
902 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Interlocking Block Assembly With Robots

Yinan Zhang , Yotto Koga , and Devin Balkcom

Abstract— This article presents a design for interlocking blocks
and an algorithm that allows these blocks to be assembled
into desired shapes. During and after assembly, the structure
is kinematically interlocked if a small number of blocks are
immobilized relative to other blocks. There are two types of
blocks: cubes and double-height posts, each with a particular set
of male and female joints. Layouts for shapes involving thousands
of blocks have been planned automatically, and shapes with
several hundred blocks have been built by hand. This article
also describes a method for assembling structures from blocks in
parallel. As a proof of concept, a dual-robot system was used to
assemble 48 blocks, forming an interlocking cube-like structure.

Note to Practitioners—This article was inspired by existing
work on interlocking joinery structures, modular robots, and
construction robots. We present designs for two interlocking
blocks that can be assembled into larger rigid structures. Blocks
of this type are a promising future construction material. Only
translation is needed to assemble the blocks, simplifying robotic
assembly, and the mortarless construction allows for later dis-
assembly and reuse of the blocks. We propose an algorithm
that lays out blocks into desired shapes in series and developed
a dual-robot system to assemble 48 blocks automatically. Our

physical experiments show that joint manufacturing precision is
critical to the ease of construction and the rigidity of the finished
structure. We also present a layout algorithm that enables parallel
assembly, allowing multiple robots to work on the same structure.

Index Terms— Assembly, construction, interlocking struc-
ture, manipulation, manufacturing, material/parts handling,
mechanisms.

I. INTRODUCTION

T
HE goal of the work described in this article is to enable

robotic assembly of large structures from blocks that

interlock without the need for glue, cement, screws, or other

connectors. Fig. 1 shows one model for which layouts and

assembly plans were generated automatically by the presented

algorithm. The motion of blocks is constrained by joints

(See Fig. 2); later blocks reinforce and immobilize prior

blocks. Each structure has a few blocks that can move, called

keys. If the keys are fastened to the structure, the structure is

rigidly interlocked.

Manuscript received January 16, 2021; accepted February 23, 2021. Date of
publication April 21, 2021; date of current version July 2, 2021. This article
was recommended for publication by Editor L. Tapia upon evaluation of the
reviewers’ comments. This work was supported in part by the Seed Funding
through the National Science Foundation (NSF) under Grant IIS-1813043 and
in part by the Dubai Future Foundation. (Corresponding author: Yinan Zhang.)

Yinan Zhang and Devin Balkcom are with the Department of Com-
puter Science, Dartmouth College, Hanover, NH 03755 USA (e-mail:
yinan.zhang.gr@dartmouth.edu; devin.balkcom@dartmouth.edu).

Yotto Koga is with Autodesk AI Lab, San Francisco, CA 94111 USA
(e-mail: yotto.koga@autodesk.com).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TASE.2021.3069742.

Digital Object Identifier 10.1109/TASE.2021.3069742

Fig. 1. Interlocking chairs in simulation and assembled by hand. We used two
kinds of blocks to build this structure. There is only one block removable on
the top of the chair. (a) Chair model automatic laid out in simulation. (b) Chair
assembled by hand.

A collection of rigid bodies is kinematically interlocked

if there is no motion of the system that does not cause

collision. For example, the pieces of a planar jigsaw puzzle

are interlocked once assembled, if motion is restricted to the

plane. The blocks presented in this article may be thought

of as 3-D jigsaw pieces; the keys are the last pieces placed.

Disassembly of the structure can be achieved by reversing the

assembly order.

This article extends work presented in [1] to demonstrate

the robotic construction of structures using two 6-DoF robot

arms. We will explain in detail how depth cameras and deep

neural networks are combined to sense block configurations

and pick up blocks in random poses. This article also describes

how to reorient a block to the orientation needed for assembly,

by iteratively regrasping the block using the two arms.

Kinematic interlock presents some advantages over tradi-

tional connection methods, such as glue, cement, screws, nails,

or friction locks. The interlocks may be structurally strong,

allow simple assembly by robots, allow disassembly, and reuse

of the components, and maybe suitable for underwater or

other environments where adhesives are ineffective. Fabricat-

ing in parts may present some advantages over traditional 3-D

printing. Individual components may be fabricated efficiently,

packed for storage and transport, repaired or replaced as

needed, and allow design changes.

The algorithm described in this article takes a voxelized

3-D model as input and finds an assembly plan such that the

interlocked structure covers the specified voxels. There are two

types of blocks: 1 × 1 × 1 cubes and 1 × 1 × 2 posts, with

connectors arranged in a particular way. Assembly requires

only translation motions.

The main insight of the block designs and layout algorithms

of this article is that a collection of rigid blocks may be

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5420-1196
https://orcid.org/0000-0003-1126-4864

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 903

interlocked if there is a cycle, or closed loop, of joints that

permit translation only in conflicting directions. We design

small structures containing only a handful of blocks, with the

property that if the last block were to be glued to an adjacent

block after assembly, an interlocked closed chain would be

formed. Fig. 3(c) shows an example; block 4 in the figure is the

key and may be removed only by translation out of the page.

We then show how this small structure may be extended by

creating a new, overlapping cycle of blocks, such that if the

key of the new cycle is glued, the new cycle attaches the prior

key to the structure without the need for glue. In Fig. 3(c),

the next cycle of blocks would hold block 4 in place. Larger

structures are then built from these overlapping cycles.

A. Applications and Limitations

The work aims to design blocks and layout patterns that

make robotic construction as easy as possible. Assembly of

the blocks requires only orthogonal translations that may be

accomplished in principle by robots with only three degrees

of freedom. Any contiguous shape that can be described on a

voxel grid can be build using the blocks.

This article focuses primarily on the geometry of a particular

design of blocks and associated layout algorithms. As such,

many critical issues that would need to be solved for a practical

system have been neglected. Chief among these is the need for

analysis of the rigidity and robustness of the final structures.

Due to manufacturing limits, joints do not match perfectly,

and for some shapes, small errors may add up, which leads

to undesirable aggregate flexibility, as explored in [2]. The

physical experiments conducted use 3-D printed blocks and

are no more than a proof of concept, using a small number of

blocks. Given the success of Lego blocks, we do believe that

better manufacturing processes would allow extension to very

large structures.

Although the algorithm presented can lay out essentially

arbitrary voxelized structures, overhanging components of lay-

ers are not interlocked until a second identical layer is placed

above. This means that some external, though temporary,

means of support are needed during construction, just as in 3-D

printing. Algorithms for placing support material efficiently

can be found in [3]–[5]. Unlike 3-D printing, block assembly

only requires temporary support until a substructure is inter-

locked. This observation could inspire special position-holding

robots to provide necessary support for overhanging layers.

We would also like to gain a better understanding of how

to design and analyze block types and layout algorithms.

Effectively, the block types designed are the result of creative

thought to generate small overlapping cycles, with posts that

allow connections to the succeeding layer. Other forms of

interlock might allow even simpler assembly or more robust

structures; a primary objective of future work is to design

mathematical or mental tools to find other block designs.

II. RELATED WORK

Interlocking structures have a long history. Wood joints,

such as the dovetail and mortise and tenon, are used in carpen-

try around the world; in China and Japan, complex interlocking

designs have permitted the construction of wooden buildings

with no screws or nails [6]. In the paleontology community,

evidence has recently been presented that supports a hypoth-

esis that the backbones of theropod dinosaurs interlocked to

provide support for the extremely large body mass [7].

The concept of interlocking block assembly was previously

presented in [8]. However, the technical work in this article

is effectively entirely new. New block designs and layout

algorithms enabled the reduction of the types of blocks needed

from nine to two and have allowed structures that appear

to be more robust and easier to assemble. This article also

explores the construction of physical structures much larger

than previously built (406 pieces compared to 64), as well as

a more convincing demonstration of robotic assembly. New

theoretical contributions include an analysis of how blocks

may be assembled in parallel, speeding up assembly.

The present work is closest in spirit to Song et al. [9]–[14],

which considers the problem of designing reusable compo-

nents to be assembled into different forms relying on geomet-

ric constraints; the primary contribution of the current work

is a universal block design and layout algorithm that allows

construction of arbitrary geometries. Yao et al. [15] proposed

a method for interactively designing joints for structures and

analyzing the stability. Kong and Kimia [16] applied curve

matching techniques for finding solutions for assembly of 2-D

and 3-D interlocking puzzles; the layout algorithms considered

in this article generate assembly motions together with the

design. Wang et al. [17] proposed an algorithm to assemble

convex blocks into a given freeform surface. Although the

blocks presented have no joints or external connectors, they

still found structurally stable and globally interlocking assem-

blies possible.

Robotic construction research dates back to the 1990s when

Andres et al. [18] created a prototype, ROCCO, capable of

gripping and laying bricks. The same robotic system was later

applied to site assembly operations by Balaguer et al. [19].

More recent works include DimRob, a system with an indus-

trial robot arm mounted on a mobile platform [20] used for

construction tasks. This prototype was later developed into a

mobile robot, In situ Fabricator, for construction at 1:1 scale

[21]. Roombots [22] are another example of modular robots

that can self-reconfigure into various furnitures, along with

other manipulation and gripping capabilities. Kubits [23] is

another example of 3-D self-reconfiguring modular robots.

Willmann et al. [24], for example, used autonomous fly-

ing vehicles to lift and position small building elements.

Augugliaro et al. [25] demonstrated a system of multiple

quadrocopters precisely laying out foam blocks forming a

desired shape. Lindsey et al. [26] built cubic structures

using quadrocopters. Augugliaro et al. [27] explored another

approach of construction: quadcopters assembled a rope bridge

capable of supporting people. Keating et al. [28] built a large

mobile 3-D printer using a robot arm to extrude adhesive

materials.

Instead of focusing on the robot control system to carry

building elements, some researchers designed new building

elements. Rus and Vona [29] developed crystalline, a mod-

ular robot with a 3-DoF actuation mechanism allowing it

to make and break connections with other identical units; a

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

904 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 2. Three different joint pairs and detailed design. (a) Mortise and tenon
joints. (b) Dovetail joints. (c) Two-way joints. (d) Tenon joint. (e) Dovetail
joint.

set of such robots form a self-reconfigurable robot system.

White et al. [30] introduced two 3-D stochastic modular robot

systems that are self-reconfigurable and self-assemble-able

by successive bonding and release of free-floating units.

Romanishin et al. [31] proposed a momentum-driven mod-

ular robot. SamBot, a cube-shaped modular robot with

rotation mechanism, was introduced by Wei et al. [32].

Daudelin et al. [33] present a self-reconfigurable system that

integrates perception, mission planning, and modular robot

hardware. Tosun et al. [34] created a design framework for

rapid creation and verification of modular robots.

Swarm robot can also be used to assemble structures at the

microscale where controlling each individual robot is difficult.

One approach is to use global control signals, such as gravity

and magnetic field. Becker et al. [35]–[37] took this path and

showed the feasibility of reconfiguring massive particle swarm

robots with limited controls. The authors’ own work [38]

shows some reconfiguration tasks can be performed efficiently

in a small space. Manzoor et al. [39] and Schmidt et al. [40]

proposed parallel mechanisms to make the assembly even

more efficient. Kilobot, a swarm of 1024 mobile robots, was

introduced by Rubenstein et al. [41], along with algorithms for

planning mechanisms allowing kilobots to form 2-D shapes.

Inspired by LEGO, Schweikardt and Gross [42] proposed a

robotic construction kit, roBlocks, with programmable cubic

blocks for educational purpose. With the recent development

on deep learning, generative models based on graph-structured

neural networks are also applied to assemble structures using

LEGO [43].

III. INTERLOCKING BLOCKS AND CONSTRAINT GRAPH

In this section, we first introduce the three joint types

used in the design. We also present a graph-based method

for analyzing the relative movement of objects connected by

these joints. Our design choices and layout algorithms are

primarily inspired by this analysis. We found that globally

interlocked large structures can be assembled from locally

interlocked substructures and presented a high-level algorithm

to achieve this goal. Details of how each part of the algorithm

is implemented are discussed in later sections.

A block is a rigid body that has joints allowing assembly

with other blocks, typically by sliding one block against the

other using a simple translation. Fig. 2 shows three different

joint pairs that we use to connect blocks. A mortise and

Fig. 3. Assembling a nearly interlocking four-block square. Arrow indicates
the assembly direction. Block 4 is the key. (a) Tenon joint. (b) Tenon joint.
(c) Dovetail joint assembled from top to down.

tenon joint pair [Fig. 2(a)] allows blocks to be disassembled

only in the nonpenetrating normal direction of the contact

surface. A dovetail joint pair [see Fig. 2(b)] allows block

motion only in a particular tangential direction. The third

joint pair we use in the current design is a two-way joint

[see Fig. 2(c)], which allows motions of associated blocks

in both normal and tangential directions. The dovetail and

mortise and tenon joints fully constrain rotational motion, but

the two-way joint permits one rotational degree of freedom.

These joints are chosen because of their simplicity in man-

ufacturing and assembly effort. We manufactured the joints,

so the front part in the insertion direction is thinner and

thus reduces surface contacts, providing better error tolerance

[see Fig. 2(d) and (e)].

Blocks are assembled into a structure in order, and the last

block assembled can be removed by reversing the most recent

translation assembly motion. Therefore, the last block assem-

bled must be attached to the structure using glue, friction,

a screw, or some other external method; we call such a block

a key.

Fig. 3 shows a 2-D projection of an interlocking structure

assembled using blocks with dovetail and mortise and tenon

joints. First, block 2 is assembled to block 1, using a tenon

joint on the top of the blocks and moving block 2 in the

positive y-direction, assuming a coordinate frame aligned with

the page. Block 3 then slides in and connects with block 2 by

another tenon joint. The final block is assembled from top to

down, connecting blocks 1 and 3 using two dovetail joints and

limiting blocks 2 and 3 to move in y negative or x positive

directions.

A. Constraint Graph

To better understand how joints constrain motions, we rep-

resent a structure using a directed graph. Each vertex in the

graph represents a block. A pair of directed edges are added

between vertices corresponding to blocks that are in contact;

w(ei, j) denotes the set of permitted motions of j relative to i .

Consider a partition of the graph into some nonoverlapping

subsets of vertices. A partition is separable if there exists

a motion that satisfies constraints by all in-edges along the

boundary of the subset of vertices. In this particular work,

the block and joint design limit motions of every block

to translations directly along axes, simplifying the analysis.

(The two-way joint is used only as an auxiliary connection

for blocks whose motions are already constrained to pure

axis-aligned translations by other joints.)

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 905

Fig. 4. Four-block interlocking structure and its graph representation.
(a) 2 × 2 interlocking structure. Numbers indicate the order. Block 4 is the
key. (b) Graph representation. Each edge allows some motions for associated
blocks.

Fig. 5. Any interlocking substructure can be viewed as two nodes in
the graph, which simplifies the graph representation. (a) Two interlocking
substructures connected by a dovetail joint and a mortise & tenon joint.
(b) Forming a larger interlocked structure from two interlocked structures.

Fig. 4(b) shows an example of a constraint graph for

the previous example of a four-block interlocking structure.

Consider partitioning the structure into two parts {1, 2} and

{3, 4}. These parts are inseparable since w(e2,3) ∩ w(e1,4) =
{x+}∩{z+} = ∅. By checking more partitions of the structure,

we find that only {1, 2, 3} and {4} are separable. If block 4 is

attached to either of its neighbors, the structure is rigid.

We call a structure k-interlocked, if when k keys are

attached to neighbors, no partition is separable. The example

structure is 1-interlocked with block 4 as the key.

Analyzing a large structure gets difficult when there are

a large number of blocks because the number of possible

partitions on the graph increases exponentially. Fortunately,

proof that a complete structure is interlocked can be accom-

plished in a hierarchical fashion, by first showing that smaller

components are interlocked and then using those components

to build larger interlocking structures.

Fig. 5 shows an example of how a larger interlocking

structure can be built from smaller interlocking substructures.

Interlocking substructures A and B are similar to those shown

in Fig. 4(a); the careful eye may note some additional geom-

etry on each block representing dovetail joints attached from

the side; these joints provide some redundant constraints that

add rigidity to the final structure.

The keys of the substructures are K A and KB and are not

considered to be part of A and B . To show that the entire

structure is 1-interlocked by KB , it is sufficient to consider

only partitions that separate K A from A or KB from B since

A and B act as rigid bodies if their keys are not separated.

Fig. 5(b) shows the graph representation.

B. Overview of the Layout Algorithm

The example above suggests an approach to constructing

large interlocked structures. We can build four-block inter-

locked squares and use a second interlocked square to build

an eight-block rectangle [see Fig. 5(a)]. Inductively, we can

extend the rectangle as far as we like by adding additional

squares to the end; we call such a structure a segment.

Intuitively, some additional connections might be added to

connect segments to form a flat structure that we will call a

layer. The 3-D volumes may then be constructed from stacks

of layers. Fig. 6 shows a conceptual picture, with the single

key block of each new larger structure shown in red.

The remainder of this article addresses the details needed

to allow the implementation of this process. How should

segments interconnect to form a layer? How should layers

interconnect? How should joints be arranged on blocks to

allow creating segments and layers from only a few types of

blocks? How should layers be automatically shaped to allow

construction of geometries more interesting than large cubical

volumes?

Algorithm 1 presents an overview of the layout algorithm.

A model is assembled layer-by-layer from bottom to top. Each

layer itself is an interlocking substructure that also constrains

the movement of a previously built layer’s key(s). The details

will be discussed in later sections, as indicated by the section

numbering indicated in the algorithm; the reader may wish to

only skim the algorithm on first reading. For now, it is worth

noting that the input to the algorithm is a voxelized model

describing the desired output shape. Each voxel is further

subdivided into eight subvoxels; each subvoxel will effectively

be instantiated by a block.

The blocks are labeled by layer and segment. Layer and

segment labels allow the assignment of joint types that must

connect adjacent blocks. Once the joint types have been

assigned, blocks providing these joint types can be selected.

The output is a sequence of block assembly orders that

constructs an interlocking structure shaped as the input model.

Since our model is built layer-by-layer, the final structure will

have k keys, where k is the number of layers that do not have

another layer on their top.

One critical observation is that joint types for a pair of

blocks are selected by the layout algorithm based on the

location of those blocks in the segment and layer. Since there

are three joint types, each male or female, and six faces

on a cube, this suggests that there might be 66 = 46 656

different types of blocks to construct. Fortunately, patterns

in the segments and layers mean that not all of these block

types occur. Further tricks allow the reduction of the number

of block types to two. As an example, consider the blocks

in Fig. 5(a). Adding a mortise joint on the right side of block

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

906 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 6. Building an interlocking 3-D structure. Blocks interlock to form a square, squares form an interlocking segment, segments form a layer, and layers
interlock to form the structure. The keys are marked red.

KB makes it a copy of K A, reducing the number of types of

blocks.

It is also worth pointing out the approach we have taken

to connecting adjacent layers. To provide a firm connection,

we use a block of height two as a connector between layers;

we call this block a post.

Algorithm 1 Algorithm Overview

1: function CONSTRUCTVOXELMODEL(M)

2: M 0 ← split every voxel into eight dimension-1 cubes.

3: for each layer L i of M 0 from bottom to top do

4: Lay out any missing posts.

5: if L i is an even layer then

6: Set all segment types to X l−Y+. (Sec. V)

7: else

8: Decide the key to each component. (Sec.VI-A)

9: Order segs in each component. (Sec.VI-B)

10: Decide the key(s) to each segment. (Sec.VI-B)

11: Decide the type of each segment. (Sec.VI-B)

12: Find special cases. (Sec.VI-C)

13: Modify L i and L i+1 if necessary. (Sec.VI-C)

14: end if

15: Assemble blocks (in parallel). (Sec.VII-A)

16: end for

17: end function

IV. BLOCKS AND SQUARES

In this section, we will introduce the smallest interlocking

structures, a square, and the two kinds of blocks that make the

structure possible. Squares serve as the fundamental element

of our construction. Larger structures assembly will be later

introduced by connecting squares.

The layout algorithms make use of two types of blocks:

a cube is a unit-cube-sized block for filling empty space

in a layer and locking with existing blocks, and a post

is a two-unit high block (see Fig. 7). The lower half of

a postblock connects with cube blocks in the same layer,

whereas the upper half of the block connects with cube blocks

in the upper layer. The postblocks also act as key blocks of

substructures.

We carefully analyzed segments and layers to determine

how joints might be arranged on cubes and posts. A cube

block has two dovetail male joints on two opposite sides that

can connect, in a tangential direction, with female joints in

postblocks allowing motion only in the assembly direction.

Fig. 7. Different views of cube and postblocks.

Fig. 8(a) and (b) shows how a cube’s side male joints con-

nect with a post’s female joints in two different directions.

A cube also has a male joint on the bottom that connects,

in the normal direction, either with the top of a cube or

post. The female joints on the opposite sides of the cube

block allow postblocks’ male joint to drop and slide to con-

nect, which allows the postblock to disassemble only in two

directions.

To describe a layout and an assembly process, some notation

is helpful. For each block, we use a triplet of characters indi-

cating the block type, orientation of the block, and assembly

direction. Fig. 9 shows all of the triplets used in the assembly

of structures in this article. For example, C1D means “Cube

in orientation 1, assembled by moving down.” Fig. 9(b) shows

all of the notation triplets used in the current approach. Not

all axis-aligned orientations of cubes and posts are needed to

construct structures; for example, posts only occur in the four

orientations generated by rotating the post in Fig. 7 around

the z-axis in 90◦ increments.

Block designs are crafted to allow the design of squares,

segments, and layers. A square is the smallest interlocking

structure we consider, composed of four blocks: two posts and

two cubes. By using posts and cubes in different orientations,

different squares may be constructed, as shown in Fig. 8(e)

and (f) as Sa and Sb. Different squares will be used in

Section VI to constrain key block motions of other adjacent

segments in the same layer, allowing interlock of the layer.

Fig. 8 shows the process of assembling one kind of square.

The first piece, a post, may connect to a layer below the current

one. Two cubes are added to the top of the post. The second

post acts as a key, and the top half of this post extends above

the square to provide a connection to a square that may be

later built above the current one.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 907

Fig. 8. Assembly process of a square and two designs for a square. (a) Slide
in a C8W block. (b) Drop in a C3D block. (c) Assemble a P1W block. (d) Top
view of the square. (e) Sa square. (f) Sb square.

Fig. 9. Different ways to assemble cube and postblocks and corresponding
notations. (a) Cube orientations and assembly directions. (b) Post orientations
and assembly directions.

V. SEGMENTS

We now introduce a method to link squares into a longer

interlocking structure, a segment. A segment is composed of

n squares in a 1 × n pattern. To build a segment, we assume

that n posts have already been preplaced in the prior layer

such that the top of each post appears in the same position in

each square; these posts allow the segment to interlock with

the prior layer.

We will discuss how to assemble a simple segment built

from left to right in the direction of the x-axis, assuming that

posts are in the upper (or y+) half of each line; other segments

are symmetric and will not be discussed in detail. We denote

a segment as Yl+ X+ if the posts are in the left position of the

Fig. 10. Simple segment and an example layer built by connecting two
segments. (a) Two Yl+ X+ segments. (b) Layer built by two Yl+ X+ segments.

y positive half and the segment is built toward the x positive

direction with the key block at the end.

Fig. 10(a) shows the process of assembling a Yl+ X+ seg-

ment of three squares. We connect, from left to right, n −1 Sa

squares. The final square of a subsegment can be of type Sa

or Sb. The key piece of the segment is the last assembled

postblock. A subsegment with an Sb final square is not

interlocking, but when connected with previous segment(s),

the Sb square prevents the adjacent block in the y positive

direction from moving and interlocks the structure. Building

another Yl+ X+ segment on the y negative side will create

an interlocking layer [see Fig. 10(b)]. In Section VI, we will

discuss how to constrain the motion of the key in different

types of segments.

A. Structure Mirrors

Knowing how to assemble Yl+ X+ segments, one can lay

out an array of segments one-by-one and create interlocking

planar structures as in Fig. 10(b). However, these structures

require the key to every segment to be in the x positive end

and constrained by the next adjacent segment. To build more

complicated planar structures, we introduce the concept of

mirrors.

Definition 1 (x-Mirror): Object A is an x-mirror, mx(B),

of another object B if one is a reflection of the other with

reflection plane perpendicular to the x-axis.

We define an analogous y-mirror operation. Cube and post

designs are symmetric in such a way that x and y mirror

operations can be accomplished by simple rotation of the

block. Construction of a mirrored structure follows the same

order of the original structure with opposite directions along

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

908 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 11. Construction of two x-mirrored segments. Arrows indicate con-
struction direction. Numbers indicate assembly order. (a) Yr+ X+ segment.
(b) Yl+ X− segment. (c) Pair of segments with keys in the middle.

the same axis; for example, we may build a Yr+ X− segment

by x-mirroring a Yl+ X+ segment.

Two other types of segments we will need for layer con-

struction are Yr+ X+ [see Fig. 11(a)] and its x-mirror Yl+ X−
[see Fig. 11(b)]. To build a Yr+ X+ segment with n squares,

where n ≥ 2, we first assemble two blocks (C3D and P1W)

in the left two positions. Then, assemble a Yl+ X+ segment of

n − 1 squares. When all preexisting posts are prevented from

moving along the z-axis, the segment is interlocked.

For many input geometries, it may turn out that neither

end of a segment is adjacent to the next segment, causing

the key to be exposed. In this case, we may replace a single

segment with two segments grown from the ends, effectively

allowing placement of a pair of keys at an arbitrary position

in the middle, as shown in Fig. 11(c). These keys may then

be immobilized by later segments.

VI. LAYERS

Now that we know how to build different kinds of segments,

we can connect a set of segments on the same plane to create

complicated interlocking 3-D structures, by careful assignment

of subvoxels from the original model into layers, segments,

squares, and blocks.

A layer is a set of squares with the same z-coordinate.

A set of connected squares with the same z-coordinate is a

layer component. We assume that all layer posts are provided

by the prior layer. This is a fundamental limitation of our

approach—it does not allow overhanging structures to be

generated without building additional supports.

This section first introduces the ordering of segments in a

component. Once ordered, segments are ready to be assigned

square types and assembled. Then, we discuss some special

cases caused by the nature of our block design and square

structure, and techniques to ensure interlock.

A. Layer key(s)

As the first step of building any interlocking structure,

we determine the key(s) of the layer. A layer is immobilized

if the key(s) is fixed with respect to its neighbors. Since every

even layer has an upper layer with the exact same shape,

based on the division of voxels into subvoxels, postblocks that

connect the upper layer will be immobilized as long as the

upper layer is interlocked, preventing the horizontal motion of

any posts. Therefore, we only consider the odd layers in this

section.

For any odd layer component without adjacent upper layer

blocks, we select a postblock at the x negative end of a

boundary segment as the key, where a boundary segment is a

segment with adjacent neighbors on only one side. If the odd

layer component has an adjacent upper layer, the key can be

any postblock covered by an upper layer square.

Under this rule, every layer component constrains the key

to its lower component. Any layer components that do not

have an immediate upper layer introduce a new key that

will not be covered. The number of key pieces of the whole

structure is thus the number of layer components without an

immediate upper layer. This introduces an interesting effect of

the orientation of the object to be constructed. For example,

the chair in Fig. 1(a) has a single key, but if the chair were

built upside-down, then there would be four keys: one in

each leg.

B. Segment Construction Order

Once a layer’s key square and all starting posts of squares

are known, the second step of assembling a layer is to

determine the order and type of each segment.

In the preprocessing step, every voxel is broken into two

squares, making every layer of voxels two layers in the

assembly. The bottom layer has an even z-coordinate value,

whereas the upper layer has an odd z-coordinate. Every

segment in an even layer is constructed along the y-axis

directions. We simply assemble every segment as X l−Y+ or

90◦ clockwise rotation of a Yr+ X− segment, from left to

right. An even layer component is not necessarily interlocked

because there can be many segment keys unconstrained and

able to move in the x positive direction. However, all square

keys are posts in the upper layer, and as long as the upper

layer is interlocked or all posts are prevented from moving in

the x positive direction, the two-layer structure is interlocked.

Each square in an odd layer component is initially assumed

to have a post in the bottom-right position. This, however,

could change after the segment types have been assigned.

We first build a set of post lists where each list contains posts

with the same y-coordinate, and two adjacent posts are two

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 909

units away. Each list will be built into a segment. Two posts

are considered adjacent if their x- or y-coordinates have a

difference of 2. Two lists are considered adjacent they have

adjacent posts. Lists are ordered by their shortest distances to

the final list that contains the post of the key square, where

the distance between two adjacent lists is 1.

Given a list l and the next-built adjacent list ln , the type of

the segment Sl associated with l is determined as described

next.
1) If ln is at y− side of l and the left end post of l is

adjacent to ln , Sl is Yr+ X−.

2) If ln is at y− side of l and the right end post of l is

adjacent to ln , Sl is Yr+ X+.

3) If ln is at y− side of l and neither ends of l is adjacent

to ln , Sl is broken into a Yr+ X− and a Yr+ X+ segment.

4) If ln is at y positive side of l and the left end post of l

is adjacent to ln , Sl is Yr− X−.

5) If ln is at y positive side of l and the right end post of

l is adjacent to ln , Sl is Yr− X+.

6) If ln is at y positive side of l and neither ends of l is

adjacent to ln , Sl is broken into a Yr− X− and a Yr− X+
segment.

The segment associated with the last built list has been

specified a key (line 8 of Algorithm 1). Its type is thus

determined.

C. Special Cases

At this point, the type of each segment and the order of

construction in each layer have been selected. Many interlock-

ing layer structures can be assembled by directly following

the construction of each segment, as specified in Section V.

However, depending on the successor segments, some small

modifications might be applied to insure the interlocking of

adjacent segments.

Consider a segment with key(s) in the y negative side, for

example, Yl+ X+. Its successor can be: 1) a segment whose key

will be constrained by further segments in the y negative side;

2) a segment with the key being constrained in y positive side;

or 3) a segment whose key will be constrained by the upper

layer. We now list all possible cases that need modifications.

In Case (1), A Yl+ X+ segment followed by another Yl+ X+
segment. We use an Sb square at the later built segment

to prevent the segment’s key from moving [see Fig. 10(b)].

Otherwise, a Yl+ X+ segment always uses an Sa end square.

Case (2) contains four subcases where the current segment

has one or both ends adjacent to its successor whose key

is in the x positive or negative side. Fig. 12(a) shows one

subcase. The first Yl+ X+ segment is still assembled as usual.

We leave some positions adjacent to the first segment unfilled

and assembled the rest part. Fig. 12(b) is a similar subcase

where both ends of the segment are adjacent to the successor.

We divide the lower segment into two segments: one contain-

ing no posts adjacent to the upper segment will be built first,

and the other containing the rest posts will be built after the

upper segment. In the other subcases, the successor has a key

in the x negative direction, and we change the upper segment

to Yl+ X− and create an x-mirror of the previous case.

Fig. 12. Two special cases of building adjacent segments. Green blocks are
posts, and red blocks are keys of each segment. Numbers indicate the assembly
order. (a) Yl− X+ segment built after a Yl+ X+ segment. Some positions are
left empty. (b) Longer lower segment. The lower segment is broken into two
segments.

Fig. 13. Special cases where two segments with posts in different sides
are finished before the segment in the middle. Red blocks are keys of two
segments (Yr+ X and Yr− X types). Numbers indicates the assembly order.

Case (3) is shown in Fig. 13 where a Yr+ X segment and

a Yr− X segment are assembled before the segment in the

middle. We require the upper and lower segments’ keys to

be in different x positions. To ensure interlocking, we first

finish the upper segment and then assemble two C5N blocks

in the middle segment. After the lower segment is assembled,

we put in C3D block(s) in the middle to constrain the motion

of the lower segment key(s). The last assembled blocks (keys)

in the middle will be constrained by its upper layer. If the

upper layer is not wide enough to cover the keys, we must

expand the upper layer (Line 13 in Algorithm 1).

VII. AUTOMATIC ASSEMBLY AND

PARALLEL CONSTRUCTION

Section III-B introduced the high-level layout algorithm,

which assembles an interlocking structure layer-by-layer from

bottom to top. Each layer will be an interlocking substructure

that also connects with its lower layer using the posts and

constrains the key(s) of the lower layer. Now that we have a

better understanding of how the substructures are labeled and

constructed, we can transform the high-level algorithm to a

more detailed level and execute the assembly accordingly.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

910 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

TABLE I

PREDECESSORS OF EACH TYPE OF BLOCK

Our construction starts from the bottom layer to the top.

For each layer, we first check whether all required posts exist.

If not, we lay out these posts before starting the assembly

(Line 4). Even layers are constructed using X l−Y+ segments

(Lines 5 and 6). Odd layers need to find the keys first (Line 8).

Based on the key to each layer component, we order segments

(Line 9) and then determine segment keys and segment types

(Lines 10 and 11). Before assembling, we check whether any

special cases exist, as mentioned in Section VI-C (Line 12).

Since Yr+ X and Yr− X segments require at least two adjacent

squares, we need to modify the current layer if the condition is

not satisfied. The special case as in Fig. 13 can also require the

upper layer to expand and cover lower layer keys (Line 13).

We then finally assemble blocks based on block types and

special cases. Fig. 1 and Fig. 14 are two structure assembled

using this algorithm in simulation.

A. Parallel Construction

Laying out blocks one-by-one is time-consuming when a

structure has a large number of blocks. This section provides

an algorithm that generates a parallel construction order to

accelerate the process. We first consider preliminary blocks

of assembling each new block and build a graph between

blocks. By querying the graph for blocks whose preliminaries

are satisfied, we can have multiple agents to lay out the

blocks.

Consider a block b to be assembled in a layer. Any adjacent

block(s) to be assembled later should not be prevented by the

male joint(s) of b, meaning that the joints of a block connect

to only the preexisting blocks. Along the assembly direction

of b, the male joints of b should not be able to touch any

blocks. The blocks that must be assembled before a new block

to prevent collision are called predecessors of the new block.

Every block has a predecessor below it if an adjacent block

exists in the lower layer. Consider a block at position (x, y)

in any layer. Table I shows a list of predecessors of different

types of blocks in the same layer.

Besides predecessors listed above, inside each square, cube

blocks with mortise joints connecting blocks in the same layer

(C5N, C6E, C7S, or C8W blocks) must be assembled before

others (C1D, C2D, C3D, or C4D blocks).

Fig. 14. Stanford Bunny assembled in simulation.

With the predecessors of each block, we then construct a

directed graph G = {V , E}, where V is the set of blocks, and

directed edge ei, j ∈ E indicates block i being a predecessor of

block j . The construction follows the order of removing nodes

with an in-degree of 0. Each construction agent/thread will

take a block whose predecessors have been placed and remove

the node from the graph when the block assembly is finished.

A simple observation with the parallel construction is, after

the construction of one square s, all the adjacent squares to be

assembled after s in the sequential order is ready to assemble.

We, therefore, have the following theorem.

Theorem 1: Parallel construction of a solid cube of N

squares takes O(
3
√

N) time.

Proof: First, consider constructing a solid layer of n × n

squares. For simplicity, we scale the width of each square

to one. After assembling the square at the corner (0, 0), two

adjacent squares in the x and y positive directions will be

assembled at the next time step, then three, four, and so on.

It takes k steps to construct k(k + 1)/2 squares. When k = n,

over n2/2 squares are constructed, thus constructing a layer

takes at most 2n steps. In a cube, since finishing every square

allows all adjacent squares in the x , y, and z positive directions

to assemble. When the last square of the bottom layer is

done, it takes one more step to finish the upper layer. Thus,

2n−1 more steps will finish all upper layers. Therefore, a solid

cube of 2n × n × n squares takes O(n) = O(
3
√

N) time to

assemble.

VIII. RESULTS

We algorithmically designed plans to assemble several

models, including a Stanford bunny and a chair model and

animated the results in software. Figs. 1 and 14 show these

examples. The Stanford bunny model has 7337 blocks, while

the chair model has 472 blocks. The assemblies of both models

are done in sequential order. The rendered animation of chair

assembly can be found in Video [44].

We also have 3-D printed 406 blocks and assembled them

into a similar chair based on the rendered animation. The

assembled chair is a simplified version of the chair in the

simulation; two layers were omitted to save material and

assembly time. Four legs of the chair are relatively loose

compare to other parts because each pair of layers in the legs

are connected by only one post and a mortise and tenon joint.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 911

Fig. 15. 48-block cube-like interlocking structure is assembled using a
two-arm robot system. Blue blocks are posts and orange blocks are cubes.
(a) Rendered structure in simulation. (b) Assembly in the real world.

Some very simple structures were assembled using a 4-DoF

robot arm as an early-stage exploration. These can be found

in Video [45] (one layer) and [46] (two layers).

IX. ROBOTIC ASSEMBLY EXPERIMENT

To demonstrate the feasibility of the assembly approach,

we developed a system to allow two 6-DoF robot arms to

perform a simple example of interlocking structure assembly

using our blocks. With this system, we assembled a four-layer

cube-like structure of 48 blocks. The structure does not have

overhangs and can be constructed without support material.

Due to the lack of more robots and the limitation of the

workspace dimensions, our construction was not done in a

parallel manner, as mentioned in Section VII-A.

To correctly assemble a block into its target position,

the system must solve the following problems: 1) recognize the

position and orientation of the construction base; 2) distinguish

between cube and postblocks; 3) pick up blocks that initially

sit in a specified area; 4) precisely estimate the position and

orientation of the held block precisely; 5) reorient the block if

it cannot be picked up in the desired orientation; and 6) follow

a path to assemble the block. In this section, we will introduce

the robot system, how each problem mentioned above is

solved, and experimental results.

A. Experiment Setup and Assembly Process

The environment setup is rendered in Fig. 16. The system

includes the following hardware.

1) One Flat Table: The table was used as the platform for

assembly. A construction base is attached to the center

of the table. The base is our origin. Blocks are initially

placed randomly close to the bottom-right corner of the

table.

2) Two 6-DoF Robot Arms: We used two Universal Robots’

UR-10 robots, each with six degrees of freedom. The

arms cooperate to regrasp the block sequentially to

reorient blocks and remove configuration error. Details

of regrasping are presented in Section IX-C.

3) Two Depth Cameras: One for each robot arm. The arm

not currently holding the block estimates block pose

Fig. 16. Our experiment environment setup. Robot arms are blue, the force–
torque sensor is green, the depth cameras are in dark gray, and the grippers
are black. The blocks and structure base are the white part.

using a Create Labs’ BlasterX Senz3D camera attached

near the end-effector. The cameras integrate Intel’s

RealSense technology for 3-D point cloud reconstruction

based on structured light. Depth images are more stable

than RGB images, which can be influenced by small

light condition changes.

4) Two Two-Finger Grippers: The arms are equipped with

Robotiq 2F-85 and 2F-140 model grippers. We designed

and 3-D printed finger tips for grasping small areas on

the blocks.

5) One Force–Torque Sensor: One Robotiq FT-300 force–

torque sensor was installed on one robot arm that

does all block insertion. The force/torque sensor gives

some information about the contacts one block might

experience when inserted. We utilize this information to

prevent jamming caused by friction.

Robot arms are mounted on two diagonal corners of the

table to maximize space utilization. The right robot, RA,

is responsible for picking up blocks and placing them into

desired locations and is equipped with the force–torque sensor.

The other arm, RB , is used during the regrasping and pose

estimation process.

We placed a base of four posts at the center of the table as

the starting point for structure assembly. Waiting blocks are

typically placed at the bottom-right corner of the table, so RA

can move to check that area and pick up a block if presented.

Our assembly process is described in Algorithm 2. The

input is a sequence of block types and a desired final con-

figuration. We call a tuple of block type and configurations a

command. Commands are generated based on the assembly

rules described in previous sections. For each command,

the right-side robot RA will first pick up a block based on

the input type. The block is then moved above the center

of the table, so the camera mounted on RB can see the block

and estimate its current configuration. If the block is not

currently grasped in the desired orientation, we must find a

sequence of regrasping actions and execute them to reorient

the block correctly. Finally, we place the block into the desired

location.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

912 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Algorithm 2 High-Level Robotic Assembly Process

1: function ASSEMBLE(C ← [(b1, c1), . . . , (bn, cn)])
2: for Block bi and orientaiont oi in C do

3: Move RA to bottom-right corner of the table.

4: Pick up a block (same type as bi). (Sec IX-B)

5: Move RA and RB above the table center so two arms

are facing each other.

6: oe ← RB .EstimateBlockOrient (). (Sec.IX-B)

7: if oe 6= ci .orientaion then

8: Acts ← generate re-grasping actions for each

robot arm. (Sec.IX-C Algorithm 3)

9: ExecuteRegrasp(Acts, RA, RB). (Sec.IX-C)

10: end if

11: Plan path for block assembly.

12: RA executes the path and transform the block into a

desired configuration.

13: end for

14: end function

B. Block Bin Picking and Pose Estimation

Blocks are placed in a pile on the table for the robot to

pick up. For successful placement of a block in the assembly,

the robot must first locate the desired block in the pile, grasp

and remove it from the pile, determine the pose of the grasped

block, regrasp the block so it is held by the fingers of the

gripper in a manner where it can be placed in the assembly

without the fingers getting in the way, and then finally placed

in the assembly at the desired location. The fingers are

equipped with rubber pads to provide a solid grasp of the

block; however, during the initial contact phase of regrasping,

the block can shift necessitating a precise pose estimation of

the block at each step to ensure successful regrasp operations

and placing the block in its final pose in the assembly.

For bin picking, we use a neural network to translate a

height map of the pile of blocks to labeled grasp locations

for the gripper fingers, where the label is the block type

and face (designated as a block/face id) associated with the

grasp location. Training data for the neural net are generated

by a simulator using Bullet (reference) to simulate different

piles of blocks. For each block in the pile, we test for a

collision-free placement of the fingers to grasp the block,

using candidate grasping areas preauthored for each block.

Valid grasp regions are represented as a rectangle oriented

in 3-D in a heightmap, where the extent of the rectangle

represents the finger opening for the grasp and collision-free

range for the fingers perpendicular to the opening. Note that

we assume a two-finger parallel gripper setup. Fig. 17(a) shows

an example of the generated heightmap of a pile of blocks with

the associated labeled grasp regions (in blue) superimposed

in the same heightmap. The grasp location heightmap is

stored in an RGBA image format, using the alpha channel for

height, and the red and blue color channels for encoding the

discretized yaw of the fingers and the associated block/face

id for the grasp. For each pile of blocks, we simulate the

heightmap generated by the depth camera by rendering the pile

with the same field of view as the SR-300 camera and then

Fig. 17. Generated bin-picking and pose estimation data for training the
neural network. The height map data are downsampled from a raw image,
including Perlin noise to simulate the real sensor output. (a) Height map of
a pile of blocks generated virtually. The blue rectangles represent the faces
the gripper can approach to pick up blocks. (b) Generated height map of a
block. Blue rectangle represents the grasping region. The image is for pose
estimation.

extracting the depth map and reprojecting it into a heightmap.

To facilitate the transfer of the learned model for use with

real hardware, we also add Perlin noise to the heightmap for

domain randomization. The simulated heightmap of the blocks

is stored in an RGBA image, using the alpha channel for

the height information. We generate roughly 800 000 pairs of

various block piles and their associated grasp heightmap as

128 × 128 pixel images.

The neural network architecture we use to learn the map-

ping is a ResNet-Unet configuration. The encoder layers are

arranged as ResNet-101 with a mirroring of the structure in

the decoder. To make this fully convolutional, we replace the

max-pooling layers with convolution layers. Skip connections

are added between the corresponding blocks of the ResNet

structure. We use a multiclass cross-entropy loss per pixel.

We train for three epochs.

To extract a specified block from the pile, the robot moves

its attached camera over the designated area where the pile of

blocks is located, and a heightmap is generated and sent to the

model as an RGBA image. The output grasp heightmap from

the network is processed using OpenCV to isolate the grasp

regions. For each grasp, we count the block/face id in each

pixel of the region and use the highest count to represent the

block/face id associated with the grasp. Likewise, we extract

the finger yaw by using the highest count yaw value in the

region. The roll and pitch of the fingers are extracted from

the oriented rectangle represented by the region in the grasp

heightmap. The location of the midpoint between the fingers

is the centroid of the oriented rectangle. The finger opening

is the corresponding rectangle width. Of the available inferred

grasps, we choose the one with the desired block type and

using the embedded grasp information command the robot to

approach, grasp, and pick up the specified block.

For regrasping and placement of the block, we assume that

we have a rough estimate of the pose of the opposite face of

the grasped block and can move the camera attached to the

nongrasping robot to view the opposite face in a safe manner.

Indeed, we know the face associated with the grasp of the

block from the pile, and given a rough estimate of where it

is grasped, we can infer a rough estimate of the pose of the

opposite face.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 913

We leverage the same ResNet-Unet configuration we used

for bin picking to get pose estimates of the grasped blocks.

Given the reliability of the architecture to translate a heightmap

of the scene to a representative labeled heightmap, we cast the

pose estimation problem to a translation problem of taking a

heightmap of a block face to a reference rectangle fixed to

that face. The reference rectangle normal is parallel to the

face normal and is placed over the centroid of the block at the

height of the topmost part of the face in the direction of its

normal. By training a neural network to infer the heightmap of

the reference rectangle fixed to the face of the input heightmap,

we can use PCA to obtain the pose of the rectangle and then

map that back to get the pose of the block. Training data for

the neural net are generated by a simulator. For each face of

the block, a heightmap is generated (with some noise) looking

toward that face at various offsets of its centroid from the

view center. The height map of the reference rectangle fixed

to that face is associated with each height map. In addition,

the label of the block/face id is embedded in the heightmap

using the red color channel. Since we assume that the camera

can be placed roughly facing the opposite face of the grasped

block, the offsets for the generated data are within a modest

±3 cm and ±0.3 radians of the centered view. Fig. 17 shows

an example of the generated heightmap of a face with the

associated labeled reference rectangle (in blue) superimposed

in the same heightmap. We generate roughly 800 000 pairs

of 128 × 128 heightmap images and train for three

epochs.

To get an accurate pose estimate, the camera attached to

the nongrasping robot is moved to roughly view the opposite

face of the grasped block. A heightmap is generated of this

face by taking the depth map from the camera, clipping at

20 cm from the camera to remove background noise, and

then reprojected into a heightmap. The heightmap is sent to

the ResNet-Unet model and the inferred pose of the block

(obtained from the PCA of the reference rectangle) along

with its block/face id is extracted from the output heightmap.

If the inferred face id matches the expected value, the camera

is moved to center the face in the view. This process is

repeated several times until the adjustment is smaller than

an empirically defined threshold. At this point, we have an

accurate estimate that the block is centered in the view and

can generate an accurate pose estimate of the block to drive

the regrasping and placement actions. Ideally, a single query

of the model from a heightmap of the face would be enough to

get an accurate pose estimate; however, we found large offsets

from the center yield coarse inferred pose estimates of the

reference rectangle and hence the need for this visual servoing

strategy.

C. Regrasping

When robot RA picks up a block, there is no guarantee that

the block is held at the desired location. However, the gripper

does not allow rotation of a block while holding that block.

To solve this problem, we used the second robot RB to

temporarily hold the block, so RA can regrasp the block in

a different location (see Fig. 18). We may have to iterate this

process many times to achieve the goal orientation.

Fig. 18. Regrasping process that allows the right robot RA to hold the block
in different locations. The left robot is named RB . Red dots represent grasping
locations of RA , and yellow dots are grasping points by RB . (a) Right robot
RB estimating the block pose. (b) Block held by RA at red points. (c) RA

transferring the block to RB . RA will release. (d) Block grasped by two
grippers. (e) RB rotated. RA estimating the block pose. (f) Block pose when
rotated. (g) RB transferred the block back to RA and then released. (h) Block
held by RA and RB released. (i) Robot RA rotating back. The block is grasped
at the desired location. (j) Block grasped by RA in the right location.

Grasping locations for each of the six faces of a block

are specified manually. Initially, we move robots to home

configurations Cra and Crb, respectively, where the grippers

are 40 cm above the center of the table facing each other, and

the cameras are up. The configuration Crb is shown as the left

robot configuration in Fig. 16. Every time a regrasping action

is executed, the robot holding the block is moved back to the

home configuration. Our goal is to have the robot RA hold

the block in the desired orientation, while the robot is in the

home configuration.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

914 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

To make the process as fast as possible, we constructed

this problem as a tree search and then used breadth-first

search to find the shortest sequence of regrasping actions.

The algorithm is shown in Algorithm 3. In this algorithm,

we assume that the block is initially held by RA and the initial

and goal block orientations are in the frame of the gripper

attached to RA. We first check whether the block is held in

the desired orientation; if not, a set of valid grasping locations

are generated for the other robot. The other robot will imaging

regrasping the block according to each valid grasping location

and then transform to its home configuration. If a valid regrasp

will hold the block in the desired orientation, the algorithm

will stop; otherwise, children valid regrasps will be further

explored. This process is continued until RA is holding the

block correctly.

There are several configurations a robot cannot do making

some grasping locations invalid. For example, our environment

requires that no gripper is facing up, as the gripper may

collide with the assembling structure in these configurations.

Also, due to the nature of how we mount the cameras, we do

not want the grippers to be perpendicular to each other with

cameras on the same side because cameras may collide in

these configurations.

Algorithm 3 generates a sequence of regrasping actions

since it is planned virtually. We then have the robots to

execute the actions. The execution process is straightforward

but includes an extra part of block pose estimation before

grasping the block. This is because the block is not strictly

static with respect to the gripper when and after the previous

grasping. Thus, a pose estimation will help to reduce the

error.

D. Experiment Results

Using the robot system, we assembled a cube-like inter-

locking structure of 48 blocks. The rendered structure is shown

in Fig. 15(a) where blue blocks are posts and orange blocks are

cubes. This experiment includes all the operations described

above. Fig. 19 shows a screenshot of the robots executing

assembly commands.

A regrasping operation can be found at Video [47]. In this

video, four regrasping actions were performed (excluding the

initial pickup) to reorient a cube held by the right robot RA.

This operation took over 5 min for one block.

A complete video of assembling the cube structure can be

found in Video [48]. To prevent making the experiment video

too long, we avoided some regrasping by hand-feeding the

robot blocks in correct grasping locations. In total, the exper-

iment took less than 2 h. Because of the limitation of my

camera (30-min max video recording), the assembly of each

layer is executed and recorded separately in two days.

E. Challenges

We faced many challenges during the experiment. In this

experiment, we made two very strong assumptions. First,

we assumed that a block can be moved perfectly precisely such

that there is no contact during insertion. Second, we assume

that block joints are fabricated precisely so that the gap

Algorithm 3 Regrasping Actions Generation

1: function PLANREGRASP(init orient os , goal orient og)

2: Move RA to home configuration Cra .

3: Move RB to home configuration Crb.

4: orients ← a stack of block orientations and correspond-

ing holding robot

5: orients.push((cs, RA)).

6: while orients is not empty do

7: o, r ← orients.pop()

8: if r = RA and o = og then

9: return T raceBack(o, r)

10: end if

11: if r = RA then

12: valid_grasps ← valid grasps for RB

13: for grasp ∈ valid_grasps do

14: onext ←Transform block according to grasp,

assuming RB will be moved to Crb.

15: orients.push((onext , RB)).

16: end for

17: else

18: valid_grasps ← valid grasps for RA

19: for grasp ∈ valid_grasps do

20: onext ←Transform block according to grasp,

assuming RA will be moved to Cra .

21: orients.push((onext , RA)).

22: end for

23: end if

24: end while

25: end function

Fig. 19. Real platform setup. The robots are assembling the first layer of an
interlocking cube.

between a pair is quite small. These assumptions are unfortu-

nately not satisfied in the real world.

Our robots were fairly precise in terms of repeatability.

However, in order to coordinate two robots to work in a

shared workspace, a calibration process was performed to

align two robots’ local frames. This calibration is not perfect

and could introduce errors causing the block movement not

exactly following a designed trajectory. The pose estimation

can also introduce errors due to the nature of neural networks.

When grasping a block, the gripper is not always holding near

the center of mass, which might cause a tall block to rotate

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INTERLOCKING BLOCK ASSEMBLY WITH ROBOTS 915

slightly. These errors combined could cause a block to touch

other blocks during the insertion process.

The blocks were 3-D printed with a rather precise printer.

However, the support material covered outside each block

is problematic. It is impossible to get rid of completely,

and environmental conditions, such as time, temperature, and

humidity, appeared to cause the support material to expand

or shrink slightly, making insertion very difficult. To avoid

this issue, we designed the male joint slightly smaller than

the female joint such that not all contact faces of a joint

give resistant friction. This design, however, makes the blocks

slightly flexible causing the jamming problem later.

The biggest resulting issue of the unsatisfied assumptions

was the friction. Friction can be from many different contact

surfaces or points whose number and location are unpre-

dictable. The friction led to some slight rotation of blocks

which in some trials caused jamming.

ACKNOWLEDGMENT

The authors are grateful to Haopeng Zhang and Geoffrey

Hsuan-Chieh Huang, who helped to build 3-D models of

blocks, built robot grippers, and recorded videos. They also

thank Jeremy Betz for useful insights on the geometry of

joints. They would also like to thank Emily Whiting, as well

as members of the Dartmouth Robotics Lab, for useful feed-

back and insights throughout. They also thank Adam Arnold,

Heather Kerrick, Hui Li, and Mike Haley of Autodesk for

their insights of 3-D printing, interlocking structures, as well

as their help in design of the physical robot assembly system,

and to Autodesk for the use of the lab space at Pier 9, San

Francisco, CA, USA.

REFERENCES

[1] Y. Zhang and D. Balkcom, “Interlocking block assembly,” in Proc. 13th
Int. Workshop Algorithmic Found. Robot., 2018, pp. 709–726.

[2] S. Lensgraf et al., “PuzzleFlex: Kinematic motion of chains with loose
joints,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020,
pp. 6730–6737.

[3] G. Strano, L. Hao, R. M. Everson, and K. E. Evans, “A new approach to
the design and optimisation of support structures in additive manufac-
turing,” Int. J. Adv. Manuf. Technol., vol. 66, nos. 9–12, pp. 1247–1254,
Jun. 2013.

[4] J. Vanek, J. A. G. Galicia, and B. Benes, “Clever support: Efficient
support structure generation for digital fabrication,” Comput. Graph.
Forum, vol. 33, pp. 117–125, Aug. 2014.

[5] X. Zhang, X. Le, A. Panotopoulou, E. Whiting, and C. C. Wang,
“Perceptual models of preference in 3D printing direction,” ACM Trans.

Graph., vol. 34, no. 6, pp. 215:1–215:12, 2015.
[6] K. Zwerger and V. Olgiati, Wood and Wood Joints: Build-

ing Traditions of Europe, Japan and China. Basel, Switzerland:
Birkhäuser, 2012. [Online]. Available: https://books.google.com/books?
id=yPoEBDZSUyoC

[7] J. P. Wilson, D. C. Woodruff, J. D. Gardner, H. M. Flora, J. R. Horner,
and C. L. Organ, “Vertebral adaptations to large body size in theropod
dinosaurs,” PLoS ONE, vol. 11, no. 7, Jul. 2016, Art. no. e0158962.

[8] Y. Zhang and D. Balkcom, “Interlocking structure assembly with vox-
els,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 2173–2180.

[9] P. Song, C.-W. Fu, and D. Cohen-Or, “Recursive interlocking puzzles,”
ACM Trans. Graph. (SIGGRAPH Asia), vol. 31, no. 6, pp. 128:1–128:10,
Dec. 2012.

[10] P. Song et al., “Reconfigurable interlocking furniture,” ACM Trans.
Graph., vol. 36, no. 6, p. 174, 2017.

[11] P. Song et al., “CofiFab: Coarse-to-fine fabrication of large 3D objects,”
ACM Trans. Graph., vol. 35, no. 4, p. 45, 2016.

[12] C.-W. Fu, P. Song, X. Yan, L. W. Yang, P. K. Jayaraman, and
D. Cohen-Or, “Computational interlocking furniture assembly,” ACM

Trans. Graph., vol. 34, no. 4, p. 91, 2015.

[13] Z. Wang, P. Song, and M. Pauly, “DESIA: A general framework for
designing interlocking assemblies,” ACM Trans. Graph., vol. 37, no. 6,
pp. 1–14, Jan. 2019.

[14] K. Tang, P. Song, X. Wang, B. Deng, C.-W. Fu, and L. Liu, “Computa-
tional design of steady 3D dissection puzzles,” Comput. Graph. Forum,
vol. 38, no. 2, pp. 291–303, 2019.

[15] J. Yao, D. M. Kaufman, Y. Gingold, and M. Agrawala, “Interactive
design and stability analysis of decorative joinery for furniture,” ACM
Trans. Graph., vol. 36, no. 2, pp. 20:1–20:16, Mar. 2017. [Online].
Available: http://doi.acm.org/10.1145/3054740

[16] W. Kong and B. B. Kimia, “On solving 2D and 3D puzzles using curve
matching,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit. (CVPR), vol. 2, Dec. 2001, pp. 2–583.

[17] Z. Wang, P. Song, F. Isvoranu, and M. Pauly, “Design and structural opti-
mization of topological interlocking assemblies,” ACM Trans. Graph.,
vol. 38, no. 6, pp. 1–13, Nov. 2019.

[18] J. Andres, T. Bock, F. Gebhart, and W. Steck, “First results of the devel-
opment of the masonry robot system ROCCO: A fault tolerant assembly
tool,” in Automation and Robotics in Construction XI. Amsterdam,
The Netherlands: Elsevier, 1994, pp. 87–93.

[19] C. Balaguer, E. Gambao, A. Barrientos, E. A. Puente, and R. Aracil,
“Site assembly in construction industry by means of a large range
advanced robot,” in Proc. 13th Int. Symp. Autom. Robot. Construct.,
Jun. 1996, pp. 65–72.

[20] V. Helm, S. Ercan, F. Gramazio, and M. Kohler, “Mobile robotic
fabrication on construction sites: DimRob,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2012, pp. 4335–4341.

[21] M. Giftthaler et al., “Mobile robotic fabrication at 1:1 scale: The in situ

fabricator,” Construct. Robot., vol. 1, nos. 1–4, pp. 3–14, Dec. 2017.

[22] S. Hauser, M. Mutlu, P.-A. Léziart, H. Khodr, A. Bernardino, and
A. J. Ijspeert, “Roombots extended: Challenges in the next generation
of self-reconfigurable modular robots and their application in adap-
tive and assistive furniture,” Robot. Auto. Syst., vol. 127, May 2020,
Art. no. 103467.

[23] S. Hauser, M. Mutlu, and A. J. Ijspeert, “Kubits: Solid-state self-
reconfiguration with programmable magnets,” IEEE Robot. Autom. Lett.,
vol. 5, no. 4, pp. 6443–6450, Oct. 2020.

[24] J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio,
and M. Kohler, “Aerial robotic construction towards a new field of
architectural research,” Int. J. Architectural Comput., vol. 10, no. 3,
pp. 439–459, Sep. 2012.

[25] F. Augugliaro et al., “The flight assembled architecture installation:
Cooperative construction with flying machines,” IEEE Control Syst.,
vol. 34, no. 4, pp. 46–64, Aug. 2014.

[26] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic
structures with quadrotor teams,” in Robotics: Science and Systems

VII. Jun. 2011.

[27] F. Augugliaro, A. Mirjan, F. Gramazio, M. Kohler, and R. D’Andrea,
“Building tensile structures with flying machines,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Nov. 2013, pp. 3487–3492.

[28] S. J. Keating, J. C. Leland, L. Cai, and N. Oxman, “Toward site-
specific and self-sufficient robotic fabrication on architectural scales,”
Sci. Robot., vol. 2, no. 5, Apr. 2017, Art. no. eaam8986.

[29] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with
compressible unit modules,” Auto. Robots, vol. 10, no. 1, pp. 107–124,
2001.

[30] P. White, V. Zykov, J. C. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots,” in Robotics: Science and
Systems. Cambridge, 2005, pp. 161–168.

[31] J. W. Romanishin, K. Gilpin, and D. Rus, “M-blocks: Momentum-
driven, magnetic modular robots,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Nov. 2013, pp. 4288–4295.

[32] H. Wei, Y. Chen, J. Tan, and T. Wang, “Sambot: A self-assembly
modular robot system,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 4,
pp. 745–757, Aug. 2011.

[33] J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and
M. Campbell, “An integrated system for perception-driven autonomy
with modular robots,” 2017, arXiv:1709.05435. [Online]. Available:
http://arxiv.org/abs/1709.05435

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

916 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

[34] T. Tosun, G. Jing, H. Kress-Gazit, and M. Yim, “Computer-aided
compositional design and verification for modular robots,” in Robotics

Research. Springer, 2018, pp. 237–252.
[35] A. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and J. McLurkin,

“Reconfiguring massive particle swarms with limited, global control,” in
Proc. Int. Symp. Algorithms Exp. Sensor Syst., Wireless Netw. Distrib.

Robot. Springer, 2013, pp. 51–66.
[36] A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin,

“Massive uniform manipulation: Controlling large populations of simple
robots with a common input signal,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Nov. 2013, pp. 520–527.

[37] A. T. Becker et al., “Tilt assembly: Algorithms for micro-factories that
build objects with uniform external forces,” Algorithmica, vol. 82, no. 2,
pp. 165–187, 2020.

[38] Y. Zhang, X. Chen, H. Qi, and D. Balkcom, “Rearranging agents in a
small space using global controls,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst. (IROS), Sep. 2017, pp. 3576–3582.
[39] S. Manzoor, S. Sheckman, J. Lonsford, H. Kim, M. J. Kim, and

A. T. Becker, “Parallel self-assembly of polyominoes under uniform
control inputs,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2040–2047,
Oct. 2017.

[40] A. Schmidt, S. Manzoor, L. Huang, A. T. Becker, and S. P. Fekete,
“Efficient parallel self-assembly under uniform control inputs,” IEEE

Robot. Autom. Lett., vol. 3, no. 4, pp. 3521–3528, Oct. 2018.
[41] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-

assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, Aug. 2014.

[42] E. Schweikardt and M. D. Gross, “RoBlocks: A robotic construction
kit for mathematics and science education,” in Proc. 8th Int. Conf.

Multimodal Interfaces (ICMI), 2006, pp. 72–75.
[43] R. Thompson, E. Ghalebi, T. DeVries, and G. W. Taylor,

“Building LEGO using deep generative models of graphs,” 2020,
arXiv:2012.11543. [Online]. Available: http://arxiv.org/abs/2012.11543

[44] Y. Zhang. Robotic Assembly of Interlocking Blocks—WAFR 2018.
Youtube. Accessed: Jan. 4, 2021. [Online]. Available: https://youtu.be/
lV2xIA_Q8SI

[45] Y. Zhang. One-Layer Structure Robotic Assembly Experiment With Two

Kinds of Blocks. (2.5x Speed). Youtube. Accessed: Jan. 4, 2021. [Online].
Available: https://youtu.be/1_lbVyPcLOI

[46] Y. Zhang. Two-Layer Structure Robotic Assembly Experiment With Two

Kinds of Blocks. (2.5x Speed). Youtube. Accessed: Jan. 4, 2021. [Online].
Available: https://youtu.be/ZjFFZzrl69s

[47] Y. Zhang. Block Regrasping Using Two Ur-10 Robot Arms. (1080p).
Youtube. Accessed: Jan. 4, 2021. [Online]. Available: https://youtu.be/
DyMBOK-Pz1I

[48] Y. Zhang. Interlocking Cube Assembly Using Two Ur-10 Robots (4K
60FPS). Youtube. Accessed: Jan. 4, 2021. [Online]. Available: https://
youtu.be/OaB7LMgl6rY

Yinan Zhang received the B.E. degree in soft-
ware engineering from Southeast University, Nan-
jing, China, in 2013, and the Ph.D. degree in com-
puter science from Dartmouth College, Hanover,
NH, USA, in 2019, advised by Prof. D. Balkcom.

His research focused on motion planning, inter-
locking structure assembly, and manipulation.

Yotto Koga received the Ph.D. degree from
the School of Engineering, Stanford University,
Stanford, CA, USA, in 1994, advised by Prof.
Jean-Claude Latombe.

He is currently a Software Architect with the
Machine Intelligence Group, Autodesk Research,
San Francisco, CA, USA, working on big data and
machine learning problems. Previously, he was an
Architect of Firefly, a web, mobile, and desktop 2-
D and 3-D viewing platform for Autodesk products,
and an Architect of Design Graph, a knowledge

graph for design. His research focused on robot motion planning.

Devin Balkcom received the Ph.D. degree in robot-
ics from Carnegie Mellon University, Pittsburgh,
PA 15213, USA, in 2004, advised by Matt Mason.

He is currently a Professor with the Depart-
ment of Computer Science, Dartmouth College,
Hanover, NH, USA. He is interested in efficient
robot designs and motion. His research highlights
include exact time-optimal motion for mobile robots,
robot origami, knot-tying, laundry folding, and con-
struction of interlocking structures.

Dr. Balkcom was awarded the NSF CAREER
Grant in 2006, the Dartmouth McLane Family Fellowship in 2010, and the
Dartmouth John M. Manley Huntington Award in 2010.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:30:29 UTC from IEEE Xplore. Restrictions apply.

