will need an additional hydrogen to achieve 
saturation (“hydrogen-capping”). During this step, impor-
tant considerations include atoms that influence catalysis 
to ensure the atom caps are neither artificially influencing 
the mechanism nor significantly altering the electronic 
structure, such as changing atomic hybridization or cut-
ting across a highly polar bond. The effects of different 
truncation schemes are evaluated in Sect. 6.2.2.

4.1.3 � Coordinate Locking

In most cluster models, it is necessary to lock or freeze 
certain atoms to preserve the active site geometry, main-
tain side-chain rotamer states along the reaction coordi-
nate, and limit the model from accessing geometries that 
would not be possible inside the protein environment. As 
the structure is not fully optimized, evaluating the full QM 
partition function, including vibrational effects to thermo-
chemistry, is challenging. Therefore, potential energies, 
rather than Gibbs energies, are often reported. There are 
methods to approximate entropic effects, such as project-
ing out the frozen coordinates from the Hessian [111]. The 
effects of coordinate locking have been explored in Ref. 
[112], where the authors studied phosphotriesterase using 
a cluster model of 82 atoms. The authors found locking 
induced significant strain, altering some geometric param-
eters. However, these did not influence the conclusions 
regarding the reaction mechanism and only altered the 
calculated barrier by 2 kcal/mol. The authors also noted 
that in this particular application, the truncation method 
resulted in a model that was too rigid. For example, a His 
residue in the cluster was modeled only as an imidazole 
ring, where one atom from the ring was locked, signifi-
cantly hindering the motion of that group. However, the 
strain induced by coordinate locking is expected to reduce 
with larger models.

Freezing the alpha carbons of each truncated residue 
is a good choice. However, in some models, this might 
allow too many degrees of freedom resulting in inconsist-
ent side-chain conformations along the pathway. Lock-
ing up to two hydrogens of the alpha carbon to restrict 
more degrees of freedom [11] or not locking residues that 
directly interact with the substrate [113] may be necessary. 
The more frozen atoms, the more rigid the model, which 
may influence energetics. Therefore, the coordinate lock-
ing scheme must be balanced, achieved through trial and 
error, between maintaining a reliable structure and allow-
ing flexibility for energy minimization during geometry 
optimization.
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4.1.4 � Model Chemistry

In common with contemporary QM studies of organic and 
inorganic reactivity, dispersion-corrected density functionals 
such as B3LYP-D3 or ωB97XD are now commonly used for 
geometry optimizations of cluster models. In many cases, 
dispersion effects are expected to influence cluster geom-
etry, such that Grimme’s zero-damped and Becke-Johnson 
damped (D3 and D3(BJ), respectively) corrections are rec-
ommended with typical GGA (generalized gradient approxi-
mation) or hybrid-GGA density functionals such as B3LYP 
[114]. While valence double-zeta basis sets are often suit-
able for geometry optimization, single-point energy correc-
tions with solvent models and larger basis sets are generally 
employed to account for electrostatic effects and approach 
more accurate energies. A dielectric constant close to 4 (c.f. 
diethyl ether, for which ε = 4.24) is expected to mimic the 
relatively hydrophobic protein interior, although examples 
in the literature have evaluated cluster model energetics 
with multiple dielectrics to investigate their sensitivity to 
this value [47, 105]. Significant changes in relative energies 
at different dielectric values may indicate that the cluster is 
too small, and more residues or active site water molecules 
should be included.

4.2 � Application of the Quantum Cluster Approach: 
Benzoylformate Decarboxylase

Benzoylformate decarboxylase (BFDC) is a thiamine 
diphosphate (ThDP)-dependent enzyme that catalyzes the 
decarboxylation of benzoylformate into benzaldehyde and 
carbon dioxide in a critical step of the mandelic acid degra-
dation pathway [115, 116]. Additionally, BFDC can enan-
tioselectively catalyze carboligation reactions, depending 
on the substrate. X-ray structures of enzymes in the ThDP-
dependent decarboxylase family show common features such 
as the presence of ThDP, an almost invariant glutamate, two 
ionizable acidic residues, and two proximal histidine resi-
dues on an ordered loop termed the HH-motif. However, 
the first X-ray structure of BFDC contains serine (Ser26) as 
the only ionizable acidic residue in the active site, and the 
two proximal histidines (His70, His281) belong to separate 
monomers rather than an ordered loop.

Himo and co-workers used the cluster approach to study 
BFDC-catalyzed decarboxylation. Their model consisted of 
307 atoms and an overall − 1 charge. Geometry optimiza-
tions were performed at the B3LYP-D3(BJ)/6-31G(d,p) level 
of theory, with 6–311 + G(2d,2p) single-point corrections 
using the SMD solvation model with a dielectric of ε = 4. 
While entropy changes along the reaction coordinate are 
often neglected in studies using cluster models, the release 
of CO2 gas involves a significant increase in translational 
entropy. This was calculated to be 11.3 kcal/mol, and so this 

value was included in each step after CO2 formation, in line 
with previous estimation methods [13, 117]. The key roles 
of active site residues were identified, and the authors also 
identified a kinetically relevant off-cycle species produced 
by intramolecular cyclization of the cofactor [118].

In a subsequent study, Himo and co-workers focused 
on enantioselective catalysis by BFDC [119]. Following 
benzoylformate decarboxylation, the (Breslow) enamine 
intermediate can participate in a benzoin condensation with 
benzaldehyde or acetaldehyde electrophiles. Interestingly, 
these transformations proceed with an opposite sense of 
enantioselectivity. The computed energy difference between 
competing TSs in the enantioselectivity determining step for 
benzaldehyde addition (TS3, Fig. 6) is 9.3 kcal/mol, consist-
ent with complete stereocontrol observed experimentally. 
Steric interactions between substrate and multiple residues 
contribute to the higher energy of the disfavored pathway. 
For acetaldehyde, the energy difference (0.3 kcal/mol) favors 
the (S)-product, consistent with the contrast in selectivity 
observed for the two substrates. This, and other studies by 
Himo, illustrate the importance of a reasonably large cluster 
to capture the multiple steric and other noncovalent inter-
actions influencing enantioselectivity in enzyme catalysis.

4.3 � QM/MM Approaches

Standing as an alternative to the truncation schemes dis-
cussed above, hybrid QM/MM approaches enable a small 
portion of the enzyme, typically in the active site region, to 
be treated by QM, while the remaining larger part of the sys-
tem is described by MM. Compared to QM cluster models, 
the QM/MM approach explicitly represents the steric effects 
(e.g., via mechanical embedding) of an inhomogeneous pro-
tein, alongside noncovalent interactions such as long-range 
electrostatics between the QM and MM subsystems (e.g., via 
electronic embedding). QM/MM methods are widely-used 
across organic and organometallic chemistry, and are par-
ticularly well-established in the study of enzymatic reaction 
mechanisms [29, 120–128].

The explicit inclusion of the extended protein environ-
ment can quantitatively impact relative energetics, or indeed, 
fundamentally alter a computed energy profile. For example, 
electrostatic effects contribute several additional kcal/mol in 
QM/MM studies of dioxygen binding energies in JMJD2A 
[129]. Further, the role of protein reorganization along the 
reaction coordinate, which can be consequential, may also 
be captured and quantified [130]. Readers are referred to 
detailed reviews on the status of QM/MM approaches in 
modeling enzymatic catalysis [120, 127, 131, 132]. QM/
MM models, which typically also include explicit solvent 
molecules as well as the enzyme and substrate, are much 
larger than those used in QM-only models. Geometry opti-
mizations become more challenging for large system sizes 
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and so may be performed with (partially) fixed surrounding 
atoms. Even so, more energy minima are possible with these 
larger models, and the importance of extensive configura-
tional sampling becomes paramount.

For example, using energy minimization to gener-
ate potential QM/MM energy surfaces for an enzymatic 
reaction while starting from a single protein structure has 
been shown to produce severe errors in activation bar-
rier heights and binding free energies. Averaging results 
over several protein configurations generated by long MD 
simulations has been recommended [120, 133, 134]. The 
computational demands of QM/MM simulations can be 
influenced by choice of the QM region’s size and by using 
low-cost semi-empirical QM (SQM) schemes in place 
of more expensive DFT calculations. In the first respect, 
many of the chemical and physical considerations rele-
vant to the choice of cluster models stand; the QM region 
should be evaluated for convergence [135–138], and atten-
tion to the region definition is also required [139–142]. 

Although, compared to QM-only models, Warshel has 
demonstrated a relative lack of sensitivity to including 
more distal groups in the QM region [143]. The use of 
SQM methods generally requires careful benchmarking 
or parameterization against more expensive QM results 
[144]. Nevertheless, typical QM/MM simulations are run 
for timescales on the order of nanoseconds. Enhanced 
sampling techniques have been applied to compute the free 
energy profiles of reactions in QM regions, but, even in 
these cases, sampling of the rest of the protein is limited 
to the nanosecond timescale [145–147]. While this may be 
sufficient to sample side-chain rotamer preferences, pro-
tein conformational changes required to reach a catalyti-
cally active state (e.g., involving loop and helix motions) 
routinely take place on timescales several orders of mag-
nitude slower [148]. Classical MD simulations over micro-
second timescales, inaccessible while employing QM/MM 
potentials, have been necessary to observe binding site 
formation, for example, in bromodomains [149].

Fig. 6   Optimized geometries of selectivity-determining transition 
state structures for a (R)-benzoin and b (S)-benzoin in the BFDC car-
boligation reaction. The benzaldehyde acceptor and enamine donor 
are shown in orange and pink, respectively. The blue lines in the 

lower panel of (b) indicate the steric clashes from Ala460, Leu461, 
Phe464 that drive stereoselectivity. Asterisks designate the atoms fro-
zen during calculations. All non-polar hydrogens are hidden for sim-
plicity. Figure adapted from [112]
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4.4 � QM Approaches Using Multiple Conformations

In contrast to using an X-ray structure as a starting 
point for QM studies, a short MD simulation can be 
used (500–1000 ps) to generate an initial geometry 
[150]. This will relax the structure towards a local 
minimum, potentially reducing crystalline artifacts. 
However, this approach is unlikely to help when the 
X-ray structure is sufficiently far from the catalytically 
relevant conformation(s). QM/MM approaches often 
incorporate multiple conformations as initial geom-
etries for modeling, usually taken as a series of random 
or evenly spaced snapshots from an MD simulation.
The question of how to combine the results from sev-
eral QM or QM/MM models has been addressed by 
various approaches. An assortment of averaging tech-
niques have been explained elsewhere [151]; how-
ever, questions continue to be raised, such as what is 
required to converge energies in this approach [104] 
and how to account for conformations with differing 
reactivities [30, 152, 153]. Alternatively, the Boltz-
mann ensemble can be evaluated with a combination 
of extended MD and structural clustering. In such an 
approach, the average structures and populations can 
be used to generate and weight energy barriers result-
ing from either the QM-only or QM/MM calculations. 
The details of this approach are outlined in the next 
section.

5 � Structural Clustering with Molecular 
Dynamics

Structural clustering is a necessary and often overlooked 
component of describing the conformational ensemble of a 
protein. To illustrate the need for structural clustering, we 
consider a set, X, of N configurations of a protein system, 
X = { �⃗x1, �⃗x2,… , �⃗xN }, where �⃗xi is the ith configuration of the 
system. The expected value of an observable, M, can be 
computed as an average over this set,

where Pidenotes the probability of configuration i and is 
equivalent to 1

N
 in conventional MD sampling. The observ-

able denotes any property of interest that depends on the 
conformation of the system, such as the electrostatic poten-
tial at the active site or the rate constant of a chemical reac-
tion. If N is small and M( �⃗xi ) is cheap to compute, Eq. 4 can 
be used directly to estimate the property of interest. When N 
gets large and/or M( �⃗xi ) is expensive to compute, clustering 
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approaches are employed to approximate Eq. 4. Clustering is 
particularly necessary and challenging for MD descriptions 
of protein ensembles due to the sheer size of the data sets: it 
is not uncommon to have millions of protein configurations 
in a trajectory [71] or combined trajectories [154]. Given a 
clustering of a conformational ensemble into K < N clusters 
with well-defined average (or mediod) structures, observable 
can be estimated as

where ⟨�⃗x⟩j is the average structure and Pjis the probabil-
ity of cluster j. The accuracy of Eq. 5 depends on several 
factors, including the conformational heterogeneity of clus-
ters and the sensitivity of the observable to conformational 
heterogeneity.

The goal of structural clustering is to combine configura-
tions into clusters that have similar values of the observable 
of interest. In the context of enzyme catalysis, the active 
site is an obvious focal point. Therefore consideration of 
only active site residues for structural clustering may be suf-
ficient. The results of clustering are a set of K macrostates, 
made from MD snapshots, or microstates, and their associ-
ated populations, {Pj}. There are numerous clustering meth-
ods employed in the field and, unfortunately, no consistent 
best choice. Here, we describe five steps that most clustering 
protocols follow: (1) choosing a coarse-grained description 
of the protein, (2) picking features to describe the coarse-
grained protein, (3) dimensionality reduction of the features, 
(4) clustering in reduced dimensions and (5) analysis of the 
results. We note that while this is a typical order of the steps, 
it is not unique. It is possible, for example, to cluster first 
and then perform dimensionality reduction (swapping steps 
3 and 4).

5.1 � Step 1: Choose a Coarse‑Grained Description 
of the Protein

Atomistic descriptions of a protein and its environment must 
be coarse-grained to make the conformational ensemble a 
tractable object. In a typical aaMD simulation of a protein, 
there are ∼ 100 K total atoms and thus 300 K degrees of 
freedom. It is intractable to consider each degree of free-
dom of the system, even with millions of frames. Luckily, 
many of these degrees of freedom are of the solvent and 
thus only implicitly important in determining the protein 
conformational ensemble. Thus, a natural coarse-graining 
of the system is to ignore the solvent degrees of freedom 
and only analyze the atoms of the protein. Even this yields 
exceptionally high-dimensional data sets that are intractable 
to analyze. Additional coarse-graining of a protein is almost 
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always performed. Common examples of coarse-grained 
protein descriptions are backbone atoms, CA atoms, center-
of-mass (COM) of residues, and/or secondary structural 
elements.

A good choice of the coarse-grained description of the 
protein depends on the application. For example, if one is 
interested in protein folding, the coarse-grained description 
should include all protein residues. Typical coarse-grain-
ing for this application includes all backbone atoms, only 
CA atoms, or COM of residues. A depiction of this type 
of coarse-graining is given in the first two panels of 7. The 
top-left panel depicts the folded state of a small, fast-folding 
protein (Trp-cage) in a box of water. The protein is coarse-
grained in the top-middle panel by only choosing the CA 
atoms of each residue. The choice of all CA atoms is trac-
table for this small protein but will become intractable for 
larger proteins. In the case of enzymes will well-defined 
active sites, it is natural to choose a more detailed descrip-
tion of the active site while ignoring protein residues far 
away from the active site.

5.2 � Step 2: Choosing Features

With a coarse-grained mapping chosen, one must then 
choose features or coordinates to describe these coarse-
grained structures. A good set of features can discern 

between the important metastable conformations. For 
example, the features in a two-state protein folding prob-
lem must differentiate between folded and unfolded states. 
There are two natural choices for features: internal coor-
dinates and positions. Each has its advantages and dis-
advantages that will be described below. There are also 
combinations of internal coordinates or positions called 
collective variables (CVs, e.g., helical content, RMSD 
of substructures, etc.) that we will not discuss in detail. 
Generally, these CVs have similar advantages and disad-
vantages to the internal coordinates or positions used to 
compute them.

Internal coordinates of a macromolecule include dis-
tances (two-body terms), angles (three-body terms), dihedral 
angles (four-body terms), and higher-order terms. Within the 
context of all-atom simulations of proteins, most force fields 
only include up to four body terms, and thus it is uncommon 
to consider terms higher than four bodies. Internal coordi-
nates have the advantage of being the natural coordinates of 
the Hamiltonian of the system: they are rotationally invariant 
and can uniquely describe each structure. The downside of 
these features is feature space size, and the mixing of fea-
tures can limit the types of clustering algorithms that can be 
employed. The choice of all pairwise distances for the Trp-
cage example is depicted using blue lines between CA atoms 
in the top-right panel of Fig. 7. With 20 residues (and thus 

Fig. 7   Five-step schematic for structural clustering from all-atom 
molecular dynamics trajectories. Starting from the top left, the first 
step is to choose a particle coarse-grained mapping and apply it to 
an explicit solvent all-atom trajectory. From there, a set of features 
to describe the system, such as all pairwise distances, are chosen. A 

trajectory of these features is then passed through an unsupervised 
dimensionality reduction algorithm (e.g., principal component analy-
sis) and projected onto reduced dimensions. A clustering algorithm is 
applied in reduced dimensionality space to classify each frame of the 
trajectory. Finally, the structural clusters are analyzed (bottom left)
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CA atoms) in the Trp-cage protein, there are 190 pairwise 
distances to consider.

Particle positions are also a natural choice of features to 
cluster trajectory data of macromolecular systems. Advan-
tages of these features include no significant over-determina-
tion of the system, coordinates are directly output by simula-
tion software, and coordinates can differentiate between all 
configurations observed. A significant limitation of particle 
positions is that they are defined in the lab frame and thus 
are not immediately rotationally invariant. This leads to 
equivalences in particle positions that make them challeng-
ing to deal with [155].

5.3 � Step 3: Dimensionality Reduction

Despite an initial particle coarse-graining (Step 1), the 
remaining degrees of freedom after featurization are often 
too large to consider in full-dimensional space. Take, for 
example, the folding and unfolding of an alpha helix coarse-
grained into 12 beads. If we choose all pairwise distances 
as our features (Step 2), there are 66 degrees of freedom to 
describe each simulation frame. To make any sense of these 
dimensions that are often coupled, dimensionality reduc-
tion is performed. The goal is to determine a small subset of 
degrees of freedom that retain the essential information of 
the full-dimensional space.

Multiple dimensionality reduction methods have been 
used on MD data. These methods differ based on what they 
define as important information. Principal component analy-
sis (PCA), for example, determines the linearly independent 
coordinates that retain the most variance in the data. It is 
not uncommon to see trajectory data projected onto the first 
two principal components with the largest variances. Time-
lagged independent component analysis (tICA) determines 
the linear combination of coordinates that rank the time-
scale of collective motions [156]. tICA is often coupled with 
Markov State Modeling (MSM) to determine rates of transi-
tions between metastable states [157]. Other dimensionality 
reduction methods have been employed, such as Sketch Map 
[158] and UMAP [159], to achieve specific properties in the 
reduced space. The outcome of any dimensionality reduction 
technique will be a description of each trajectory frame in 
reduced dimensions.

5.4 � Step 4: Clustering Algorithm

Clustering algorithms are typically applied following 
dimensionality reduction methods to assign each frame to 
a conformational state. A variety of clustering algorithms 
have been applied in this context. The types of algorithms 
can be broken down into two categories: hierarchical and 
non-hierarchical. Both types have been used though more 

recent efforts have focused on non-hierarchical clustering 
algorithms.

Hierarchical clustering algorithms start with each frame 
in its own cluster and iteratively group similar frames 
together. This results in a dendrogram structure of the clus-
tering. Different distances can be used to define similarity. 
Methods differ in how they join clusters together and the 
resulting distance used between clusters. Advantages of 
hierarchical methods include that the methods are fast, can 
be used to determine macroclusters and subclusters, and are 
easy to implement. The major disadvantage of hierarchical 
methods is that they are greedy: once clusters have been 
formed, they will not be broken apart to find a more global 
minimum. Examples of hierarchical methods include Ward, 
average linkage, and minimum linkage.

Non-hierarchical clustering methods are the most com-
monly employed for MD trajectory data. The most com-
mon example is k-means clustering and its variants. k-means 
determines the means and trajectory partitionings that mini-
mize the summed distances between frames and associated 
means. This method works well for well-separated spheri-
cal distributions of points. Other density-based fitting algo-
rithms include Gaussian mixture modeling (GMM) and 
DBSCAN, both of which have been employed to trajec-
tory data projected onto reduced dimensional space with 
reasonable success [160]. These methods are not as greedy 
as hierarchical methods: frames can move from one cluster 
to another during the iterations until a (local) minimum in 
the algorithm metric is reached. A significant drawback to 
such methods is the computational cost and the difficulty in 
determining the appropriate number of clusters.

No single best method works for all trajectory data. An 
often overlooked aspect, however, is to consider the under-
lying assumptions of the clustering algorithm. GMMs, for 
example, work under the assumption that the probability of 
the density can be represented as a sum (mixture) of Gauss-
ian functions. In a recent study of clustering algorithms, 
Westerlund and Delemotte showed that GMMs do not work 
well when the density in reduced dimensional space is non-
Gaussian [160]. It is not immediately clear whether we 
should expect MD data to be Gaussian in these spaces and 
almost assuredly depends on the features chosen and dimen-
sionality reduction technique employed.

5.5 � Analysis of Resulting Data

The result of a clustering algorithm is an assignment of 
each frame into a conformational state. With this infor-
mation in hand, one can analyze different aspects of the 
clusters. The specific analysis employed will depend on 
the application. For example, one might build an MSM 
based on conformational clustering and determine the 
rates and associated structural mechanisms if one cares 
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about folding rates. If one cares about catalysis, it is rel-
evant to compute the relative reaction rate in each confor-
mational state. The implicit assumption is that the value 
of a macroscopic property does not vary significantly 
within a given cluster. This assumption can be tested to 
assess the validity of the clustering.

6 � Unexplored Land in Computational 
Catalysis: A Case Study on IGPS

In this section, we focus on the mechanism of glutamine 
hydrolysis by the allosterically regulated enzyme IGPS. 
This system illustrates particular challenges for computa-
tion, such as catalytically-inactive crystal structures, the 
presence of active and inactive enzyme conformations, 
and allosteric rate enhancement.

6.1 � Imidazole Glycerol Phosphate Synthase (IGPS)

Efficient transportation of a reaction product from one loca-
tion to be used as a reactant in the next is a critical step in 
biological pathways. In some cases, the efficiency depends 
on whether or not that product must travel through bulk sol-
vent to arrive at its next stop. The glutamine amidotrans-
ferase (GAT) family of enzymes produce ammonia through 
hydrolysis of glutamine and utilize the ammonia in a subse-
quent reaction, harnessing several traits to ensure their effec-
tiveness in biochemical pathways. The bienzyme imidazole 
glycerol phosphate synthase (IGPS) is a GAT composed of 
glutaminase and cyclase subunits, nominally known as HisH 
and HisF in T. maritima (Fig. 8). It operates in histidine and 
purine biosynthesis in plants, fungi, bacteria, and archaea. 
In the glutaminase subunit, IGPS performs the hydrolysis 
of glutamine to form glutamate and ammonia, the latter of 
which goes on to react with the allosteric ligand (phosphor-
ibulosyl-formimino-AICAR-phosphate, PrFAR) over 25 Å 

Fig. 8   IGPS from T. maritima and overview of glutaminase and 
cyclase coupled reactions. HisH is shown in green, and HisF is shown 
in blue. In HisH, glutamine reacts with water to form glutamate and 

ammonia, which is shuttled over 25  Å to the cyclase active site in 
HisF, where it reacts with PrFAR to form AICAR and ImGP
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away in the cyclase active site. The binding of PrFAR results 
in a 4500-fold increase in glutamine hydrolysis, making 
IGPS a V-type allosteric system [36]. The mechanism of 
allosteric regulation in IGPS and how the two active sites 
are coupled through residue pathways has received intense 
interest from experimentalists and theoreticians alike [67, 
82, 161, 162].

Until 2021, it was unclear how conformational ensem-
bles impact allosteric regulation of IGPS and if changes to 
the conformational equilibrium occur when PrFAR binds. 
Furthermore, it was unknown whether PrFAR binding 
induces specific changes to catalytic residues involved in 
glutaminase activity. Comparison of IGPS to similar GATs 
suggested the conformation of a conserved oxyanion strand 
(P49 G50 V51 G52) to be critical to the rate enhancement. 
The formation of an oxyanion hole, a catalytic motif that 
stabilizes a substrate’s developing negative charge through 
hydrogen-bonding interactions, has been a leading theory 
to account for rate enhancement in GAT mechanisms. It 
has been proposed that for many GAT enzymes (e.g., pyri-
doxal 5’-phosphate synthase and IGPS from T. maritima) 
[65, 163], binding of the effector induces a backbone flip 
in the oxyanion strand, forming an emergent oxyanion hole 
that stabilizes an oxyanion tetrahedral intermediate. Visual 
inspection of the apo and ternary IGPS crystal structures, 
3zr4 [161] and 1ox5 [164], respectively, shows the Val51 
backbone has not flipped in either case, suggesting either 
the flip in the Val backbone is not induced by effector bind-
ing or the crystal structure with PrFAR bound is not in the 
catalytically enhanced state, as proposed from solution NMR 
and MD studies [65].

In 2021, an IGPS crystal structure from Sprangers and 
co-workers showed the oxyanion hole fully formed, with 
the Val51 amide flipped (Fig. 9) [28]. Furthermore, the 
authors observed that both glutamine and PrFAR ligands 
must be present for the catalytically competent state to be 
reached. Numerous structural changes occur, breaking the 
hydrogen bond between P10 and V51 in HisH, a critical 
interaction stabilizing the backbone conformation of the 
oxyanion strand. Consequently, the V51 backbone is free to 
flip, accessing a conformation in which the backbone N–H 
is favorably oriented towards the carbonyl group of the sub-
strate. The dynamic equilibrium between inactive and active 
IGPS conformations was found to occur on the millisecond 
timescale, explaining the difficulty of observing all confor-
mational transitions in previous computational studies. Of 
particular importance, this study shows a direct correlation 
between the equilibrium of the active versus.

inactive states and glutamine turnover, just as the ensem-
ble model of allostery predicts. The population of the active 
conformation can be manipulated experimentally by distant 
mutations. In these studies, a linear relationship is observed 
between destabilization of the active conformation and 

ln(kcat), as predicted by the ensemble allostery model [28]. 
Furthermore, kcat is directly influenced by the population of 
the active conformation.

6.2 � Glutamine Hydrolysis in IGPS – Key 
Considerations for Future Computational 
Studies

Glutamine hydrolysis in IGPS occurs via a multistep mech-
anism; however, no previous quantum chemical or QM/
MM studies have been conducted. Before 2021, the active 
enzyme conformation had not been captured crystallographi-
cally, and as outlined above, the millisecond timescale of 
conformational transitions between inactive and active states 
is challenging to sample with cMD simulations. In the fol-
lowing sections, we discuss current prospects for modeling 
glutamine hydrolysis in IGPS and identify the challenges 
ahead.

In IGPS, a catalytic triad (Glu180, His178, and Cys84) 
performs glutamine hydrolysis. These residues would be the 
minimal ingredients of a QM region. However, as outlined 
above, catalytic activity results from large-scale conforma-
tional changes leading to a backbone flip, and the substrate 
is in contact with several additional residues in the active 
site. For this reason, a physically realistic active site model 

Fig. 9   Aligned crystal structure conformations of IGPS in ball-and-
stick representation. All oxygen, nitrogen, and polar hydrogen atoms 
are colored red, blue, and white. Orange carbons correspond to the 
catalytically inactive conformation, chains AB from crystal structure 
7ac8. Green carbons correspond to the catalytically active conforma-
tion, chains EF from crystal structure 7ac8. The V51 backbone flip 
is highlighted with a red arrow. This dihedral flip leads to a strong 
hydrogen bond ( 1.7 Å) between the V51 amide and the oxygen atom 
of the bound Gln substrate
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of IGPS involves over 200 atoms. We suggest QM treatment 
of the following residues are necessary: f98D, f123Q, h10P, 
h11G, h12N, h50P, h51G, h52V, h53G, h84C, h85L, h88Q, 
h96E, h141H, h142T, h143Y, h176H, h178E, along with the 
glutamine substrate. Additionally, inactive (Chains A and 
B) and active conformations (Chains E and F) can be found 
from the 7ac8 crystal deposition. The overall charge of this 
223-atom active site model is -3. For modeling via the QM-
cluster approach, different truncation schemes (Sect. 4.1) can 
be considered for IGPS (Fig. 10), of which some illustrative 
examples are discussed below.

ωB97XD/6–31 + G(d) optimizations of different trun-
cated models of the FHPEK stand in the IGPS active site, 
in which all Cα atoms and capping hydrogens were frozen, 
reveal the importance of decisions made during this stage of 
the modeling process. Terminating the side-chains by methyl 
groups leads to much greater atomic displacement relative 
to a model in which the polypeptide backbone is preserved 
(Fig. 10a–c). This disrupts an H-bond between His178 and 
Glu180, which is preserved in the more conservative cap-
ping scheme. While the impact of these structural differ-
ences upon the reaction mechanism has not been studied, 

various schemes may need to be examined in models of 
catalysis in the active site of IGPS.

6.3 � Connecting Macroscopic Turnover Frequency 
to the Microscopic Conformational Ensemble

IGPS and other enzymes explore multiple conformations 
with different levels of catalytic activity. One such example 
is the acyltransferase, LovD, which is part of the lovasta-
tin biosynthetic pathway. Exploring these conformational 
dynamics is essential to model reactivity. For example, the 
directed evolution of LovD produces a favorably mutated 
version (LovD9), whose catalytic performance can only be 
captured by microsecond MD simulations [32]. The over-
all catalytic activity is influenced by the populations of dif-
ferent conformational states and their interconversion, and 
the intrinsic reactivity (i.e., catalytic activation barrier) of 
these states. Therefore, a multistep computational work-
flow can be envisaged for modeling catalysis in allosteric 
enzymes such as IGPS (Fig. 11). First, explicitly-solvated 
aaMD simulation of the four different substrate states (E, 
E + X, E + X, E + X + S) is required. Statistically meaning-
ful sampling of the dynamic equilibrium between inactive 
and active IGPS states is nontrivial and will undoubtedly 
require enhanced sampling techniques. Second, structural 
clustering of trajectories will be performed to yield repre-
sentatives of each cluster, along with populations. Third, 
multistep reaction Gibbs energy profiles for glutamine 
hydrolysis will be generated for each conformational clus-
ter from MD. Fourth, individual kcat values are weighted 

Fig. 10   Truncation schemes applied to peptide sequence FHPEK 
from the IGPS HisH subunit. a Hydrogen capping: the terminal ends 
are cut, and a single hydrogen is added to each end. b Mixed cap-
ping: the peptide backbone atoms are removed from the terminal 
residues and the alpha carbons are capped, creating methyl groups, 
His and Glu are hydrogen capped at the N and C-terminus, respec-
tively. c Methyl capping: all peptide backbone atoms are removed 
from each residue and the alpha carbons methyl capped. d Optimized 
geometries of each truncation scheme. The translucent red structure 
is the methyl capping scheme, the translucent blue is the mixed cap-
ping scheme, and the solid atom-colored model is the hydrogen cap-
ping scheme. The table shows O1 and O2 distances from the His δH 
resulting from different truncation schemes

Fig. 11   A stepwise workflow combining MD simulation, conforma-
tional clustering, and QM calculations to calculate catalytic turnover. 
The first step is to simulate the system with explicit solvent all-atom 
MD. Next, structural clustering of the trajectory yields populations, 
Pj and cluster average structure coordinates, ⟨�⃗x⟩j . These coordinates 
are used to generate models for QM calculations of barrier heights of 
each cluster, ΔG‡

j
 . The macroscopically observed turnover frequency, 

kobs can be calculated as an expected value of kcat,j averaged over the 
conformational ensemble
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according to conformational populations to predict overall 
turnover frequency according to Eq. 5.

7 � Conclusions and Future Directions

The combination of MD sampling of the protein conforma-
tional ensemble and QM modeling of the enzymatic reac-
tion provides a practical framework for modeling enzymatic 
mechanisms. In particular, catalytically-inactive X-ray struc-
tures, long timescales associated with protein motions, and 
conformational landscapes influenced by allosteric ligands 
present challenges for QM-only approaches that require the 
intervention of protein sampling. In this perspective, we 
have emphasized that a bridge between MD simulations and 
QM cluster models comes in the form of conformational 
clustering and analysis since this generates a tractable num-
ber of states that could then be used in QM cluster models. 
This integrated approach is also suitable for use with QM/
MM generated barriers. The choice of approach to calculate 
the reaction barriers may be based on user preference as well 
as attributes of the system of study. As the combination of 
MD sampling, conformational clustering, and subsequent 
energy barrier calculations are increasingly pursued, com-
putational chemists will be able to access new mechanistic 
information about allosteric enzymes. Although the compu-
tational framework discussed herein applies to V-type allos-
teric systems, it can also be applied more generally to study 
the enzyme conformational ensemble and its importance for 
enzyme catalysis. While this approach is computationally 
demanding, the advent of GPU accelerated MD and QM 
approaches makes this tractable for numerous enzymes.

The empirical correlation between active conforma-
tion population and catalytic activity in IGPS shows the 
value in using MD and structural clustering to account for 
the influence of conformational heterogeneity on enzyme 
catalysis. This behavior is expected to be consistent among 
other enzymes that follow the ensemble model of allostery. 
Furthermore, the concept of free energy redistribution is a 
more general concept that numerous enzymes have exhib-
ited as a way to regulate catalytic activity. Therefore, the 
workflow illustrated in Fig. 11 may be applicable across 
various enzymatic systems, although there may be cases 
where the results are consistent with single-conformation 
studies, particularly in more rigid systems.

Using a combined MD/QM conformational ensemble 
approach, computational studies of enzyme catalysis will 
address critical open questions. These include:

1.	 What are the relative rates of conformational sampling 
and enzymatic reactions for specific enzymes?

2.	 Can a single “active” conformation capture observed 
catalytic properties, or do enzymatic reactions proceed 
from various enzyme–substrate conformations?

3.	 Are there general mechanisms that can be applied to 
classes of enzymes? For example, do V-type allosteric 
enzymes all conform to the ensemble model of allos-
tery?

Additionally, several assumptions underlying such 
approaches require further interrogation, such as (i) whether 
a single structure from a conformational cluster can be used 
to compute the energy barrier for a reaction, as in Eq. 5; and 
(ii) whether different enzymatic reactions progress within 
the same conformational state, or whether in the limit of rel-
atively fast conformational transitions, the Curtin-Hammett 
principle of chemical reactivity can be applied to enzyme 
catalysis. Further exploration of these questions will pro-
vide insightful results that propel the field of computational 
enzyme catalysis towards a land of opportunities.
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