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Abstract— An autonomous robot that is able to physically
guide humans through narrow and cluttered spaces could be a
big boon to the visually-impaired. Most prior robotic guiding
systems are based on wheeled platforms with large bases with
actuated rigid guiding canes. The large bases and the actuated
arms limit these prior approaches from operating in narrow and
cluttered environments. We propose a method that introduces
a quadrupedal robot with a leash to enable the robot-guiding-
human system to change its intrinsic dimension (by letting the
leash go slack) in order to fit into narrow spaces. We propose a
hybrid physical Human Robot Interaction model that involves
leash tension to describe the dynamical relationship in the
robot-guiding-human system. This hybrid model is utilized in
a mixed-integer programming problem to develop a reactive
planner that is able to utilize slack-taut switching to guide
a blind-folded person to safely travel in a confined space.
The proposed leash-guided robot framework is deployed on a
Mini Cheetah quadrupedal robot and validated in experiments
(Video').

I. INTRODUCTION

Guide dogs play a critical role in our society by helping
the frail, elderly, or visually impaired people navigate the
world. However, a well-behaved guide dog usually needs to
be selected and trained individually. In addition, the skills
from one dog cannot be transferred to another one. This
makes training guide dogs both time and labor intensive
with the process not easily scalable. With recent progress
in robotics, an autonomous robot could potentially take over
this responsibility. Our goal in this paper is to create a robotic
guide dog. Most previous guide robots have large foot-bases
[1]-[3] and usually require an actuated rigid arm to guide
the human [4]-[6], which results in limited capabilities of
operating in narrow spaces. Moreover, the usage of a rigid
arm brings an additional layer of complexity in mechanical
and control design. A small robot that could guide humans
with a leash could potentially solve such an issue. The ability
of the leash to become slack allows the robot to change
the internal dimensions of the human-robot system, and thus
allows the robot to guide the human through narrow spaces,
such as a doorway. However, utilizing a leash could involve
a hybrid system switch, i.e., the leash could be taut or
slack, which makes this motion planning more challenging.
Therefore, we seek to address such a problem where we
utilize a quadrupedal robot, a Mini Cheetah [7], to guide a
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Fig. 1: The Mini Cheetah is guiding a blindfolded person to avoid
obstacles with leash-guided assistance: a leash (top right) is used
to connect between the robot and the human, a 2D LiDAR is
used for robot localization and a depth camera is used for human
detection (middle right). The leash could be taut or slack during
the navigation.

visually-impaired person via a leash to navigate in narrow
spaces, as shown in Fig. 1.

A. Related Work

1) Robotic Guide Dog: Using robots to guide humans
is a long-studied problem, and the mainstream approaches
employ either a robotic cane [4], [5], [8], or a robotic walker
[1]-[3]. However, for [4], [S], [8], since they use an actuated
rigid arm as a guiding cane between the robot and the
human, the system may get stuck in a region which cannot
fit the robot arm. Moreover, an actuated arm brings more
DoFs and needs additional effort on control and mechanical
design. Of the approaches with robot walkers, [1], [2] are
designed for the elderly and movement-impaired population
and do not consider the visually impaired, and while [3]
considers the visually impaired, the guiding system has a
very large foot-base. The large base also occurs in [1], [2],
and makes maneuvering and guiding a person in a narrow
space impossible. Apart from using the movement of a rigid
robot arm, different ways to interact between the robot and
the human have also been explored, with most methods
employing either vocal cues [9], or haptic feedback [10].
Some [5], [6], [11] take it a step further and employ a mix of
the methods mentioned above. However, the vocal cues may
not always be clear to the people being led, and as previously
mentioned, rigid rods decrease the mobility of the system
in a confined space significantly. While haptic feedback has
been explored in [10], it is only a wearable system with
some vibration feedback, and does not consider a system
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containing both a human and a movable robot. Thus, the
prior work does not guide a human while also being able to
change the intrinsic dimension of the human-robot system.

2) Hybrid System Planning: Hybrid system control and
planning is challenging for physical human-robot interaction
(pHRID) tasks [12]. There is some prior work on hybrid
system control in pHRI [13], [14]. For path planning in
pHRI, it was demonstrated in [6], [15]-[17] that a collision-
free trajectory could be generated to guide the human. As
we introduce a leash for the robot to guide the human, the
system becomes hybrid as the leash could be taut or slack.
For hybrid modes on leash tension, previous works about
aerial systems formulate the path planning either through a
special mechanical design [18], mixed-integer programming
[19] or collocation-based optimization with complementarity
constraints [20], [21]. However, physical human-robot inter-
action is not considered in [14], [19]-[21], and hybrid path
planning for pHRI for applications using mobile robots still
remains an open problem.

B. Contributions

We make the following contributions:

¢ One of the first end-to-end hybrid physical human-robot
interaction (hybrid-pHRI) framework is presented for a
robotic guide dog with a leash.

o A hybrid model is developed to capture the dynamic
relationship in the robot-leash-human system, involving
a leash tension model. The hybrid model is validated
with experimental data.

e We formulate a mixed-integer programming problem
in the path planner to safely guide humans to avoid
obstacles during navigation to the goal location while
also considering the taut/slack modes of the leash.

o We validate our hybrid-pHRI robot guide framework
experimentally on a quadrupedal robot, where a Mini
Cheetah is empowered to navigate with a collision-free
trajectory in narrow environments while guiding people
by exploiting hybrid mode switches.

II. PHYSICAL HUMAN ROBOT INTERACTION (PHRI)
MODEL

The ability of the robot to determine the current config-
uration of the human-robot system and to interact with the
human via the leash is very important for successful path
planning and guiding a human. Thus a pHRI model is needed
to capture the state of the human-robot system and serve as
the underlying basis for planning and interaction.

A. Human-robot System

The human-robot system configuration is defined as fol-
lows:

x" =x—le, (D
where x" = (z",9") and x = (z,y) are the position of the
human and robot respectively. Furthermore, [ represents the
distance between the human and the robot and e; = (cos(f —
®),sin(0 — ¢)) € St is the unit vector point from the human
to the robot along the leash. € represents the orientation of
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Fi%'. 2: Configuration of the human-robot guiding system. Human
(z",9") is guided by a leash attached to the robot (z,y), 1€
represents the relative position between them.

the robot in the world frame W, and ¢ represents the relative
orientation of the human in the robot body frame B. This
configuration is valid no matter if the leash is taut or slack, as
shown in Fig. 2. When the leash is taut, the system has four
degrees-of-freedom with configuration space Q; = R? x S!
and ! = lp. When the leash is slack, the system has five
degrees-of-freedom with configuration space @, = R? x
S1 x R and I becomes less than ly. Here [q is the length of
the leash.

B. Hybrid Dynamic Model

1) Taut Mode: The assumption for our hybrid dynamic
model comes from our intuitive hypothesis that the human
will be guided by the robot and move in the direction
of the force applied by the leash when the leash is taut.
Moreover, when the leash is slack, the human will not feel
any force in the leash and thus will not move. Based on this
assumption, we define our hybrid system with continuous-
time generalized coordinates q = (x,y,0,¢,l) € R® and
with an input of u = (v®,w) € R3, where vB = vPef
represents the robot velocity in its body frame, shown in
Fig. 2. The robot velocity v? and angular velocity w are the
commands which could be sent to the Mini Cheetah directly
and a tracking controller could track these commands.

When the leash becomes taut, based on our assumption
and the geometric relationship, the hybrid dynamics ¢; =
fi(qs,up) could be formulated as follows,

i = azvPel eV, (2a)
Y= ayUBeB - e‘y/V, (2b)
0 = apw, (2¢)
b = —apw — ayl[vPe; x e®||/ly, (2d)
=1, (2¢)

shown in the left mode in Fig. 3.

The human-robot interaction and inelastic collision when
the leash switches from slack to taut is very hard to model
and this external force brings disturbance for the robot
tracking controller. To compensate these tracking errors from
this disturbance, we introduce

a = [y, oy, ag, ay) € [0, 1]4 3)

as the discount coefficients in (4). These discount coefficients
are smaller than one since human always tend to drag
the leash from the opposite direction with respect to the
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Fig. 3: Hybrid modes switches in the discrete dynamics model X.
The hybrid modes switches from Ss to S; when leash becomes taut
and the switch action is denoted as As_,:. When the cable becomes
slack, it switches back to Ss with action denoted as A;_,,. This
hybrid mode transitions are shown in the discrete-time manner.

commands to the robot, i.e., vBe? and w. These discount

coefficients allow us to capture the unknown interaction
acting on the robot from the human with a four-dimension
representation and these four coefficients which can be tuned
for a good prediction.

2) Slack Mode: When the leash is slack, the hybrid
dynamics qs = fs(qs,us) can be defined as follows,

& =vBeP -egv, (4a)
j=uv"e" e, (4b)
6= w, (4c)
¢ = —|vPe; x eZ|/ly, (4d)
[ =vPe - ef, (4e)

where (4d), (4e) comes from the geometric relation. where
only the robot is moving since the cable is slack, shown in
the right mode in Fig. 3.

C. Leash Tension Model

We seek a simple mapping from generalized coordinates
to the leash tension, which allows for the consideration of
physical interaction during the path planning. To capture the
relation between generalized coordinates and leash tension,
we construct a linear regression model between robot speed
and leash tension to minimize mean squared errors.

F = Fuse(a) = S1v5 - e + Ba, )

where v” - e; represents the projected speed of robot along
the taut leash direction and could be expressed by the gen-
eralized coordinates q; with simple calculations, as proven
by experiments in V.

B

D. Hybrid Modes Transition

Since a taut leash is almost analogous to a rigid arm and
thus infeasible in confined spaces due to the increased size of
the human-robot system, the leash will need to transition to
slack mode, and a hybrid system is introduced into the model.
We consider the following hybrid system 3 as follows,

q: = fe(as, uy), q: ¢ Ss
Y qj = As—)t(q;)v q; S Ss (6)
qSZfs(qSﬂls), gs %St

qir =Ai55(qy). ag €8

The dynamics for two hybrid modes are shown in (2) and
(4). The two hybrid regions S; and S, are defined as follows,

Si={(anF)€RC:e;-e®? >0ANF>F} (7
Ss={(qs,F)eR®:¢;-e® <OVF <F} (8

where e; - e® < 0, the robot and the human will approach
each other in next time step which will make the leash slack.
Moreover, F is applied as the lower bound representing the
maximum intrinsic leash tension when the leash is slack.

III. PATH PLANNING WITH HYBRID PHYSICAL HUMAN
ROBOT INTERACTION

In this section, we discuss our optimization-based path
planning algorithm where we consider the hybrid physical
human robot interaction. We are given current coordinates
Qeurr and target goal coordinates qiqrge¢ generated in the
path from a global planner, which will be described in Sec.
IV-B. A mixed-integer collocation-based problem along a
horizon N with time step At = ¢/N is formulated as follows,

min L(qg, ug, sg,t) subject to (9a)
9o = dourr; (%9b)
ki1 = filap,ug), if sp =1 (9¢)
Qi1 = fs(Qr,ug), if sp =0 (9d)
sp=1, ife(qs)-eP(qp) >0 A Fr>F ()
s =0, otherwise (91)
Fi(ak) < Fr, < Fu(aqg), g
@ < qr < qu, (%h)
u; < ug < Uy, 91)

where f, and f, represent the discrete dynamics with
sampling time step At = ¢/N. Furthermore, s; € {0, 1}
is the variable describing the hybrid dynamical mode in (9c)
and (9d) and s equals to one when the cable is taut and
zero when the cable is slack, shown in (9¢) and (9f). The
state, input and force constraints are imposed in (9h) and
(91) and (9g). Notice that e; and eB could be expressed as
functions of the generalized coordinates qj at each time step,
which was discussed in Sec. II-B. This nonlinear collocation-
based optimization problem is formulated in CasADi [22]
with logic to switch modes and is solved with IPOPT [23].

A. Cost Function

We define the cost function (9a) as follows,

L(Qk,umsmt) = HqN - qtargetHQnget + Stt
N—-1
+ 3" (lurllqu + SeFi + Silo — ) + Sap(Fer1 — Fi)

k=0
(10)

where we have Qiurger € R®, Qu € R? as positive
definite and Sp, Sar,S; as positive scalars. We have two
terminal cost terms and four stage cost terms. The term
ll[dN —dtarget||Qrarge, TEPresents the quadratic terminal cost
which tries to minimize the deviation of the final node from
the target position. We do not assert a hard constraint for



Fig. 4: Framework for the Mini Cheetah robotic guide dog. Given the current position and goal position, a global planner using A*
algorithm generates target feasible waypoints for the local planner. Then the local planner generates a short trajectory and sends control

commands to the robot.

reaching the target position and it allows us more feasibility
in the optimization. The term St allows us to find an optimal
travel time for robot motions instead of using a fixed value.

For the stage cost, ||uy||q, minimizes the control input,
SFF) minimizes the leash tension while ensuring smooth
tension change with additional cost Sap(Fj+1 — Fy). The
term S;(lp — i) brings us faster optimization convergence
and it tends to have more taut modes, which helps to guide
the guided person since the person is immobile when I, < lj.

B. Data-driven Leash Tension Constraint

In our leash tension model (5) in Sec. II-C, we have
seen that we have a mapping from the generalized coor-
dinates to the leash tension. During the implementation of
our collocation-based problem (9), instead of adding this
mapping relation as a constraint, we impose lower and upper
bounds on this mapping, where we have

Fi(aw), Fu(ar) = Fuse(ar) = o(Fusg), (11)

where o(F,,) represents the standard deviation of the linear
regression in our leash tension model (5). Notice that impos-
ing a two-sided constraint brings larger feasibility compared
to an equality constraint. This force constraint allows us to
consider the physical human-robot interaction in the planner.

C. Obstacle Avoidance

When the system is required to navigate in an environment
with obstacles, our optimization problem in (9) is no longer
sufficient and obstacle avoidance constraints need to be
added. In this paper, we consider the obstacle avoidance
for both the robot and the human, where two simple signed
distance constraints are imposed on them. Assume the j-th
obstacle is located at x{"*7 = ("7, y?"*7) at time step k.
We then have,

ka—xzbs’jﬂ 2d+7“—|—r;?bs7 (12)
%} = %77 > d + rh 4 b, (13)

where r, r" and r;?bs represent the robot, human and obstacle

dimensions. We also add a safety margin d which allows
us to ensure safety while handling our state-estimation and
tracking errors.

IV. QUADRUPEDAL ROBOTIC GUIDE SYSTEM
A. Framework

To safely navigate and guide a visually-blind person in
a cluttered environment, an end-to-end framework is con-
structed and illustrated in Fig. 4. Our planner is composed
of a search-based A* global planner and a collocation-
based local planner with physical human robot interaction,
as introduced in the previous section.

B. Global Planner

For the global planner, we use a search-based A* planner
over the grid map on a reduced generalized coordinates X =
(x,y,¢) € R3. The continuous transition between nodes on
the R3 configuration space is defined as (Axz, Ay, Ag¢). For
experiments, we have Az = +0.5, Ay = +0.25 and A¢ =
+7/8. The node cost and heuristic cost to-go at node X,, are
defined as g(x,,) and h(xX,,) where,

N—-1
g(in) - Z ||)~(n _in—luz (14)
=1
hin:l’ — ZLgoa 2+ — Ygoa 2+
(xn) =llzn — zgoalll” + [lyn — Ygoatl| (15)

Hd)N - ¢goal”2 + )\(]- - COS(GN - egoal))a

where 0 can be calculated with approximate dynamics (9c)
using continuous transition between nodes while assuming
the leash is always taut. A cosine function is applied on 6
in the heuristic cost to-go to solve the singularity problem.
This A* global planner generates a continuous collision-
free trajectory with a sequence of 5-dimensional waypoints.
This is passed to the local planner with pHRI introduced in
Sec. III.

C. Robot Localization And Human Tracking

Knowing robot and human states online is critical for the
autonomous system. We firstly build an occupancy grid map
with a 2D lidar based on Hector Slam [24]. Later, AMCL
[25] is utilized to estimate the robot states in the world frame.
To estimate the position of the guided person, a Depth-RGB
camera is used to detect the human’s 3D position through
OpenVINO [26] and a Kalman Filter based on a constant-
speed linearized system [6] is applied to track the detected
human position. The camera is deployed on a 2 DoF gimbal
which can rotate and pitch. This camera gimbal is mounted
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Fig. 5: Two typical guiding test cases for optimizing the human-
robot dynamic model by minimizing the error of ground truth robot
position x4; and model-based computed robot position x,,. Fig. 5a
and Fig. 5b are two separate test cases, with the robot trajectory on
the left and the human trajectory on the right.

on the robot’s top surface and is programmed to keep the
guided person visible in the camera frame irrespective of the
relative orientation of the human with respect to the robot.

D. Velocity Tracking Controller on Mini Cheetah

We use the existing state of the art velocity tracking con-
troller for Mini Cheetah, where a MPC [27] computes desired
ground reaction forces and desired foot and body position
from given velocity commands. From these desired contact
forces, WBIC [28] computes desired joint position velocity
that are delivered to joint-level controllers to generate joint
torques.

V. EXPERIMENTS AND EVALUATION

The hardware setup is illustrated in Fig. 1. and all the
aforementioned proposed algorithms are running on an on-
board Intel computer using ROS, while the velocity tracking
controller is running on a real-time computer within the Mini
Cheetah.

A. Offline System Identification

1) Human-robot dynamic model: The discount coeffi-
cients ¢ in (3) in Sec. II-B for the taut mode of human-robot
dynamic are first identified based on offline experimental
data. In order to obtain such data, several blind-folded people
are guided in an unknown environment along various trails.
In each trail, a human operator commands the Mini Cheetah
to randomly move around while ensuring a taut leash. In such
experiments, robot global positions x,; and human positions
x';t are recorded along the sample trajectories, serving as
ground truth data, and « is sampled in the range of [0, 1].
With each set of these sampled values, we compute the
predicted robot global positions, denoted as x,, based on
the dynamic model of the taut mode (2). The value of o
that can produce the smallest least mean squared distance
between the predicted and estimated trajectories are picked.
The identified value of « is [0.8,0.8,0.6,0.8], which was
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Fig. 6: Validating leash tension model in Eq. (5) by randomly
walking. Linear regression is carried out between the projected
speed in the leash direction v - e; and leash tension F. As shown,
76% of the measured tension data lies between F, + o(Fin).
Furthermore, o (Fy,) represents the standard deviation of this linear
regression.

obtained by minimizing the prediction error for the human-
robot system. This is incorporated in the dynamic model for
later human guiding experiments.

The ground truth and predicted trajectories are illustrated
by the identified « in Fig. 5. The identification of the
dynamic model of taut mode matches well between the
ground truth robot position x4 and the predicted robot
position x,, with an average prediction error of 0.023m.
The human prediction error is 0.176m, which is acceptable,
considering the noise of human detection and estimation.

2) Leash Tension Model: The leash tension model given
by (5) in Sec. II-C is validated by letting the robot guide a
human via a leash to move randomly, with the leash being
either slack and taut. The interactive force F', system states
and control commands (v?, ¢) are recorded. The projected
velocity along the leash direction v -e;(¢) is later obtained.

We fit our force F' with a linear model (5) while mini-
mizing the least square errors, shown in Fig. 6. The reasons
for choosing a linear model over higher-order ones are two-
fold: during experiments higher-order models did not exhibit
superior prediction performance and a linear model reduces
complexity in the optimization-based local planner. The
parameters we optimized are $; = 109.8 and $; = 15.85.
The standard deviation of force is o(Fusg) = 15.06, which
was used for estimating lower and upper bounds of force
constraints (9g). We verify that 76% of our force data lies
between the region constrained with our linear regression
model and related standard deviation, which is acceptable
for estimating the force constraints.

B. Robot Guiding Human Experiments

The proposed system is evaluated in various maps of
narrow spaces. One such example is shown in Fig. 7, where
the map consists of a narrow doorway connected to a narrow
corridor, with the narrowest traversal region being only of
width 1.0 m. Since the human-robot system has a length
of 1.6 m when the leash is taut and the human only moves
along the direction of the force, it is hard for the human-robot
system to pass through this region if the leash stays taut. This
allows for the demonstration of the hybrid mode switch in
our local planner. This map contains several situations the



Fig. 7: Snapshot of the guiding process. The Mini Cheetah guides a blindfolded person from an initial to a target position. The blue
marker and orange marker represent the robot and human. Human history trajectory is represented by the orange line while the robot

global planned reference is represented by the green line.

system will face in the real world including doors, narrow
corridors and corners.

The experimental goal is to enable the Mini-cheetah to
safely guide a blindfolded person to the given goal loca-
tion qgoq; Without colliding with obstacles. To evaluate the
performance of our planning system, we choose the several
different goal locations far from the different initial locations
and let the robot plan and control fully autonomously. Three
adults participated in the experiments in this narrow map.
In the experiments, the human-robot system successfully
reached the given goal without any collision.

For the example experiment shown in Fig. 7, the time the
Mini Cheetah took to guide the blindfolded person to the
random final goal position is roughly 75s. In this map, the
leash switched to taut at the beginning part of the task. When
the human-robot system came to the most narrow region of
the second doorway, the leash switched to slack mode and
the guided human stopped moving as shown in Fig. 7c. After
the robot changed its configuration that allowed it to guide
the human pass the narrow region, the human-robot system
switched to the taut mode and passed this doorway as shown
in Fig. 7d.

Moreover, as shown in Fig. 8a, the tension threshold
F measured at the beginning of experiment is 12 N. We
notice that from 45s to 60s, when the human-robot system
approached the narrow space of the second doorway, the
force in the leash was extremely small as the system switched
into slack mode, and the robot was changing its individual
configuration until it was able to guide the human pass the
doorway. In this period, the human was not pulled by the
robot and stopped moving, as shown by the fact that the
speed of human movement was near zero (0.05m/s) between
45s to 60s. After 60s, the robot changed its position and
orientation to a suitable state, switching to taut mode to apply
the leash force again to guide the human to the final goal
position.

VI. CONCLUSION AND FUTURE WORK

To our knowledge, this work proposes one of the first
end-to-end human-robot interaction system to serve as an
autonomous navigation aid to enable the visually impaired

— |l
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(a) The tension in the leash (b) Speed of Human

Fig. 8: Experimental results of the tension in the leash and human
speed. F' represents the threshold of the force. From 45s-60s, the
force in the leash in (a) is nearly O N (implicating a slack leash)
and the human moving speed is also below 0.05 m/s in (b).

to traverse narrow and cluttered spaces. A data-driven in-
teraction force model and a hybrid dynamic model were
developed to help plan paths with hybrid mode switches
to switch between taut and slack states for the leash. A
global planner along with a mixed-integer optimization-based
local planer were formulated to generate trajectories that
served as input to the low-level controller on the Mini
Cheetah. The proposed pipeline was deployed on the Mini
Cheetah and validated by experiments with a blind-folded
person. Experimental results indicate that our system is able
to physically guide the person with a safe and efficient
trajectory in a narrow space, including obstacle avoidance
maneuvers and hybrid state transitions. Future work will
focus on more complicated modeling of human behavior
with force traction to propose more novel applications of
the robotic guide dog.
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