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Abstract—This paper explores a system for assembling
structures by dropping block components into place. During
and after assembly, the blocks are held together by geometric
interlock, so that fasteners or mortar are only needed to bind
the final block to one of its neighbors. Drop assembly is a
promising strategy for assembly by swimming or flying robots,
as it may allow structures to be built without requiring close
contact with the existing structure. The current paper explores
a mathematical model of interlock, and presents a particular
block design that allows interlock to be achieved using only
gravity. Proof-of-concept demonstrations of the system are pre-
sented using a low-cost and relatively low-precision robot arm.
Finally, the paper analyzes some of the potential limitations
of the approach, particularly including flexing of the structure
due to manufacturing tolerance limitations.

I. INTRODUCTION

An assembly of rigid bodies is interlocking if there are
no possible motions of any collection of the bodies relative
to the other bodies; the entire assembly moves only as a
single rigid body. Jigsaw puzzles are typically interlocked
in the plane, but are assembled from above. Burr puzzles
are nearly interlocked in space — there is a single assembly
order, and if the last piece to be assembled is glued to a prior
piece, the puzzle is completely interlocked.

This paper shows that some nearly-interlocked structures
can be built by an extremely simple method: dropping each
piece and allowing gravity to pull the piece into place. The
focus of the current paper is on brick-like blocks that form an
effectively planar wall, but the interlock is three-dimensional
— the constructed walls resist disassembly in all directions.

This work is motivated by the eventual prospect of con-
structing structures with aerial drones, or underwater with
submersible vehicles. Flying or swimming robots permit
great ease of access to the structure being built, but lack
of a fixed base places great demands on the control of the
robot, so that neither the robot nor the component being
placed crashes into the existing structure. The goal of the
present work is to design components that can be dropped
into place, so that the robot need not approach the existing
structure too closely. Drop assembly also motivates a study
of compliance — funnel-like joints in the existing structure
can remove error and allow imperfectly positioned blocks to
slide into place.

It is surprising to us that an interlocking structure can be
built using only gravity; imagine an interlocking planar jig-
saw puzzle that can be assembled without lifting any pieces
off the table, and using only forces from one direction. There
are two simple ideas to the approach: 1) prismatic joints
allow motion in only one direction, and conflicts between

Fig. 1: Robot arm assembling interlocking blocks.

those directions can jam or interlock an assembly, and 2)
angled joints can serve as ramps that convert gravitational
force in one direction to motion in another direction. Sec-
tion III builds the mathematical model of nearly interlocking
structures constructed using only prismatic joints.

Section IV shows a particular design of two types of
blocks that allow drop assembly of nearly interlocking struc-
tures by adding angled ramps to the simplified blocks from
the prior section. These blocks may be laid out in a standard
brick pattern, allowing interesting shapes of structures to be
built without the need for cement, glue, or other fasteners
except on the last block placed — see Figure 1.

Interlocking blocks have some advantages over other con-
struction techniques. Relative to ‘harden in place’ approaches
used in large- and small-scale 3D printing, the component-
based design may allow disassembly for re-use or repair.
Components may be fabricated off-site and may be het-
erogeneous, containing reinforcing materials or embedded
electronics. LEGO blocks are component-based and provide
some of the same advantages of our design, but the friction
locks that connect LEGOs are delicate and require high
manufacturing precision as well as fairly precise assembly.

Interlocking blocks also have potential disadvantages.
Mortarless assembly can leave small gaps between blocks,
leading to undesired aggregate flexibility of the structure.
Section VI explores some of these potential weaknesses,
using a linearized representation of the configuration space
to explore flexing and variation of structure shape based on
this local motion of the components.



(a) Source: Andreas Roever [23]

(b) Source: Muns [18]

Fig. 2: Jigsaw puzzles and burr puzzles are examples of interlocking
structures.

II. RELATED WORK

The work presented in this paper is related to work done
in interlocking, robotic assembly, self-assembly, and modular
robotics.

A. Interlock

Interlocking pieces play a large part in puzzles and assem-
bly — e.g., jigsaw and burr puzzles (Fig. 2). Snoeyink and
Stolfi [29] give configurations that cannot be taken apart with
two hands. Czyzowicz, Stojmenovic, and Urrutia [6] prove
that polygons with no parallel edges can be immobilized with
three points. More recently, Xin et al. [37] decompose 3D
models into Burr Puzzles with one mobile part called a key;
the puzzles can only be disassembled by removing the key.
Similarly, Song, Fu, and Cohen-Or [31] generate designs for
interlocking structures that are incrementally interlocked as
pieces are added to the structure, which also ensures struc-
tures can only be disassembled in one direction. Generally,
3D printing large structures is challenging. Song et al. [32]
addressed such challenges by decomposing structures into
smaller pieces which are strongly connected, but can still
be assembled or disassembled. Fu et al. [10] showed larger
objects, such as furniture, can be decomposed into overlap-
ping interlocking subsections that can be re-assembled as
an interlocking union of the subsections. In [14], Lensgraf
et al. provide a means of determining the free motions of a
structure, which aids in proving a structure is interlocked.

This work is closest in spirit to work done in [40] and [39].
Our work uses a similar definition of a key from [40], but
we provide our own definition of interlock and provide a
systematic way for proving whether shapes are interlocked.
Caging is a form of interlock; Rimon and Blake [19] formal-
ized the notion of a caging set, where an object is completely
surrounded by two fingers and has some freedom to move,
but cannot escape the fingers. This work was extended to
planar bodies [20] and to three fingers [7]. Rodriguez and
Mason established a distinction between stretching caging
and squeezing caging [22] and then later extended the idea
to grasping [21].

B. Robotic Assembly

Drone Assembly is becoming more common. Two quadro-
copters used foam blocks and adhesive to build a 6m

tower in [2]. Magnets and block geometry can passively
aid drone assembly [13, 9]. Using drones for assembly
poses new constraints on weight and size of building blocks;
Willmann et al. [35] use these constraints as the guiding
force behind block fabrication and design. Beyond new block
design restrictions, there are also constraints on the types
of structures that can be built by drones alone [27]. Some
of these restrictions can be overcome by adding features to
the building materials such as magnets [15] or making the
materials very lightweight [2, 4].

Nonprehensile Manipulation has been explored for some
manipulation tasks. Moll and Erdmann [17] explored non-
prehensile manipulation to infer the shape of an object via
tactile sensors. Woodruff and Lynch [36] studied motion
planning and feedback control of nonprehensile manipulation
using sequences of motion primitives. Ryu, Ruggiero, and
Lynch [26] stabilized an object in an upright position when
either the base the object is balanced on or the object
itself rotates to a specific orientation. Dogar and Srinivasa
[8] determined feasible actions based on the mechanics of
pushing. Mason [16] provided a survey of recent work
in nonprehensile manipulation, including a study of using
dynamics to manipulate an object. Geomans and Stappen
[11] used V-shaped traps in vibratory tracks and passive
mechanical compliance to sensorlessly orient parts.

C. Self Assembly and Modular Robotics

Self Assembly Intelligent building blocks can aid robotic
assembly [33, 34]. Zhong Li, Balkcom, and Dollar [41]
proposed a method of discretizing a large, planar shape
into connected triangles to cover shapes. Reconstructing
shapes in the plane is possible using simple self-assemble-
able robots [1], and more complex, pre-programmed shapes
can be formed by a swarm of modular robots [25]. Drones
are computationally designed in [9] given a collection of
components.

Modular Robotics Some modular robotic systems have
self-assembly properties [28, 24, 12] that enable small,
programmable robots to form larger structures or to change
shape for different tasks. Yim et al. [38] provided a survey
of current modular robotics systems and challenges. Modular
robots can themselves be fabricated using materials such as
foldable sheets of polyester and laser cut parts [30] and be
used for simple tasks. In [3], a single input signal is used
to control a large swarm of modular robots. Our goal is
somewhat related; we use a single direction of motion to
attach our blocks to a structure.

III. INTERLOCKING MODEL

Figure 3 shows some example blocks that we will use to
illustrate interlock. We introduce our definition of interlock,
and build a set of constraint equations that may be used to
test if a structure is interlocked.

A. Types of Blocks

First, we show a system using square blocks with 60° and
30° constraints; these simpler blocks, while not particularly
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Fig. 3: Example configuration with 3 blocks. The blocks are labeled
with the assembly number and the block type.

reliable for drop assembly — motivating a different design in
the following sections — illustrate the process of interlock.

We denote Type A blocks as having three joints at 60°
and Type B blocks has having three joints at 30°, as
shown in Figure 3. Blocks connect via prismatic joints into
complementary holes. Bottom joints spike two blocks in the
previous layer, “stapling” the blocks together. Side joints
connect blocks in the same layer.

We consider first an idealized model of the system in
which the connections between each pair of blocks is a
perfect prismatic joint, allowing linear translation but no
rotation.

The last block inserted will only be spiked by one type
of joint, so for our physical implementation we introduce
an external constraint that glues together the last two blocks
after insertion.

B. Constraints

For any pair of touching blocks connected by some joint,
the general form of the constraint is

0 e (Ti— 25, Yi—Yj, zi—25) = Vi (=T, §i—05, Zi—25),

ey
where constants z, g, and Z denote the initial coordinates,
variables z, y, and z denote the current coordinates, and
n; jx denotes the unit normal to the line of action of the
joint.

We choose an arbitrary block as block 1, which will be the
reference frame for all other blocks in the system. Although
the entire system acts as a rigid body and can rotate, each
block is connected through a chain of prismatic joints to
block 1, and cannot rotate with respect to any other block.
We therefore omit 6 coordinates for the blocks from the
following analysis.

We can define the constraints for systems like the one
shown in Figure 3 and for any arbitrary system using this
form.

To express the constraint on the relative motion of blocks,
we take a time derivative of each constraint equation:
Zj) =0 2)

njjk- (Iz — L5, Yi — Yjs 2 —

For any particular system, all the constraints can be written

in matrix form as

J-x=0 3)
where J is the Jacobian matrix of constraint equations and
x is the vector of block locations. Note that since only
pure translations are permitted by the prismatic joints, the
elements of J are constants. For the first block, we add two
additional rows to J: 21 =0, 41 =0, 21 = 0.

The null space of J thus gives the free motions x. This
suggests a way to check if a system is interlocked: a system
is interlocked if and only if the null space of the constraint
Jacobian is empty.

As an example, consider the three blocks b € {b1,bs, b3}
shown in Figure 3. The normal for the line of action of b3

is [@, =] and the normal for the line of action of by is

[§7 1]. Applying these to Equation 1 and Equation 2, we
find a J for the system. The null space of J has a single
column (O, 0,0,0,0.5, 0.9)T. The free motion in this system
is produced by b3, which can detach from b; and bo, as
indicated by the entries in the null space. The structure in

Figure 3 is not interlocked.

C. Interlocking patterns

Computing the null space of the constraint Jacobian is a
test to check if a system is interlocked, but we would like
to construct large arbitrary structures that are interlocked by
design. We use the following approach. First, we construct
a small pattern of blocks and use the null-space approach
to prove that it is interlocked. If these interlocked subsets
overlap with some other interlocked subset and this is done
inductively over the structure, we can prove that the entire
structure is interlocked.

Before we present our argument for interlocking through
overlap, we introduce the notion of a key; keys are not unique
to this work and are also presented in [40] and [31]. Because
the structure is assembled by translation, the last block can
always escape; the structure is not interlocked until the key
is bound to the the structure using a fastener of some type.

We will show each subset has a key, and the keys of each
subset become incrementally interlocked as the structure is
assembled. When we say a structure is nearly-interlocked,
we are referring to structures that are locked if the key or
keys are bound to the structure.

Consider the system in Figure 4, where the set of all blocks
is B. Blocks are labeled using a number representing their
place in the global assembly order.

For the system to be interlocked, each block b € B must
also be in a smaller set s such that each set s;Uso, ..., s, 1U
s, = B. We define each set s as the smallest subset of
blocks that can be nearly-interlocked. In Figure 4, the nearly-
interlocked subsets are the two quartets highlighted in red
and blue, and a third quartet of blocks {2, 3, 6, 7}.

Consider the blue subset as a standalone structure where
block 6 is the key. Similarly, consider the middle subset as



Fig. 4: This structure is nearly-interlocked, with block 8 acting as
the key.

(a) Type A blocks (b) Type B blocks

Fig. 5: Rectilinear-z blocks for drop assembly.

a standalone structure where block 7 is the key. We can say
both these structures are nearly-interlocked.

Now consider a structure that is the union of the blue sub-
set and the middle subset. We see that block 6 is interlocked
as a part of the middle subset, and block 7 becomes the
structure’s single key.

If we now consider the union of the red subset with the
new structure we just defined, we see that block 7 will
be interlocked as part of the red subset, and block 8 will
become the sole key. If block 8 is glued in, we have a fully
interlocked structure composed of three smaller, overlapping
interlocked structures.

IV. SYSTEM IMPLEMENTATION

We design physical blocks that have the same interlocking
properties as the polygonal blocks discussed in Section III.
The experiments in this section are meant to both exemplify
the key-interlocking definition we present above, and to show
the applicability of this principle to building arbitrary shapes
using a collection of only two types of blocks.

A. Block Design

We design rectilinear-z blocks shown in Figure 5. These
blocks have the same interlocking properties as their simpler
counterparts described in the prior section, but are shaped
so as to permit drop assembly. The square blocks shown in
Figure 3 do not permit drop assembly because of the side
constraint; we made the body of the block rectilinear-z so that
the side constraint is inserted into a flat surface. Additionally,
we added chamfers around the holes and sides to increase
the likelihood of a successful drop.

Fig. 6: Robotic assembly setup.

We also simplified drop assembly by using a vertical spike
and reducing the 30° constraint to 45°. The blocks are placed
in an ABA pattern to form layers. Each successive layer
changes direction so the blocks are built in a snaking pattern,
and we design the blocks to be symmetric so a block can
be flipped over and used for the next layer. This reduces the
number of different blocks needed to build a structure.

B. Experimental Setup

We built small structures with a 5 DoF Trossen Robotics
WX-200 robot arm, and we also built larger-scale structures
by hand, since the robot has a limited work space. We 3D
printed the blocks shown in Figure 5 using an Ultimaker S3.

The experimental setup used for assembly with the robot
arm is shown in Figure 6. The insertion strategy for blocks
is to pick up a block, position over the next spot in the layer,
and drop the block. The pickup for blocks of the same type
does not change; only the position of the drop-off changes
between blocks. The pick up locations are on either side
of the robot, and the base where the first layer is placed is
directly in front of the robot. Building with the robot arm is
meant to be a proof-of-concept of drop assembly to show the
possibility of automation. We did not optimize the building
setup or the block design for precise pick-ups and drop-offs.
There are slight deviations in the the pitch of the block when
picked up, but typically error is removed as the dropped
block slides into the hole.

V. DROP ASSEMBLY

In this section, we show the structures built with the robot
arm and built by hand. The structures built in this section
are planned out manually, and we discuss our plans for an
automated layout algorithm in Section VII.

The structures shown here are 2D, but because the inter-
locking model is 3D we can extend the structures to 3D by
connecting planar structures perpendicularly.

A. Assembly with a Robot Arm

Figure 7 shows a planar wall built with the robot arm. This
example shows the ability of the blocks to tolerate overhangs,
which we use extensively in the other structures built by



Fig. 7: Planar wall assembled by a robot arm.

hand. We choose this structure for the robot to build because
this five block configuration occurs in the other structures,
and so we can see the robot is capable of handling the basic
subsets that the structures are composed of.

B. Building General Structures

Planar A The planar A demonstrates the ability to bring two
separate structures into one, and it also creates bridges over
empty spaces. Additionally, we show that we can build taller
structures that don’t necessarily need very long bases, and we
can remove blocks that are not needed for the interlocking
subsets.

The assembled planar A is shown in Figure 8. The key for
this structure is labeled, as is the assembly order (numbers).
This structure is composed of 28 blocks and we build the
structure from smaller interlocked subsets. As an example,
we see that blocks on the left leg {4,3,5,6} are a nearly-
interlocked subset with block 6 acting as the key, as is
{5,6, 11,12} with block 12 acting as the key. The other leg
of the structure and the main body have similar subsets that
inductively interlock to reduce to a single key. We can also
verify the structure is locked by picking it up and holding it
without any support, as shown in Figure 9a. We can assemble
structures with holes by ensuring the blocks around the
empty spaces are locally locked without relying on the blocks
that could be in those spaces. We are able to achieve two gaps
close together by ensuring that block 15 and block 16, which
are both adjacent to the gaps, are interlocked with subsets
{13,14,15,22,21} and {16,17,18,20, 19}, respectively.
Planar S The S is shown in Figure 10, with 44 blocks and
2 keys. The first key is the left block on the top layer, and
the second key is the left block at the tail of the S. This
structure requires two keys because although we start with
a single building point, the two building directions do not
meet and so a key is required where each thread ends. We
show this structure is interlocked in Figure 9b by holding the
structure away from the back plane and off the ground, but
we also start to see flexing of the structure, particularly in
the middle of the S. We discuss ways to reduce this flexing
by adjusting the tolerances of the blocks in Section VI.

©
Fig. 9: Structures held without support to demonstrate interlock.

Wreath The wreath in Figure 11 has a large hole in the
center, but is nonetheless one of the more stable structures
we built. We also see, as we saw in the S, that we can start at
a common point and build two different threads away from
each other. This structure requires one key because the two
building directions meet at the top. We imagine repeating the
wreath to build a chain or a lattice.

VI. ANALYSIS OF LIMITATIONS AND CHALLENGES

One of the primary limitations of the approach is that small
gaps between blocks can allow build-up of error throughout
the structure, potentially limiting the size and rigidity of



Fig. 11: Wreath with marked keys and assembly order.

assemblies. Initially, we attempted to explore this limitation
using the Bullet Physics Engine [5] and PyBullet, but the
simulation tool appears to be unsuitable for the task. This
motivates the use of an alternate approach, the PuzzleFlex
framework developed in [14].

An example of the simulated environment is shown in
Figure 12a, with an example structure of seven blocks. When
the structure is picked up, the top layer begins to pull away
from the previous layer (Figure 12b). We show the same
example (Figure 12c) using the physical versions of the
blocks and find that we do not have the same failures in
the physical system as is apparent in the simulated system;

NN

(a) Simulation of seven blocks.

(b) Top layer pulls away from bot-
tom layer.

(c) Physical structure remains in- (d) Simulated in PuzzleFlex.

terlocked when picked up.
Fig. 12: The simulation in PyBullet produces a failure ((a) and

(b)) for a structure that is interlocked in the physical version (c).
PuzzleFlex instead correctly determines interlocking (d).

the multiple components in close proximity appear to cause
the physics engine to permit motion that violates geometric
constraints.

A. Flexing motion in a linearized constraint space

PuzzleFlex [14] turns the computation of rigid body mo-
tion into a linear programming problem by modeling joints
as linearized constraints between vertices and another block’s
edge segments.

The PuzzleFlex framework is designed for planar flexibil-
ity analysis, so we focused on analyzing these blocks on the
assembly plane. We first project the block design in Figure 5
to a polygon on the assembly plane and removed the bridges
and holes. The removal of the bridges turns blocks into
continuous polygons without holes, which meets the Puz-
zleFlex input requirement. There is one more thing we need
to worry about: our blocks are staggered for assemble-ability.
As discussed in PuzzleFlex [14], these blocks’ motions are
limited in small convex regions. We make the following
modifications to this framework.

B. Modified optimization framework

Assume we have a point p € R? on the plane and a
polygon, which consists of n vertices

V = {v;li € R,i € [0,n],v; € R?}
Let polygon G be defined as a set collection of line segments

G = {s; = [vs,v5]|vi,v; € V,(j mod n) = (i mod n + 1)}



Assume the function d(p, s), (R?,R%) — R always returns
the shortest Euclidean distance between point p and line
segment s, and let function wind(p, G) return the winding
number for point p regarding polygon G. With these, we then
can define the signed distance between point p and polygon
G as

9(p, G) = {min{d(p, s)|s € G}, wind(p,G) =0

—min{d(p, s)|s € G}, wind(p,G) # 0 @

This function describes the signed distance between a point
and a polygon and the zero-level set of this function is the
polygon boundary.

In this way, we define a new type of constraint be-
tween a point and a polygon. For two polygons G4 and
Gp which have configuration ¢4 = (xa,ya,04) and
g = (zB,yB,0B), assume their transformation matrices
are T(qa) and T(gp). We can build a constraint between
any vertex in A with polygon B and vice versa. For a
constraint between a point p4, which is presented in polygon
A’s local coordinate system, and a polygon B, we denote
p=Tg YT 4p4. Then the constraint Jacobian matrix can be
represented as

Tan.qn]) = | 242-Gr) 3g(p7GB)]

dqa JdqB

_ [99(.G) O 9g(p.Gr) Op ] )

| Op  9qa’  Op g
[dg,, ,0Ta  0g0Tgz"
—Tg PA, o

[Op © 0gqa” " Op JqB

TAPA]

We denote the objective weight vector by ¢’ and the con-
straint’s distance before optimization by dy. Then we can
solve the same linear programming problem as in Puzzle-
Flex [14].

T
max c Aq
Aq (6)
subject to  J(¢)Aq+dy >0

After getting the configuration changes Aq, we update
blocks configuration at m-+1 step to qmtD) = g™ ¢ .Aq,
where ¢ is the largest scale value that will not cause any
collision in the new configuration.

With this framework, we can simplify the block inter-
locking analysis to the 2D space and analyze it on a larger
scale. If the optimization on all blocks leads to no separation
between neighboring blocks, this suggests that the entire
structure is interlocked.

C. Verification with PuzzleFlex

There are several aspects we need to consider to apply this
interlocking design to a structure in the real world. We first
want to confirm this pattern is repeatable and can still keep
its interlocking property in a large scale structure. Secondly,
we need to consider the gap between virtual and real world.
For blocks in the physical world, their dimensions are also
affected by tolerances which are controlled by fabrication
methods and material. Tolerances might greatly affect our

(b) Blocks position difference be-
tween optimized and original po-
sition.

(c) To get a fully interlocked
structure, blocks need to be
glued together on Creeper are
showed in red.

Fig. 13: Stacked interlocking blocks create a Minecraft Creeper
Head. Bottom left blocks, its eyes and mouth are fixed in position.

final interlocking status. More details will be discussed in
Sec. VI-D. We expect to get some estimations of these
problems out of the simulation.

We first examined this modified PuzzleFlex method on the
7 interlocked blocks showed in Fig. 12c; see Fig. 12d. After
a few iterations, the optimization ceases to make progress,
suggesting that the structure is interlocked, as we observed
in the physical world.

A large-scale structure in Fig. 13 is tested by using this
discussed framework. We assume all blocks are placed in
position already, and we are examining their interlocking
status. In this 16-layer structure, we hollowed three areas
intentionally: the eyes and mouth. We placed three fixed
black blocks in these areas. The bottom left-most block
is also fixed to the ground. Additionally, we set an extra
constraint to glue the last two pieces of this structure (top
left-most 2 pieces) together. The same constraint is also
added to the last two pieces beneath the mouth. Optimization
to attempt to separate the components of the structure failed,
suggesting that the structure may be interlocked.

We need to pay attention to another important rule in
designing an interlocked structure. As discussed above, an
interlocked structure can be treated as the union of the



K

(b) Blocks escape process. Key
frames with blocks orientation are
showed in Fig. 14c-Fig. 14f.

(a) Original nine blocks set up.
We mainly focus on disassembly
which happens in red rectangle.
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Fig. 14: Blocks with large gap between peg and hole can escape
from the fixed block which is supposed to be fully interlocked with
others.

O

smallest subset of nearly interlocked structures. If there is an
open area that exposed the keys of some nearly interlocked
subset with no covering layers, there can be more than one
key for the whole structure. Like in Fig. 13c, besides the
top left key, there is another key beneath creeper’s mouth. If
we want to keep only one key for the interlocked structure,
the structure cannot have concave holes or open caves which
might expose some nearly interlocked subset open keys.

D. Tolerance accumulation

Tolerance impacts assembly in the physical world. If
blocks are designed to be assembled tightly, jamming may
occur. On the other hand, with looser tolerance, unwanted
flexibility might cause interlocking failure or undesired flex.
We show a failure case in Fig. 14. In this example, a path is
opened in configuration space for other blocks to disassemble
from the fixed block.

Tolerance accumulation can also complicate the assembly
process. We analyzed this flexibility on three layers blocks
and five layers blocks. One example is shown in Fig. 15. We
use PuzzleFlex to compute the minimal and maximal hole
distance between two neighboring blocks. We can see that
minimal hole distances are almost the same between these
two; however, the maximum hole distance is large enough
that a block dropped on top of this layer may not be seated
properly.

In future work, we intend to consider the tolerance impact
in assembly.

VII. FUTURE WORK

This paper proposes an interlocking model and a possible
block design that implements this model. The model and
the proof-of-concepts shown are the foundation for more
complex systems, both in terms of analysis and physical
implementation.

In the future, we first plan to design a layout algorithm that
will automatically determine the placement and assembly
order of blocks to approximate any desired shape. In addition

(a) Minimal hole (b) Maximal hole (¢) Minimal hole (d) Maximal hole
distance in 3 lay- distance in 3 lay- distance in 5 lay- distance in 5 lay-
ers. ers. ers. ers.

3 Layer case

} I ................ |

5 Layer case

| s |

0 mm 5 mm

10mm 15mm 20mm 25mm 30mm 35mm 40 mm

(e) Comparison of minimal and maximal hole distance between
different layers structure. Minimal hole distances are showed in solid
lines and maximal hole distances are showed in dotted lines.

Fig. 15: Flexibility between blocks changes hole distance between
two neighboring blocks. In this case, structure flexibility will
increase with layers. And hole distance tolerance will increase with
structure flexibility.

to speeding up the assembly process, this will also allow us
to optimize the number of blocks needed for a structure, and
only use the number required for interlocking.

We also plan to formalize the relationship between peg
angle, tolerance, and interlock. The Type B blocks have a
45° joint. This angle could possibly be increased to reduce
the horizontal motion needed to insert the pegs; however,
this could reduce the effect of the interlock. We also see
from our analysis in Section VI that the tolerances of the
blocks can have an effect on interlock, so we plan to more
rigorously study how the design choices of the blocks affect
our interlocking model. Ultimately, we imagine designing
error-correcting lattice structures that do not accumulate
tolerance errors as they are built.

Additionally, we show building with the robot arm as a
proof of concept, but would like to expand the capabilities
of building with the robot arm. This will be aided by the
development of the layout algorithm, and by more thoroughly
measuring the errors that occur during dropping.

Finally, we are interested in designing blocks that allow
volumetric fills of arbitrary shapes.
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