2020 IEEE International Conference on Robotics and Automation (ICRA)

31 May - 31 August, 2020. Paris, France

PuzzleFlex: kinematic motion of chains with loose joints

Samuel Lensgraf, Karim Itani, Yinan Zhang, Zezhou Sun, Yijia Wu,
Alberto Quattrini Li, Bo Zhu, Emily Whiting, Weifu Wang, Devin Balkcom

Abstract— This paper presents a method of computing free
motions of a planar assembly of rigid bodies connected by
loose joints. Joints are modeled using local distance constraints,
which are then linearized with respect to configuration space ve-
locities, yielding a linear programming formulation that allows
analysis of systems with thousands of rigid bodies. Potential
applications include analysis of collections of modular robots,
structural stability perturbation analysis, tolerance analysis for
mechanical systems, and formation control of mobile robots.

I. INTRODUCTION

Like a human skeleton, structures assembled by or out of
robots may be composed of rigid bodies loosely connected at
the joints. A many-jointed robot arm flexes like the backbone
of a snake; a wooden jigsaw puzzle may flex slightly as
one edge is pulled, particularly before assembly is complete.
Joints may be real or virtual: enforced by the physics of
collision, or by robot control laws that prevent the breaking
of formation.

This paper studies a model of the kinematics of collections
of rigid bodies that are flexible in the aggregate. It presents a
simple, fast, linearized method to quickly estimate potential
motions of the system that maximize deviation from the
initial configuration in a considered direction. First, a set
of linear constraints is derived that approximates the shape
of the local configuration space; then linear programming
is used in various ways to optimize or analyze potential
motions of the system. Figure 1 shows an example of a
planar puzzle flexing in such a way that the upper right block
moves maximally in the positive direction. Because of the
linearization, there is some violation of the constraints; the
paper presents time-stepping and other methods to verify the
estimate while respecting constraints.

Flexibility analysis may enable wise design decisions
about robot systems or about structures that robots build.
Flexibility may be good, allowing compliance with external
forces, or bad, reducing the sturdiness and predictability of
the system. What joint tolerances enable assembly, while
providing either enough flexibility for Lego-like bricks or
modular robots to comply to an external structure, or enough
rigidity for the robots to resist external loads? What ar-
rangements of bodies provide the desired level of flexibility?
How much motion, and in which direction, can a system of
flocking robots achieve while maintaining constraints such
as mutual visibility?

The work is motivated by methods for building modular
interlocking structures such as those presented by Zhang et

This project was partially supported by NSF Grant 1813043, as well as
by the Dubai Future Foundation.

978-1-7281-7395-5/20/$31.00 ©2020 IEEE

Fig. 1: A system of eight rigid blocks (left), with the upper-
right block flexing to the right.

al. [1], [2] and by Werfel et al. [3]. Figure 2 shows a system
of particular interest to the authors: a chair created from
Lego-like blocks held together by a puzzle-like arrangement,
rather than by friction or glue. We imagine constructing
such structures automatically with robots, or from systems
of modular robots. The chair flexes slightly, but remains as a
single component as long as the final block assembled is held
in place. Fast analysis of flexibility will allow specific design
decisions: reinforcing the chair by adding other blocks, or
increasing tolerance at joints to allow easier manufacturing
and assembly, while maintaining acceptable rigidity. For
simplicity, this paper focuses on planar systems.

We developed a Julia library to build the linear constraint
matrix based on geometric descriptions of part geometry',
and used Gurobi [4] to solve linear programs. Though
we compute and present distance function gradients in the
paper for reference, we used automatic differentiation in the
implementation for simplicity [5]. Figure 9 shows a structure
with 1703 blocks, with y displacement of the upper right
block maximized using this implementation.

While the present work makes use of sparse linear pro-
gramming to solve for maximal motions in a direction in the
configuration space of the chain, the convex polytope that
approximates the shape of the local configuration space is
interesting in itself. We note that global optimization tech-
niques over the configuration space without first estimating
the local constraint region, are in some ways too strong —
they may find solutions that are not connected to the initial
configuration space, and are thus not reachable. Ultimately,
we would like to move beyond optimizaton and explore
ways of measuring properties of this polytope, and use these
properties to automatically design structures, in much the
same way as the manipulablity elipsoid constructed from the
Jacobian has long been used in robot arm design [6]-[9].

ISoftware available from rlab.cs.dartmouth.edu

6730

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Interlocking puzzle blocks, from [1].

II. RELATED WORK

A slightly extended version of this paper is available as a
technical report [10]. The work closest to the present in spirit
is on compaction of planar polygons [11]; the present work
differs in assumptions in allowing rotation of the polygons,
motivating a linear-algebraic approach.

Flexibility analysis and simulation of continuous materials
such as cloth [12], string [13], [14], and flexible volumes [15]
has a rich history. Models may include finite elements
(e.g. [16]), or may be inherently spatially continuous (e.g.
Cosserat models [17]). The present work differs in that
the component modules are rigid and of irregular shape,
requiring explicit consideration of the possible configurations
of the chain.

The motions in the present paper allow points and edges
to approach, while balancing the rates so as to optimize net
motion in some direction. The distance constraints are similar
to those used in recent motion planning work [18], as well
as in Linear Complementarity Problem (LCP) formulations
of dynamics [19]-[21] and in study of The Carpenter’s Rule
Problem [22].

Linearizing motion around an initial configuration allows
for the study of systems of blocks with many thousand
degrees of freedom; our approach draws inspiration from
early linear grasp analysis techniques [23], [24]. In contrast
to manipulability and grasping problems, the blocks which
we consider are only loosely connected. Caging grasps [25]—
[31] study how robot hands may loosely capture an object;
the present paper studies motion of structures in which
either pairs of blocks or combinations of many blocks may
cage each other. Direct construction of configuration spaces
of pairs of blocks has a long history; Sacks et al. [32]
provides a recent approach, and gives a much higher-fidelity
representation of the free motions of small numbers of blocks
than our edge/point distance function model. Eckstein et
al. [33] analyze how forgiving a connector design is using
an approximation of the configuration space of the joint.

Tolerance analysis of mechanical assemblies is utilized in
mechanical engineering to determine how frequently small
manufacturing errors in the component parts of an assembly
will result in unacceptable deviations in the final assem-
bly [34]. The Direct Linearization Method [35] linearizes
the homogeneous transformation matrices describing the

kinematics of an assembly, and applies statistical techniques
to determine what percentage of assemblies are able to be
assembled. The Jacobian method and other related methods
for tolerance analysis [36], [37] models a mechanical assem-
bly using a set of virtual joints between each element of the
kinematic chain representing the assembly.

Once the local configuration space of the chain has been
modeled, we solve linear programs to analyze motion; effec-
tively, this is a line search method for numerical optimiza-
tion [38]. Unlike most algorithms for numerical optimization,
our method finds a feasible path through configuration space
rather than a single point, since the constraint polyhedron
is convex. In the simplex method [39], an n-dimensional
simplex is constructed that satisfies the constraints and is
used as a domain for the next guess in each step, but it is
not guaranteed that the path through parameter space taken
from the initial guess to the final solution is entirely within
feasible space.

Although swarms are not the focus of this work, we briefly
explore an example of how the technical approach can be
used to find motions for swarms of planar polygon robots.
Techniques for robot swarm control typically must handle
thousands of simple robots collectively performing some
tasks, e.g., object transport [40], shape generation [41], self-
assembly [42], [43], and network connectivity [44]; perhaps
the closest work in spirit to the present is [45], which
controls swarms of robots by allowing robots to bounce off
of frictionless walls.

III. LINEARIZED DISTANCE FUNCTIONS

Let the configuration of the chain be given by q € Q.
Define two types of points of interest: vertices of the poly-
gons describing each body in the chain o(q) and collision
points p(q). Define a vector of signed distance functions
that represents the distance of each collision point from its
neighboring edges: d(o, p). Components of the vector d will
be notated by d; ;, where i is the index of the edge and
j is the index of the point. To enforce that there are no
collisions, d(q) > 0. (We abuse the notation to write the
distance function in terms of the configuration as both o, p
are functions of q.)

To analyze legal motion and legal nearby configurations of
the chain, we may consider the configuration to be a function
of time: q(t). Let g € T'Q be a configuration-space direction
indicating possible motion of the system. The instantaneous
rate of change of the distance function is

d(q,q) = Ja(q)q, (D

where .J; is the Jacobian of the distance function. For a small
enough time step At, an Euler step approximates the change
in distances:

Ad(t) ~ Atd(q, q).)

Let dp = d(og,po) be the distances computed at the
initial configuration. We would like to choose motions such
that the change in distances from each collision point to each

6731

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from IEEE Xplore. Restrictions apply.

T T T T T
0.0 0.5 1.0 L5 2.0

Fig. 3: IR planar arm, and estimates of end-effector colli-
sions.

edge does not cause collision: Ad(t) < dy. Combining with
Equations 1 and 2,

Ja(a)q+do = 0. 3)

The scalar At has been dropped, since we may equivalently
linearly scale q and scale time units such that At = 1.
With this time scaling, the change of q over a time step
is approximated by Aq = . Thus, Equation 3 bounds the
change in configuration to a polyhedron.

IV. A SIMPLE EXAMPLE

Consider a 1R robot arm with base at the origin, and a
single link of length 2, shown in Figure 3. The configuration
q is the angle 0; let the initial configuration be § = /4.
Constrain the endpoint of the arm to lie in a square region
with vertices o = ((1,1),(2,1),(2,2),(1,2)). The end
effector coordinates are

p(q) = (2cos6,2sin0).)

There are four distance functions:

di = py—o01y=2sinf—-1 ®))
dy = —(pz—02;)=—2cosf+2 (6)
d3 = —(py—03y =—2sinf+2 @)
dy = Pz —04, =2cosf—1, ®)

corresponding to distances from the bottom, right, top, and
left walls. Computing the partial derivatives with respect to
67

(a) The edge-vertex distance
constraints limit the valid mo-
tions in a small convex region.

(b) The distance constraints
generated for a pair of rigid
bodies. Blue line segments are
vectors from green vertices to
red edges.

Fig. 4: Local distance functions model the free space.

Candidate boundary values for values for q, or equivalently,
Af, are ~ (—0.29,—0.41,0.41,0.29). The value Af =
—0.29 corresponds to collision with the bottom wall, and the
value Af = 0.29 corresponds to collision with the left wall;
these would be the first collisions to occur. These values are
of course approximate, due to the linearization of J around
the initial configuration.

V. FLEXIBILITY ANALYSIS USING LINEAR
PROGRAMMING

We discover approximate extreme configurations of very
large 2D systems of loosely connected rigid bodies by
solving the linear program

max c’'q
4 (1)
subject to J(q)q+ dg > 0,

where c is a vector of weights. The choice of c allows us to
tune the direction we wish to displace elements.

We use signed distance functions between vertices on one
body and edges on another to simply model the permissible
local motions of the bodies. For each pair of bodies in the
structure, we choose one body to provide the edges, and
one body to provide vertices, as shown in Figure 4a. Since
the linearized analysis is only valid for local motions of
the bodies, only edges and points that are initially near one
another are potential sources of collision; we choose a small
positive value € and select edge/vertex pairs that are initially
closer than this value.

Let the configurations of the current pair of bodies under
consideration be q; = (z1,¥y1,601) and g2 = (x2,y2,62).
For each object pair, we expect there to be many distance
functions, representing the distances of vertices from edges
over some region of near-contact between the bodies. For

2cos simplicity, consider a distance function d;; such that object
) 2sinf | . 1 provides the edge, and object 2 provides the vertex. Let n
Ju@a+do=| _, cosg | 4T do=0 ®) " be the outwards-pointing normal from the edge and o be the
—924ind origin. Then
V3 Vio1 dis(ar,a2) = n(ay) - (p(a) —ofar). (12)
V2 q+ 2-V2 >0 (10) Let the length of the edge be ¢, the first and second
-2 22| = endpoints of the edge be ey and e;, the distance from
-2 V2 -1 the origin of object 1 to the endpoints of the edges be
6732

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from IEEE Xplore. Restrictions apply.

Te, and 7., and the angle from the x axis in the local
frame of object 1 to the edge endpoints be a, and ;.
Let the distance from p to the origin in the local frame
of object 2 be 7, and the angle from the x axis to p be
ay,. To make the equations more readable, we define the
helper variables s., = sin (61 + a,), ¢e; = cos (01 + e,),
Sep = Sin (0o 4 Qey), Cey = COSO1 + ey, a = %. Then

To + TpCp
= 13
p(a2) (yz + Tpsp> 13)
Te1Se; — TepSeq
= 14
n(q) =a <—relcel + 7“60060) (14)
xl + TEUCEO
o = . 15
(ql) (yl + Teq Seo) ()

The non-zero entries of each row of the Jacobian are
computed using the gradients of the distance function,
substituting the appropriate blocks for blocks 1 and 2:

Opydij = a(—TeySey + TeySey)
Oy dij = a(CeyTey — CeyTey)
09, dij = a(CeyTey (CeTeq — CerTey)
— TegSey (—TeySey + Teq Sey)
+ (—CeyTey + CerTey) (—CpTp + CegTey + T1 — T2)
+ (—TegSeq + TeySey) (—TpSp + TegSey + Y1 — Y2))
= —a (—TeySey + Tey Sey)
Oy, dij = —a (CeyTeg — CeyTey)
09, dij = a(—cprp (CepTey — CeyTey)
+ 7pSp (—TegSeq + TerSer)
(16)

A. Modeling convex corners

The distance-function approximation of the local configu-
ration space is particularly bad for some object geometries.
In Figure 4a, point p; is closest to point o;, a convex
corner. Two distance functions are created, one for each of
the extension into lines of the edges e; and e;. Maintaining
these constraints unnecessarily restricts py; p1 will remain
in the polygonal region defined by the extensions of e; and
eo. This problem seems fundamental. Rows of the Jacobian
express an and relationship; all constraints must be satisfied.
But in the example, it is enough that p; be on the “correct”
side of only one of the extended edges.

If only one of the nearby vertices is convex, the problem is
easily solvable. For example, in Figure 4a, points o2 and p2
may be swapped, so that we compute the distance of a point
relative to a concave corner. To mitigate the problem in the
case where both corners are convex, we may take a simple,
though not entirely satisfactory, approach. Take the normals
of each edge, and average them, yielding a half-plane con-
straint that at least allows p; to cross over the extended
edges. One promising avenue for a deeper exploration of this
issue is formulation as a Linear Complementarity Problem
(LCP), allowing or relationships between constraints.

Fig. 5: Example of adding a cross beam into a structure at
a point of maximum flex.

B. Time-stepping and re-enforcement of constraints

Solutions to the linear program in Equation 11 are ex-
treme vertices of the constraint polyhedron. Because of the
linearization around the initial configuration, the constraints
may be violated when the resulting solution is used to
compute a new configuration.

A common approach for dealing with truncation error
in finite difference methods is to find the net change over
several time steps. Although there are sophisticated ways to
compute an optimal time step for finite difference methods,
for this problem, the cost of computing the linear program
solution far outweighs the cost of Euler-step integration and
forward kinematics distance computation. We take a simple
approach, and do a linear or binary search for a time step,
multiplying the displacement vector Aq by an increasingly
larger scalar until the maximum distance constraint violation
exceeds a user-defined threshold. After a time step is found
and applied, a new linear program may be formulated and
solved around the new configuration q. Usefully, the new
linear program re-enforces the constraints, potentially taking
a backward step with Aq. This means that error does not
accumulate across time steps.

VI. EXAMPLE PROBLEMS

In this section, we present some informal examples —
preliminary work that suggests interesting applications.

A. Structure and block design problems

The linear optimization approach may be fast enough
for rapid consideration of different potential designs for a
structure, including the number and locations of blocks,
and on the the geometry of individual blocks, including the
tightness of the joints.

As an example, we consider how to add blocks to brace
a structure and limit maximum flex. Figure 5 shows an
example of adding such a beam to a structure; ¢ was chosen
to maximize radial flex of each block outwards from the
center. We find the pair of mutually visible vertices which has
changed the most in the predicted configuration of maximum
flex, an O(n2) operation for n vertices. In this example, this
approach suggested adding a vertical cross-beam of blocks,
which we did by hand. In a completely automated algorithm,
structural limitations of the blocks would need to be taken
into account when selecting a cross beam.

6733

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from IEEE Xplore. Restrictions apply.

1111

111

1T
1

HT
HH
HH
aee
aee
8

>

Fig. 6: Crushing a soda can with tight and loose joints. Red
polygons denote the initial configuration.

Fig. 7: A linear programming solution for a flock of 1024
robots which must maintain sensor contact squeezing to-
gether to fit through a doorway or hallway.

The linear programming approach can also be used to
explore joint geometry. Looser joints simplify assembly; if
the joints in Figure 2 are too tight, the chair cannot be
assembled due to limits on the precision of assembly and
fabrication. However, if joints are too loose, the structure
will flex unacceptably, particularly if there is wear on the
connectors over time. Figure 6 (right) shows a planar exam-
ple of the soda can with loosened joints, with flex computed
using linear programming.

One simple strategy to explore joint tolerance is to param-
eterize the tightness of a joint with a single value and binary
search for maximum tolerance. To simulate such a process,
we utilize the Clipper library [46] to simulate loosening joints
by insetting the boundary of the rigid bodies. A more general
approach might choose several parameters to describe joint
geometry, and search over this parameter space.

B. Flock formations

Figure 7 shows a flock of 1024 robots; the magnified inset
shows the geometry. Gray square robots are forbidden from
physical collision, and the yellow cone shows a requirement
that each robot’s camera must maintain view of a marker (red
dot) on the robot in front of it. We can drive the flock into
interesting configurations by selecting an objective function.
Figure 7 shows an example: driving the diffuse flock into
a tighter configuration (perhaps so that the robots can pass

Fig. 8: A small time step in a direction of separation.

through a doorway) by finding a displacement that moves all
of the robots toward the x value of the leader robot.

We add field-of-view constraints for each robot except the
leader, and collision constraints that require that vertices of
each robot do not cross the half planes described by the
edges of its five nearest robots. We added a constraining
square around the leader at the tip of the tree so that the
constraint polyhedron is bounded. Large rotations are poorly
approximated by the linear method, so we place an arbitrary
limit on the rotation displacement of each robot in a time
step, using auxiliary linear constraints. After each configura-
tion update, we re-select distance constraints between swarm
neighbors.

C. Unbounded separation and (dis-)assembly planning

The classic assembly problem [47], [48] is to discover
motions that separate or assemble a collection of rigid bodies.
For simple versions of this problem, we might like to dis-
cover a velocity direction q for which the linear constraints
we formulated are unbounded. With some minor modifica-
tions, our approach is able to discover such a motion.

Linear program solvers are capable of detecting whether
the feasible polyhedron is unbounded in the direction of a
given cost vector; in contrast, we would like to discover such
a cost vector automatically. Our approach is based on the
observation that for almost every non-zero vector, the linear
sum of the elements is either positive or negative, but not
zero. We may compute the sum of the x and y elements of
g by adding a row of the form (1,1,0,1,1,0,...) to J. We
may constrain that sum to be very large, by adding an addi-
tional large element & to dy. Choose the objective function
c arbitrarily. We must also upper bound the motion so that
the solution is not unbounded; we add a row (—1,—1,0,...)
and an element —2k to d.

If a solution is found to this linear program, then the
resulting ¢ removes at least one block far enough from
the assembly that it is unconstrained, allowing unbounded
motion. If not, then we may look for negative motions
by changing the signs on the last two elements of dg. If
both of these linear programs are infeasible, then the only
separating motions must be such that the sum of the = and
y velocity elements is exactly 0. Our study of this approach
is preliminary; Figure 8§ shows an example of a direction of
separation found.

6734

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from IEEE Xplore. Restrictions apply.

Rigid Bodies Jacobian Size Iterations Runtime (seconds)
36 666 x 105 5 0.358
50 907 x 147 8 0.363
90 2220 x 267 7 1.621
153 3147 x 456 8 1.866
223 5273 x 666 5 2.987
332 6309 x 993 5 2.761
392 10932 x 1173 8 10.649
396 7326 x 1185 4 2.002
688 14615 x 2061 4 5.951
1703 52655 x 5106 14 233.341
2497 66363 x 7488 7 166.582

TABLE I: Performance results for several structures, using
Gurobi with sparse matrices.

T
imnay
T

™
THTT

|
T
mna:

Fig. 9: Structure composed of 1703 rigid bodies flexing
upwards. Red polygons denote the initial configuration.

VII. EVALUATION AND COMPARISONS

The size of the linear program depends on the number
of blocks, the complexity of their shape, and the ways in
which they are connected; the number of time-step iterations
depends on the flexibility of the structure with respect to
angular motions in configuration space. While there do not
appear to be existing competing methods to solve exactly
the problem under consideration, we explore the time costs
for various problem sizes to serve as a baseline for future
comparison.

For n blocks with one block held fixed, the Jacobian has
3(n — 1) columns and c¢(n — 1) rows, if ¢ is the average
number of distance constraints generated for each block.
However, the matrix is quite sparse, which may reduce
memory and computational costs of solution; there are only
six non-zero entries per row, yielding O(n) non-zero entries
in the matrix. We omit formal O() asymptotic run-time
analysis of the solution, since linear programming techniques
are standard.

In Table I we show the result of tests on several systems
of rigid bodies of varying size. For each structure, we report
the amount of time and number of iterations required for
our time stepping procedure to converge. The run time of
our approach is dominated by the solution of the constraint
Jacobian linear program. In our experiments, we found that

certain instances were especially hard for the linear program
solver. For instance, the 392 rigid body structure takes five
times as long the 396 body structure to solve and two times
as long as the 688 body structure. The 392 body structure is
a very dense structure, making the placement of each rigid
body dependent on a larger number of other rigid bodies than
in less dense structures.

VIII. LIMITATIONS AND FUTURE WORK

We presented a simple linear-constraint method for com-
puting the motion of a loosely-connected chain of rigid
bodies. Like robot kinematics formulations, the approach is
geometric, and does not model dynamics and contact. This
is both a strength and a weakness; dynamics simulators may
provide realistic motions, but the linear constraints describe
a space of possible motion of the system, allowing fast and
interesting optimizations. The linear constraint method may
also be more useful for a worst-case analysis; just because a
simulator provides a trajectory does not mean that trajectory
will occur in the real world.

The linear-constraint method assumes that the configura-
tion space is tight enough that linearization of the change
in distance functions with respect to configuration-space
motion is not too inaccurate. For more flexible systems, the
computed motions violate the distance constraints. Repeated
enforcement of the constraints by time-stepping and re-
solving the linear program gives results that seem empirically
reasonable, but there is much to be done to put this approach
on firmer mathematical footing, perhaps by analyzing Taylor
series approximations [49].

The use of a linear objective function is also limiting.
For example, while we can analyze separability of objects
(Section VI-C), there is little control over which separating
motion is discovered.We might like to separate objects in an
assembly one at time (if we have only one robot arm), or
simultaneously, for speed; it is unclear how these preferences
might be encoded with linear objective functions.

The use of the union of edge-vertex distance constraints to
approximate the local configuration space also needs further
study; as pointed out in Section V-A, convex corners of
objects pose a particular problem when used as edges for
the distance function. Extension to 3D, an obvious next
step for the work, seems mostly straight-forward, but we
expect expressing the geometry of convex vertices, saddles,
and ridges using a union of linear constraints to be more
problematic than in the 2D case.

REFERENCES
[1] Y. Zhang and D. Balkcom, “Interlocking block assembly,”
2018.
[2] ——, “Interlocking structure assembly with voxels,” 2016.

[31 J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Dis-
tributed construction by mobile robots with enhanced build-
ing blocks,” in Proc. ICRA, 2006, pp. 2787-2794.

[4] L. Gurobi Optimization, Gurobi optimizer reference manual,
2018. [Online]. Available: http://www.gurobi.com.

[5]1 J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode au-
tomatic differentiation in julia,” arXiv:1607.07892 [cs.MS],
2016.

6735

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from IEEE Xplore. Restrictions apply.

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

(20]

[21]

(22]

(23]
[24]

P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano,
“Global task space manipulability ellipsoids for multiple-
arm systems,” IEEE Trans. Robot. Autom., vol. 7, no. 5,
pp. 678-685, 1991.

F. C. Park and J. W. Kim, “Manipulability and singularity
analysis of multiple robot systems: A geometric approach,”
in Proc. ICRA, 1998, pp. 1032-1037.

S. Kim, “Adjustable manipulability of closed-chain mecha-
nisms through joint freezing and joint unactuation,” in Proc.
ICRA, 1998, pp. 2627-2632.

A. Bicchi and D. Prattichizzo, “Manipulability of cooperat-
ing robots with unactuated joints and closed-chain mecha-
nisms,” IEEE Trans. Robot. Autom., vol. 16, no. 4, pp. 336—
345, 2006.

S. Lensgraf, K. Itani, Y. Zhang, Z. Sun, Y. Wu, A. Q. Li,
B. Zhu, E. Whiting, W. Wang, and D. Balkcom, Puzzleflex:
Kinematic motion of chains with loose joints, 2019. arXiv:
1906.08708 [cs.RO].

Z. Li and V. Milenkovic, “A compaction algorithm for non-
convex polygons and its application,” in Proceedings of
the Ninth Annual Symposium on Computational Geometry,
ser. SCG 93, 1993, pp. 153-162.

D. Baraff and A. Witkin, “Large steps in cloth simulation,”
in Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH 98,
New York, NY, USA: ACM, 1998, pp. 43-54, 1SBN: O-
89791-999-8. por: 10.1145/280814 .280821. [On-
line]. Available: http://doi.acm.org/10.1145/
280814.280821.

D. K. Pai, “STRANDS: Interactive simulation of thin solids
using cosserat models,” in Eurographics, 2002.

D. Berenson, “Manipulation of deformable objects without
modeling and simulating deformation,” in Proc. IROS, 2013,
pp. 4525-4532.

D. L. James and D. K. Pai, “Multiresolution green’s function
methods for interactive simulation of large-scale elastostatic
objects,” ACM Trans. Graph., vol. 22, no. 1, pp. 47-82,
2003, 1SSN: 0730-0301. DOI: http://doi.acm.org/
10.1145/588272.588278.

K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” in
SIGGRAPH, 2002.

M. Rubin, Cosserat Theories: Shells, Rods, and Points.
Kluwer Academic Publishers, 2000.

K. Hauser, “Semi-infinite programming for trajectory op-
timization with nonconvex obstacles,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR), Dec. 2018.
D. Stewart and J. Trinkle, “Dynamics, friction, and com-
plementarity problems,” in Complementarity and Varia-
tional Problems, M. Ferris and J. Pang, Eds., SIAM, 1997,
pp. 425-439.

J. Trinkle, J. Tzitzouris, and J. Pang, “Dynamic multi-rigid-
body systems with concurrent distributed contacts: Theory
and examples,” Philosophical Transactions: Mathematical,
Physical, and Engineering Sciences, A, vol. 359, no. 1789,
pp. 2575-2593, Dec. 2001.

D. Balkcom and J. C. Trinkle, “Computing wrench cones for
planar rigid body contact tasks,” vol. 21, no. 12, pp. 1053—
1066, 2002.

R. Connelly, E. D. Demaine, and G. Rote, “Straightening
polygonal arcs and convexifying polygonal cycles,” Discrete
and Computational Geometry, vol. 30, no. 2, pp. 205-239,
2003.

F. Reuleaux, The kinematics of machinery. 1876.

B. Mishra, J. T. Schwartz, and M. Sharir, “On the existence
and synthesis of multifinger positive grips,” Algorithmica,
vol. 2, pp. 541-558, 1987.

6736

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

(43]

(44]

A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to
grasping,” Int. J. Robot. Res., vol. 31, no. 7, pp. 886-900,
2012.

S. Makita and Y. Maeda, “3d multifingered caging: Basic
formulation and planning,” in Proc. IROS, 2008, pp. 2697—
2702.

M. Vahedi and A. F. van der Stappen, “Caging polygons
with two and three fingers,” Int. J. Robot. Res., vol. 27,
no. 11-12, pp. 1308-1324, 2008.

J. Erickson, S. Thite, F. Rothganger, and J. Ponce, “Captur-
ing a convex object with three discs,” in Proc. ICRA, vol. 2,
2003, pp. 2242-2247.

E. Rimon and A. Blake, “Caging 2d bodies by 1-parameter
two-fingered gripping systems,” in Proc. ICRA, 1996,
pp. 1458-1464.

T. E. Allen, J. W. Burdick, and E. Rimon, “Two-finger
caging of polygonal objects using contact space search,”
IEEE Trans. Robot., vol. 31, no. 5, pp. 1164-1179, 2015.
S. Makita and W. Wan, “A survey of robotic caging and
its applications,” Advanced Robotics, vol. 31, no. 19-20,
pp. 1071-1085, 2017.

E. Sacks, N. Butt, and V. Milenkovic, “Robust free
space construction for a polyhedron with planar motion,”
Computer-Aided Design, vol. 90, pp. 18-26, 2017.

N. Eckenstein and M. Yim, “Modular robot connector area
of acceptance from configuration space obstacles,” in Proc.
IROS, 2017, pp. 3550-3555.

K. W. Chase and A. R. Parki nson, “A survey of research
in the application of tolerance analysis to the design of
mechanical assemblies,” Research in Engineering Design,
vol. 3, no. 1, pp. 23-37, 1991.

K. W. Chase, J. Gao, S. P. Magleby, and C. D. Sorensen,
“Including geometric feature variations in tolerance analysis
of mechanical assemblies,” IIE Transactions, vol. 28, no. 10,
pp. 795-807, 1996.

L. Laperriére and P. Lafond, “Modeling dispersions affecting
pre-defined functional requirements of mechanical assem-
blies using jacobian transforms,” in Integrated Design and
Manufacturing in Mechanical Engineering ’98, J.-L. Batoz,
P. Chedmail, G. Cognet, and C. Fortin, Eds., 1999.

X. Zuo, B. Li, J. Yang, and X. Jiang, “Application of
the jacobian—torsor theory into error propagation analy-
sis for machining processes,” The International Journal
of Advanced Manufacturing Technology, vol. 69, no. 5,
pp. 1557-1568, 2013.

M. J. D. Powell, Direct search algorithms for optimization
calculations, 1998.

J. A. Nelder and R. Mead, “A Simplex Method for Func-
tion Minimization,” The Computer Journal, vol. 7, no. 4,
pp- 308-313, Jan. 1965.

J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot forma-
tion control and object transport in dynamic environments
via constrained optimization,” vol. 36, no. 9, pp. 1000-1021,
2017.

M. A. Hsieh, V. Kumar, and L. Chaimowicz, “Decentral-
ized controllers for shape generation with robotic swarms,”
Robotica, vol. 26, no. 5, pp. 691-701, 2008.

I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi,
T. Tosun, J. Greco, J. Seo, M. Turpin, V. Kumar, et al.,
“Self-assembly of a swarm of autonomous boats into floating
structures,” 2014, pp. 1234-1240.

M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable
self-assembly in a thousand-robot swarm,” Science, vol. 345,
no. 6198, pp. 795-799, 2014.

J. M. Esposito and T. W. Dunbar, “Maintaining wireless
connectivity constraints for swarms in the presence of ob-
stacles,” 2006, pp. 946-951.

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from |IEEE Xplore. Restrictions apply.

[45] S. Shahrokhi, A. Mahadev, and A. T. Becker, “Algorithms
for shaping a particle swarm with a shared input by exploit-
ing non-slip wall contacts,” in Proc. IROS, 2017, pp. 4304—
4311.

[46] A. Johnson, Clipper - an open source freeware library
for clipping and offsetting lines and polygons. [Online].
Available: http://angusj.com/delphi/clipper.
php.

[47] D. Halperin, J. Latombe, and R. H. Wilson, “A general
framework for assembly planning: The motion space ap-
proach,” Algorithmica, vol. 26, no. 3-4, pp. 577-601, 2000.

[48] J. Snoeyink and J. Stolfi, “Objects that cannot be taken apart
with two hands,” Discrete and Computational Geometry,
vol. 12, pp. 367-384, 1994.

[49] J. J. Duistermaat and J. A. C. Kolk, “Taylor expansion in
several variables,” in Distributions: Theory and Applica-
tions. Birkhiuser, 2010, pp. 59-63.

6737

Authorized licensed use limited to: Dartmouth College. Downloaded on February 15,2022 at 14:56:24 UTC from |IEEE Xplore. Restrictions apply.

