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Abstract—Determining the rate region of a network is of
great importance in the research area of network coding. Lots
of attempts have been made and significant progress has been
achieved over the last decade on this topic. Although these
researches provide us with multiple ways of calculating the
outer or inner bounds of rate region, the sheer complexity of
the problem, which involves expressing and projecting a very
high dimensional polyhedra, makes it computationally infeasible
beyond networks with 10s of edges.

Aimed at reducing the complexity of the rate region calcu-
lation, in this paper a new theorem that implicitly determines
the rate region of a network is proved and a corresponding
systematic way of applying the theorem to calculate explicitly
the outer bounds to a rate region is proposed. Compared with
the traditional method, the proposed method has the potential to
calculate the true rate region via the projection of simpler poly-
hedra that has exponentially less dimensions and is characterized
by exponentially less facets.

Index Terms—network coding cuts, rate regions, complexity
reduction

I. INTRODUCTION

Determining the rate region of a network is of great
importance in the research area of network coding. Lots of
attempts have been made and significant progress has been
achieved over the last decade on this topic [1]]-[4]]. From an
applied perspective, understanding network coding problems
will help us to determining the fundamental limits as well
as to constructing practical designs that approach them, for
engineering problems range form index coding [5], [6], coded
caching [7] to distributed storage system [8]—[11]], to delay
mitigating codes and delay tradeoffs for streaming information
[12]-[14]. Although these researches provide us with multiple
ways of calculating the outer or inner bounds of rate region,
the sheer complexity of the problem [15], which involves
expressing and projecting a very high dimensional polyhedra,
makes it computationally infeasible beyond networks with 10s
of edges.

Aimed at reducing the complexity of the rate region calcu-
lation, in this paper a new theorem that implicitly determines
the rate region of a network is proved and a corresponding
systematic way of applying the theorem to calculate explicitly
the outer bounds to a rate region is proposed. Compared
with the traditional method, the proposed method has the
potential to calculate the true rate region via the projection
of simpler polyhedra that has exponentially less dimensions
and is characterized by exponentially less facets. This enables
our new method to finish way sooner than the traditional one

when tested on rate region calculation software. Besides, an
inductive argument is given at the end of the paper to show
that there are infinitely many networks that our new method
can be applied upon.

II. BACKGROUND

This paper focuses on multi-source multi-sink network cod-
ing problems on acyclic networks with directed hyperedges,
which we hereafter refer to as the MSNC problems.

A. MSNC Network

The purpose of a network is to capture a structure of
information exchange whose goal is to enable some sink
demands to be met. Thus, the MSNC network studied in this
paper is defined primarily to indicate what must be encoded
from what, and what must be capable of being decoded from
what, in a series of message exchanges.

Definition 1. (MSNC network) A MSNC hyperedge network
A is a directed hyperedge graph defined as a tuple A =
(8,E,T,9,W) with S, £ and T indicating three different
types of hyperedges, Q and W indicating two different types
of nodes. In particular, S = {1, ..., K} is defined as labels of
source messages, £ = {K + 1,..., K + L} as labels of edge
messages, T < 25 as labels of sink demands. Each node g in
the network is labeled as an order pair of incoming messages
in(g) € S U and outgoing messages out(g) < (S v E)\in(g)
as g = (out(g),in(g)). Let G be the collection of all the node
g in network A, then the labels of sink nodes (decoders) VW
is defined as W = {g € Glout(g) € T}, while the labels of
intermediate nodes (encoders) Q is defined as Q = G\W.

Figure 1: Network A that contains 3 sources and 9 edges

Take the network A in Fig[T] as an example to help readers
understand the above defined notations. A is a 3-source 9-
edge network with source messages labelled as S = {1, 2, 3},
edge messages labelled as £ = {4, ..., 12}, sink demands are
labelled as T = {{2,3},{1,2}, {1,3}}. An intermediate node



g1 € Q is denoted as g1 = ({1,2,3}, {4}), a sink node t; € W
is denoted as t; = ({10,12}, {1, 3}).

B. Valid Cut of A MSNC Network

The key definition introduced in this paper is so called the
valid cut. Unlike the traditional definition of cut [16]], [[17]] that
partitions the nodes of a graph into two subsets such that all
source nodes are in one and all sink nodes are in the other,
the valid cut introduced in this paper is defined as follows,

Definition 2. (Valid cut) Let E = S U & be the collection of
all sources and edges of a MSNC network, a partition £ =
A1 UA3UA, is called a valid cut if the followings are satisfied:

1) A1 # B, Ay # J and A, # .

2) {out(g),in(g)} < 2F* or {out(g),in(g)} < 22, Vge Qu
W, where E1 = AO v Al, E2 = AO o AQ.

3) SC EiorSC Ey where E;y = A, UAq, E5 = A, U As.

As shown in Fig{Z] is a valid cut of the network in
Figlll where A1 = {1,2,3}, A, = {7,8,9} and A, =
{4,5,6,10,11,12}.

..........

Figure 2: Network A and a partition of £ = S u £ that forms
a valid cut, where A; = {1,2,3}, A2 = {7,8,9} and 4, =
{4,5,6,10,11,12}.

C. Region of Entropic Vectors T'%, and the (X| operator
Definition 3. (PMF, marginalization operator and region of
entropic vectors T'},) For two sets A and B, we will denote
by AB = {z|x : B — A}. Let the ground set E < N index a
set of |E| finite discrete random variables (RVs), and let
X cN,pp:xF - 0,1]
Ap =1 pE Z pe(zp) =1

:l':EEXE

(D

be a set of valid joint probability mass functions (PMFs) for
these RVs paired with their ranges. For any such joint PMF
pE € Ag and any subset A — E define the marginalization
operator M : A x 2F — UAQE Ay with

M(pp, A) = (pa, X*),

2

xpeXE st
xp(e) =xale) Vee A

2
with,
3)

pa(ra) = pE(TE)

define the function hg : Ag — R2” such that forany AC F,
ho(pp): A — Y pa(@a)logy (pa(@a)) 4

mAEXA

The entropy region for the ground set E will be the image of
the set of all joint PMFs A under this this map hg

T% = hp(Ag) (5)

Denoted as h = [h(A)|A < E] € T'}, an entropic vector in
%

Definition 4. (The (X operator) For two subsets 2, < R4
and Py < RA? of Euclidean space, the pasting operator X
is defined as,

| g, € 91,92 € Py sit:
P (X P2 =1 feRYVA | f(a) = g,(a),Ya € A

F(b) = g5(b),Vbe Ay
(6)

D. Rate Region of A MSNC Network

Given a MSNC network A = (S,&,7,Q,W), denoted
as Ys;,s € S and Ug,e € & the discrete random variables
representing source messages and edge messages respectively.
Let w = [ws|s € 8] and 7 = [R.|e € £] be the source rates
and edge rates respectively, where wy < H(Y;) denotes the
slack variables on source entropy and R, > H(U,.) the edge
capacity. The rate region R.(A) of a network A is defined as
follow,

Definition 5. (rate region of a network) The rate region R.(A)
of a network A is the collection of all achievable rate vectors
T

As was originally proved in [2] and later extended in
(18], R.(A) can be determined implicitly from the following
equation,

Re(A) = proj,. ,, (con(T'E N L12) N L34) @)

where con(B) is the conic hull of B, and proj, ,(B) is the
projection of B onto the coordinates 7, L;; indicates the
intersection of spaces £; and £; with each of which denoted

’ L1 = {[r,w,h]| h(S) = > h({s})} (8)
seS
Ly = {[r,w, h]|h(out(g)[in(g)) =0, Vg€ Q} 9)
Ly = {[r,w, h]|h(out(g)[in(g)) =0, Vge W}  (10)
h({s}) > ws, Vs S8
La= {[r w, h] h({e}) < R., Vee 5} (b

This paper studies a closely related outer bound R2(A) of
Re(A),

Re(A) = RE(A) = proj,. ,(IF 0 La) (12)

where Lp = L12 n L34 denoting the collection of all network
constraints of A. . We can infer from corollary 1 and footnote 1
in [19] that R..(A) is strictly equal to R2(A) if T'5, = con(T'%).

As explained in [20], an outer bound of R.(A) can be
obtained by replacing I'% in with its outer bound. For
example, let 'y be the Shannon outer bound of FT‘, then the
corresponding outer bound R(A) to the rate region is given
by




Re(A) € RU(A) € R(A) = proj,. ,,(Te N La) (13)

The problem with calculating R(A) is that is involves project-
ing a very high dimensional polyhedral cone, which makes
it computationally infeasible beyond networks with 10s of
sources and edges.

E. Main Results

There are three main results in this paper. Firstly a new
theorem that implicitly determine the rate region is proposed
in section and is proved in detail in section Then a
systematic way of applying the theorem to calculate explicitly
the outer bound to a rate region is proposed in section [V] For
some MSNC networks (for example the network in Fig[I), our
method involves the projection of a exponentially simpler
polyhedra than the traditional method of calculating R(A) in
(T3). Finally in section we show that there are infinitely
many networks where our new rate region calculation method
can be applied upon.

III. DEFINITIONS AND PROBLEM FORMULATION

Consider a MSNC network A = (S,&,T,Q, W) with E =
S U € denoted as the set of source and edge labels. Define the
following,

Definition 6. Let E = Ey U FE5 and E1nEy # O and denoted
as 251 U 252 the union of two power sets, define.

1) L L
Ghm = U, (<) TE, (14)
so that - .
5 5 E’hl € FEN hQ S F%2
Gy p, =3 heR* 22| h(A) = hy(A), YAC B,
h(A) = ho(A), VA C E,
(15)

2) Define the following region

Ropne(A) = proj,. ,(Gg, g, N La) (16)

where,

,CA:£10£20,C30£4

Condition 1. Let E = Ay U Ay U A, be a set partition, and
= Ay UA, Ey = Ay U A,. For any two entropic vectors
hi€ I‘El and ho € I"Ez, if
hl(A) = hQ(A), VA - E1 N E2
then we can find a joint PMF pg over the ground set E with
h = hg(pg) such that,

hi(A)
hy(B)

= h(A), VAC E;
= h(B), VB C E,

Theorem 1. For a network A with the set of source and edge
variables denoted as E, if there exists a non-empty partition
E=A1UA3UA,, with By = AiUA, and Ey = Ay UA, such
that: 1) A1, Ay and A, forms a valid cut and 2) Condition ]|
are satisfied. Then we must have,

R2(A) = Rine(A) (17)

This theorem will be proved in Section [V] Notice that
although in this paper it served as a premise of Theorem

Condition [I] itself is of important theoretical value. Readers
who are interested may refer to (the other ISIT 2021 draft of
ours) for more details where we proved Condition [I] is true
for some special cases.

IV. PROOF OF THEOREM[II

Lemma 1. For a network A with the set of source and edge
variables labeled as E and a non-empty partition E = Ay U
Ay U A, let BE1 = A1 U A, and E5 = Ay U A, we have

Projae Laes (T) € G5, (18)

Proof. (Proof of Lemma [I)) Pick an arbitrary vector v €
Projye, oes (I'f), then we can find a vector h € T’} such
that ¥ = proj,e, o, (), which means,

v(A) = h(A),YAC Ey or AC Ey (19)

By definition of T%, h is a limit point of T'%, so we can
find a sequence of entropic vectors (hn)nEN in T'}, that
lim,,_, o by, = h. Create from (h,)nen and h the following

terms
k = [k(A)|k(A) = h(A),YA € Ei] (20)
i [I(A)]I(A) = h(A),VA < Es] 1)
= [kn(A)|kn(A) = hy(A),YAC E1], ¥neN (22)
l = [l,(A)|l,(A) = h,(A),YACS E5], VneN (23)

It is not hard to see that by the above construction, (K )nen
and (1,,)nen are sequence of entropic vectors and that,

lim k, =k (24)
n—0oo
lim I, =1 (25)
n—00

which implies that k € T and I € '}, . Now combining
(D9, 20) and ZI) we have,

(26)
27)
which then implies that

vely (X|TE, = 0% 5

So we have v € proj,, (T');) implies that v € G%, B,» Which
ends the proof. ]

Lemma 2. For a network A with the set of source and edge
variables labeled as E and a non-empty partition E = Ay U

Az U A, such that condition [I]is satisfied, let E1 = A; U A,
and Ey = Ay U A, we have
Projosy ams () 2 T8, (X T, (28)

Proof. (Proof of Lemma Pick an arbitrary vector v €
F}E’:l X FEQ, then we can find a pair of vectors h; € I‘El
and hy € I‘EQ such that

’U(A) = h, (A), VA C E; 29)
’U(A) = hQ(A), VA < E2 (30)

which implies that,
hl(A) = hQ(A),VA c F1n Ey 31



By condition [I] we can find a joint PMF pg over the ground
set E with h = hg (pE)such that,

hy(B) = h(B), VB c Ey
Now, combining (29), (30) with (32) we have
U = Projym, or, (B) € Projye, om, (') (33)

So we have v € '}, (X'} implies that v € projye, or, (I'f),
which ends the proof. ]

Lemma 3. For a network A with the set of source and edge
variables labeled as E and a non-empty partition E = A1 U

As U A, such that condition [1]is satisfied, let B, = A; U A,
and Eo = Ay U A, we have
Projae, oms (I'%) 2 G55, (34)

Proof. (Proof of Lemma [3) Apply Lemma [2] and take closure
on both sides of (28), which gives

Projyey Loms (I5) 2 T% ﬂ %, (35)

Notice that,
%, (X Tk, 2 95, 5, (36)
Projoey Laea (Th) 2 Projoe, Loes () (37)

So we have,

Projos, Loms (I'h) 2projae, oe,s (I'F)
or% ﬂ I%,
QgEl ,Ea n

Proof. (Proof of Theorem[I) Let £y = A; U Ay, Ex = Ay U

A,
Ro(A) = proj,. (L' N La)
T .
= proj,. ., (projysy e (K N La))
T . Syl
:2 prOJr w(prOJQEl u2E2 (FE) N EA)
(G5

T3 .
= PIOJy, »
- Ri}ne (A)

(38)

1,By M La)

where 77 holds because projections can be done gradually by
projecting out first the dimensions not in 251 U 252 and then
the dimensions not in 7; 75 holds because it can be implied
from the definition of valid cut that each inequality or equality
that defines £a will act only on dimensions in 2F1 U 2F2; Ty
holds because combining Lemma [I] and Lemma [3] we have

= g%l,E2 u

V. APPLICATION OF THEOREM [I]

Projoe; Joss (@)

The following 4 questions will be addressed in this section:
1) How to apply Theorem [I] to rate region calculation? 2)
What is the advantage of applying Theorem (1| compared with
the traditional way of calculating R(A) to determine the rate
region? 3) How many networks are there such that a valid cut
exists? 4) What if Condition [I| is really hard to verify and
even to be false in some cases?

A. How to Apply Theorem [I|

In general, R, .(A) can not be calculated directly due to
the fact that I';; (or I'};) ) is non-polyhedral when |E; | > 4 (or
|Es| = 4). So to apply Theorem' we followed the same trick
as (T3) to substitute Shannon outer bound of FE (and 1"*2)
into (T6) and obtained an outer bound R,y (A) of R, .(A)

as,
’R’;ne( ) = ROTLe(A)

= pr0j,. o, (Projaes Loma (T, () T ) 0 £a)
(39)

After calculating R,,.(A), we then test to see if Ropne(A) is
the true rate region (achievability proof). Notice that for the
achievability proof it is suffice to show that all the extreme rays
of Rone(A) are achievable, the rest of non-extremal rays can
be achieved by time-sharing between the codes that achieve
the extreme rays.

B. The Advantage of Applying Theorem

The basic idea is that computing R,,.(A) is in general
faster than computing R(A), which is due to the fact that
'y, (\ I'g, may have exponentially less dimensions and
inequalities than I'p. For example for the network A shown
in FigD] I'p, R Tp, is a 2° +2° —2° — 1 = 959 dimensional
polyhedra cone that is characterized by 2(9 + (g) 27) = 9234
inequalities while T'z is 2'2 — 1 = 4095 dimensional and
contains 12 + (})21° 67586 inequalities. To directly
compare the difference in terms of computational complexity,
we tested our ideas on ITCP [21]], a rate region computation
software, and found that for the network A in Fig while
Rone(A) turned out to be equal to R(A), it took less than
10 minutes to calculate R,y (A) but more than 24 hours to
calculate R(A).

C. Infinitely Many Networks Where a Valid Cut Exists

When moving from theory to application, one of the natural
questions to ask is how many instances are there satisfying the
premise of a theorem. To show that the power of Theorem T]is
not limited by the requirement of valid cuts, in this subsection
we offer an inductive argument to show that there are infinitely
many networks where valid cut exists.

A
DA,
T
1 9 I3 ‘4 i1

Figure 3: Network A; and a valid cut with A; = {1}, A =
{3} and A, = {2,4}

Take the network A; shown in fig[3] which is arguably the
simplest network such that a valid cut exists, as the base case
in our inductive argument. Two dotted rectangle boundaries are
introduced as helper lines to separate the figure into 3 disjoint



areas Aj, Ao and A,. Collecting the network variables within
each area into a set, then we have three disjoint sets A; = {1},
Ay = {3} and A, = {2,4} obviously forms a valid cut of the
network.

The key of our inductive argument is to define proper
network extensions such that any network extended from the
base network A; is also a premise-satisfied network. To do this
let’s first define the notion of proper sources, proper edges and
proper nodes.

Definition 7. A source s is proper source if s € Ay. An edge
e is proper if e satisfies EXACTLY one of the followings: e €
A1 oree As or e € A,. A node g is a proper node if its
outgoing and incoming messages satisfy AT LEAST one of the
followings: (in(g) v out(g)) N Az = & or (in(g) v out(g)) N
A= (.

Then we argue that the premise-satisfied extension can be
achieved by adding proper sources, proper edges and nodes.
As shown in figH]is such an example where the network A is
extended from A; by adding one proper source 5, proper edges
6,7 and proper nodes g1, go and t;. Notice that now the set
A; associated with area A; becomes A; = {1,5}, A3 = {3}
and A, = {2,4,6,7} and one can easily verify that they also
form a valid cut.

A

Figure 4: Network A, and a valid cut with A; = {1,5}, Ay =
{3} and A, = {2,4,6,7}

Now, to finish our inductive argument, let’s assume that A;
is a premise-satisfied network extended from A; by adding
proper sources, nodes and edges, and let Ay, Ao and A, be
those three distinct areas associated with A; 1, A; 2 and A; ,
respectively. Let A; = (S;,&;,7;,Q;, W;) be the network
extended from A; by adding finite number of proper sources,
proper edges, and denoted as A; 1, A;2 and A;, the set of
network variables associated with A;, A, and A, respectively
after extension and let E; 1 = A; 1 UA;,, Ejo = Aj2UAj,.
Firstly, It is not hard to see that A; 1, A;2 and A, , forms a
partition and each of them is not an empty set. What’s left is
to show that:

B.1 {out(g),in(g)} < 2%t or {out(g),in(g)} < 2%i2, Vg €
Qj % Wj

B.2 Sj < Ej’l or Sj < Ej’g

To show @ consider that any node g € Q; U W; is a proper

node so we have (in(g) v out(g)) N A2 = J or (in(g) v

out(g)) n.A; = &, which implies that {out(g),in(g)} < 2Fi1

or {out(g),in(g)} = 2%i2. To show consider that any

proper source s € S; is a proper source, so we have s € A;,
which implies that S; € A1 € Ej 1.

A generate network of such is shown in Fig[5|to help readers
better visualize the above proved extension process.

Ar
P A,
A e e A
T -4 -0 ol :
o4 S Cndl Ok

Figure 5: A general network extended from A; that a valid
cut exists

D. The Uncertainty of Condition [I|

In a companion manuscript [22] we prove an infinite series
of situations in which Condition E] holds. More broadly, even
when condition 1 is not satisfied for a valid cut, an outer bound
is still obtained. Indeed if we assume only the existence of a
valid cut but not Condition [I| then based on Lemma [I} T3
in changes from “is equal to” to “is a subset of”’, which
gives,

RE(A) € Rone(A) (40)
Now combining (39) with (@0) we have,
R2UA) S Rone(A) S Rone(A) 41

So one can see that no matter Condition [I] is assumed or not,
Rone(A) is an outer bound of RI(A), the systematic way of
first computing R,,.(A) and then determining if it the true
rate region is still valid.

VI. CONCLUSION

In this paper, a new theorem that implicitly determines
the rate region of a network is proved and a corresponding
systematic way of applying the theorem to calculate explicitly
the outer bounds to a rate region is proposed. Compared with
the traditional method, the major advantage of our method is
that for some networks it is suffice to project an exponentially
simpler polyhedra to obtain their true rate region. An inductive
construction shows that there are infinitely many networks
where the proposed method can be applied upon.
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