
ORIGINAL RESEARCH
published: 14 July 2021

doi: 10.3389/ffgc.2021.678480

Edited by:
Ling Zhang,

Jiangxi Agricultural University, China

Reviewed by:
Guofang Liu,

Chinese Academy of Sciences, China

Xiaochi Ma,

University of California, Davis,

United States

*Correspondence:
Ika Djukic

ika.djukic@umweltbundesamt.at

Specialty section:
This article was submitted to

Forest Soils,

a section of the journal

Frontiers in Forests and Global

Change

Received: 09 March 2021

Accepted: 18 June 2021

Published: 14 July 2021

Citation:
Kwon T, Shibata H,

Kepfer-Rojas S, Schmidt IK,

Larsen KS, Beier C, Berg B,

Verheyen K, Lamarque J-F,

Hagedorn F, Eisenhauer N, Djukic I

and TeaComposition Network (2021)

Effects of Climate and Atmospheric

Nitrogen Deposition on Early

to Mid-Term Stage Litter

Decomposition Across Biomes.

Front. For. Glob. Change 4:678480.

doi: 10.3389/ffgc.2021.678480

Effects of Climate and Atmospheric
Nitrogen Deposition on Early to
Mid-Term Stage Litter
Decomposition Across Biomes
TaeOh Kwon1, Hideaki Shibata1, Sebastian Kepfer-Rojas2, Inger K. Schmidt2,
Klaus S. Larsen2, Claus Beier2, Björn Berg3, Kris Verheyen4, Jean-Francois Lamarque5,
Frank Hagedorn6, Nico Eisenhauer7,8, Ika Djukic6* and TeaComposition Network

1 Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan, 2 Department of Geosciences

and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark, 3 Department of Forest Sciences,

University of Helsinki, Helsinki, Finland, 4 Forest & Nature Lab, Department of Forest and Water Management, Ghent

University, Ghent, Belgium, 5 National Center for Atmospheric Research, Boulder, CO, United States, 6 Swiss Federal

Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland, 7 German Centre for Integrative Biodiversity

Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, 8 Institute of Biology, Leipzig University, Leipzig, Germany

Litter decomposition is a key process for carbon and nutrient cycling in terrestrial

ecosystems and is mainly controlled by environmental conditions, substrate quantity

and quality as well as microbial community abundance and composition. In particular,

the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition

and its temporal dynamics are of significant importance, since their effects might

change over the course of the decomposition process. Within the TeaComposition

initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We

assessed how macroclimate and atmospheric inorganic N deposition under current and

predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3

and 12 months. Our study shows that the early to mid-term mass loss at the global

scale was affected predominantly by litter quality (explaining 73% and 62% of the total

variance after 3 and 12 months, respectively) followed by climate and N deposition.

The effects of climate were not litter-specific and became increasingly significant as

decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after

12 months of incubation. The effect of N deposition was litter-specific, and significant

only for 12-month decomposition of Rooibos tea at the global scale. However, in the

temperate biome where atmospheric N deposition rates are relatively high, the 12-

month mass loss of Green and Rooibos teas decreased significantly with increasing

N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected

changes in macroclimate and N deposition at the global scale by the end of this century

are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–

3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss.
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In contrast, expected changes in atmospheric N deposition will decrease the mid-term

mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5%

in the temperate biome. Our results suggest that projected increases in N deposition

may have the capacity to dampen the climate-driven increases in litter decomposition

depending on the biome and decomposition stage of substrate.

Keywords: tea bag, Green tea, Rooibos tea, litter decomposition, carbon turnover, nitrogen deposition,

TeaComposition initiative

INTRODUCTION

Litter decomposition is a fundamental process in the carbon and

nutrient cycling across all ecosystems (Chapin et al., 2011; Berg

and McClaugherty, 2020). Decomposition rate is most closely

related to litter quality (Cornwell et al., 2008; Djukic et al., 2018;

Kotroczó et al., 2020), climate (Davidson and Janssens, 2006;

Tóth et al., 2007; See et al., 2019), nutrient availability (Fog,

1988; Luo et al., 2018; Lilleskov et al., 2019; Juhos et al., 2021),

and the abundance and diversity of soil organisms (Coûteaux

et al., 1995; González and Seastedt, 2001; Pioli et al., 2020). The

climate exerts a direct effect on decomposition by stimulation

of decomposer activity through the increased temperature and

precipitation (Zhang et al., 2008). However, the inhibitory

influence of climate might occur when substrate moisture lies

below 30% or above 80% and themean annual temperature below

10◦C (Prescott, 2010). The long-term climate conditions shape

indirectly the prevailing vegetation and the quality of plant litter,

which can have significant impacts on its turnover dynamics.

Climate variables can explain up to 68% of the variability in

litter decomposition rates on a global scale (Parton et al., 2007);

thus changes in environmental conditions may have a significant

impact on litter decomposition processes via both direct and

indirect pathways. Carbon to nitrogen ratio and lignin content

of the initial litter are considered to be good indicators of litter

quality as they are related to nutrient availability and chemical

properties of the studied substrate. For instance, litter with a

high C:N ratio and lignin content decomposes more slowly

(Makkonen et al., 2012) than litter with the inverse properties.

Yet, the relative importance of diverse drivers may change over

the course of the decomposition process. The early stage of litter

decomposition (i.e., 0–30% mass loss) where most of the water-

soluble compounds are released is especially sensitive to the

environmental changes and the decomposition of holocellulose

is promoted by higher nitrogen (N) contents in initial litter

and soil. In contrast, during the later stage of decomposition

(>30% mass loss), N exerts the opposite effect due to the

suppressed oxidative enzymatic activities (Berg, 2014; Berg and

McClaugherty, 2020). Although the central role of climate and

litter quality in controlling litter decomposition rates is widely

recognized, results on the effects of increased N input and climate

on the decomposition in the field are inconsistent.

Depending on litter quality, responses to atmospheric N

deposition may vary from positive for the decomposition of

high-quality litter (high N, low C:N ratio) to negative for

the decomposition of low-quality litter (high lignin, high C:N

ratio; Fog, 1988; Zhou et al., 2017) through affecting the

composition of the decomposer community. Similarly, several

studies have shown that in N-poor ecosystems, addition of N is

likely to stimulate early-stage litter decomposition (Knorr et al.,

2005), whereas in N-sufficient ecosystems inhibitory effects of

N deposition have been reported through a reduced oxidative

enzymatic activity (Hobbie, 2008; Hagedorn et al., 2012; Norris

et al., 2013). A meta-analysis revealed an inhibitory effect of

ambient N deposition between 5 and 10 kg N ha−1 year−1 on

litter decomposition for a period of 1–72 months (Knorr et al.,

2005). Although much is known about the regulatory factors of

litter decomposition, the results on the effects of increased N

deposition on litter decomposition remain inconsistent (Pei et al.,

2020; Hood-Nowotny et al., 2021). Hence, the importance of

regulatory factors might be strongly context-dependent and may

differ among ecosystems and litter types (Bradford et al., 2016).

Increases of the global mean annual surface temperature

(1.0–3.7◦C) and mean annual precipitation (28.8–65.0 mm) are

projected for the end of this century (IPCC, 2014; Thorpe and

Andrews, 2014). The atmospheric total inorganic N deposition

rate on land and transitional area is expected to increase by 1.2 kg

N ha−1 year−1 (RCP 2.6) to 1.9 kg N ha−1 year−1 (RCP 8.5)

by the end of this century (Lamarque et al., 2013). Since N and

C cycles are tightly coupled, an increase of N in soil through

increased atmospheric N deposition may alter the humification

of litter and thus soil C sequestration (Janssens et al., 2010;

Prescott, 2010; Berg and McClaugherty, 2020). In addition, not

only climate-driven shifts in vegetation composition (Rizzetto

et al., 2016; Boutin et al., 2017), but also N driven changes in

plant diversity (Bobbink et al., 2010) might not only influence

the microclimate but also litter quality, which significantly

affects decomposition patterns (Gaudio et al., 2015) and thus

might have profound implications for the global C storage and

consequently climate change. Therefore, it is crucial to explore

potential effects of changes in climate and N deposition on

litter decomposition.

To understand the effects of variation in climate, N deposition,

and other environmental factors on litter decomposition at

the global scale, standardization in experimental materials and

methodology is mandatory. The TeaComposition initiative has

collected harmonized data on litter mass loss over time using

standardized litter (i.e., commercially available tea bags; Djukic

et al., 2018). Using this approach, we evaluated the effects

of macroclimate and N deposition on the global litter mass

loss of fast-decomposing Green tea and slow-decomposing

Rooibos tea after 3 and 12 months of in situ incubation.

For future predictions, two different N deposition and climate

scenarios were used. The number and distribution of field
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FIGURE 1 | Map showing the mean annual nitrogen deposition during 2006–2017 period and the location of the study sites within TeaComposition initiative. Data

from the 524 colored sites have been used in the present study. Colors of each site depict biomes classified according to Walter and Breckle (1999). See Table 1

and Supplementary Table 1 for more detailed information of sites.

sampling locations often limit our understanding of ecological

processes. Therefore, in our analyses we shed more light on the

decomposition process in the temperate biome due to the greatest

data availability and the largest range of N deposition.

The aims of this study are to determine (1) the relationship

between macroclimatic factors, N deposition, and litter

quality on mass loss of Green and Rooibos teas across

biomes, (2) whether the observed relationships at the global

scale hold true for regional scale (i.e., temperate biome

where N deposition is highest), and (3) the relationship

between predicted changes in macroclimate, N deposition,

and first year leaf litter mass loss at global and regional

scales. Specifically, we hypothesize (1) that the control of

early to mid-stage decomposition will be driven by litter

quality > climate > N deposition on the global scale; (2)

that the inhibitory effect of N deposition on the progressed

stage of decomposition will be more pronounced at the

regional scale with higher N deposition rates than at the global

scale; (3) that a potential climate change-induced increase of

litter decomposition might be mitigated through a potential

negative feedback of N deposition on the progressed stage

of decomposition.

MATERIALS AND METHODS

Study Sites
We used data gained by the global TeaComposition initiative1

coming from untreated control plots. Data from 394 sites (5,581

teabags) after 3-month incubation and 423 sites (4,583 teabags)

after 12-month incubation are collected across nine biomes

(Figure 1, Table 1, and Supplementary Table 1). Each site was

assigned to one of nine terrestrial biomes, defined by Walter

and Breckle (1999). Sub-sites with different elevations, locations,

and vegetation types were considered as separate sites. For 3-

month incubation, we used the mean monthly precipitation

(MMP), mean monthly air temperature (MMAT), and the mean

monthly N deposition (MMN) based on the real incubation

period, while for 12-month incubation, mean annual average

values of these variables were used. Climate data were extracted

from the CHELSA version 1.2 (Climatologies at High resolution

for the Earth’s Land Surface Areas2; Karger et al., 2017). The

atmospheric N deposition at each site was resampled by bilinear

1https://www.teacomposition.org/
2https://chelsa-climate.org/
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TABLE 1 | Summarized characteristics of the study sites used for the analyses within the TeaComposition initiative.

Ca. 3-month incubation Ca. 12-month incubation

Biomes NumberA of

sites

(teabags)

Climate

(MMP)B
Climate

(MMT)C
N deposition

(MMN)D
Number of

sites

(teabags)

Climate

(MAP)E
Climate

(MAT)F
N deposition

(MAN)G

Arctic 3 (124) 59 (2)bc 8 (1)c 0.07 (0.03)b 80 (419) 487 (6)c −2 (0)e 1.14 (0.04)d

Boreal 21 (475) 63 (3)bc 13 (0)c 0.25 (0.03)b 22 (652) 513 (36)c 1 (1)d 2.84 (0.32)bc

Temperate 284 (3927) 80 (2)b 15 (0)c 1.00 (0.02)a 231 (2572) 862 (21)b 7 (0)c 10.57 (0.31)a

Warm-

temperate

6 (120) 182 (41)a 23 (1)ab 0.61 (0.09)ab 5 (105) 2451 (361)a 16 (1)ab 7.41 (1.31)ab

Arid-temperate 3 (53) 32 (14)c 16 (2)bc 0.50 (0.38)b 2 (58) 275 (22) 9 (2) 1.81 (0.70)

Mediterranean 40 (428) 39 (5)c 18 (1)b 0.48 (0.05)b 44 (501) 755 (51)b 13 (1)b 5.31 (0.53)b

Arid-subtropical 9 (141) 23 (11)c 26 (1)a 0.14 (0.04)b 6 (40) 340 (98)c 23 (0)a 1.73 (0.78)cd

Humid-

equatorial

14 (104) 139 (14)a 26 (0)a 0.24 (0.03)b 21 (142) 1685 (148)a 24 (0)a 2.21 (0.34)cd

Semiarid-

tropical

14 (209) 159 (11)a 21 (2)ab 0.48 (0.07)b 12 (94) 1183 (45)a 19 (2)a 4.48 (0.83)bc

Mean 89 (11) 18 (1) 0.42 (0.08)b 951 (88) 12 (1) 4.17 (0.57)

Mean (SE) of climates and N deposition at each biome.

Detailed table on the single site characteristics can be found in the Supplementary Material.
ANumber of sites (teabags) is for sites (teabags) used for both the teas, Green tea and Rooibos tea at each incubated period.
BMMP (mm month−1) = Mean monthly precipitation during real incubation period at each site.
CMMT (◦C) = Mean monthly temperature during real incubation period at each site.
DMMN (kg N ha−1 month−1) = Mean monthly N deposition during real incubation period at each site.
EMAP (mm year−1) = Mean annual precipitation.
FMAT (◦C) = Mean annual temperature.
GMAN (kg N ha−1 year−1) = Mean annual N deposition. Lowercase letters show the result of multiple comparisons among biomes with Kruskal–Wallis test at the level of

P < 0.05.

interpolation on a rectilinear 2D grid of Atmospheric Chemistry

and Climate Model Intercomparison Project (ACCMIP) dataset

with a spatial resolution of 1.9 (latitude) × 2.5 (longitude) degree

(Lamarque et al., 2013). The ACCMIP dataset is composed of

historical deposition covering the period from 1850 to 2000 and

the projected deposition with RCP scenarios until 2100 (Van

Vuuren et al., 2011; Lamarque et al., 2013). The data on N

depositions are based on the RCP 2.6 scenario from 2007 to 2016

for each site. The mean annual air temperature (MAAT) in our

dataset ranges from −2◦C to 24◦C on the global scale and is 7◦C
in the temperate biome. The mean annual precipitation (MAP)

ranges from 275mm to 2451mm at the global scale and is around

862mm in the temperate biome. The estimatedmean annual total

inorganic N deposition (MAN) ranges from 1 to 11 kg N ha−1

year−1 (0.2–22.0 kg N ha−1 year−1 with a whole range) on the

global scale and is around 11 kg N ha−1 year−1 (0.7–22.0 kg N

ha−1 year−1 with a whole range) in the temperate biome (Table 1;
site specific data can be found in the Supplementary Table 1).

Litter Bag Study
Within the TeaComposition initiative (Djukic et al., 2018),

commercially available tea bags of Green tea (C/N ratio of 12.3)

and Rooibos tea (C/N ratio of 42.9; Keuskamp et al., 2013) were

incubated (n = 4 per litter type and sampling period) in the field

over a period of 3 and 12months. The tea was contained in woven

nylon bags with 0.25 mm mesh size allowing access only for

microorganisms and fine roots. Tea bags were buried in the upper

5 cm of the top-soil in the summer of 2016 in both the northern

and southern hemispheres (i.e., start in summer; June–August

in northern hemisphere and December–February in southern

hemisphere). After incubation, bags were excavated and carefully

cleaned of soil and roots, dried at 70◦C for 48 h, and weighed.

The remaining mass after the incubation was linearly normalized

to 3 and 12 months on dry weight and expressed in percentage

(%) of the initial litter weight. When remaining litter was

visibly contaminated, remaining mass of litter was estimated by

subtracting ash weight (representing mineral portion) obtained

after heating the sample in a muffle oven at 500◦C for 16 h from

remaining mass of visibly contaminated litter.

Data Analyses
Effects of Climate and N Deposition on Mass Loss
Between Tea Types and Incubation Time
We linearly normalized all mass loss data to a fixed period

because not all tea bags were incubated for exactly 3 (91 ± 8 days;

overall mean ± standard deviation; number of sites = 394) and

12 months (369 ± 9 days; number of sites = 423).

To determine the significant differences of the means of mass

loss at site level of each tea type across biomes after 3-month and

12-month incubation, the Kruskal–Wallis test was performed.

This non-parametric test was used because preliminary analysis

indicated at least one of the assumptions of normality and

homogeneity of variance was not met. When the result of

the Kruskal–Wallis test showed a significant difference across

biomes, a non-parametric post hoc test was conducted using

the “kruskal” function in the package “agricolae” in R Statistical
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Software with the Holm-adjusted p-value, set to p < 0.05 for

statistical significance, for multiplicity correction (Holm, 1979;

De Mendiburu, 2017).

To investigate the effects of climatic variables and N

deposition on mass loss after 3 and 12 months for both teas or

each tea type separately, we applied linear mixed-effects models

(Bates et al., 2015) with tea type for both teas, climate, and

N deposition as fixed factors and site as random factor. For

3-month incubation, the mean monthly values of climate and

N deposition were calculated and used with real incubation

period at each site. For 12-month incubation, the mean annual

data of climate and N deposition were used. The final model

was selected with backward selection by deleting non-significant

terms. While determining the final model, we also examined

the possibility of multicollinearity between fixed factors using a

variance inflation factor (VIF), with an acceptable VIF score < 3

(Kock and Lynn, 2012). The same procedure has been applied

separately for data from temperate biome, due to the greatest

data availability and the largest range of N deposition at the

regional scale.

Projection of Future Litter Decomposition
We used the RCP 2.6 and RCP 8.5 IPCC scenarios to analyze

the relationships between the change of mass loss and the

change of climate and N deposition by the end of this century

(Van Vuuren et al., 2011; Lamarque et al., 2013; IPCC, 2014;

Table 2). Projected data on MAT and MAP by the end of this

century were obtained from IPCC (2014) and the CoupledModel

Intercomparison Project 5 (CMIP5; Thorpe and Andrews, 2014),

respectively. For the change of atmospheric N deposition, we

used the simulated dataset with RCP scenarios from ACCMIP

aforementioned, supplied by National Center for Atmospheric

Research in United States (Lamarque et al., 2013). According to

these simulations, the surface temperature is expected to increase

between 1 and 3.7◦C between 2081 and 2100 relative to the period

of 1986–2005, while precipitation is predicted to increase by 28.8

to 65.0 mm year−1 between 2079 and 2098 in comparison to

1986–2005. In addition, N deposition is expected to increase by

1.2 to 1.9 kg N ha−1 year−1 by 2090–2099 relative to the period of

2000–2009 (Table 2). We calculated the percent changes in mass

loss of Green and Rooibos teas, relative to mass loss measured

after current 1-year decomposition, by the end of the 21st century

by using data on predicted changes in MAT, MAP, and MAN as

well as the results of linear mixed-effects models between those

factors and mass loss of tea types.

Software Used for Data Processing and Statistical
Analysis
All the geographical analyses on climate, N deposition data,

and site locations were processed using QGIS (Quantum GIS

Development Team, 2017, version 2.18.14). All statistical analyses

were carried out with R (R Core Team, 2019, version 3.4.4).

To quantify the explained percentage of variance by fixed

factors in a linear mixed-effects model using the “lmer” function

in the “lme4” package in R, we used the “variancePartition”

package in R (Hoffman and Schadt, 2016). Overall, model

quality was further quantified by calculating marginal R2 (fixed

TABLE 2 | Change in mean annual temperature (�MAT, ◦C), mean annual

precipitation (�MAP, mm year−1), and mean annual N deposition (�N deposition,

kg N ha−1 year−1) by the late 21st century for two RCP scenarios as compared

to the period 1986–2005 for �MAT and �MAP and to the period 2000–2009 for

�N deposition.

Scenario 2081–2100 2079–2098 2090–2099

�MAT (likely range) �MAP (SE) �N deposition

RCP 2.6 1.0 (0.3–1.7) 28.8 (2.9) 1.2

RCP 8.5 3.7 (2.6–4.8) 65.0 (4.4) 1.9

SE means standard error.

effects only) and conditional R2 (fixed plus random effects)

with “r.squaredGLMM” function in the “MuMIn” package in R

(Nakagawa and Schielzeth, 2013).

RESULTS

Effect of Climate and N Deposition on
Mass Loss
Across All Biomes
Across all biomes Green tea lost 2.4 times more mass

[58.9 ± 6.5%, Mean of mass loss ± Standard error (SE)] than

Rooibos tea (24.3 ± 2.8%) during the 3-month decomposition

period and 1.9 times more mass (66.4 ± 2.4%) than Rooibos

tea (34.9 ± 3.2%) during the 12-month decomposition period

(Figure 2). The lowest mass loss after 3 and 12 months of

incubation for both tea types was observed under the arid-

temperate climate, while the highest mass loss was under the

warm-temperate and semiarid-tropical biomes (after 3 months of

incubation) and warm-temperate and humid-equatorial biomes

(after 12 months of incubation; Figure 2).
The 3-month mass loss of both tea types correlated positively

with precipitation and temperature (Table 3). Tea type explained
72.5%, precipitation 1.6%, and temperature 0.2% of the variance

of mass loss. When the analysis was run for each tea type

separately, precipitation was positively correlated with mass loss

for both Green tea (4.2% of variance) and Rooibos tea (9.2% of

variance). In addition, temperature was positively correlated with

mass loss of Green tea (0.9% of variance) and Rooibos tea (0.6%

of variance; Table 3 and Figure 3).
Similarly, the 12-month mass loss of both tea types was also

strongly affected by tea type (explaining 61.8% of the variance)

but less affected by tea types than 3-month incubation. As well,

precipitation (2.3%), temperature (4.4%), and N deposition (0.3%

of variance) were positively correlated with mass loss (Table 3).
For Green tea, precipitation (8.2% of variance) and temperature

(11.7% of variance) were in positive relationships with mass

loss. And for Rooibos tea, precipitation (5.9% of variance),

temperature (14.9% of variance), and N deposition (2.0% of

variance) were positively correlated with mass loss.

Decomposition in the Temperate Biome
When only data for the temperate biome were analyzed, 3-

month mass loss of both tea types was also positively related
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FIGURE 2 | Mass loss of tea litters (%); Green tea (blue) and Rooibos tea (orange) after the field incubation of 3 (A) and 12 months (B) across biomes. Blue and

orange circles show the means, and the bars are the standard errors based on the total number of observations. Uppercase and lowercase letters denote significant

differences among biomes for Green and Rooibos tea, respectively, based on a Kruskal–Wallis test (p < 0.05). The order of biomes follows the order of mean

monthly precipitation (mm month-1) for (A) and mean annual precipitation (mm year-1) for (B). In case that the number of sites is <3 sites at each biome, then the

data were not included in statistical analysis (i.e., Arid-temperate).

TABLE 3 | The effects of climatic factors and N deposition on the mass loss of Green tea and Rooibos tea after 3 and 12 months of incubation in all biomes.

3-month incubation in all biomes 12-month incubation in all biomes

Tea type Fixed effects Est. (SE) t P Expl. (%) R2m/R2c Est. (SE) t P Expl. (%) R2m/R2c

Both Tea type 38.69 (0.21) 186.60 <0.001 72.5 0.74/0.89 32.65 (0.25) 129.84 <0.001 61.8 0.69/0.84

Precipitation 64.33 (9.67) 6.65 <0.001 1.6 7.33 (1.02) 7.23 <0.001 2.3

Temperature 0.21 (0.10) 2.15 <0.05 0.2 0.61 (0.06) 10.02 <0.001 4.4

N deposition – – – – – 0.23 (0.08) 2.88 <0.01 0.3

Green Precipitation 59.40 (12.60) 4.72 <0.001 4.2 0.05/0.76 7.05 (1.08) 6.50 <0.001 8.2 0.20/0.74

Temperature 0.29 (0.13) 2.30 <0.05 0.9 0.51 (0.06) 7.96 <0.001 11.7

Rooibos Precipitation 70.18 (8.75) 8.02 <0.001 9.2 0.10/0.63 7.20 (1.23) 5.85 <0.001 5.9 0.23/0.67

Temperature 0.18 (0.09) 2.08 <0.05 0.6 0.70 (0.07) 9.28 <0.001 14.9

N deposition – – – – – 0.34 (0.10) 3.57 <0.001 2.0

Mean monthly air temperature (◦C), precipitation (mm month−1), and N deposition (kg N ha−1 month−1) were used for the analyses of samples incubated for 3 months,

while mean annual air temperature (◦C), precipitation (mm year−1), and N deposition (kg N ha−1 year−1) were used for the analyses of samples incubated for 12 months.

Est. (SE) = estimates (standard error), Expl. (%) = variance percentage explained by each fixed factor. R2m and R2c are mean marginal R2 and conditional R2, respectively.

Only significant fixed effects are shown. For precipitation, models were fitted with precipitation/1000 to avoid too small estimates.

to type of tea (explaining 79.2% of the variance), precipitation

(0.4%) and temperature (0.3%), and negatively to N deposition

(0.7%) (Table 4). When the analysis was run for each tea type

separately, the 3-month mass loss of Green tea was affected by

precipitation (2.4%, positively), temperature (3.8%, positively),

and N deposition (6.3%, negatively), while the mass loss of

Rooibos tea was affected by precipitation (2.1%, positively)

and N deposition (1.3%, negatively) without the relationship

to temperature.

With the progress of decomposition (12 months), we

observed further a positive correlation with tea type (explaining

68.2% of the variance) and temperature (5.0%) as well as a

negative correlation with the N deposition (1.7%). However, the

precipitation effect was missing (Table 4). When tea types were

analyzed separately, also a positive correlation of mass loss with

temperature (15.4% for Green tea and 11.0% for Rooibos tea)

and a negative correlation between mass loss and N deposition

(9.5% for Green tea and 1.1% for Rooibos tea) were recorded.
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FIGURE 3 | Relationships between mass loss of Green tea and Rooibos tea and precipitation (A,D), air temperature (B,E) and N deposition values (C,F) after

3-month (A–C) and 12-month (D–F) incubation periods in all biomes. Blue and orange circles show the means and the bars are the standard errors based on the

total number of observations. Climatic variables and N deposition were obtained from CHELSA ver. 1.2 and ACCMIP dataset, respectively. Band shows 95%

confidence interval. Relationships without regression lines show non-significant relationships.

TABLE 4 | The effects of climatic factors and N deposition on the mass loss of Green tea and Rooibos tea after 3 and 12 months of incubation in the temperate biome.

3-month incubation in temperate climate 12-month incubation in temperate climate

Tea type Fixed effects Est. (SE) t P Expl. (%) R2m/R2c Est. (SE) t P Expl. (%) R2m/R2c

Both Tea type 38.91 (0.21) 182.91 <0.001 79.2 0.81/0.91 33.30 (0.31) 107.41 <0.001 68.2 0.75/0.85

Precipitation 42.44 (12.30) 3.45 <0.001 0.4 – – – –

Temperature 0.37 (0.13) 2.75 <0.01 0.3 1.13 (0.12) 9.19 <0.001 5.0

N deposition −4.49 (1.11) −4.06 <0.001 0.7 −0.54 (0.10) −5.30 <0.001 1.7

Green Precipitation 50.63 (15.76) 3.21 <0.01 2.4 0.13/0.75 – – – – 0.25/0.68

Temperature 0.67 (0.17) 3.92 <0.001 3.8 1.20 (0.14) 8.86 <0.001 15.4

N deposition −6.79 (1.42) −4.78 <0.001 6.3 −0.77 (0.11) −6.92 <0.001 9.5

Rooibos Precipitation 33.12 (12.03) 2.75 <0.01 2.1 0.03/0.61 – – – – 0.12/0.49

Temperature – – – – 1.02 (0.14) 7.12 <0.001 11.0

N deposition −2.16 (1.08) −2.01 <0.05 1.3 −0.27 (0.12) −2.32 <0.05 1.1

Mean monthly air temperature (◦C), precipitation (mm month−1), and N deposition (kg N ha−1 month−1) were used for the analyses of samples incubated for 3 months,

while mean annual air temperature (◦C), precipitation (mm year−1), and N deposition (kg N ha−1 year−1) were used for the analyses of samples incubated for 12 months.

Est. (SE) = estimates (standard error), Expl. (%) = variance percentage explained by each fixed factor. R2m and R2c are mean marginal R2 and conditional R2, respectively.

Only significant fixed effects are shown. For precipitation, models were fitted with precipitation/1000 to avoid too small estimates.
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FIGURE 4 | Temperate-biome relationships between mass loss of Green tea and Rooibos tea and precipitation (A,D), air temperature (B,E), and N deposition (C,F)

after 3-month (A–C) and 12-month (D–F) incubation periods. Blue and orange circles show the means and the bars are the standard errors based on the total

number of observations. Band shows 95% confidence interval. Relationships without regression lines show non-significant relationships.

No significant effect of precipitation was observed for Green and

Rooibos teas (Table 4 and Figure 4).

Effects of Projected Future Climate and
N Deposition on Litter Decomposition
Across All Biomes
We investigated the effects of future climate scenarios (RCP

2.6 and RCP 8.5; Table 2) on the overall tea mass loss for the

12-month incubation. Across all biomes, we found a 2.2–6.2%

increase in predicted mass loss (relative to mass loss in current

period) for both types (Table 5). In general, the predicted increase
in mass loss appeared to be higher under the RCP 8.5 (3.5–

10.6%) than under RCP 2.6 scenario (<3.8%). Positive effects

of increased air temperature on mass loss of both litter types

were 3.0–4.9 times and 2.0–5.5 times higher than those of the

predicted change in precipitation and N deposition, respectively.

We noticed a much higher increase in mass loss for the litter

material of Rooibos tea (3.8–10.6%) as compared to the more

labile litter of Green tea (1.1–3.5%). The effects of air temperature

as compared to precipitation seem to be greater on the mass

loss of the more stable material of Rooibos tea (3.3- to 5.7-fold

greater) than those of the mass loss of more labile Green tea

material (2.7- to 4.0-fold). In addition, mass loss of Rooibos tea

increased by the increase of N deposition from 1.2% to 1.9%.

Decomposition in the Temperate Biome
In the temperate biome, models predicted a 0.9–6.2% increase

in mass loss (relative to the current conditions) for both types

of tea (Table 5). In contrast to the global scale, we noticed

only the effect of air temperature change (2.2–8.1%) by RCP

2.6 and RCP 8.5, but not of precipitation, on the overall mass

loss of both tea types. Similar to the global scale, the mass loss

of the more stable Rooibos tea material showed much higher

increase (2.0–9.3%) than that of the more labile Green tea

material (0.4–4.4%). Further, the effect of air temperature on

mass loss of Green tea (1.8–6.6%) was slightly lower than on

Rooibos tea (2.9–10.7%). The predicted change of N deposition

in the temperate biome reduced the mass loss of both teas

(1.3–2.0%), whereby the mass loss of the Green tea (1.4–2.2%)

appeared to be slightly more inhibited than that of Rooibos tea

(0.9–1.5%).
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TABLE 5 | The percent change of mass loss of Green tea and Rooibos tea by the end of the 21st century relative to the current period, induced by the changes of mean

annual temperature (MAT), mean annual precipitation (MAP), and N deposition across all biomes and in the temperate biome after 1 year of decomposition.

All biomes Temperate biome

Both teas Green tea Rooibos tea Both teas Green tea Rooibos tea

�MAT 1.2–4.4 0.8–2.8 2.0–7.4 2.2–8.1 1.8–6.6 2.9–10.7

�MAP 0.4–0.9 0.3–0.7 0.6–1.3 – – –

�N deposition 0.6–0.8 – 1.2–1.9 −1.3–−2.0 −1.4–−2.2 −0.9–−1.5

Sum 2.2–6.2 1.1–3.5 3.8–10.6 0.9–6.2 0.4–4.4 2.0–9.3

DISCUSSION

Climate and N deposition effects on litter decomposition are

complex and highly uncertain considering our present knowledge

but of significant importance for the global carbon dynamics

and assessment of future trajectories. The direct and indirect

effects of these environmental changes on litter decomposition

are not necessarily consistent between litter quality types

(Coûteaux et al., 1995), decomposition stages (Berg, 2014),

and environmental conditions (Delgado-Baquerizo et al., 2015;

Frøseth and Bleken, 2015). Here we studied the mass loss as the

decomposition degree of Green and Rooibos teas across 524 sites

with contrasting climate andN deposition conditions. Our results

show that litter quality > climate > N deposition are key factors

for litter decomposition, with litter quality being most important

throughout the observation period, while the effects of climate

and N deposition change over decomposition time and space.

Impacts of Climate and N Deposition on
Litter Mass Loss
The abiotic and biotic factors regulating decomposition can

change over time (Berg and McClaugherty, 2020; Canessa et al.,

2021). In our study, litter quality explained a major part of

the variance in mass loss both after 3 months (73%) and

12 months (62%) of incubation on the global scale. This is in

accordance with several studies showing a positive relationship

between litter quality and mass loss or decomposition rate

(Zhang et al., 2008; Kang et al., 2009; Djukic et al., 2018;

Fanin et al., 2020; Canessa et al., 2021). However, the extent

of the effects of climatic variables changed with the stage

of decomposition, with precipitation being most important

during the 3-month incubation and the air temperature during

12 months of incubation for Green and Rooibos teas. A possible

reason for this observation may be due to the fact that initial

incubation occurred in the summer months, when precipitation

was likely the main limiting factor for the majority of biomes

(Prescott, 2010). Moreover, temperature variations during the

summer months are smaller compared to the entire year

(Karger et al., 2017), and the limiting factor for decomposition

during dry seasons is water availability. In addition, during

the initial decomposition phase, litter mass loss is dominated

by the leaching of soluble compounds (e.g., Hagedorn and

Machwitz, 2007; Djukic et al., 2018; Mori et al., 2020; Trevathan-

Tackett et al., 2020), which is controlled by precipitation

(Ristok et al., 2017). In later stages of decomposition, the

microbial degradation of more stable components becomes

increasingly important, which depends on both air temperature

and precipitation (e.g., Davidson and Janssens, 2006). Rather

optimal ranges between air temperature and precipitation were

likely responsible for the high mass loss of both tea types

as observed for the warm-temperate, humid-equatorial, and

semiarid-tropical climates. In contrast, the extreme ranges of

temperature and/or precipitation are likely to explain the low

mass loss of both tea types at arid-temperate, arid-subtropical,

and arctic climates.

In our study, the effect of N deposition was litter-specific,

and only of significant importance for Rooibos tea during the

12-month period at the global scale. Previous studies have

shown that N effects on litter decomposition can be positive,

negative, or near zero, depending on litter quality, degree of

decomposition, as well as N saturation status of the ecosystems

(Knorr et al., 2005; Hobbie, 2008; Prescott, 2010; Berg, 2014).

The observed positive effect of N deposition on the mass

loss of Rooibos tea (∼35%) after 12 months, can be related

to the stimulated decomposition of the more labile cellulose

substrate through the N deposition (Wang et al., 2019; Berg and

McClaugherty, 2020) during the early stage of decomposition

(0–30% mass loss). In contrast, the progressed decomposition

of Green tea (∼66% of mass loss) is likely limited by the

carbon and nutrient accessibility in the remaining litter, which

are essential for the microbial function at the later stage of

decomposition (Fanin et al., 2020). In addition, large variability

in microclimatic conditions at the global scale as well as very

coarse resolution of the available N deposition data (∼100 km)

is likely masking the effect of N deposition. Hence, it is therefore

necessary to consider the variability in the N deposition at the

narrower spatial scale for the better understanding of the global

decomposition processes.

In the temperate biome, we observed a negative relationship

between N deposition and mass loss of both tea types after

3 and 12 months of incubation. Knorr et al. (2005) showed

that ecosystems with N deposition rates between 5 and

10 kg N ha−1 year−1 experience an inhibitory effect on litter

decomposition. The high N inputs might decrease the demand of

decomposers to acquire litter-derived N, when they are supplied

with external N. Especially in the progressed decomposition

stage, high N inputs may suppress the activity of lignolytic

fungi and their oxidative enzymes and consequently suppress

decomposition processes (Carreiro et al., 2000; Hobbie, 2008;

Hobbie et al., 2012; Berg and McClaugherty, 2020).

Our study underlines the importance of considering the

effects of different drivers in time and space for a better
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understanding of litter decomposition processes. Especially

analyses of litter chemistry, soil properties, soil biodiversity, and

their interactive effects (Mori et al., 2021) on decomposition

processes are crucial for improved understanding of this

fundamental biogeochemical process.

Impacts of Predicted Climate and
Atmospheric N Deposition on the
Decomposition Process
Our analyses of 1-year mass loss indicate that the expected

changes in macroclimate by 2100 at the global scale will increase

the mass loss of Green and Rooibos tea. The mass loss of

more stable litter seems to be more affected by future warming

than that of easily decomposable substrates (Table 5). The

intrinsic temperature sensitivity is closely related to themolecular

structure of the substrate and increases with its increasing

molecular complexity (Davidson and Janssens, 2006), which is

also in accordance with our findings across heterogeneous soil

environments. However, several other environmental constraints

on litter decomposition (such as N deposition) need to

be discussed within the context of climate change. Future

atmospheric N deposition is expected to have a strong effect

on soil biogeochemical processes (Gaudio et al., 2015). In our

study, the predicted increase in N deposition by 2100 shows

also an enhancing effect on the mass loss of Rooibos tea at

the global scale. Moreover, when taking into consideration the

combined effects of organic N deposition (∼30% of total N

deposition globally; Neff et al., 2002; Cornell, 2011) and inorganic

N deposition on litter decomposition, the effect of the total

N deposition may be higher than our calculated estimates.

Thus, the accelerated mineralization of the more stable substrate

through the increase in temperature andN depositionmight have

profound implication for the global C budget. In turn, climate

warming as well as higher N deposition might lead to a shift

in the structure of plant communities (Cornelissen et al., 2007),

changes in microclimate (Wang et al., 2019), increases in plant

growth (Prescott, 2005; Bobbink et al., 2010; Bringmark et al.,

2011; Fröberg et al., 2011), changes in litter quality [e.g., increase

of litter N (Henry et al., 2005)], changes in soil C:N ratio (Mulder

et al., 2015), and changes in soil microbial communities (Carreiro

et al., 2000; Hobbie et al., 2012; Leff et al., 2015) with a potentially

compensating effect of litter C mineralization.

In the temperate biome with higher average annual N

deposition compared with other biomes, however, the predicted

change in N deposition may lead to a decrease in mass loss of

both high- and low-quality litters. Thus, the negative effect of

N deposition on litter mass loss might mitigate, but not offset,

the climate change-induced increase of litter decomposition at

the regional level (cf. Berg, 2014). The effects of increased N

deposition were quite small (means 1–2%) relative to the effect

of increased temperature (means 2–8%) and probably irrelevant

for plant species occurrence (Dirnböck et al., 2017). Moreover,

Forstner et al. (2019) concluded that an accumulation of soil

organic carbon in the organic layer through N addition in

temperate forests might be evenmore sensitive to the CO2 release

in case of disturbances or changing environmental conditions

due to the lower degree of physicochemical protection of

this soil layer.

Hence assessing the effects of co-occurring global change

factors on biogeochemical processes at different geographical

scales (e.g., Forstner et al., 2019; Rillig et al., 2019; Bowler

et al., 2020) are of significant importance for understanding the

relationships between C and N dynamics during different stages

of litter decomposition.

CONCLUSION

Our results suggest that litter quality and climate were the most

significant drivers of early-to-mid-stage litter decomposition.

In addition, climate change and the excess of N deposition

might accelerate the decomposition of more stable substrate

at the global scale. However, at the regional scale future N

deposition seems to have the capacity to dampen the predicted

climate change effect. Studying the litter decomposition process

over different time and spatial scales requires consideration

of complex interplay of different parameters. For a better

understanding of global and regional litter decomposition

dynamics, we need to increase our basic knowledge on litter-

ecosystem interactions in particular on the role of litter

chemistry, soil properties (Wang et al., 2019), and biodiversity

in decomposition process (Crowther et al., 2019). Moreover,

pulsed nature of precipitation and temperature events rather

than average annual values needs to be taken into the

consideration for the certain biomes (Currie et al., 2010).

Considering that the driving factors of litter decomposition

at the global scale do not necessarily reflect those at the

regional or local scale, a more representative site distribution

across the globe is needed to address knowledge gaps in

the decomposition process in future studies (Virkkala et al.,

2019). There is also a need for better N-deposition products at

high spatial and temporal resolutions to capture its variability

significant for understanding of N-deposition-decomposition

relationships.

Our study indicates that global collaborative research

with standard protocols such as the TeaComposition

initiative is a powerful approach for global synthesis.

Through the collaborative efforts, the valuable add-ons to

the ongoing TeaComposition work will be included such

as analyses of litter chemistry and soil biodiversity (e.g.,

Soil BON, Guerra et al., 2021) relevant for a comprehensive

understanding of litter decomposition under climate change and

atmospheric N pollution.
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Botanic Garden, E.G. Racovi̧tǎ Institute, Center for Systematic

Biology, Biodiversity and Bioresources - 3B, Babeş-Bolyai
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