902 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Interlocking Block Assembly With Robots

Yinan Zhang

Abstract— This article presents a design for interlocking blocks
and an algorithm that allows these blocks to be assembled
into desired shapes. During and after assembly, the structure
is kinematically interlocked if a small number of blocks are
immobilized relative to other blocks. There are two types of
blocks: cubes and double-height posts, each with a particular set
of male and female joints. Layouts for shapes involving thousands
of blocks have been planned automatically, and shapes with
several hundred blocks have been built by hand. This article
also describes a method for assembling structures from blocks in
parallel. As a proof of concept, a dual-robot system was used to
assemble 48 blocks, forming an interlocking cube-like structure.

Note to Practitioners—This article was inspired by existing
work on interlocking joinery structures, modular robots, and
construction robots. We present designs for two interlocking
blocks that can be assembled into larger rigid structures. Blocks
of this type are a promising future construction material. Only
translation is needed to assemble the blocks, simplifying robotic
assembly, and the mortarless construction allows for later dis-
assembly and reuse of the blocks. We propose an algorithm
that lays out blocks into desired shapes in series and developed
a dual-robot system to assemble 48 blocks automatically. Our
physical experiments show that joint manufacturing precision is
critical to the ease of construction and the rigidity of the finished
structure. We also present a layout algorithm that enables parallel
assembly, allowing multiple robots to work on the same structure.

Index Terms— Assembly, construction, interlocking struc-
ture, manipulation, manufacturing, material/parts handling,
mechanisms.

I. INTRODUCTION

HE goal of the work described in this article is to enable

robotic assembly of large structures from blocks that
interlock without the need for glue, cement, screws, or other
connectors. Fig. 1 shows one model for which layouts and
assembly plans were generated automatically by the presented
algorithm. The motion of blocks is constrained by joints
(See Fig. 2); later blocks reinforce and immobilize prior
blocks. Each structure has a few blocks that can move, called
keys. If the keys are fastened to the structure, the structure is
rigidly interlocked.

Manuscript received January 16, 2021; accepted February 23, 2021. Date of
publication April 21, 2021; date of current version July 2, 2021. This article
was recommended for publication by Editor L. Tapia upon evaluation of the
reviewers’ comments. This work was supported in part by the Seed Funding
through the National Science Foundation (NSF) under Grant IIS-1813043 and
in part by the Dubai Future Foundation. (Corresponding author: Yinan Zhang.)

Yinan Zhang and Devin Balkcom are with the Department of Com-
puter Science, Dartmouth College, Hanover, NH 03755 USA (e-mail:
yinan.zhang.gr@dartmouth.edu; devin.balkcom@dartmouth.edu).

Yotto Koga is with Autodesk AI Lab, San Francisco, CA 94111 USA
(e-mail: yotto.koga@autodesk.com).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TASE.2021.3069742.

Digital Object Identifier 10.1109/TASE.2021.3069742

, Yotto Koga™, and Devin Balkcom

SUN

A

&

€<
¥

S
€< 7
=X S %

(a) (b)

Fig. 1. Interlocking chairs in simulation and assembled by hand. We used two
kinds of blocks to build this structure. There is only one block removable on
the top of the chair. (a) Chair model automatic laid out in simulation. (b) Chair
assembled by hand.

A collection of rigid bodies is kinematically interlocked
if there is no motion of the system that does not cause
collision. For example, the pieces of a planar jigsaw puzzle
are interlocked once assembled, if motion is restricted to the
plane. The blocks presented in this article may be thought
of as 3-D jigsaw pieces; the keys are the last pieces placed.
Disassembly of the structure can be achieved by reversing the
assembly order.

This article extends work presented in [1] to demonstrate
the robotic construction of structures using two 6-DoF robot
arms. We will explain in detail how depth cameras and deep
neural networks are combined to sense block configurations
and pick up blocks in random poses. This article also describes
how to reorient a block to the orientation needed for assembly,
by iteratively regrasping the block using the two arms.

Kinematic interlock presents some advantages over tradi-
tional connection methods, such as glue, cement, screws, nails,
or friction locks. The interlocks may be structurally strong,
allow simple assembly by robots, allow disassembly, and reuse
of the components, and maybe suitable for underwater or
other environments where adhesives are ineffective. Fabricat-
ing in parts may present some advantages over traditional 3-D
printing. Individual components may be fabricated efficiently,
packed for storage and transport, repaired or replaced as
needed, and allow design changes.

The algorithm described in this article takes a voxelized
3-D model as input and finds an assembly plan such that the
interlocked structure covers the specified voxels. There are two
types of blocks: 1 x 1 x 1 cubes and 1 x 1 x 2 posts, with
connectors arranged in a particular way. Assembly requires
only translation motions.

The main insight of the block designs and layout algorithms
of this article is that a collection of rigid blocks may be

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5420-1196
https://orcid.org/0000-0003-1126-4864

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

interlocked if there is a cycle, or closed loop, of joints that
permit translation only in conflicting directions. We design
small structures containing only a handful of blocks, with the
property that if the last block were to be glued to an adjacent
block after assembly, an interlocked closed chain would be
formed. Fig. 3(c) shows an example; block 4 in the figure is the
key and may be removed only by translation out of the page.
We then show how this small structure may be extended by
creating a new, overlapping cycle of blocks, such that if the
key of the new cycle is glued, the new cycle attaches the prior
key to the structure without the need for glue. In Fig. 3(c),
the next cycle of blocks would hold block 4 in place. Larger
structures are then built from these overlapping cycles.

A. Applications and Limitations

The work aims to design blocks and layout patterns that
make robotic construction as easy as possible. Assembly of
the blocks requires only orthogonal translations that may be
accomplished in principle by robots with only three degrees
of freedom. Any contiguous shape that can be described on a
voxel grid can be build using the blocks.

This article focuses primarily on the geometry of a particular
design of blocks and associated layout algorithms. As such,
many critical issues that would need to be solved for a practical
system have been neglected. Chief among these is the need for
analysis of the rigidity and robustness of the final structures.
Due to manufacturing limits, joints do not match perfectly,
and for some shapes, small errors may add up, which leads
to undesirable aggregate flexibility, as explored in [2]. The
physical experiments conducted use 3-D printed blocks and
are no more than a proof of concept, using a small number of
blocks. Given the success of Lego blocks, we do believe that
better manufacturing processes would allow extension to very
large structures.

Although the algorithm presented can lay out essentially
arbitrary voxelized structures, overhanging components of lay-
ers are not interlocked until a second identical layer is placed
above. This means that some external, though temporary,
means of support are needed during construction, just as in 3-D
printing. Algorithms for placing support material efficiently
can be found in [3]-[5]. Unlike 3-D printing, block assembly
only requires temporary support until a substructure is inter-
locked. This observation could inspire special position-holding
robots to provide necessary support for overhanging layers.

We would also like to gain a better understanding of how
to design and analyze block types and layout algorithms.
Effectively, the block types designed are the result of creative
thought to generate small overlapping cycles, with posts that
allow connections to the succeeding layer. Other forms of
interlock might allow even simpler assembly or more robust
structures; a primary objective of future work is to design
mathematical or mental tools to find other block designs.

II. RELATED WORK

Interlocking structures have a long history. Wood joints,
such as the dovetail and mortise and tenon, are used in carpen-
try around the world; in China and Japan, complex interlocking
designs have permitted the construction of wooden buildings

903

with no screws or nails [6]. In the paleontology community,
evidence has recently been presented that supports a hypoth-
esis that the backbones of theropod dinosaurs interlocked to
provide support for the extremely large body mass [7].

The concept of interlocking block assembly was previously
presented in [8]. However, the technical work in this article
is effectively entirely new. New block designs and layout
algorithms enabled the reduction of the types of blocks needed
from nine to two and have allowed structures that appear
to be more robust and easier to assemble. This article also
explores the construction of physical structures much larger
than previously built (406 pieces compared to 64), as well as
a more convincing demonstration of robotic assembly. New
theoretical contributions include an analysis of how blocks
may be assembled in parallel, speeding up assembly.

The present work is closest in spirit to Song et al. [9]-[14],
which considers the problem of designing reusable compo-
nents to be assembled into different forms relying on geomet-
ric constraints; the primary contribution of the current work
is a universal block design and layout algorithm that allows
construction of arbitrary geometries. Yao et al. [15] proposed
a method for interactively designing joints for structures and
analyzing the stability. Kong and Kimia [16] applied curve
matching techniques for finding solutions for assembly of 2-D
and 3-D interlocking puzzles; the layout algorithms considered
in this article generate assembly motions together with the
design. Wang et al. [17] proposed an algorithm to assemble
convex blocks into a given freeform surface. Although the
blocks presented have no joints or external connectors, they
still found structurally stable and globally interlocking assem-
blies possible.

Robotic construction research dates back to the 1990s when
Andres et al. [18] created a prototype, ROCCO, capable of
gripping and laying bricks. The same robotic system was later
applied to site assembly operations by Balaguer et al. [19].
More recent works include DimRob, a system with an indus-
trial robot arm mounted on a mobile platform [20] used for
construction tasks. This prototype was later developed into a
mobile robot, In situ Fabricator, for construction at 1:1 scale
[21]. Roombots [22] are another example of modular robots
that can self-reconfigure into various furnitures, along with
other manipulation and gripping capabilities. Kubits [23] is
another example of 3-D self-reconfiguring modular robots.

Willmann et al. [24], for example, used autonomous fly-
ing vehicles to lift and position small building elements.
Augugliaro et al. [25] demonstrated a system of multiple
quadrocopters precisely laying out foam blocks forming a
desired shape. Lindsey er al. [26] built cubic structures
using quadrocopters. Augugliaro et al. [27] explored another
approach of construction: quadcopters assembled a rope bridge
capable of supporting people. Keating et al. [28] built a large
mobile 3-D printer using a robot arm to extrude adhesive
materials.

Instead of focusing on the robot control system to carry
building elements, some researchers designed new building
elements. Rus and Vona [29] developed crystalline, a mod-
ular robot with a 3-DoF actuation mechanism allowing it
to make and break connections with other identical units; a

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

904 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

(a)

(©)

(d) (e)

Fig. 2. Three different joint pairs and detailed design. (a) Mortise and tenon
joints. (b) Dovetail joints. (¢) Two-way joints. (d) Tenon joint. (e) Dovetail
joint.

set of such robots form a self-reconfigurable robot system.
White et al. [30] introduced two 3-D stochastic modular robot
systems that are self-reconfigurable and self-assemble-able
by successive bonding and release of free-floating units.
Romanishin et al. [31] proposed a momentum-driven mod-
ular robot. SamBot, a cube-shaped modular robot with
rotation mechanism, was introduced by Wei er al [32].
Daudelin er al. [33] present a self-reconfigurable system that
integrates perception, mission planning, and modular robot
hardware. Tosun et al. [34] created a design framework for
rapid creation and verification of modular robots.

Swarm robot can also be used to assemble structures at the
microscale where controlling each individual robot is difficult.
One approach is to use global control signals, such as gravity
and magnetic field. Becker et al. [35]-[37] took this path and
showed the feasibility of reconfiguring massive particle swarm
robots with limited controls. The authors’ own work [38]
shows some reconfiguration tasks can be performed efficiently
in a small space. Manzoor et al. [39] and Schmidt er al. [40]
proposed parallel mechanisms to make the assembly even
more efficient. Kilobot, a swarm of 1024 mobile robots, was
introduced by Rubenstein et al. [41], along with algorithms for
planning mechanisms allowing kilobots to form 2-D shapes.

Inspired by LEGO, Schweikardt and Gross [42] proposed a
robotic construction kit, roBlocks, with programmable cubic
blocks for educational purpose. With the recent development
on deep learning, generative models based on graph-structured
neural networks are also applied to assemble structures using
LEGO [43].

III. INTERLOCKING BLOCKS AND CONSTRAINT GRAPH

In this section, we first introduce the three joint types
used in the design. We also present a graph-based method
for analyzing the relative movement of objects connected by
these joints. Our design choices and layout algorithms are
primarily inspired by this analysis. We found that globally
interlocked large structures can be assembled from locally
interlocked substructures and presented a high-level algorithm
to achieve this goal. Details of how each part of the algorithm
is implemented are discussed in later sections.

A block is a rigid body that has joints allowing assembly
with other blocks, typically by sliding one block against the
other using a simple translation. Fig. 2 shows three different
joint pairs that we use to connect blocks. A mortise and

e

S
[]

(a) (b) (©

Fig. 3. Assembling a nearly interlocking four-block square. Arrow indicates
the assembly direction. Block 4 is the key. (a) Tenon joint. (b) Tenon joint.
(c) Dovetail joint assembled from top to down.

tenon joint pair [Fig. 2(a)] allows blocks to be disassembled
only in the nonpenetrating normal direction of the contact
surface. A dovetail joint pair [see Fig. 2(b)] allows block
motion only in a particular tangential direction. The third
joint pair we use in the current design is a two-way joint
[see Fig. 2(c)], which allows motions of associated blocks
in both normal and tangential directions. The dovetail and
mortise and tenon joints fully constrain rotational motion, but
the two-way joint permits one rotational degree of freedom.
These joints are chosen because of their simplicity in man-
ufacturing and assembly effort. We manufactured the joints,
so the front part in the insertion direction is thinner and
thus reduces surface contacts, providing better error tolerance
[see Fig. 2(d) and (e)].

Blocks are assembled into a structure in order, and the last
block assembled can be removed by reversing the most recent
translation assembly motion. Therefore, the last block assem-
bled must be attached to the structure using glue, friction,
a screw, or some other external method; we call such a block
a key.

Fig. 3 shows a 2-D projection of an interlocking structure
assembled using blocks with dovetail and mortise and tenon
joints. First, block 2 is assembled to block 1, using a tenon
joint on the top of the blocks and moving block 2 in the
positive y-direction, assuming a coordinate frame aligned with
the page. Block 3 then slides in and connects with block 2 by
another tenon joint. The final block is assembled from top to
down, connecting blocks 1 and 3 using two dovetail joints and
limiting blocks 2 and 3 to move in y negative or x positive
directions.

A. Constraint Graph

To better understand how joints constrain motions, we rep-
resent a structure using a directed graph. Each vertex in the
graph represents a block. A pair of directed edges are added
between vertices corresponding to blocks that are in contact;
w(e;, ;) denotes the set of permitted motions of j relative to i.

Consider a partition of the graph into some nonoverlapping
subsets of vertices. A partition is separable if there exists
a motion that satisfies constraints by all in-edges along the
boundary of the subset of vertices. In this particular work,
the block and joint design limit motions of every block
to translations directly along axes, simplifying the analysis.
(The two-way joint is used only as an auxiliary connection
for blocks whose motions are already constrained to pure
axis-aligned translations by other joints.)

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

Fig. 4. Four-block interlocking structure and its graph representation.
(a) 2 x 2 interlocking structure. Numbers indicate the order. Block 4 is the
key. (b) Graph representation. Each edge allows some motions for associated
blocks.

()
X+\:_ / X‘_\Yj
cal

Fig. 5. Any interlocking substructure can be viewed as two nodes in
the graph, which simplifies the graph representation. (a) Two interlocking
substructures connected by a dovetail joint and a mortise & tenon joint.
(b) Forming a larger interlocked structure from two interlocked structures.

Fig. 4(b) shows an example of a constraint graph for
the previous example of a four-block interlocking structure.
Consider partitioning the structure into two parts {1, 2} and
{3, 4}. These parts are inseparable since w(ez3) N w(e;4) =
{x+}N{z+} = @. By checking more partitions of the structure,
we find that only {1, 2, 3} and {4} are separable. If block 4 is
attached to either of its neighbors, the structure is rigid.

We call a structure k-interlocked, if when k keys are
attached to neighbors, no partition is separable. The example
structure is 1-interlocked with block 4 as the key.

Analyzing a large structure gets difficult when there are
a large number of blocks because the number of possible
partitions on the graph increases exponentially. Fortunately,
proof that a complete structure is interlocked can be accom-
plished in a hierarchical fashion, by first showing that smaller
components are interlocked and then using those components
to build larger interlocking structures.

Fig. 5 shows an example of how a larger interlocking
structure can be built from smaller interlocking substructures.
Interlocking substructures A and B are similar to those shown
in Fig. 4(a); the careful eye may note some additional geom-
etry on each block representing dovetail joints attached from
the side; these joints provide some redundant constraints that
add rigidity to the final structure.

905

The keys of the substructures are K4 and Kp and are not
considered to be part of A and B. To show that the entire
structure is 1-interlocked by Kp, it is sufficient to consider
only partitions that separate K4 from A or Kp from B since
A and B act as rigid bodies if their keys are not separated.
Fig. 5(b) shows the graph representation.

B. Overview of the Layout Algorithm

The example above suggests an approach to constructing
large interlocked structures. We can build four-block inter-
locked squares and use a second interlocked square to build
an eight-block rectangle [see Fig. 5(a)]. Inductively, we can
extend the rectangle as far as we like by adding additional
squares to the end; we call such a structure a segment.

Intuitively, some additional connections might be added to
connect segments to form a flat structure that we will call a
layer. The 3-D volumes may then be constructed from stacks
of layers. Fig. 6 shows a conceptual picture, with the single
key block of each new larger structure shown in red.

The remainder of this article addresses the details needed
to allow the implementation of this process. How should
segments interconnect to form a layer? How should layers
interconnect? How should joints be arranged on blocks to
allow creating segments and layers from only a few types of
blocks? How should layers be automatically shaped to allow
construction of geometries more interesting than large cubical
volumes?

Algorithm 1 presents an overview of the layout algorithm.
A model is assembled layer-by-layer from bottom to top. Each
layer itself is an interlocking substructure that also constrains
the movement of a previously built layer’s key(s). The details
will be discussed in later sections, as indicated by the section
numbering indicated in the algorithm; the reader may wish to
only skim the algorithm on first reading. For now, it is worth
noting that the input to the algorithm is a voxelized model
describing the desired output shape. Each voxel is further
subdivided into eight subvoxels; each subvoxel will effectively
be instantiated by a block.

The blocks are labeled by layer and segment. Layer and
segment labels allow the assignment of joint types that must
connect adjacent blocks. Once the joint types have been
assigned, blocks providing these joint types can be selected.
The output is a sequence of block assembly orders that
constructs an interlocking structure shaped as the input model.
Since our model is built layer-by-layer, the final structure will
have k keys, where k is the number of layers that do not have
another layer on their top.

One critical observation is that joint types for a pair of
blocks are selected by the layout algorithm based on the
location of those blocks in the segment and layer. Since there
are three joint types, each male or female, and six faces
on a cube, this suggests that there might be 6° = 46656
different types of blocks to construct. Fortunately, patterns
in the segments and layers mean that not all of these block
types occur. Further tricks allow the reduction of the number
of block types to two. As an example, consider the blocks
in Fig. 5(a). Adding a mortise joint on the right side of block

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

906 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

—

/

=

/\\\

T
———
P —
-

/
L
\

\

Fig. 6.
interlock to form the structure. The keys are marked red.

Kp makes it a copy of K4, reducing the number of types of
blocks.

It is also worth pointing out the approach we have taken
to connecting adjacent layers. To provide a firm connection,
we use a block of height two as a connector between layers;
we call this block a post.

Algorithm 1 Algorithm Overview

1: function CONSTRUCTVOXELMODEL(M)

2: M’ < split every voxel into eight dimension-1 cubes.
3: for each layer L; of M’ from bottom to top do

4: Lay out any missing posts.

5: if L; is an even layer then

6: Set all segment types to X;_Y.. (Sec. V)

7: else

8: Decide the key to each component. (Sec.VI-A)
9: Order segs in each component. (Sec.VI-B)

10: Decide the key(s) to each segment. (Sec.VI-B)
11: Decide the type of each segment. (Sec.VI-B)
12: Find special cases. (Sec.VI-C)

13: Modify L; and L;y; if necessary. (Sec.VI-C)
14: end if

15: Assemble blocks (in parallel). (Sec.VII-A)

16: end for
17: end function

IV. BLOCKS AND SQUARES

In this section, we will introduce the smallest interlocking
structures, a square, and the two kinds of blocks that make the
structure possible. Squares serve as the fundamental element
of our construction. Larger structures assembly will be later
introduced by connecting squares.

The layout algorithms make use of two types of blocks:
a cube is a unit-cube-sized block for filling empty space
in a layer and locking with existing blocks, and a post
is a two-unit high block (see Fig. 7). The lower half of
a postblock connects with cube blocks in the same layer,
whereas the upper half of the block connects with cube blocks
in the upper layer. The postblocks also act as key blocks of
substructures.

We carefully analyzed segments and layers to determine
how joints might be arranged on cubes and posts. A cube
block has two dovetail male joints on two opposite sides that
can connect, in a tangential direction, with female joints in
postblocks allowing motion only in the assembly direction.

Building an interlocking 3-D structure. Blocks interlock to form a square, squares form an interlocking segment, segments form a layer, and layers

Fig. 7. Different views of cube and postblocks.

Fig. 8(a) and (b) shows how a cube’s side male joints con-
nect with a post’s female joints in two different directions.
A cube also has a male joint on the bottom that connects,
in the normal direction, either with the top of a cube or
post. The female joints on the opposite sides of the cube
block allow postblocks’ male joint to drop and slide to con-
nect, which allows the postblock to disassemble only in two
directions.

To describe a layout and an assembly process, some notation
is helpful. For each block, we use a triplet of characters indi-
cating the block type, orientation of the block, and assembly
direction. Fig. 9 shows all of the triplets used in the assembly
of structures in this article. For example, C1D means “Cube
in orientation 1, assembled by moving down.” Fig. 9(b) shows
all of the notation triplets used in the current approach. Not
all axis-aligned orientations of cubes and posts are needed to
construct structures; for example, posts only occur in the four
orientations generated by rotating the post in Fig. 7 around
the z-axis in 90° increments.

Block designs are crafted to allow the design of squares,
segments, and layers. A square is the smallest interlocking
structure we consider, composed of four blocks: two posts and
two cubes. By using posts and cubes in different orientations,
different squares may be constructed, as shown in Fig. 8(e)
and (f) as S, and S,. Different squares will be used in
Section VI to constrain key block motions of other adjacent
segments in the same layer, allowing interlock of the layer.

Fig. 8 shows the process of assembling one kind of square.
The first piece, a post, may connect to a layer below the current
one. Two cubes are added to the top of the post. The second
post acts as a key, and the top half of this post extends above
the square to provide a connection to a square that may be
later built above the current one.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

Fig. 8. Assembly process of a square and two designs for a square. (a) Slide
in a C8W block. (b) Drop in a C3D block. (c) Assemble a PIW block. (d) Top
view of the square. (e) S, square. (f) S, square.

C1D C2D C3D C4D
_rl
i =weE
C5N C6E C7S C8W
(@)
£ S L=
P1IW PIN P2N P2E
=) T
P3S P3E P4W P4S
(b)

Fig. 9. Different ways to assemble cube and postblocks and corresponding
notations. (a) Cube orientations and assembly directions. (b) Post orientations
and assembly directions.

V. SEGMENTS

We now introduce a method to link squares into a longer
interlocking structure, a segment. A segment is composed of
n squares in a 1 x n pattern. To build a segment, we assume
that n posts have already been preplaced in the prior layer
such that the top of each post appears in the same position in
each square; these posts allow the segment to interlock with
the prior layer.

We will discuss how to assemble a simple segment built
from left to right in the direction of the x-axis, assuming that
posts are in the upper (or y+) half of each line; other segments
are symmetric and will not be discussed in detail. We denote
a segment as Y, X if the posts are in the left position of the

907

(e]

7
Mo by |

m
|
.
|

.

OQ 2?:10?1 5 0| 7
=

\% 1# 3# 4# 6 8 | 9
T L S P

S

ﬂﬂéﬁ_ﬂ_ﬂ

[

I
e

pLu

Fig. 10. Simple segment and an example layer built by connecting two
segments. (a) Two Y+ X4 segments. (b) Layer built by two Y;+ X segments.

y positive half and the segment is built toward the x positive
direction with the key block at the end.

Fig. 10(a) shows the process of assembling a Y;; X seg-
ment of three squares. We connect, from left to right, n —1 S,
squares. The final square of a subsegment can be of type S,
or S,. The key piece of the segment is the last assembled
postblock. A subsegment with an S, final square is not
interlocking, but when connected with previous segment(s),
the S, square prevents the adjacent block in the y positive
direction from moving and interlocks the structure. Building
another Y;; X, segment on the y negative side will create
an interlocking layer [see Fig. 10(b)]. In Section VI, we will
discuss how to constrain the motion of the key in different
types of segments.

A. Structure Mirrors

Knowing how to assemble Y;, X, segments, one can lay
out an array of segments one-by-one and create interlocking
planar structures as in Fig. 10(b). However, these structures
require the key to every segment to be in the x positive end
and constrained by the next adjacent segment. To build more
complicated planar structures, we introduce the concept of
mirrors.

Definition 1 (x-Mirror): Object A is an x-mirror, m,(B),
of another object B if one is a reflection of the other with
reflection plane perpendicular to the x-axis.

We define an analogous y-mirror operation. Cube and post
designs are symmetric in such a way that x and y mirror
operations can be accomplished by simple rotation of the
block. Construction of a mirrored structure follows the same
order of the original structure with opposite directions along

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

908 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

"""" [
BX, | BX, |
(b)
— ——
4 12
o 240 -"IOI"- 05 100 7

133+ 113938
2 15

VX, e VX |

©

Fig. 11. Construction of two x-mirrored segments. Arrows indicate con-
struction direction. Numbers indicate assembly order. (a) Y, X, segment.
(b) Y;+ X_ segment. (c) Pair of segments with keys in the middle.

the same axis; for example, we may build a Y, X_ segment
by x-mirroring a Y;; X, segment.

Two other types of segments we will need for layer con-
struction are Y, X, [see Fig. 11(a)] and its x-mirror Y;. X_
[see Fig. 11(b)]. To build a Y, X, segment with n squares,
where n > 2, we first assemble two blocks (C3D and P1W)
in the left two positions. Then, assemble a Y, X segment of
n — 1 squares. When all preexisting posts are prevented from
moving along the z-axis, the segment is interlocked.

For many input geometries, it may turn out that neither
end of a segment is adjacent to the next segment, causing
the key to be exposed. In this case, we may replace a single
segment with two segments grown from the ends, effectively
allowing placement of a pair of keys at an arbitrary position
in the middle, as shown in Fig. 11(c). These keys may then
be immobilized by later segments.

VI. LAYERS

Now that we know how to build different kinds of segments,
we can connect a set of segments on the same plane to create
complicated interlocking 3-D structures, by careful assignment
of subvoxels from the original model into layers, segments,
squares, and blocks.

A layer is a set of squares with the same z-coordinate.
A set of connected squares with the same z-coordinate is a
layer component. We assume that all layer posts are provided
by the prior layer. This is a fundamental limitation of our

approach—it does not allow overhanging structures to be
generated without building additional supports.

This section first introduces the ordering of segments in a
component. Once ordered, segments are ready to be assigned
square types and assembled. Then, we discuss some special
cases caused by the nature of our block design and square
structure, and techniques to ensure interlock.

A. Layer key(s)

As the first step of building any interlocking structure,
we determine the key(s) of the layer. A layer is immobilized
if the key(s) is fixed with respect to its neighbors. Since every
even layer has an upper layer with the exact same shape,
based on the division of voxels into subvoxels, postblocks that
connect the upper layer will be immobilized as long as the
upper layer is interlocked, preventing the horizontal motion of
any posts. Therefore, we only consider the odd layers in this
section.

For any odd layer component without adjacent upper layer
blocks, we select a postblock at the x negative end of a
boundary segment as the key, where a boundary segment is a
segment with adjacent neighbors on only one side. If the odd
layer component has an adjacent upper layer, the key can be
any postblock covered by an upper layer square.

Under this rule, every layer component constrains the key
to its lower component. Any layer components that do not
have an immediate upper layer introduce a new key that
will not be covered. The number of key pieces of the whole
structure is thus the number of layer components without an
immediate upper layer. This introduces an interesting effect of
the orientation of the object to be constructed. For example,
the chair in Fig. 1(a) has a single key, but if the chair were
built upside-down, then there would be four keys: one in
each leg.

B. Segment Construction Order

Once a layer’s key square and all starting posts of squares
are known, the second step of assembling a layer is to
determine the order and type of each segment.

In the preprocessing step, every voxel is broken into two
squares, making every layer of voxels two layers in the
assembly. The bottom layer has an even z-coordinate value,
whereas the upper layer has an odd z-coordinate. Every
segment in an even layer is constructed along the y-axis
directions. We simply assemble every segment as X; Y, or
90° clockwise rotation of a Y, X_ segment, from left to
right. An even layer component is not necessarily interlocked
because there can be many segment keys unconstrained and
able to move in the x positive direction. However, all square
keys are posts in the upper layer, and as long as the upper
layer is interlocked or all posts are prevented from moving in
the x positive direction, the two-layer structure is interlocked.

Each square in an odd layer component is initially assumed
to have a post in the bottom-right position. This, however,
could change after the segment types have been assigned.
We first build a set of post lists where each list contains posts
with the same y-coordinate, and two adjacent posts are two

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

units away. Each list will be built into a segment. Two posts
are considered adjacent if their x- or y-coordinates have a
difference of 2. Two lists are considered adjacent they have
adjacent posts. Lists are ordered by their shortest distances to
the final list that contains the post of the key square, where
the distance between two adjacent lists is 1.

Given a list /[and the next-built adjacent list /,,, the type of
the segment S; associated with [is determined as described
next.

1) If [, is at y— side of [and the left end post of [is

adjacent to [, Sy is Y, X_.

2) If I, is at y— side of / and the right end post of [is
adjacent to [,,, Sy is Y, X 4.

3) If , is at y— side of [and neither ends of / is adjacent
to [,, S; is broken into a ¥, X_ and a ¥, X segment.

4) If I, is at y positive side of / and the left end post of /
is adjacent to [,,, Sy is Y, X_.

5) If I, is at y positive side of / and the right end post of
[is adjacent to [,, §; is Y, — X .

6) If [, is at y positive side of / and neither ends of [is
adjacent to [, S; is broken into a ¥,_X_and a Y,_ X,
segment.

The segment associated with the last built list has been

specified a key (line 8 of Algorithm 1). Its type is thus
determined.

C. Special Cases

At this point, the type of each segment and the order of
construction in each layer have been selected. Many interlock-
ing layer structures can be assembled by directly following
the construction of each segment, as specified in Section V.
However, depending on the successor segments, some small
modifications might be applied to insure the interlocking of
adjacent segments.

Consider a segment with key(s) in the y negative side, for
example, Y, X ;. Its successor can be: 1) a segment whose key
will be constrained by further segments in the y negative side;
2) a segment with the key being constrained in y positive side;
or 3) a segment whose key will be constrained by the upper
layer. We now list all possible cases that need modifications.

In Case (1), A Y;+ X segment followed by another Y, X,
segment. We use an S, square at the later built segment
to prevent the segment’s key from moving [see Fig. 10(b)].
Otherwise, a Y, X, segment always uses an S, end square.

Case (2) contains four subcases where the current segment
has one or both ends adjacent to its successor whose key
is in the x positive or negative side. Fig. 12(a) shows one
subcase. The first ¥, X, segment is still assembled as usual.
We leave some positions adjacent to the first segment unfilled
and assembled the rest part. Fig. 12(b) is a similar subcase
where both ends of the segment are adjacent to the successor.
We divide the lower segment into two segments: one contain-
ing no posts adjacent to the upper segment will be built first,
and the other containing the rest posts will be built after the
upper segment. In the other subcases, the successor has a key
in the x negative direction, and we change the upper segment
to Y4 X— and create an x-mirror of the previous case.

909

—y, X, —
(b)

Fig. 12. Two special cases of building adjacent segments. Green blocks are
posts, and red blocks are keys of each segment. Numbers indicate the assembly
order. (a) ¥;— X4 segment built after a ¥,y X4 segment. Some positions are
left empty. (b) Longer lower segment. The lower segment is broken into two
segments.

LIS

Fig. 13. Special cases where two segments with posts in different sides
are finished before the segment in the middle. Red blocks are keys of two
segments (Y,+X and Y,_ X types). Numbers indicates the assembly order.

Case (3) is shown in Fig. 13 where a Y, X segment and
a Y,_X segment are assembled before the segment in the
middle. We require the upper and lower segments’ keys to
be in different x positions. To ensure interlocking, we first
finish the upper segment and then assemble two C5N blocks
in the middle segment. After the lower segment is assembled,
we put in C3D block(s) in the middle to constrain the motion
of the lower segment key(s). The last assembled blocks (keys)
in the middle will be constrained by its upper layer. If the
upper layer is not wide enough to cover the keys, we must
expand the upper layer (Line 13 in Algorithm 1).

VII. AUTOMATIC ASSEMBLY AND
PARALLEL CONSTRUCTION

Section III-B introduced the high-level layout algorithm,
which assembles an interlocking structure layer-by-layer from
bottom to top. Each layer will be an interlocking substructure
that also connects with its lower layer using the posts and
constrains the key(s) of the lower layer. Now that we have a
better understanding of how the substructures are labeled and
constructed, we can transform the high-level algorithm to a
more detailed level and execute the assembly accordingly.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

910 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

TABLE I
PREDECESSORS OF EACH TYPE OF BLOCK
Block type Predecessors Block type Predecessors
CID, C3D (x — 1,y), | C8W (x,y + 1),
(.Z’ + 17y) (-Z’,y - 1)7
(CL’ — 1’ y)
C2D, C4D (z,y — 1), | PIW, PIN (z — 1,y),
(z,y+1) (z,y+1)
C5N (z — 1,y), | P2N, P2E (z,y + 1),
(z+1Ly), (z+1Ly)
(z,y+1)
C6E (z,y + 1), | P3S, P3E (z + 1,y),
(z,y = 1), (z,y—1)
(z+1,y)
C7S (x — 1,y), | P4W, P4S (z—1,y—1),
(z+1,y), (z,y)
(.Z’7y - 1)

Our construction starts from the bottom layer to the top.
For each layer, we first check whether all required posts exist.
If not, we lay out these posts before starting the assembly
(Line 4). Even layers are constructed using X;_Y, segments
(Lines 5 and 6). Odd layers need to find the keys first (Line 8).
Based on the key to each layer component, we order segments
(Line 9) and then determine segment keys and segment types
(Lines 10 and 11). Before assembling, we check whether any
special cases exist, as mentioned in Section VI-C (Line 12).
Since Y,+ X and Y,_ X segments require at least two adjacent
squares, we need to modify the current layer if the condition is
not satisfied. The special case as in Fig. 13 can also require the
upper layer to expand and cover lower layer keys (Line 13).
We then finally assemble blocks based on block types and
special cases. Fig. 1 and Fig. 14 are two structure assembled
using this algorithm in simulation.

A. Parallel Construction

Laying out blocks one-by-one is time-consuming when a
structure has a large number of blocks. This section provides
an algorithm that generates a parallel construction order to
accelerate the process. We first consider preliminary blocks
of assembling each new block and build a graph between
blocks. By querying the graph for blocks whose preliminaries
are satisfied, we can have multiple agents to lay out the
blocks.

Consider a block b to be assembled in a layer. Any adjacent
block(s) to be assembled later should not be prevented by the
male joint(s) of b, meaning that the joints of a block connect
to only the preexisting blocks. Along the assembly direction
of b, the male joints of b should not be able to touch any
blocks. The blocks that must be assembled before a new block
to prevent collision are called predecessors of the new block.
Every block has a predecessor below it if an adjacent block
exists in the lower layer. Consider a block at position (x, y)
in any layer. Table I shows a list of predecessors of different
types of blocks in the same layer.

Besides predecessors listed above, inside each square, cube
blocks with mortise joints connecting blocks in the same layer
(C5N, C6E, C7S, or C8W blocks) must be assembled before
others (C1D, C2D, C3D, or C4D blocks).

Fig. 14. Stanford Bunny assembled in simulation.

With the predecessors of each block, we then construct a
directed graph G = {V, E}, where V is the set of blocks, and
directed edge ¢; ; € E indicates block i being a predecessor of
block j. The construction follows the order of removing nodes
with an in-degree of 0. Each construction agent/thread will
take a block whose predecessors have been placed and remove
the node from the graph when the block assembly is finished.

A simple observation with the parallel construction is, after
the construction of one square s, all the adjacent squares to be
assembled after s in the sequential order is ready to assemble.
We, therefore, have the following theorem.

Theorem 1: Parallel construction of a solid cube of N
squares takes O(~/N) time.

Proof: First, consider constructing a solid layer of n x n
squares. For simplicity, we scale the width of each square
to one. After assembling the square at the corner (0, 0), two
adjacent squares in the x and y positive directions will be
assembled at the next time step, then three, four, and so on.
It takes k steps to construct k(k + 1)/2 squares. When k = n,
over n?/2 squares are constructed, thus constructing a layer
takes at most 2n steps. In a cube, since finishing every square
allows all adjacent squares in the x, y, and z positive directions
to assemble. When the last square of the bottom layer is
done, it takes one more step to finish the upper layer. Thus,
2n—1 more steps will finish all upper layers. Therefore, a solid
cube of 21 x n x n squares takes O(n) = O(~/N) time to
assemble.]

VIII. RESULTS

We algorithmically designed plans to assemble several
models, including a Stanford bunny and a chair model and
animated the results in software. Figs. 1 and 14 show these
examples. The Stanford bunny model has 7337 blocks, while
the chair model has 472 blocks. The assemblies of both models
are done in sequential order. The rendered animation of chair
assembly can be found in Video [44].

We also have 3-D printed 406 blocks and assembled them
into a similar chair based on the rendered animation. The
assembled chair is a simplified version of the chair in the
simulation; two layers were omitted to save material and
assembly time. Four legs of the chair are relatively loose
compare to other parts because each pair of layers in the legs
are connected by only one post and a mortise and tenon joint.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

(a (b)

Fig. 15. 48-block cube-like interlocking structure is assembled using a
two-arm robot system. Blue blocks are posts and orange blocks are cubes.
(a) Rendered structure in simulation. (b) Assembly in the real world.

Some very simple structures were assembled using a 4-DoF
robot arm as an early-stage exploration. These can be found
in Video [45] (one layer) and [46] (two layers).

IX. ROBOTIC ASSEMBLY EXPERIMENT

To demonstrate the feasibility of the assembly approach,
we developed a system to allow two 6-DoF robot arms to
perform a simple example of interlocking structure assembly
using our blocks. With this system, we assembled a four-layer
cube-like structure of 48 blocks. The structure does not have
overhangs and can be constructed without support material.
Due to the lack of more robots and the limitation of the
workspace dimensions, our construction was not done in a
parallel manner, as mentioned in Section VII-A.

To correctly assemble a block into its target position,
the system must solve the following problems: 1) recognize the
position and orientation of the construction base; 2) distinguish
between cube and postblocks; 3) pick up blocks that initially
sit in a specified area; 4) precisely estimate the position and
orientation of the held block precisely; 5) reorient the block if
it cannot be picked up in the desired orientation; and 6) follow
a path to assemble the block. In this section, we will introduce
the robot system, how each problem mentioned above is
solved, and experimental results.

A. Experiment Setup and Assembly Process

The environment setup is rendered in Fig. 16. The system
includes the following hardware.

1) One Flat Table: The table was used as the platform for
assembly. A construction base is attached to the center
of the table. The base is our origin. Blocks are initially
placed randomly close to the bottom-right corner of the
table.

2) Two 6-DoF Robot Arms: We used two Universal Robots’
UR-10 robots, each with six degrees of freedom. The
arms cooperate to regrasp the block sequentially to
reorient blocks and remove configuration error. Details
of regrasping are presented in Section IX-C.

3) Two Depth Cameras: One for each robot arm. The arm
not currently holding the block estimates block pose

911

Fig. 16. Our experiment environment setup. Robot arms are blue, the force—
torque sensor is green, the depth cameras are in dark gray, and the grippers
are black. The blocks and structure base are the white part.

using a Create Labs’ BlasterX Senz3D camera attached
near the end-effector. The cameras integrate Intel’s
RealSense technology for 3-D point cloud reconstruction
based on structured light. Depth images are more stable
than RGB images, which can be influenced by small
light condition changes.

4) Two Two-Finger Grippers: The arms are equipped with
Robotiq 2F-85 and 2F-140 model grippers. We designed
and 3-D printed finger tips for grasping small areas on
the blocks.

5) One Force-Torque Sensor: One Robotiq FT-300 force—
torque sensor was installed on one robot arm that
does all block insertion. The force/torque sensor gives
some information about the contacts one block might
experience when inserted. We utilize this information to
prevent jamming caused by friction.

Robot arms are mounted on two diagonal corners of the
table to maximize space utilization. The right robot, Ry,
is responsible for picking up blocks and placing them into
desired locations and is equipped with the force—torque sensor.
The other arm, Rp, is used during the regrasping and pose
estimation process.

We placed a base of four posts at the center of the table as
the starting point for structure assembly. Waiting blocks are
typically placed at the bottom-right corner of the table, so R4
can move to check that area and pick up a block if presented.

Our assembly process is described in Algorithm 2. The
input is a sequence of block types and a desired final con-
figuration. We call a tuple of block type and configurations a
command. Commands are generated based on the assembly
rules described in previous sections. For each command,
the right-side robot R4 will first pick up a block based on
the input type. The block is then moved above the center
of the table, so the camera mounted on Rp can see the block
and estimate its current configuration. If the block is not
currently grasped in the desired orientation, we must find a
sequence of regrasping actions and execute them to reorient
the block correctly. Finally, we place the block into the desired
location.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

912 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Algorithm 2 High-Level Robotic Assembly Process
1: function ASSEMBLE(C <« [(b1,¢1), ..., (bn, cn)])
2. for Block b; and orientaiont o; in C do
3: Move R4 to bottom-right corner of the table.
4: Pick up a block (same type as b;). (Sec IX-B)
5: Move R4 and Rp above the table center so two arms
are facing each other.
0., < Rp.EstimateBlockOrient(). (Sec.IX-B)
if o, # c;.orientaion then
Acts < generate re-grasping actions for each
robot arm. (Sec.IX-C Algorithm 3)

9: ExecuteRegrasp(Acts, Ra, Rp). (Sec.IX-C)

10: end if

11: Plan path for block assembly.

12: R4 executes the path and transform the block into a

desired configuration.
13: end for
14: end function

B. Block Bin Picking and Pose Estimation

Blocks are placed in a pile on the table for the robot to
pick up. For successful placement of a block in the assembly,
the robot must first locate the desired block in the pile, grasp
and remove it from the pile, determine the pose of the grasped
block, regrasp the block so it is held by the fingers of the
gripper in a manner where it can be placed in the assembly
without the fingers getting in the way, and then finally placed
in the assembly at the desired location. The fingers are
equipped with rubber pads to provide a solid grasp of the
block; however, during the initial contact phase of regrasping,
the block can shift necessitating a precise pose estimation of
the block at each step to ensure successful regrasp operations
and placing the block in its final pose in the assembly.

For bin picking, we use a neural network to translate a
height map of the pile of blocks to labeled grasp locations
for the gripper fingers, where the label is the block type
and face (designated as a block/face id) associated with the
grasp location. Training data for the neural net are generated
by a simulator using Bullet (reference) to simulate different
piles of blocks. For each block in the pile, we test for a
collision-free placement of the fingers to grasp the block,
using candidate grasping areas preauthored for each block.
Valid grasp regions are represented as a rectangle oriented
in 3-D in a heightmap, where the extent of the rectangle
represents the finger opening for the grasp and collision-free
range for the fingers perpendicular to the opening. Note that
we assume a two-finger parallel gripper setup. Fig. 17(a) shows
an example of the generated heightmap of a pile of blocks with
the associated labeled grasp regions (in blue) superimposed
in the same heightmap. The grasp location heightmap is
stored in an RGBA image format, using the alpha channel for
height, and the red and blue color channels for encoding the
discretized yaw of the fingers and the associated block/face
id for the grasp. For each pile of blocks, we simulate the
heightmap generated by the depth camera by rendering the pile
with the same field of view as the SR-300 camera and then

() (b)

Fig. 17. Generated bin-picking and pose estimation data for training the
neural network. The height map data are downsampled from a raw image,
including Perlin noise to simulate the real sensor output. (a) Height map of
a pile of blocks generated virtually. The blue rectangles represent the faces
the gripper can approach to pick up blocks. (b) Generated height map of a
block. Blue rectangle represents the grasping region. The image is for pose
estimation.

extracting the depth map and reprojecting it into a heightmap.
To facilitate the transfer of the learned model for use with
real hardware, we also add Perlin noise to the heightmap for
domain randomization. The simulated heightmap of the blocks
is stored in an RGBA image, using the alpha channel for
the height information. We generate roughly 800000 pairs of
various block piles and their associated grasp heightmap as
128 x 128 pixel images.

The neural network architecture we use to learn the map-
ping is a ResNet-Unet configuration. The encoder layers are
arranged as ResNet-101 with a mirroring of the structure in
the decoder. To make this fully convolutional, we replace the
max-pooling layers with convolution layers. Skip connections
are added between the corresponding blocks of the ResNet
structure. We use a multiclass cross-entropy loss per pixel.
We train for three epochs.

To extract a specified block from the pile, the robot moves
its attached camera over the designated area where the pile of
blocks is located, and a heightmap is generated and sent to the
model as an RGBA image. The output grasp heightmap from
the network is processed using OpenCV to isolate the grasp
regions. For each grasp, we count the block/face id in each
pixel of the region and use the highest count to represent the
block/face id associated with the grasp. Likewise, we extract
the finger yaw by using the highest count yaw value in the
region. The roll and pitch of the fingers are extracted from
the oriented rectangle represented by the region in the grasp
heightmap. The location of the midpoint between the fingers
is the centroid of the oriented rectangle. The finger opening
is the corresponding rectangle width. Of the available inferred
grasps, we choose the one with the desired block type and
using the embedded grasp information command the robot to
approach, grasp, and pick up the specified block.

For regrasping and placement of the block, we assume that
we have a rough estimate of the pose of the opposite face of
the grasped block and can move the camera attached to the
nongrasping robot to view the opposite face in a safe manner.
Indeed, we know the face associated with the grasp of the
block from the pile, and given a rough estimate of where it
is grasped, we can infer a rough estimate of the pose of the
opposite face.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

We leverage the same ResNet-Unet configuration we used
for bin picking to get pose estimates of the grasped blocks.
Given the reliability of the architecture to translate a heightmap
of the scene to a representative labeled heightmap, we cast the
pose estimation problem to a translation problem of taking a
heightmap of a block face to a reference rectangle fixed to
that face. The reference rectangle normal is parallel to the
face normal and is placed over the centroid of the block at the
height of the topmost part of the face in the direction of its
normal. By training a neural network to infer the heightmap of
the reference rectangle fixed to the face of the input heightmap,
we can use PCA to obtain the pose of the rectangle and then
map that back to get the pose of the block. Training data for
the neural net are generated by a simulator. For each face of
the block, a heightmap is generated (with some noise) looking
toward that face at various offsets of its centroid from the
view center. The height map of the reference rectangle fixed
to that face is associated with each height map. In addition,
the label of the block/face id is embedded in the heightmap
using the red color channel. Since we assume that the camera
can be placed roughly facing the opposite face of the grasped
block, the offsets for the generated data are within a modest
43 cm and £0.3 radians of the centered view. Fig. 17 shows
an example of the generated heightmap of a face with the
associated labeled reference rectangle (in blue) superimposed
in the same heightmap. We generate roughly 800000 pairs
of 128 x 128 heightmap images and train for three
epochs.

To get an accurate pose estimate, the camera attached to
the nongrasping robot is moved to roughly view the opposite
face of the grasped block. A heightmap is generated of this
face by taking the depth map from the camera, clipping at
20 cm from the camera to remove background noise, and
then reprojected into a heightmap. The heightmap is sent to
the ResNet-Unet model and the inferred pose of the block
(obtained from the PCA of the reference rectangle) along
with its block/face id is extracted from the output heightmap.
If the inferred face id matches the expected value, the camera
is moved to center the face in the view. This process is
repeated several times until the adjustment is smaller than
an empirically defined threshold. At this point, we have an
accurate estimate that the block is centered in the view and
can generate an accurate pose estimate of the block to drive
the regrasping and placement actions. Ideally, a single query
of the model from a heightmap of the face would be enough to
get an accurate pose estimate; however, we found large offsets
from the center yield coarse inferred pose estimates of the
reference rectangle and hence the need for this visual servoing
strategy.

C. Regrasping

When robot R4 picks up a block, there is no guarantee that
the block is held at the desired location. However, the gripper
does not allow rotation of a block while holding that block.
To solve this problem, we used the second robot Rp to
temporarily hold the block, so R4 can regrasp the block in
a different location (see Fig. 18). We may have to iterate this
process many times to achieve the goal orientation.

913

©)

()

()

0

Fig. 18. Regrasping process that allows the right robot R4 to hold the block
in different locations. The left robot is named Rp. Red dots represent grasping
locations of R4, and yellow dots are grasping points by Rp. (a) Right robot
Rp estimating the block pose. (b) Block held by R4 at red points. (c) Ra
transferring the block to Rp. R4 will release. (d) Block grasped by two
grippers. (e) Rp rotated. R4 estimating the block pose. (f) Block pose when
rotated. (g) Rp transferred the block back to R4 and then released. (h) Block
held by R4 and Rp released. (i) Robot R4 rotating back. The block is grasped
at the desired location. (j) Block grasped by R,4 in the right location.

Grasping locations for each of the six faces of a block
are specified manually. Initially, we move robots to home
configurations C,, and C,p, respectively, where the grippers
are 40 cm above the center of the table facing each other, and
the cameras are up. The configuration C,; is shown as the left
robot configuration in Fig. 16. Every time a regrasping action
is executed, the robot holding the block is moved back to the
home configuration. Our goal is to have the robot R, hold
the block in the desired orientation, while the robot is in the
home configuration.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

914 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

To make the process as fast as possible, we constructed
this problem as a tree search and then used breadth-first
search to find the shortest sequence of regrasping actions.
The algorithm is shown in Algorithm 3. In this algorithm,
we assume that the block is initially held by R4 and the initial
and goal block orientations are in the frame of the gripper
attached to R4. We first check whether the block is held in
the desired orientation; if not, a set of valid grasping locations
are generated for the other robot. The other robot will imaging
regrasping the block according to each valid grasping location
and then transform to its home configuration. If a valid regrasp
will hold the block in the desired orientation, the algorithm
will stop; otherwise, children valid regrasps will be further
explored. This process is continued until R4 is holding the
block correctly.

There are several configurations a robot cannot do making
some grasping locations invalid. For example, our environment
requires that no gripper is facing up, as the gripper may
collide with the assembling structure in these configurations.
Also, due to the nature of how we mount the cameras, we do
not want the grippers to be perpendicular to each other with
cameras on the same side because cameras may collide in
these configurations.

Algorithm 3 generates a sequence of regrasping actions
since it is planned virtually. We then have the robots to
execute the actions. The execution process is straightforward
but includes an extra part of block pose estimation before
grasping the block. This is because the block is not strictly
static with respect to the gripper when and after the previous
grasping. Thus, a pose estimation will help to reduce the
error.

D. Experiment Results

Using the robot system, we assembled a cube-like inter-
locking structure of 48 blocks. The rendered structure is shown
in Fig. 15(a) where blue blocks are posts and orange blocks are
cubes. This experiment includes all the operations described
above. Fig. 19 shows a screenshot of the robots executing
assembly commands.

A regrasping operation can be found at Video [47]. In this
video, four regrasping actions were performed (excluding the
initial pickup) to reorient a cube held by the right robot Ry4.
This operation took over 5 min for one block.

A complete video of assembling the cube structure can be
found in Video [48]. To prevent making the experiment video
too long, we avoided some regrasping by hand-feeding the
robot blocks in correct grasping locations. In total, the exper-
iment took less than 2 h. Because of the limitation of my
camera (30-min max video recording), the assembly of each
layer is executed and recorded separately in two days.

E. Challenges

We faced many challenges during the experiment. In this
experiment, we made two very strong assumptions. First,
we assumed that a block can be moved perfectly precisely such
that there is no contact during insertion. Second, we assume
that block joints are fabricated precisely so that the gap

Algorithm 3 Regrasping Actions Generation

1: function PLANREGRASP(init orient o,, goal orient o,)
2 Move R4 to home configuration C,,.

3: Move Rp to home configuration C,p.

4: orients < astack of block orientations and correspond-

ing holding robot

5 orients.push((cs, Ra)).

6: while orients is not empty do

7: o,r < orients.pop()
8
9

if r=R4 and 0 = 0, then
: return TraceBack(o,r)
10 end if

11: if r = R, then

12: valid_grasps <« valid grasps for Rp

13: for grasp € valid_grasps do

14: Onext <—Transform block according to grasp,
assuming Rp will be moved to C,p.

15: orients.push((Onext, Rp)).

16: end for

17: else

18: valid_grasps <« valid grasps for R4

19: for grasp € valid_grasps do

20: Onext <—Transform block according to grasp,
assuming R4 will be moved to C,,.

21: orients.push((Opex:, Ra)).

22: end for

23: end if

24: end while
25: end function

1 s 27
ol

-wi il <
AN 333 S SR ENNY

Al
[

p’

Fig. 19. Real platform setup. The robots are assembling the first layer of an
interlocking cube.

between a pair is quite small. These assumptions are unfortu-
nately not satisfied in the real world.

Our robots were fairly precise in terms of repeatability.
However, in order to coordinate two robots to work in a
shared workspace, a calibration process was performed to
align two robots’ local frames. This calibration is not perfect
and could introduce errors causing the block movement not
exactly following a designed trajectory. The pose estimation
can also introduce errors due to the nature of neural networks.
When grasping a block, the gripper is not always holding near
the center of mass, which might cause a tall block to rotate

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS

slightly. These errors combined could cause a block to touch
other blocks during the insertion process.

The blocks were 3-D printed with a rather precise printer.
However, the support material covered outside each block
is problematic. It is impossible to get rid of completely,
and environmental conditions, such as time, temperature, and
humidity, appeared to cause the support material to expand
or shrink slightly, making insertion very difficult. To avoid
this issue, we designed the male joint slightly smaller than
the female joint such that not all contact faces of a joint
give resistant friction. This design, however, makes the blocks
slightly flexible causing the jamming problem later.

The biggest resulting issue of the unsatisfied assumptions
was the friction. Friction can be from many different contact
surfaces or points whose number and location are unpre-
dictable. The friction led to some slight rotation of blocks
which in some trials caused jamming.

ACKNOWLEDGMENT

The authors are grateful to Haopeng Zhang and Geoffrey
Hsuan-Chieh Huang, who helped to build 3-D models of
blocks, built robot grippers, and recorded videos. They also
thank Jeremy Betz for useful insights on the geometry of
joints. They would also like to thank Emily Whiting, as well
as members of the Dartmouth Robotics Lab, for useful feed-
back and insights throughout. They also thank Adam Arnold,
Heather Kerrick, Hui Li, and Mike Haley of Autodesk for
their insights of 3-D printing, interlocking structures, as well
as their help in design of the physical robot assembly system,
and to Autodesk for the use of the lab space at Pier 9, San
Francisco, CA, USA.

REFERENCES
[

2

—

Y. Zhang and D. Balkcom, “Interlocking block assembly,” in Proc. 13th

Int. Workshop Algorithmic Found. Robot., 2018, pp. 709-726.

S. Lensgraf et al., “PuzzleFlex: Kinematic motion of chains with loose

joints,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020,

pp. 6730-6737.

G. Strano, L. Hao, R. M. Everson, and K. E. Evans, “A new approach to

the design and optimisation of support structures in additive manufac-

turing,” Int. J. Adv. Manuf. Technol., vol. 66, nos. 9-12, pp. 1247-1254,

Jun. 2013.

J. Vanek, J. A. G. Galicia, and B. Benes, “Clever support: Efficient

support structure generation for digital fabrication,” Comput. Graph.

Forum, vol. 33, pp. 117-125, Aug. 2014.

X. Zhang, X. Le, A. Panotopoulou, E. Whiting, and C. C. Wang,

“Perceptual models of preference in 3D printing direction,” ACM Trans.

Graph., vol. 34, no. 6, pp. 215:1-215:12, 2015.

[6] K. Zwerger and V. Olgiati, Wood and Wood Joints: Build-
ing Traditions of Europe, Japan and China. Basel, Switzerland:
Birkhduser, 2012. [Online]. Available: https://books.google.com/books?
id=yPoEBDZSUyoC

[7] J. P. Wilson, D. C. Woodruff, J. D. Gardner, H. M. Flora, J. R. Horner,

and C. L. Organ, “Vertebral adaptations to large body size in theropod

dinosaurs,” PLoS ONE, vol. 11, no. 7, Jul. 2016, Art. no. e0158962.

Y. Zhang and D. Balkcom, “Interlocking structure assembly with vox-

els,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,

pp. 2173-2180.

P. Song, C.-W. Fu, and D. Cohen-Or, “Recursive interlocking puzzles,”

ACM Trans. Graph. (SIGGRAPH Asia), vol. 31, no. 6, pp. 128:1-128:10,

Dec. 2012.

P. Song et al., “Reconfigurable interlocking furniture,” ACM Trans.

Graph., vol. 36, no. 6, p. 174, 2017.

P. Song et al., “CofiFab: Coarse-to-fine fabrication of large 3D objects,”

ACM Trans. Graph., vol. 35, no. 4, p. 45, 2016.

—

3

—

[4

=

[5

=

[8

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

915

C.-W. Fu, P. Song, X. Yan, L. W. Yang, P. K. Jayaraman, and
D. Cohen-Or, “Computational interlocking furniture assembly,” ACM
Trans. Graph., vol. 34, no. 4, p. 91, 2015.

Z. Wang, P. Song, and M. Pauly, “DESIA: A general framework for
designing interlocking assemblies,” ACM Trans. Graph., vol. 37, no. 6,
pp. 1-14, Jan. 2019.

K. Tang, P. Song, X. Wang, B. Deng, C.-W. Fu, and L. Liu, “Computa-
tional design of steady 3D dissection puzzles,” Comput. Graph. Forum,
vol. 38, no. 2, pp. 291-303, 2019.

J. Yao, D. M. Kaufman, Y. Gingold, and M. Agrawala, “Interactive
design and stability analysis of decorative joinery for furniture,” ACM
Trans. Graph., vol. 36, no. 2, pp. 20:1-20:16, Mar. 2017. [Online].
Available: http://doi.acm.org/10.1145/3054740

W. Kong and B. B. Kimia, “On solving 2D and 3D puzzles using curve
matching,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 2, Dec. 2001, pp. 2-583.

Z. Wang, P. Song, F. Isvoranu, and M. Pauly, “Design and structural opti-
mization of topological interlocking assemblies,” ACM Trans. Graph.,
vol. 38, no. 6, pp. 1-13, Nov. 2019.

J. Andres, T. Bock, F. Gebhart, and W. Steck, “First results of the devel-
opment of the masonry robot system ROCCO: A fault tolerant assembly
tool,” in Automation and Robotics in Construction XI. Amsterdam,
The Netherlands: Elsevier, 1994, pp. 87-93.

C. Balaguer, E. Gambao, A. Barrientos, E. A. Puente, and R. Aracil,
“Site assembly in construction industry by means of a large range
advanced robot,” in Proc. 13th Int. Symp. Autom. Robot. Construct.,
Jun. 1996, pp. 65-72.

V. Helm, S. Ercan, F. Gramazio, and M. Kohler, “Mobile robotic
fabrication on construction sites: DimRob,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2012, pp. 4335-4341.

M. Giftthaler et al., “Mobile robotic fabrication at 1:1 scale: The in situ
fabricator,” Construct. Robot., vol. 1, nos. 1-4, pp. 3—14, Dec. 2017.
S. Hauser, M. Mutlu, P.-A. Léziart, H. Khodr, A. Bernardino, and
A. J. Ijspeert, “Roombots extended: Challenges in the next generation
of self-reconfigurable modular robots and their application in adap-
tive and assistive furniture,” Robot. Auto. Syst., vol. 127, May 2020,
Art. no. 103467.

S. Hauser, M. Mutlu, and A. J. Ijspeert, “Kubits: Solid-state self-
reconfiguration with programmable magnets,” IEEE Robot. Autom. Lett.,
vol. 5, no. 4, pp. 6443-6450, Oct. 2020.

J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio,
and M. Kohler, “Aerial robotic construction towards a new field of

architectural research,” Int. J. Architectural Comput., vol. 10, no. 3,
pp- 439459, Sep. 2012.

F. Augugliaro et al., “The flight assembled architecture installation:
Cooperative construction with flying machines,” IEEE Control Syst.,
vol. 34, no. 4, pp. 46-64, Aug. 2014.

Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic
structures with quadrotor teams,” in Robotics: Science and Systems
VII. Jun. 2011.

F. Augugliaro, A. Mirjan, F. Gramazio, M. Kohler, and R. D’Andrea,
“Building tensile structures with flying machines,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Nov. 2013, pp. 3487-3492.

S. J. Keating, J. C. Leland, L. Cai, and N. Oxman, “Toward site-

specific and self-sufficient robotic fabrication on architectural scales,”
Sci. Robot., vol. 2, no. 5, Apr. 2017, Art. no. eaam8986.

D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with
compressible unit modules,” Auto. Robots, vol. 10, no. 1, pp. 107-124,
2001.

P. White, V. Zykov, J. C. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots,” in Robotics: Science and
Systems. Cambridge, 2005, pp. 161-168.

J. W. Romanishin, K. Gilpin, and D. Rus, “M-blocks: Momentum-
driven, magnetic modular robots,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Nov. 2013, pp. 4288-4295.

H. Wei, Y. Chen, J. Tan, and T. Wang, “Sambot: A self-assembly
modular robot system,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 4,
pp. 745-757, Aug. 2011.

J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and
M. Campbell, “An integrated system for perception-driven autonomy
with modular robots,” 2017, arXiv:1709.05435. [Online]. Available:
http://arxiv.org/abs/1709.05435

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

916

[34]

[35]

[36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

T. Tosun, G. Jing, H. Kress-Gazit, and M. Yim, “Computer-aided
compositional design and verification for modular robots,” in Robotics
Research. Springer, 2018, pp. 237-252.

A. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and J. McLurkin,
“Reconfiguring massive particle swarms with limited, global control,” in
Proc. Int. Symp. Algorithms Exp. Sensor Syst., Wireless Netw. Distrib.
Robot. Springer, 2013, pp. 51-66.

A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin,
“Massive uniform manipulation: Controlling large populations of simple
robots with a common input signal,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Nov. 2013, pp. 520-527.

A. T. Becker et al., “Tilt assembly: Algorithms for micro-factories that
build objects with uniform external forces,” Algorithmica, vol. 82, no. 2,
pp. 165-187, 2020.

Y. Zhang, X. Chen, H. Qi, and D. Balkcom, “Rearranging agents in a
small space using global controls,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017, pp. 3576-3582.

S. Manzoor, S. Sheckman, J. Lonsford, H. Kim, M. J. Kim, and
A. T. Becker, “Parallel self-assembly of polyominoes under uniform
control inputs,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2040-2047,
Oct. 2017.

A. Schmidt, S. Manzoor, L. Huang, A. T. Becker, and S. P. Fekete,
“Efficient parallel self-assembly under uniform control inputs,” IEEE
Robot. Autom. Lett., vol. 3, no. 4, pp. 3521-3528, Oct. 2018.

M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795-799, Aug. 2014.

E. Schweikardt and M. D. Gross, “RoBlocks: A robotic construction
kit for mathematics and science education,” in Proc. 8th Int. Conf.
Multimodal Interfaces (ICMI), 2006, pp. 72-75.

R. Thompson, E. Ghalebi, T. DeVries, and G. W. Taylor,
“Building LEGO using deep generative models of graphs,” 2020,
arXiv:2012.11543. [Online]. Available: http://arxiv.org/abs/2012.11543

Y. Zhang. Robotic Assembly of Interlocking Blocks—WAFR 2018.
Youtube. Accessed: Jan. 4, 2021. [Online]. Available: https://youtu.be/
IV2xIA_Q8SI

Y. Zhang. One-Layer Structure Robotic Assembly Experiment With Two
Kinds of Blocks. (2.5x Speed). Youtube. Accessed: Jan. 4, 2021. [Online].
Available: https://youtu.be/1_lbVyPcLOI

Y. Zhang. Two-Layer Structure Robotic Assembly Experiment With Two
Kinds of Blocks. (2.5x Speed). Youtube. Accessed: Jan. 4, 2021. [Online].
Available: https://youtu.be/ZjFFZzrl69s

Y. Zhang. Block Regrasping Using Two Ur-10 Robot Arms. (1080p).
Youtube. Accessed: Jan. 4, 2021. [Online]. Available: https://youtu.be/
DyMBOK-Pz11

Y. Zhang. Interlocking Cube Assembly Using Two Ur-10 Robots (4K
60FPS). Youtube. Accessed: Jan. 4, 2021. [Online]. Available: https://
youtu.be/OaB7LMglérY

Yinan Zhang received the B.E. degree in soft-
ware engineering from Southeast University, Nan-
jing, China, in 2013, and the Ph.D. degree in com-
puter science from Dartmouth College, Hanover,
NH, USA, in 2019, advised by Prof. D. Balkcom.
His research focused on motion planning, inter-
locking structure assembly, and manipulation.

Yotto Koga received the Ph.D. degree from
the School of Engineering, Stanford University,
Stanford, CA, USA, in 1994, advised by Prof.
Jean-Claude Latombe.

He is currently a Software Architect with the
Machine Intelligence Group, Autodesk Research,
San Francisco, CA, USA, working on big data and
machine learning problems. Previously, he was an
Architect of Firefly, a web, mobile, and desktop 2-
D and 3-D viewing platform for Autodesk products,
and an Architect of Design Graph, a knowledge

graph for design. His research focused on robot motion planning.

Devin Balkcom received the Ph.D. degree in robot-
ics from Carnegie Mellon University, Pittsburgh,
PA 15213, USA, in 2004, advised by Matt Mason.

He is currently a Professor with the Depart-
ment of Computer Science, Dartmouth College,
Hanover, NH, USA. He is interested in efficient
robot designs and motion. His research highlights
include exact time-optimal motion for mobile robots,
robot origami, knot-tying, laundry folding, and con-
struction of interlocking structures.

Dr. Balkcom was awarded the NSF CAREER

Grant in 2006, the Dartmouth McLane Family Fellowship in 2010, and the
Dartmouth John M. Manley Huntington Award in 2010.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

