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ABSTRACT: A growing number of organopnictogen redox catalytic methods have emerged—especially within the past ten 
years—that leverage the plentiful reversible two-electron redox chemistry within group 15. The goal of this Perspective is to 
provide the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye 
towards future development. An exposition of the fundamental differences in the atomic structure and bonding of the 
pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the 
backdrop against which organopnictogen redox reactivity—and ultimately catalysis—is framed. A deep appreciation of these 
underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and 
evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate 
this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design 
that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis? 

1. Introduction 

Chemistry is patterned by elemental properties arising 
from the quantum structure of atoms.1 As systematized in 
the periodic table, an element’s periodic position 
corresponds with approximate expectations about its 
properties. 2  Accordingly, the redox reactivity of the 
elements is usefully (even if somewhat over-simplistically) 
abstracted according to their periodic ‘block’. For elements 
in the s- and f-blocks, single oxidation states3 (+I or +II for s 
elements, 4 - 6  +III for f elements 7 , 8 ) tend to prevail; by 
contrast, numerous stable oxidation states separated by 
modest reduction potentials proliferate among the 
transition metals of the d-block. 9  Especially for the late 
transition metals of the second (4d) and third row (5d), the 
prevalence of accessible two-electron redox processes 
provides the thermodynamic and mechanistic basis10 upon 
which innumerable groundbreaking discoveries in catalytic 
synthesis are built.11-14 

The elements of the p-block—especially the ‘heavier’ 
entrants of principle quantum number n≥3—are more akin 
to their neighbors in the d-block than they are to either the 
s- or f-blocks in terms of breadth of accessible oxidation 
states. Representatively, compounds of the group 15 
elements (collectively known as the pnictogens, 15 , 16 
abbreviated Pn) express a rich redox reactivity,17-20 where 
the valence electronic ns2np3 configuration gives rise to 
compounds that span –III to +V oxidation states.21-25 

Correspondingly, discrete chemical reactions involving 
redox events at pnictogen centers have been described 
since at least the early 19th century.26 , 27  Since that time, 
many developments in the synthetic chemistry of 
organopnictogen-based two-electron redox are intimately 
connected to pioneering achievements of 20th century 
organic chemistry. Staudinger’s reduction of organic azides 

by P(III) reagents to give P(V) iminophosphoranes is a 
bedrock reaction in organic synthesis28-30 that continues to 
find new applications in catalysis 31 - 33  and chemical 
biology.34-39  Wittig’s olefin synthesis,40-42  which leverages 
the driving force PIII→PV=O, ushered in a new era in 
industrial preparation of carotenoids, such as vitamin A.43 
Further down group 15, unique aryl transfer reagents were 
introduced by Barton based on the conversion BiV→BiIII,44-46 

a forerunner to ongoing oxidative organopnictogen method 
development. In short, the impact of organopnictogen-
based redox methods on synthesis is both long and 
celebrated. 

New developments that merge elementary 
organopnictogen redox reactions into catalytic cycles 
involving formal two-electron redox cycling have been 
gathering pace, especially within the past decade. These 
developments, proceeding in parallel with ongoing 
synthetic redox method developments elsewhere in the p-
block in Groups 13,47-50 14,51,52 16,53-58 and 17,59-68 represent 
the vanguard of a new class of redox catalysts composed of 
main group elements that evoke an analogy with well-
established activation modes of the late d-block elements.69-

74 

Along with ample fundamental science motivations, the 
attractiveness of redox catalysts derived from the heavier 
group 15 elements is buoyed in a practical sense by the 
relative abundance and low cost of these pnictogens. 75 
Phosphorus is abundant both in the earth’s crust (1300 
ppm) and in the biosphere, being the only member of the 
pnictogen family other than nitrogen that is essential to life. 
While the heavier pnictogens are comparatively more 
scarce (As, 5.7 ppm; Sb, 0.75 ppm; Bi, 0.23 ppm), all are 
produced on >20,000 ton scale annually. 76  And though 
bismuth is only roughly as abundant terrestrially as 
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palladium (0.52 ppm) and platinum (0.5 ppm), it is 103–104 
times less expensive on a per kilogram basis (cf. $7.50/kg 
for Bi, ~$75000/kg for Pd, ~$33000/kg for Pt). Indeed, 
established non-redox activation modes in 
organopnictogen catalysis (i.e. Lewis acid,77-79 Lewis base,80-

82 and frustrated Lewis pair83-86 catalysis), along with the 
long history of Group 15 compounds as supporting ligands 
in organometallic chemistry,87-94 serve as a validation of the 
viability of organopnictogens as constituents of practical 
catalysts. 

In this Perspective, we wish to highlight exciting recent 
advances in the burgeoning field of organopnictogen redox 
catalysis. Our major goals are: (1) to identify the pivotal 
contributions defining the current state of the art and (2) to 
articulate future directions that are likely to define the 
forefront of research moving forward. Toward these goals, 
we first trace the fundamental periodic properties of the 
group 15 elements and then illustrate how these periodic 
trends are expressed in the diversity of reactions driven by 
group 15 redox catalysis. In this way, we hope to convey not 
only an appreciation of the new synthetic capabilities 
revealed by group 15 redox catalysis, but also a context for 
understanding of the relationships—both similarities and 
distinctions—between the congeneric elements in terms of 
their catalytic chemistry. By conceptualizing group 15 
redox catalysis in this way as a worthy catalytic modality, 
we hope that this Perspective will knit together the broad 
cross-section of synthetic inorganic and organic chemists 
active in the organopnictogen area and serve to nucleate 
new efforts in this productive and promising area of 
research. 

 

2. Periodicity and Vertical Trends in Group 15 

Given that an informed understanding of the periodic 
trends and the related structural, bonding, and electronic 
features of organopnictogens establishes the guiding 
principles for further development of this field of catalysis, 
the purpose of this section is to provide a targeted 
evaluation of key features of the elements themselves and 
organic molecules containing them that drive the redox 
catalytic reactivity endemic to each pnictogen. Interested 
readers can find further elaboration of many of these 
themes in prior monographs and reviews.95-100 

2.1 Trends in Atomic Electronic Structure. The 
importance of atomic electronic structure in chemical 
bonding and reactivity is an essential feature of molecular 
orbital theory. As expanded below, the relative importance 
of s and p valence atomic functions in organopnictogen 
bonding and molecular structure—and thus reactivity—
varies intrinsically with spatial and energetic atomic orbital 
disposition. 

2.1.1 Valence orbital size. A graph of the radial probability 
maxima for the valence s and p orbitals of the group 15 
elements is given in Figure 1A. 101  As expected for the 
increasing principal quantum number, the radial extension 
of the valence AOs increases down the group, but three 
subtleties of the periodic atomic electronic structure are 
noteworthy. First, the increase in size—though 

monotonic—is not smooth. Instead, a ‘sawtooth’ shape is 
evident, such that the van der Waals radii of P (1.80 Å) and 
As (1.85 Å) are clustered, as are Sb (2.05 Å) and Bi (2.07 Å). 
This effect has been attributed to a ‘secondary 
periodicity’ 102 , 103  arising from incomplete screening of 
nuclear charge owing to the intervention of the d- and f-
elements on period 4 (As) and 6 (Bi), respectively (i.e. the 
‘scandide’ and ‘lanthanide’ contractions). 104  Second, the 
increase in radial extension does not affect s and p orbitals 
equivalently.105 For valence 2s and 2p orbitals of nitrogen, 
the probability maximum in the radial distribution function 
is nearly identical (0.54 and 0.52 Å, respectively), but for the 
3s and 3p orbitals of phosphorus it differs by ca. 15%. The 
radial differences between ns and np are even more 
pronounced for As, Sb, and Bi. This phenomenon arises 
because the 2p orbital lacks a core shell of the same angular 
momentum (l=1) and thus does not have a radial node, 
whereas radial nodes are requisite for all p orbitals of 
higher principal quantum number (n>2) to satisfy quantum 
orthogonality. In effect, the first-filled p orbital shell exerts 
an outward effect on all higher p shells through ‘primogenic 
repulsion,’ as coined by Pyykkö. 106 , 107  Kaupp has further 
emphasized the importance of radial nodes in main group 
bonding and reactivity.108,109 Third, spin-orbit coupling and 
relativistic effects take on significant importance for 
bismuth.110-113 The 6p1/2 and 6p3/2 spinors diverge markedly 
in radial extension, and the 6s orbital experiences a 
significant contraction compared to a notional 
‘nonrelativistic bismuth.’ The importance of these orbital 
effects, especially the latter, has very profound 
consequences for the chemical and redox reactivity of 
bismuth (vide infra). 

 

Figure 1. (A) Atomic orbital radial probability function of 
Group 15 elements. (B) Valence atomic orbital 1-electron 
ionization energies of Group 15 elements. 
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2.1.2 Valence orbital ionization energies. A plot of the 
valence atomic orbital one-electron ionization energies is 
shown in Figure 1B.101 As seen especially for the heavier 
pnictogens (P–Bi), valence p orbital energy increases 
uniformly down group 15. By contrast, the s orbital 
ionization energy does not exhibit such a monotonic trend. 
Instead, the ‘sawtooth’ profile is again seen; note for 
instance that the magnitude of the one-electron binding 
energy of the As 4s orbital is slightly larger than that of the 
P 3s orbital and that the Bi 6s orbital ionization energy is 
substantially larger than that of the Sb 5s orbital. These 
effects can be traced back to the d- and f-block 
contractions,104 which is augmented in the latter case by the 
relativistic stabilization of the Bi 6s orbital and spin-orbit 
splitting of the p½ and p³⁄₂ orbital energies.114 

2.2 Trends in Molecular and Electronic Structure. 

2.2.1 Bonding and Hybridization. The interplay of AO radial 
sizes and energies has significant effects on the bonding of 
the heavier pnictogens. Kutzelnigg has explained that the 
decreased spatial overlap of the s and p orbitals down group 
15 results in less s/p mixing and a lifting of the 
orthogonality for s/p hybrid orbitals.115,116 As illustrated by 
Kaupp for the series H3Pn (Pn=P–Bi), valence s-character 
accumulates in the non-bonding lone-pair orbital down the 
group, and the Pn–H bonds tend to be made increasingly 
from essentially unhybridized p-orbitals.109 This 
‘hybridization defect’ arising from the increasingly 
disparate s and p orbital sizes generally leads to weakening 
of σ bond energies down group 15. Thus, for the series H3Pn 
(Pn=P–Bi), a consistent decrease in the Pn–H bond 
dissociation enthalpy is observed down the group (P: 81.4, 
As: 74.6, Sb: 63.3, Bi: 51.8 kcal/mol).117,118 

2.2.2 Tricoordination. Data for the triphenylpnictogen(III) 
compounds (Ph3Pn) in the Cambridge Structural 
Database 119  exemplify the periodic trend in molecular 
structure that trace the molecular-electronic structure 
nexus (Fig. 2). In accord with the trend in atomic size (Sect 
2.1.1), a sawtooth-like increase in Pn–C bond lengths in the 
PnPh3 series – PPh3 (CSD-1238522), 120  AsPh3 (CSD-
1318411), 121  SbPh3 (CSD-1318403), 122  BiPh3 (CSD-
1468789)123 – is observed, where P–C (1.93 Å) and As–C 
(1.96 Å) are shorter bond lengths than Sb–C (2.15 Å) and 
Bi–C (2.25 Å). Relatedly, the average bond angle ∠C-Pn-C 
decreases down the group: ∠C-P-C 102.7°, ∠C-As-C 100.4°, 
∠C-Sb-C 96.6°, and ∠C-Bi-C 93.7°. Two mutually reinforcing 
effects drive this trend: (1) the longer bond lengths of the 
heavier pnictogens ease steric crowding between the aryl 
substituents and thus permit narrower bond angles, and (2) 
the s/p hybridization defect leads to increasingly 
directional bonding down the group (i.e. higher p-orbital 
contribution to Pn–C bonding and greater accumulation of 
s-character in the nonbonding lone pair). The longer bond 
lengths and greater pyramidalization of the heavier 
pnictogens are common features of trigonal tricoordinate 
group 15. As a corollary, the barrier to pyramidal inversion 
of trivalent organopnictogens via the ‘umbrella coordinate’ 
increases down the group.124,125 By transit from a pyramidal 
C3v to a planar D3h geometry, the HOMO nonbonding lone 
pair (2a1) correlates with the atomic p orbital oriented 

along the rotational axis. The energetic penalty to 
planarization thus imposed, which is accentuated in the 
case of bismuth by the relativistic stabilization of the 6s 
orbital relative to the 6p set,126 has been correlated with the 
electronegativity of the central pnictogen within the context 
of a second-order Jahn-Teller effect.127  

 

Figure 2. (top) Solid-state structures for Ph3Pn (Pn = P, As, Sb, 
Bi) viewed orthonormal to one of the equivalent Cα-Pn-Cα’ 
planes. Periodic variation in bond angles and pyramidalization 
are thereby best visualized. (bottom) Tabulated structural data 
for Ph3Pn, and computed inversion barriers of PnH3. 

As will be detailed in subsequent sections, many of the 
organopnictogen compounds that exhibit catalytic redox 
properties are nontrigonal (i.e. no local threefold 
symmetry).74 The interrelation of molecular geometry and 
electronic structure of nontrigonal compounds can be 
approached by reference to the frontier correlation diagram 
in Figure 3. Descent from local C3v symmetry by progression 
along the bending (e symmetry) normal mode gives Cs-
symmetric structures. Electronically, the consequence of 
this symmetry-lowering distortion is a lifting of the 
degeneracy of the unfilled orbitals resulting in a decrease in  

 

Figure 3. Qualitative correlation diagram for frontier orbitals 
in C3v symmetry (center) upon descent to Cs symmetry (left and 
right). Orbital projections are viewed down the σ plane. 

 

the HOMO-LUMO energy gap. Computational and 
experimental validation for this electronic picture has been 
established for nontrigonal chelates of pnictogen(III) 
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triamide compounds. 128 - 131  The ability to construct 
pnictogen compounds of diverse molecular shapes by 
appropriate constraint allows for electronic structure 
tailoring with profound consequences for the future of 
catalysis in this area. 

2.2.3 Pentacoordination. In parallel to the foregoing 
discussion of tricoordinate pnictogen(III) compounds, the 
pentaphenylpnictogen(V) compounds (Ph5Pn) first 
prepared by Wittig132-134 illustrate relevant periodic trends 
for molecular compounds in pentacoordination (Fig. 4). 
Solid state structures for Ph5P (CSD-1232414)135 and Ph5As 
(CSD-1230863) 136  are well-described as trigonal 
bipyramidal (τ = 0.90 and 0.98, respectively). By contrast, 
the heavier congeners Ph5Sb (CSD-1232410)137 and Ph5Bi 
(CSD-1254431)138 crystallize as distorted square pyramidal 
structures (τ = 0.25 and 0.22, respectively). 139 , 140  These 
static structures provide snapshots spanning the Berry 
pseudorotation coordinate, 141 , 142  and spectroscopic 
evidence supports that they persist in solution. 143 
Intriguingly, whereas Ph5P, Ph5As, and Ph5Sb are all 
colorless solids, Ph5Bi is violet.144 , 145  Seppelt and Pyykkö 
have provided evidence that a ligand-to-metal charge 
transfer excitation in the visible region results from Bi-
based LUMO composed of the relativistically-stabilized 6s 
orbital. 146 , 147  Without relativistic considerations, the 
HOMO-LUMO gap is predicted to be 27% larger, such that 
“‘nonrelativistic’ pentaphenylbismuth would not be violet.” 
The connection between the observed low-energy optical 
transition and the propensity for Ph5Bi to react as an 
electrophilic aryl transfer reagent has been noted.148 

 

Figure 4. Solid-state structures and structural data of Ph5Pn.  

 

2.3 Trends in Dative and Redox Reactivity. 

2.3.1 Measures of donor reactivity. The dissociation enthalpy 
for Lewis adducts with group 13 Lewis acids provides a 
measure of donor ability of trivalent organopnictogens.149 
On the basis of gas phase experiments with AlH3, acid-base 
adduct formation is most favorable for P and least favorable 
for Bi (Fig, 5, left). These findings correlate with qualitative 
observations regarding nucleophilic reactivity; 
triphenylphosphine and triphenylarsine readily undergo 
alkylation with methyl iodide, but triphenylstibine requires 
the more reactive trimethyloxonium electrophile 
(Me3O)BF4 to undergo quaternization, while 

triphenylbismuth is not quaternized even with 
(Me3O)BF4.150,151 However, steric effects often are entangled 
with this underlying trend. Specifically, the relatively small 
atomic radii of phosphines and arsines relative to stibines 
and bismuthines give rise to a substantial repulsive 
interaction with sterically encumbered Lewis acids (iPr3Pn–
AltBu3 series, Fig. 5, right), resulting in accordingly 
diminished energetic stabilization of the Lewis adduct. In 
effect, the lighter pnictogens are more sensitive to steric 
influences than their heavier congeners.152-154 

 

Figure 5. Gas-phase Pn–Al distances and dissociation 
enthalpies (De) of Lewis adducts H3Al–PniPr3 and tBu3Al–
PniPr3. 

2.3.2 Aqueous reduction potentials. The standard electrode 
potentials for the group 15 ions in aqueous solution 
establish an important trend governing the redox reactivity 
of these elements. 155  As shown in the Frost diagram in 
Figure 6,156 phosphorus is the only element for which the 
Pn(III) and Pn(V) oxyacids are more stable than the 
elemental form. These positive oxidation states become 
increasingly unstable down the group; high valent Bi(V) is 
the least stable among Pn(V) congeners. This increasing 
preference for the lower valent 
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Figure 6. Frost oxidation state diagram for heavier pnictogens 
under acidic conditions. 

state among the heavier group 15 elements can be viewed 
as a manifestation of the ‘inert pair effect,98-100,157-159 which 
in turn may be related to the hybridization defects within 
the high-valent compounds.116 Computed Pn(V)=O bond 
energies from the reaction H3Pn + 0.5O2 → H3Pn=O series 
(MP2/DZ+d level) display a similar effect, wherein 
phosphorus forms the most stable oxide while bismuthine 
oxide is energetically uphill.160 As such, as a general rule the 
PnIII/PnV redox couples can be summarized as follow: PIII/PV 
is strongly reducing, AsIII/AsV and SbIII/SbV are mildly 
oxidizing, and BiIII/BiV is strongly oxidizing. 

2.3.3 Thermodynamics of reductive elimination from 5-
coordinate pnictoranes. Similarly to the relative stabilities of 
the pnictide oxides described above, evaluation of the 
relative thermodynamic stabilities PnX5 compounds with 
respect to PnX3 illuminates a periodic trend (Fig. 7). Among 
the PnF5 congeners, BiF5, which is known to fluorinate 
hydrocarbons,161,162 is at least 45 kcal/mol less stable than 
the lighter congeners,163,164 such as the stable, Lewis acidic 
PF5. Similarly, the PnH5 series 165  displays an irregular 
thermodynamic trend for the liberation of H2 and PnH3, in 
which decomposition of BiH5 is at least 20 kcal/mol more 
favorable than any of the lighter congeners, owing again to 
the substantially more oxidizing nature of Bi(V). As will be 
shown, these general characterizations manifest in 
markedly differing reactivity of organopnictogens, and thus 
provide a framework for appreciating the divergences in 
application in redox catalysis. 

 

Figure 7. Gas-phase energies (kcal/mol) for the reactions 
PnF5→PnF3 + F2 and PnH5→PnH3 + H2. 

The foregoing atomic properties and molecular reactivity 
trends are the fundamental backdrop against which the 
varied organopnictogen reactivity described in this 
Perspective is brought into relief. As described below, these 
periodic trends govern much of the divergent structure, 
bonding, and electronic nature of the recently uncovered 
examples of organopnictogen redox catalysis.  

 

3. State-of-the-Art Developments in Organopnictogen 
Redox Catalysis 

Although an initial report can be traced to 1981, 166  the 
overwhelming majority of demonstrations in the field of 
organopnictogen redox catalysis have come in the past 
decade. In this section, the key developments will be 
discussed, organized first by pnictogen element and then by 
reaction type. The purpose of this section is to develop a 
systematic perspective on the state of the field, with an eye 
toward understanding prevailing themes and, accordingly, 
gaps in current knowledge which might present avenues for 
further research. 

3.1. Organophosphorus Redox Catalysis. As described in 
the preceding section, the redox chemistry of 
organophosphorus molecules is primarily driven by the 
reducing nature of the P(III) state and the relative stability 
of the P(V) oxidation state, especially those compounds 
possessing P(V)=O moieties.167-169 As such, the oxidation of 
P(III) compounds to stable P(V) species can be 
accomplished with a variety of oxidants of even modest 
oxidizing power.170-177 Conversely, the reduction of P(V) to 
P(III) is often contrathermodynamic, thus requiring 
relatively forcing conditions or bespoke molecular 
design; 178 - 182  this presents the primary challenge in 
achieving organophosphorus redox cycling. 

In practice, the relatively strong P(V)=O bond typically 
requires strong reductants 183  such as metal hydrides to 
generate the P(III) species via the intermediacy of a 
hydridophosphorane.184 However, the barrier to reduction 
is lower for constrained cyclic phosphine oxides relative to 
unstrained cyclic185 or acyclic186,187 congeners, providing a 
rationale for catalyst design operating in the PIII/PV=O 
couple. Reductive ligand coupling represents another 
available avenue for the reduction of P(V) species, as 
described in a seminal report by Mann in 1948188-192 and 
modernized into a programmable process by McNally.193-195 
Nevertheless, the poor driving force inherent to P(V) to 
P(III) reduction presents the key challenge in achieving self-
contained organophosphorus redox cycling. 
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3.1.1 Catalytic Wittig Reaction. The Wittig reaction is a 
cornerstone of organophosphorus chemistry, and efforts to 
render it catalytic in phosphine require a strategy for mild 
and swift reduction of the phosphine oxide byproduct to 
enable PIII/PV redox cycling. The past 12 years have seen the 
successful application of novel organophosphorus 
molecules to achieve such a feat. 196 - 199  In 2009, O’Brien 
reported the first example of organophosphorus redox 
catalysis using a five-membered phospholane oxide (3-
methyl-1-phenylphospholane 1-oxide) P1•[O] operating in 
the PIII/PV=O couple in the context of a Wittig reaction (Fig. 
8A). 200  This strategy uses a mild hydrosilane reductant, 
Ph2SiH2, to reduce the phospholane oxide precatalyst to the 
active P(III) species, which can then undergo 
quaternization, deprotonation, and Wittig reaction to 
obtain the desired product olefin and regenerate the 
phospholane oxide pre-catalyst. In 2013, O’Brien 
significantly lowered the reaction temperature for catalytic 
Wittig reactions to ambient temperature via the use of a 
Bronsted acidic additive, 4-nitrobenzoic acid, which 
enhances the rate of reduction of phosphine oxide P2•[O] 
(Fig. 8B).201 O’Brien further developed a series of electron-
deficient phospholane oxide precatalysts, including P3•[O], 
to enable the use of non-stabilized ylides in the catalytic 
Wittig reaction (Fig. 8C).202 

Other organophosphorus catalyst scaffolds have proven 
adept at achieving catalytic Wittig reactions. In 2019, 
Werner demonstrated the utility of phosphetane203  oxide 
P4•[O] 204  to enable catalytic Wittig reaction at 1 mol% 
catalyst loading at ambient temperature in the absence of 
any acidic additive (Fig. 9). 205  Simple phosphine oxide 
precatalysts, such as Ph3PO, Oct3PO, or Bu3PO, have been 
explored for catalytic Wittig reactions, but to this point have 
required the assistance of microwave heating or Bronsted 
acid additive at high temperature.206,207 

In 2014, Werner demonstrated the first enantioselective 
catalytic Wittig reaction operating in a PIII/PV=O couple, 
highlighting some challenges in realizing such a method 
(Fig. 10). In this work, a variety of chiral phosphine catalysts 
are applied for desymmetrization of prochiral haloketone 
11 to give enantioenriched diketone 12. The most 
promising result utilizes (S,S)-Me-DuPhos (P5), a C2-
symmetric bisphospholane, 208  with phenylsilane as the 
terminal reductant in dioxane via microwave heating at 150 
°C, which gives 39% yield and 62% ee.209,210 

The formation of the phosphorus ylide can also be achieved 
in the absence of base through conjugate addition to 
activated olefins and proton transfer, as exemplified by 
Werner and Lin (acrylates),211-214 Vouturiez (ynoates),215,216 
Kwon (allenes),217 and Lin (enones)218 using a selection of 

 

Figure 8. Phospholane-catalyzed Wittig reaction with (A) 
stabilized ylides and mechanism, (B) stabilized ylides at 
ambient temperature through inclusion of Brønsted acid 
additive, and (C) unstabilized ylides through development of 
electron-deficient phospholane catalyst. 

 

Figure 9. Phosphetane-catalyzed Wittig reaction with 
stabilized ylides at ambient temperature. 

Figure 10. Chiral phospholane-catalyzed asymmetric Wittig 
cyclization. 

catalysts previously described (Fig. 11A). Of particular note 
is an enantioselective variant enabling the synthesis of 
(trifluoromethyl)cyclobutenes (Fig. 11B) 219  developed by 
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Voituriez in 2018 with Kwon’s bicyclic chiral phosphine 
oxide HypPhos P7•[O]. 

 

Figure 11. A) Catalytic Wittig reactions from unsaturated ylide 
precursors. B) Asymmetric organophosphorus-catalyzed 
(trifluoromethyl)cyclobutene formation via a conjugate 
addition/Wittig olefination reaction.  

3.1.2 Catalytic Staudinger Reactions and Aza-Wittig. In 2012, 
van Delft and Rutjes reported the first catalytic Staudinger 
reaction with a dibenzophosphole catalyst P10 and PhSiH3 
as reductant (Fig. 12A).220 In contrast to iminophosphorane 
hydrolysis employed in the stoichiometric reaction, the 
catalytic reaction involves direct reduction of the P(V) 
iminophosphorane with PhSiH3 for the formation of the 
amine product and regeneration of the phosphine 
catalyst.221  PPh3 (P11) could also be used in place of the 
dibenzophosphole under identical conditions, albeit with 
significantly prolonged reaction times. Mecinović later 
demonstrated an ambient temperature protocol by 
employing an optimized hydrosilane reductant. 222 
Catalytically formed iminophosphoranes from PPh3 (P11) 
can also be used for Staudinger amidation reactions (Fig. 
12B),223 although the precise mechanism of the redox cycle 
is unclear.224-226 

 

 

Figure 12. A) Dibenzophosphole-catalyzed Staudinger 
reduction. B) PPh3-catalyzed Staudinger ligation. 

Other applications of iminophosphorane intermediates in 
the context of PIII/PV=O cycling include catalytic aza-
Wittig 227 - 230  and diaza-Wittig reactions (Fig. 13A). 231  In 
2018, Kwon demonstrated the first catalytic asymmetric 
Staudinger-aza-Wittig reaction 232 , 233  with high levels of 
stereoinduction via desymmetrization of diketones using 
HypPhos catalyst P12 with the assistance of a Brønsted acid 
additive (Fig. 13B).234 

 

Figure 13. A) Catalytic aza-Wittig reactions using 
benzo[b]phosphindole. B) Catalytic enantioselective aza-Wittig 
synthesis of chiral heterocycles catalyzed by HypPhos. Bz = 
benzoyl; Cy = cyclohexyl; Ts = tosyl. 

3.1.3 Catalytic Appel and Mitsunobu Reactions. 
Organophosphorus catalyzed oxidation-reduction 
condensation reactions, 235 , 236  such as the Appel and 
Mitsunobu reactions, face challenges of reagent 
compatibility (between halenium/azo oxidant and 
hydrosilane reductant) and product stability. In 2011, 
Rutjes and van Delft achieved a PIII/PV=O catalyzed Appel 
bromination (Fig. 14A).185 In this transformation, diethyl 
bromomalonate (DEBM) is an ideal bromenium donor, 
showing good compatibility with hydrosilane reductants. 
Further, the dibenzophosphole catalyst P10 is exclusively 
reactive toward the bromenium source, thus selectively 
generating the electrophilic bromophosponium ion, but 
unreactive towards the brominated products. 237 , 238 
Recently, Werner further extended the scope to 
chlorination of alcohols with benzotrichloride as oxidant 
and trioctylphosphine (P13) as the catalyst (Fig. 14B).239 
Catalytic Appel conditions with PPh3 (P11) can also be used 
to drive amide couplings between carboxylic acids and 
amines, as demonstrated by Mecinović in 2014 (Fig. 14C).240 
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Alternatively, Denton has extensively developed redox-
neutral PV-mediated dehydrative halogenation reactions 
using Ph3PO as catalyst with oxalyl chloride as dehydrative 
reagent to enable phosphine oxide/phosphonium 
cycling.241-248 

 

Figure 14. Organophosphorus-catalyzed Appel A) 
bromination, B) chlorination, and C) amidation. Bn = benzyl. 

 

Recently, an annulation of amines and carboxylic acids was 
described via organophosphorus-driven recursive 
dehydration using phosphetane catalyst P4•[O], DEBM, and 
PhSiH3 or Ph2SiH2 (Fig. 15). 249  In this tandem catalytic 
reaction, the catalytically-generated bromophosphonium 
first induces amide coupling and then cyclodehydration in a 
second catalytic turnover. To facilitate the coupling of alkyl 
amines, fully-substituted diethyl (methyl)bromomalonate 
(DEMBM) is required to suppress N-alkylation. These 
conditions enable the coupling of pharmaceuticals, such as 
ibuprofen, without racemization at adjacent stereocenters, 
as well as the synthesis of dihydroisoquinoline natural 
products such as dihydropapaverine. Interestingly, the use 
of diethyl chloromalonate as the oxidant, and thus a 
chlorophosphonium intermediate as the dehydrating 
species, results in only amide bond formation. 

 

Figure 15. Phosphetane-catalyzed tandem annulation of 
amines and carboxylic acids by sequential C–N and C–C bond 
formation. p-tol = para-tolyl; iBu = iso-butyl. 

In 2010, O’Brien again successfully applied precatalyst 
P1•[O] in a catalytic Mitsunobu-type reaction (Fig. 16).250 

Later, Aldrich disclosed some initial efforts into recycling 
both phosphine oxide and the azocarboxylate reagent, by an 
iron-phthalocyanine catalyzed process in the presence of 
oxygen. 251   However, a detailed study from Taniguchi 
reported difficulty in reproducing both yield and 
enantiomeric ratio for some examples, as well as successful 
product formation in the absence of hydrazine catalyst. 
These results indicate this reaction might not undergo a 
true Mitsunobu process, and further study appears to be 
necessary.252,253 Recently, Denton has used creative catalyst 
design to enable redox-neutral PV-based catalysis operating 
in a phosphine oxide/phosphonium cycle to achieve a 
highly successful catalytic Mitsunobu reaction.254 

Figure 16. Phospholane-catalyzed Mitsunobu-type reaction. 

3.1.4 Catalytic Reductive O-Atom Transfer. Owing to the 
strongly reducing nature of trivalent P(III) compounds, 
phosphines are excellent O-atom acceptors from a variety 
of oxygenated substrates. In 2010, Woerpel described the 
first PIII/PV=O catalyzed reductive O-atom transfer by 
selective reduction of alkyl silyl peroxides to silyl ether 
products.255 The overall reaction is initiated by concerted 
insertion of triphenylphosphine into the O–O bond. 
Labeling and crossover studies demonstrate that a 
concerted elimination/silyl transfer step is operative in 
generating the silyl ether products and a phosphine oxide, 
which could in turn be selectively reduced by a titanium(III) 
hydride generated in situ. 

To expand PIII/PV=O catalyzed O-atom transfer to less-
oxidizing oxygenated substrates, the catalytic chemistry of 
a biphilic 256  phosphetane catalyst scaffold has been 
developed. In 2015, a phosphetane-catalyzed 
deoxygenative condensation reaction of α-keto esters and 
carboxylic acids via formal carbene insertion into the protic 
O–H bond of the acid was described (Fig. 17). 257  The 
reaction initiates by Kukhtin-Ramirez addition 258  of the 
P(III) phosphetane P14 to the keto ester substrate 48. 
Proton transfer from the benzoic acid followed by Arbuzov-
like 259  displacement of phosphine oxide P14•[O] from 
intermediate P14b results in formation of α-acyloxy ester 
product 50. The catalytic cycle is closed by reduction of 
phosphetane oxide P14•[O] to P14 by the hydrosilane 
reductant. 
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Figure 17. PIII/PV=O catalyzed deoxygenative condensation of 
α-keto esters with carboxylic acids. 

The phosphetane scaffold is also effective for engaging nitro 
groups in O-atom transfer. Building on seminal 
stoichiometric work by Cadogan,260-263 in 2017 a catalytic 
synthesis of indazoles and benzotriazoles from nitroimine 
and -azo starting materials, respectively, using P4•[O] as 
precatalyst under comparatively mild conditions was 
described (Fig. 18).264 

 

Figure 18. Biphilic phosphetane-catalyzed N−N bond-forming 
Cadogan heterocyclization via PIII/PV=O redox cycling. 

In this transformation, DFT models implicate a [3+1] 
cycloaddition of P(III) species to the nitro group as the 
turnover-limiting step. In accord with empirical 
observations, the barrier to this step with a phosphetane is 
significantly lower in energy than with an acyclic 
trialkylphosphine. Distortion-interaction analysis265 of the 
relevant transition structures (Fig. 19) shows that the 
differential barrier arises from an enhanced stabilizing 
interaction energy for the phosphetane rather than a 
diminished distortion penalty.266-269 In effect, the contracted 
endocyclic C-P-C bond angle results in a low-lying LUMO, 
thus imbuing the phosphorus center with increased biphilic 
character relative to acyclic and larger phosphacyclic 

compounds. For comparison, a similar catalytic Cadogan 
transformation described by Nazaré using a larger-ring 
phospholene oxide precatalyst requires higher catalyst 
loadings and significantly longer reaction times.270 

Figure 19. Transition structures and distortion/interaction 
analyses for (3+1) transition states (M06-2X/6-311++g(d,p)): 
(A) phosphetane TS and (B) Me3P TS. Phosphine distortion 
energy (ΔEdP⧧) in green, nitromethane distortion energy 
(ΔEdN⧧) in blue, fragment interaction energy (ΔEi⧧) in red, 
activation energy (ΔE⧧) in black. All energies in kcal/mol 
without zero-point correction. 

 

Figure 20. Biphilic organophosphorus-catalyzed 
intramolecular Csp2-H amination and identification of 
oxazaphosphirane intermediate. 

 This approach to catalytic nitro deoxygenation has been 
similarly applied to C–N bond-forming reactions for the 
synthesis of carbazoles and indoles, as shown in Figure 
20. 271  Here, oxazaphosphirane intermediate 55 was 
observed at low temperature as the immediate precursor to 
carbazole formation. DFT calculations suggest an 
oxazaphosphirane as the pivotal intermediate, which 
thermally dissociates phosphine oxide P4•[O] to reveal a 
free nitrene capable of evolving to the carbazole product via 
C–H amination.272 
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Given that such an oxazaphosphirane intermediate might 
be targeted to further reaction development via heterolytic 
ring opening with a Lewis acid, introduction of an 
arylboronic acid partner to the PIII/PV=O catalyzed nitro 
deoxygenation manifold resulted in a new reductive C–N 
cross coupling of nitroarenes and boronic acids (Fig. 21).273 
The scope was subsequently expanded to allow the 
reductive coupling of nitromethane with both boronic acids 
and esters, providing an efficient strategy for installation of 
the MeHN− fragment with inexpensive and easy-to-handle 
nitromethane as the methylamine surrogate.274 By virtue of 
the nonmetal main group-catalyzed conditions for this C–N 
coupling, useful chemoselectivities are observed, 
establishing the method as a complement to existing 
transition metal-catalyzed techniques. Mechanistic 
investigations support a pathway involving formation of the 
oxazaphosphirane 

Figure 21. PIII/PV═O catalyzed intermolecular reductive C–N 
cross coupling of nitroarenes and boronic acids. Boc = tert-
butyloxycarbonyl. 

intermediate P4b, followed by engagement with the 
boronic acid 57 to make betaine P4c, leading to product 
formation via 1,2-metallate shift. This pathway is predicted 
to outcompete evolution of the oxazaphosphirane to a free 
nitrene 60, accounting for the excellent selectivity for 
intermolecular cross-coupling. 275 , 276  The C–N coupling 

event can be telescoped with subsequent ring closing events 
to allow for the synthesis of N-aryl heterocycles (58) by a 
cross-coupling/condensation cascade, as depicted in Figure 
22.277 

 

Figure 22. PIII/PV=O-catalyzed cascade synthesis of N-
functionalized azaheterocycles. 

Phosphetane oxide P4•[O] also efficiently catalyzes 
deoxygenative processing of sulfonyl chlorides (including 
trifluoromethyl- and heteroarylsulfonyl derivatives) by O-
atom transfer (Fig. 23).278 This approach has been applied 
to an electrophilic sulfenylation of indoles via fleeting 
sulfenyl(ium) electrophilic equivalents. 

 

Figure 23. Phosphetane-catalyzed (fluoroalkyl)sulfenylation 
via deoxygenation of sulfonyl chlorides. Pin = pinacol. 

 

3.1.5 Catalytic Hydride and Hydrogen Transfer. 
Phosphetane-based catalysts have also been shown to drive 
regioselective transpositive reduction of allylic bromides 
through the intermediacy of P(V) hydrides (Fig. 24).279 The 
reaction benefits from the colocalized donor and acceptor 
properties of the phosphetane to achieve the necessary 
changes in both oxidation state and coordination number. 
Specifically, the reaction starts with quaternization of 
phosphetane P15 by the allylic bromide. In the presence of 
the stoichiometric reductant LiAlH(O-tBu)3, hydride is 
delivered directly to the phosphorus center of allylic 
phosphonium cation P15a to give a hydridophosphorane 
P15b that is observable by low temperature 31P NMR 
spectroscopy. VT-NMR kinetics experiments and DFT 
calculations indicate that decomposition of 
pentacoordinate hydridophosphorane P15b to the 
reduction products occurs regiospecifically via a concerted 
5-membered, 6-electron transition state (P15c). This 
pericylic γ-reductive elimination illustrates the unique 
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merger of conventional organic and organometallic 
reactivities in catalytic chemistry of the p-block compounds. 

 

Figure 24. Organophosphorus-catalyzed regioselective 
reductive transposition of allylic bromides. 

 

In a conceptually complementary hydride transfer reaction, 
an unusual transfer hydrogenation of azobenzene with 
ammonia borane catalyzed by PIII/PV cycling was developed 
(Fig. 25). In this work, planar compound P16, introduced by 
Arduengo, 280 - 282  reacts with H3N•BH3 to give 
dihydridophosphorane P16a. 283  Dihydride P16a in turn 
serves as a reactive hydrogen donor, transferring an H2 
equivalent to a variety of electrophilic organic acceptors. 
The combined reactivities of P16 as hydrogen acceptor 
from ammonia-borane and P16a as hydrogen donor to an 
organic substrate permit the use of this phosphorus 
platform as a catalyst for transfer hydrogenation. Although 
alternative pathways have been suggested via DFT 
studies,284-286 experimental mechanistic investigations lead 
to the assertion that hydrogen transfer catalysis in this case 
involves P16⇌P16a cycling. These results establish 
precedent for ‘dihydride’ transfer hydrogenation with a p-
block catalyst. 

 

 

Figure 25. PIII/PV-catalyzed transfer hydrogenation of 
azobenzene. 

3.2 Organoarsenic Redox Catalysis. The redox reactivity 
of organoarsenic compounds is similar, albeit less well 
developed, when compared to organophosphorus 
congeners, as might be expected by the similar valence 
orbital IEs of P and As (see Fig. 2B). For instance, As(III) 
molecules similarly undergo oxidation to As(V) with mild 
oxidants,287,288 and arsonium ylides can be generated from 
arsonium salts 289 , 290  or carbene transfer 291 , 292  for use in 
Wittig-type olefination reactions. In contrast, the As(V) 
oxidation state is less thermodynamically stable than P(V) 
(see Fig. 6), such that pentacoordinate arsoranes are known 
to undergo reductive elimination via ligand coupling, 293 and 
O-atom transfer of R3As=O + PR3 → R3As + O=PR3 is both 
kinetically and thermodynamically accessible.294,295 

3.2.1 Catalytic Wittig Reactions. Taking advantage of the 
favorable deoxygenation of arsine oxides by P(III) reagents, 
the first report of organoarsenic redox catalysis was 
published in 1989 by Shi and Huang who described a 
tributylarsine-catalyzed Wittig olefination of aldehydes 
with activated bromoalkanes (Fig. 26). 296 
Triphenylphosphite, itself not competent to drive the direct 
olefination reaction, serves as a terminal O-atom acceptor 
by deoxygenation of the arsine oxide formed by Wittig 
olefination. Recently, Imoto and Naka have demonstrated 
the ability of an arsolane to efficiently catalyze similar 
transformations by AsIII/AsV=O cycling with a hydrosilane 
reductant at 100 °C.297  

A second approach to arsine-catalyzed Wittig reactions 
involves Fe-porphyrin-catalyzed carbenoid transfer to 
generate the requisite arsenic ylide, as demonstrated by 
Tang (Fig. 27). 298 , 299  In an initial report from 2007, 
triphenylarsine (As2) catalyzes the olefination of aldehydes 
with ethyl diazoacetate in the presence of an Fe-porphyrin 
catalyst, where sodium dithionite is the terminal reductant 
enabling turnover at As. In a follow-up 
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Figure 26. Organoarsine-catalyzed Wittig reaction employing 
triphenylphosphite as stoichiometric O-atom acceptor. 

study in 2012, the arsine catalyst is immobilized on a 
polymer support to enable olefination of aldehydes and 
ketones with use of a soluble hydrosilane reductant, PMHS, 
at 110 °C to enable redox cycling of the arsine catalyst. 
Taken together, these reports demonstrate the utility of 
organoarsenic compounds in the catalytic generation of 
arsonium ylides for olefination and the propensity for 
reduction of the catalytic arsine oxides intermediates. 
However, concerns about toxicity and stability of the 
organoarsenic compounds have limited the utility of such 
transformations, especially as new strategies for facile 
turnover of phosphine oxides have emerged (see Sect 3.1.1). 
It remains to be seen whether there are any 
transformations unique to organoarsenic redox catalysis 
that would overcome the perceived barriers to use of As in 
synthesis. 

Figure 27. Organoarsine-catalyzed Wittig-type olefination of 
aldehydes with diazo compounds, with Fe-porphyrin co-
catalyst to facilitate carbene transfer. TCP = tetra(para-
chlorophenyl)porphyrinate. 

 

3.3 Organoantimony Redox Catalysis. As compared to 
both P and As, the chemistry of organoantimony 
compounds is distinguished by the less reducing nature of 
the Sb(III) oxidation state and more oxidizing nature of the 
Sb(V) oxidation state. 300  As such, whereas oxidation of 
Sb(III) species can be accomplished by reaction with strong 
oxidants such as bromine, peroxides, o-quinones, and 
iodoso compounds, stibines do not typically undergo 
quaternization with alkyl halides or Michael acceptors.301 

Conversely, the lower stability of the Sb(V) compounds 
results in enhanced oxidizing power in relation to the 
lighter pnictogens, as depicted in Fig. 9. Consequently, 
oxidative transformations of substrates, such as alcohol 
oxidation, have been described using Sb(V) compounds.302 
These stoichiometric reactions have been translated to a 
limited set of organoantimony-catalyzed methods.  

3.3.1 Catalytic Oxidation Reactions. Organoantimony redox 
catalysis is characterized by a conspicuous opportunity for 
further development. At present, only two publications 
have appeared in this area, each of which describes an 
identical overall transformation under slightly modified 
conditions, depicted in Figure 28. In 1982, Akiba translated 
a stoichiometric triphenylantimony dibromide-mediated 
oxidation of α-hydroxyketones to α-diketones into a 
catalytic protocol, employing as little as 10 mol% of the 
Sb(V) catalyst. 303  Upon single turnover, the resultant 
reducing Ph3Sb (Sb2) can be oxidized by the exogenous 
bromine surrogate 2,3-dibromo-3-phenylpropionate to 
regenerate the oxidizing Sb(V) dibromide (Sb1), turning 
over the cycle. 20 years later, Kurita described a more 
practical implementation, in which 10 mol% 
triphenylstibine (Sb2) is used directly as catalyst under 
aerobic oxidation conditions to effect the same 
transformation in nearly quantitative yield.304 

 

 

Figure 28. Benzoin oxidation via organoantimony redox 
catalysis. 

In contrast to this mild, efficient reaction with SbPh3, the use 
of stoichiometric PPh3 or BiPh3 both provide no benzil 
product (81), owing to chemical inertness of the P(V) and 
Bi(III) states, respectively. In fact, this catalytic oxidation 
represents the microscopic reverse of well-established 
P(III)-mediated 1,2-dicarbonyl reduction by Kukhtin-
Ramirez addition.305-308 Further, reaction employing AsPh3 
(As2) under air is sluggish and poorly efficient, 
demonstrating the varied reactivity of congeneric 
organopnictogens, which are each best suited to particular 
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applications. However, this approach to catalytic alcohol 
oxidation via organoantimony catalysis has never been 
extended beyond these activated α-hydroxyketones. 

3.4. Organobismuth Redox Catalysis. The redox 
chemistry of the BiIII/BiV couple is dominated by the 
manifestation of the inert pair effect.98-100,157,158 Owing to the 
poor spatial and energetic overlap of Bi valence s and p 
orbitals,108-109,115-116 with drastic relativistic effects of the 
heavy atom nucleus, only very strong oxidants can convert 
a Bi(III) center to Bi(V); accordingly BiCl3 does not yield 
BiCl5 upon exposure to chlorine.309 However, Bi(V) species, 
such as Ph3Bi(OAc)2, are accessible through oxidation with 
peroxides, for example, and have been used extensively as 
strong oxidants, such as in alcohol oxidation, olefin 
oxidation, and oxidative cleavage of diols.310,311 Further, the 
strongly oxidizing nature of Bi(V) centers has resulted in 
the development of ligand coupling reactions utilizing 
triaryl Bi(V) reagents, e.g. in the arylation of phenols.44-46 
Recently, these principles have been applied by Ball to 
programmed, stoichiometric o-arylation of phenols by 
arylboronic acids via the intermediacy of triaryl Bi(V) 
species.312 

The BiI/BiIII couple has been much less studied in the 
context of organopnictogen chemistry, as only recently have 
discrete redox events in this manifold been explored. Of 
particular note is the seminal work of Dostál, who has 
demonstrated that Lewis base-stabilized aryl-Bi(III) 
dihydrides undergo facile release of H2 to generate the 
corresponding aryl-Bi(I) compounds,313,314 which are then 
amenable to oxidative addition to deliver Bi(III) species.315-

317 Bismuth(III) alkoxides also undergo Bi–O homolysis in 
certain cases,318-319 a potentially relevant step in the SOHIO 
ammoxidation process for the synthesis of acrylonitrile 
from propylene.320 - 322  These rare examples represent the 
early stages of accessing low-valent organobismuth centers 
to enable redox events and have begun to find application 
in catalysis. 

3.4.1 Catalytic Oxidation Reactions. Much of the pioneering 
synthetic method development using organobismuth 
molecules can be attributed to Barton and coworkers. 
Indeed, the very first demonstration of any 
organopnictogen exhibiting redox catalysis was reported by 
Barton and Motherwell in 1981 (Fig. 29),166 in which 
triphenylbismuth (Bi1) catalyzes oxidative cleavage of α-
glycols using a stoichiometric oxidant such as tert-butyl 
hydrogen peroxide (TBHP) or N-bromosuccinimide (NBS). 
This discovery was predicated upon the observation that, in 
the stoichiometric variant using triphenylbismuth 
carbonate as the oxidant, quantitative conversion to 
triphenylbismuth (Bi1) is observed. As such, simply by slow 
addition of an exogenous oxidant to regenerate a Bi(V) 
species, catalytic turnover can be achieved with catalyst 
loadings as low as 1%. Similar reactivity of both cis- and 
trans-decalin-9,10-diols suggests an open intermediate 
enabling the oxidative cleavage, as opposed to a cyclic 
intermediate as has been invoked for Criegee, Malaprade, 
and related oxidations.323  Here, it is relevant to note the 
difference in reactivity as exhibited in the SbPh3-catalyzed 

oxidation of benzoins as described in section 3.3.1, which is 
limited to more activated substrates.304 

Figure 29. BiPh3-catalyzed α-glycol cleavage via Bi(V) 
oxidation. NBS = N-bromosuccinimide. 

Postel and Duñach later described a series of oxidative 
cleavage reactions catalyzed by Bi(III) mandelate, under 
molecular oxygen in DMSO. 324 , 325  Here, epoxides can be 
oxidized in situ to α-diketones, which are further oxidatively 
converted to two equivalents of carboxylic acid. Related 
reactions point to a dual Lewis acidic and redox role for 
Bi(III) in these reactions. 326 - 329  Other Bi(III)-catalyzed 
oxidation reactions, including benzylic and allylic 
hydroxylation with TBHP, have been reported; however, 
mechanistic evidence is not supportive of a Bi-redox 
cycle.330-332 

3.4.2 One-electron redox via open shell intermediates. The 
first demonstration of radical-mediated organobismuth 
catalytic reactivity was described by Coles in the context of 
oxidative coupling of TEMPO with phenylsilane with release 
of H2 (Fig. 30).333 In this reaction, the isolable Bi(II) radical 
catalyst Bi2 can reversibly bond to TEMPO (85) to generate 
metastable Bi(III)-TEMPOxide Bi2a, which is proposed to 
undergo metathesis with a Si–H bond, generating the 
TEMPO–Si bonded product and Bi(III)-hydride Bi2b. This 
species was previously shown stoichiometrically to 
undergo oxidative loss of hydrogen, thus regenerating 
Bi(III) catalyst Bi2.318,319 Similar catalytic reactivity was 
recently demonstrated by Lichtenberg using a 
diaryl(bismuth)thiolate catalyst under UV irradiation.334 

 

Figure 30. BiII/BiIII-catalyzed dehydrogenative O–Si bond 
formation. Dipp = 2,6-di-iso-propylphenyl. 
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3.4.2 Catalytic Cross-Coupling. While Bi(III) and Bi(V) 
reagents have been used as organometallic nucleophiles 
and electrophiles, respectively, in transition metal-
catalyzed cross couplings for more than 20 years, 335  Bi-
catalyzed redox cross-coupling reactions have only recently 
been reported. A transition metal-like cross-coupling 
reaction catalyzed by two electron-processes at a Bi center 
was described by Cornella in 2020 (Fig. 31).336 In this work, 
tethered Lewis base-supported Bi(III)-bismuthane catalyst 
Bi3 undergoes transmetalation with an aryl boronic ester 
to generate triarylbismuthane Bi3a. Then, oxidation by 
strongly oxidizing fluoropyridinium reagent 91 yields Bi(V) 
species Bi3b, which is stabilized by the pendant Lewis basic 
sulfoximine. Finally, reductive elimination forges the new 
C–F bond of product 88 and regenerate Bi(III) species Bi3, 
turning over the cycle. This chemistry takes advantage of a 
tethered biaryl sulfoximine ligand framework on Bi to both 
stabilize highly oxidizing Bi(V) intermediates with the 
pendant Lewis base and yield selective ligand coupling of 
the exocyclic aryl ligand with the apical fluoride substituent. 
As described in a follow-up report, perfluoroalkyl sulfonate 
salts are successfully coupled using bis-CF3 bismuthane Bi4 
bearing a sulfone tether to provide aryl triflate and 
nonaflate products. 337  In this catalytic platform, rational 
ligand design to optimize geometric and electronic 
properties at the central pnictogen atom serve to unveil 
novel, transition metal-like reactivity. 

 

Figure 31. Bi-catalyzed fluorination and triflation of aryl 
boronic esters and acids, respectively. Proposed mechanism of 
fluorination. Tf = triflyl. 

3.4.3 Catalytic Reductive Deoxygenation. Cornella has also 
explored the BiI/BiIII couple for catalysis in the context of 
transfer hydrogenation of azoarenes and nitroarenes (Fig. 
32).338  Using an NCN-chelated bismuthinidene (Bi5) first 
described by Dostál,313,314 an unstable Bi(III)-dihydride 
(Bi5a) is putatively formed by reaction with ammonia 
borane, in reverse analogy to the loss of H2 from a Bi(III)-

dihydride (Bi5a) originally described by Dostál. In this 
catalytic reaction, the putative Bi(III)-dihydride (Bi5a) 
intermediate delivers H2 across either N–N or N–O π-bonds, 
accomplishing a transfer hydrogenation with good 
functional group tolerance. Mechanistic studies support the 
intermediacy of the Bi(III)-dihydride (Bi5a), as its 
protonated cation (Bi5b) can be detected by HRMS in both 
stoichiometric and catalytic reactions. Here, the BiI/BiIII 
cycle is exploited to first receive an equivalent of H2 from 
ammonia borane and then deliver it to an activated π 
substrate, similarly to earlier work carried out in the PIII/PV 
couple.283 This reaction is the first demonstration of 
organopnictogen catalysis operating in the PnI/PnIII couple, 
thus paving the way for low-valent organopnictogen 
chemistry in catalysis. 

 

Figure 32. Bismuthinidene-catalyzed transfer hydrogenation 
of azoarenes and nitroarenes to hydrazines and 
hydroxylamines, respectively, with ammonia borane. 

 Cornella further demonstrated the catalytic utility of the 
BiI/BiIII couple of bismuthinidenes such as Bi5-Bi7 for the 
reductive deoxygenation of N2O, through a distinct 
mechanistic pathway (Fig. 33). 339  In this study, rapid 
deoxygenation of N2O by Bi5 liberates N2 and produces a 
dimeric [Bi2O2] species as detected by ESI-HRMS. Through 
careful tuning of the pendant imine ligands, aldimine-
supported Bi6 and ketimine-supported Bi7 yield dimeric 
[Bi2O2] and monomeric [Bi–OH] scaffolds, 
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Figure 33. Bismuthinidene-catalyzed reductive deoxygenation 
of N2O via the intermediacy of Bi(III)-oxide equivalents with 
pinacolborane. m-Tp = meta-terphenyl. 

respectively, upon exposure to N2O, with the structures 
unambiguously identified by single crystal X-ray 
crystallography. These results seemingly indicate an 
unstable, basic BiIII-oxide intermediate derived from O-
atom transfer from N2O. Both aforementioned oxide-
derived adducts yield parent compounds Bi6 and Bi7, along 
with HOBpin and O(Bpin)2, upon exposure to HBpin at 
ambient temperature. Accordingly, catalytic reduction of 
N2O is feasible using Bi5, Bi6, and Bi7, with Bi5 delivering 
the most rapid and efficient conversion, even at catalyst 
loadings as low as 0.1 mol%. This demonstration of BiI/BiIII 
catalysis combines the reducing nature of the Bi(I) state 
with a facile reduction of a Bi(III) oxide equivalent to enable 
redox cycling at ambient temperature, evocative of the body 
of work in PIII/PV=O redox catalysis. 

 

4. OUTLOOK  

The quickening pace of progress in organopnictogen redox 
catalysis within the past fifteen years assures the continued 
vibrancy of this exciting area of research in the years to 
come. Looking ahead, we anticipate significant 
opportunities for ongoing discovery across a broad 
scientific front, including: 

 Designing Catalysts with Improved Redox Leveling. A 
greater mastery over precision redox tuning will be needed 
to enable catalysis with greater speed (turnover frequency) 
and greater durability (turnover number). An appreciation 
for the connection between catalyst composition/structure 
and redox driving force of elementary reaction steps will be 
a necessary initial step in this quest, but a further 
attentiveness to round-trip thermodynamics will also be 
needed for catalysis. Detailed mechanistic and 
thermochemical studies that identify kinetic bottlenecks 
and parasitic branching points will be essential to inform 
new catalyst designs that enable faster turnover at milder 
conditions with lower catalyst loading. In the limit, such a 
high level of redox mastery would enable the reversible use 
of a given Pnn/Pnn+2 couple specified only by the reaction 
thermodynamics of the stoichiometric inputs. 

 Taming Underexplored Two-Electron Redox Couples for 
Catalysis. Although periodic trends shape the innate driving 

forces for two-electron redox events at pnictogens (Sect. 2), 
novel design of organopnictogen compounds might open 
space for catalytic cycles operating within ‘atypical’ redox 
couples. As exemplified in Sect. 3, the PnIII/PnV couple has 
been widely employed in catalysis; by contrast, the lower-
valent PnI/PnIII couple is still comparatively 
underdeveloped. Seminal work on the chemistry of Pn(I) 
centers have demonstrated their ability to achieve 
challenging bond activation reactions. 340 , 341 Although the 
generation of low-valent Pn(I) species under mild 
conditions poses the most immediate barrier to expansion 
of organopnictogen redox catalysis to the PnI/PnIII couple, 
pioneering work from Cornella in BiI/BiIII catalysis 338,339 
establishes feasibility and points to further opportunities. 
By expanding the accessibility of diverse redox states—
presumably through ligand design and substituent effects—
new channels of reactivity might be made available. 

 Controlling Stereochemistry in Organopnictogen Redox 
Catalysis. The pioneering achievements of Werner,209,210 
Voituriez,219 and Kwon234 (Sect. 3.1) establish the viability 
of stereochemical control within organopnictogen redox 
catalysis; however, new chiral organopnictogen catalysts 
will be needed to advance beyond these initial discoveries. 
For instance, it remains to be seen whether deliberate 
incorporation of ‘secondary sphere’ interactions can be 
leveraged to effect stereochemical discrimination.33,342-346 
The opportunities and/or complexities associated with 
stereogenic pnictogen chirality centers and their 
stereochemical fluxionality—especially in 
pentacoordination (i.e. polytopal isomerism)141,142—have 
not yet been explored in a systematic fashion. Indeed, given 
challenges presented by the varying coordination numbers, 
geometries and valence electron counts encountered in 
organopnictogen redox catalysis, the emergence of new 
heuristics of asymmetric design may be needed. 

 Merging Organopnictogen Redox with Established 
Catalytic Modes. The merger of organopnictogen redox 
catalysis with other enabling modes of catalysis 
(organocatalysis, transition metal catalysis, Bronsted 
acid/base catalysis, inter alia) could lead to the 
development of further powerful classes of reactions. Such 
catalytic cycles could be envisioned to work in tandem, 
cascade,347-351 or synergistic modes,352 owing to the mutual 
compatibility of each catalytic mode of molecular 
transformation. Such mergers could make use of the distinct 
reactivities inherent to the aforementioned platforms and 
create opportunities for unveiling novel transformations.  

 Embracing One-electron Open-shell Reactivity. Stable 
covalent bonds are (mostly) two-electron constructs, but 
their catalytic synthesis by stepwise one-electron processes 
presents potentially enabling reaction channels. 353 - 359 
Open-shell reactivity within organopnictogen catalysis is 
therefore ripe for development. Organopnictogen radicals 
and radical ions are well-known entities, 360 , 361  whose 
reactivity can be triggered by photochemistry 362 - 367  or 
electrochemistry. 368 , 369  Among possible scenarios, single-
electron oxidation or reduction of catalytic intermediates370-

377 could unveil new reaction pathways, including selective 
bond activation or challenging atom transfer processes.378-
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382  Alternatively, single-electron pathways could be 
accessed to facilitate otherwise sluggish catalytic turnover, 

such as electrocatalytic reduction of phosphine oxides.383-386 

 Beyond Homogenous Organic Reaction Media. The 
development of catalytic systems that can operate in 
nonorganic media will be a necessity to realize a broader 
potential of group 15 redox catalysis in contexts beyond 
organic synthesis. Noting the prevalence of 
organopnictogen redox chemistry in chemical biology in the 
form of the Staudinger ligation,34-39 the development of 
water-compatible reaction systems presents an appealing 
challenge to the growth of the field of organopnictogen 
redox catalysis. 387  Indeed, recent work utilizing P(V) 
chemistry to selectively label serine residues388 and Bi(V) 
chemistry to arylate phenols312 point to the potential of 
Pn(V) to enable selective bond-forming reactions. 
Alternatively, an adaptation of the design principles for 
homogeneous group 15 redox catalysis to heterogeneous 
catalyst development similarly presents untold prospects 
for discovery. 

 

5. CONCLUDING REMARKS 

To close, we return to the question posed at the end of 
the Abstract: “What new catalytic manifolds can be 
developed through creative catalyst and reaction design 
that take advantage of the intrinsic redox reactivity of the 
pnictogens to drive new discoveries in catalysis?”389 This is 
a critical question, and though a detailed answer may not be 
knowable except in hindsight, the contours of a reply surely 
can be traced in outline. Organopnictogen redox catalysis is 
a relatively young entrant to the science of catalysis 
presently populated by numerous highly successful 
catalytic modalities, each a towering achievement. Within 
this crowded context, organopnictogen redox catalysis 
must aspire to more than mimicry of existing techniques; it 
must express something authentic and inimitable. On this 
front, it seems likely that the most compelling opportunities 
presented by this emerging field—those that will maximize 
scientific and practical impact—will be realized through the 
discovery of new bond (dis)connections or functional group 
interconversions that are truly native to organopnictogen 
redox catalysis. We assert that the periodic trends—both 
within Group 15, and between Group 15 and others in the 
p-block—impart the pnictogens generally, and each of the 
pnictogen elements individually, with distinctive 
properties, providing a varied palette of components for 
catalyst design and reaction development. The diversity of 
characteristics in Group 15 position organopnictogen redox 
catalysis to achieve unique reaction classes that are without 
direct precedent or complement in the armory of catalytic 
synthesis. Along this trajectory, the progress achieved thus 
far in organopnictogen redox catalysis is but a tantalizing 
preamble to a future of ongoing discovery. 
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