Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15

Jeffrey M. Lipshultz,[†] Gen Li,[†] Alexander T. Radosevich*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States

ABSTRACT: A growing number of organopnictogen redox catalytic methods have emerged—especially within the past ten years—that leverage the plentiful reversible two-electron redox chemistry within group 15. The goal of this *Perspective* is to provide the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye towards future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity—and ultimately catalysis—is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?

1. Introduction

Chemistry is patterned by elemental properties arising from the quantum structure of atoms.¹ As systematized in the periodic table, an element's periodic position corresponds with approximate expectations about its properties.² Accordingly, the redox reactivity of the elements is usefully (even if somewhat over-simplistically) abstracted according to their periodic 'block'. For elements in the *s*- and *f*-blocks, single oxidation states³ (+I or +II for *s* elements, 4-6 +III for f elements 7,8 tend to prevail; by contrast, numerous stable oxidation states separated by modest reduction potentials proliferate among the transition metals of the *d*-block.⁹ Especially for the late transition metals of the second (4d) and third row (5d), the prevalence of accessible two-electron redox processes provides the thermodynamic and mechanistic basis¹⁰ upon which innumerable groundbreaking discoveries in catalytic synthesis are built.¹¹⁻¹⁴

The elements of the *p*-block—especially the 'heavier' entrants of principle quantum number $n \ge 3$ —are more akin to their neighbors in the *d*-block than they are to either the *s*- or *f*-blocks in terms of breadth of accessible oxidation states. Representatively, compounds of the group 15 elements (collectively known as the pnictogens, ¹⁵, ¹⁶ abbreviated Pn) express a rich redox reactivity,¹⁷⁻²⁰ where the valence electronic ns^2np^3 configuration gives rise to compounds that span –III to +V oxidation states.²¹⁻²⁵

Correspondingly, discrete chemical reactions involving redox events at pnictogen centers have been described since at least the early 19th century.^{26,27} Since that time, many developments in the synthetic chemistry of organopnictogen-based two-electron redox are intimately connected to pioneering achievements of 20th century organic chemistry. Staudinger's reduction of organic azides

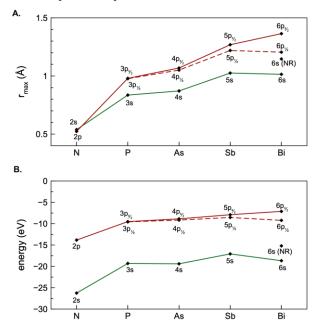
by P(III) reagents to give P(V) iminophosphoranes is a bedrock reaction in organic synthesis²⁸⁻³⁰ that continues to find new applications in catalysis ^{31 - 33} and chemical biology.³⁴⁻³⁹ Wittig's olefin synthesis,⁴⁰⁻⁴² which leverages the driving force P^{III} \rightarrow P^V=O, ushered in a new era in industrial preparation of carotenoids, such as vitamin A.⁴³ Further down group 15, unique aryl transfer reagents were introduced by Barton based on the conversion Bi^V \rightarrow Bi^{III},⁴⁴⁻⁴⁶ a forerunner to ongoing oxidative organopnictogen method development. In short, the impact of organopnictogenbased redox methods on synthesis is both long and celebrated.

New developments that merge elementary organopnictogen redox reactions into catalytic cycles involving formal two-electron redox cycling have been gathering pace, especially within the past decade. These developments, proceeding in parallel with ongoing synthetic redox method developments elsewhere in the *p*-block in Groups 13,⁴⁷⁻⁵⁰ 14,^{51,52} 16,⁵³⁻⁵⁸ and 17,⁵⁹⁻⁶⁸ represent the vanguard of a new class of redox catalysts composed of main group elements that evoke an analogy with well-established activation modes of the late *d*-block elements.⁶⁹⁻⁷⁴

Along with ample fundamental science motivations, the attractiveness of redox catalysts derived from the heavier group 15 elements is buoyed in a practical sense by the relative abundance and low cost of these pnictogens.⁷⁵ Phosphorus is abundant both in the earth's crust (1300 ppm) and in the biosphere, being the only member of the pnictogen family other than nitrogen that is essential to life. While the heavier pnictogens are comparatively more scarce (As, 5.7 ppm; Sb, 0.75 ppm; Bi, 0.23 ppm), all are produced on >20,000 ton scale annually.⁷⁶ And though bismuth is only roughly as abundant terrestrially as

palladium (0.52 ppm) and platinum (0.5 ppm), it is 10^3-10^4 times less expensive on a per kilogram basis (cf. \$7.50/kg for Bi, ~\$75000/kg for Pd, ~\$33000/kg for Pt). Indeed, established non-redox activation modes in organopnictogen catalysis (i.e. Lewis acid,⁷⁷⁻⁷⁹ Lewis base,⁸⁰⁻⁸² and frustrated Lewis pair⁸³⁻⁸⁶ catalysis), along with the long history of Group 15 compounds as supporting ligands in organometallic chemistry,⁸⁷⁻⁹⁴ serve as a validation of the viability of organopnictogens as constituents of practical catalysts.

In this *Perspective*, we wish to highlight exciting recent advances in the burgeoning field of organophictogen redox catalysis. Our major goals are: (1) to identify the pivotal contributions defining the current state of the art and (2) to articulate future directions that are likely to define the forefront of research moving forward. Toward these goals, we first trace the fundamental periodic properties of the group 15 elements and then illustrate how these periodic trends are expressed in the diversity of reactions driven by group 15 redox catalysis. In this way, we hope to convey not only an appreciation of the new synthetic capabilities revealed by group 15 redox catalysis, but also a context for understanding of the relationships—both similarities and distinctions-between the congeneric elements in terms of their catalytic chemistry. By conceptualizing group 15 redox catalysis in this way as a worthy catalytic modality, we hope that this Perspective will knit together the broad cross-section of synthetic inorganic and organic chemists active in the organophictogen area and serve to nucleate new efforts in this productive and promising area of research.


2. Periodicity and Vertical Trends in Group 15

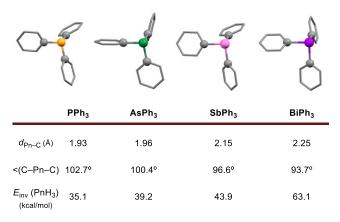
Given that an informed understanding of the periodic trends and the related structural, bonding, and electronic features of organopnictogens establishes the guiding principles for further development of this field of catalysis, the purpose of this section is to provide a targeted evaluation of key features of the elements themselves and organic molecules containing them that drive the redox catalytic reactivity endemic to each pnictogen. Interested readers can find further elaboration of many of these themes in prior monographs and reviews.⁹⁵⁻¹⁰⁰

2.1 Trends in Atomic Electronic Structure. The importance of atomic electronic structure in chemical bonding and reactivity is an essential feature of molecular orbital theory. As expanded below, the relative importance of *s* and *p* valence atomic functions in organophictogen bonding and molecular structure—and thus reactivity—varies intrinsically with spatial and energetic atomic orbital disposition.

2.1.1 Valence orbital size. A graph of the radial probability maxima for the valence *s* and *p* orbitals of the group 15 elements is given in Figure 1A.¹⁰¹ As expected for the increasing principal quantum number, the radial extension of the valence AOs increases down the group, but three subtleties of the periodic atomic electronic structure are noteworthy. First, the increase in size—though

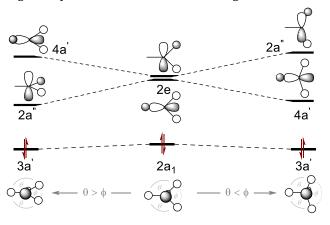
monotonic—is not smooth. Instead, a 'sawtooth' shape is evident, such that the van der Waals radii of P (1.80 Å) and As (1.85 Å) are clustered, as are Sb (2.05 Å) and Bi (2.07 Å). This effect has been attributed to a 'secondary periodicity' 102, 103 arising from incomplete screening of nuclear charge owing to the intervention of the *d*- and *f*elements on period 4 (As) and 6 (Bi), respectively (i.e. the 'scandide' and 'lanthanide' contractions). 104 Second, the increase in radial extension does not affect *s* and *p* orbitals equivalently.¹⁰⁵ For valence 2s and 2p orbitals of nitrogen, the probability maximum in the radial distribution function is nearly identical (0.54 and 0.52 Å, respectively), but for the 3s and 3p orbitals of phosphorus it differs by ca. 15%. The radial differences between ns and np are even more pronounced for As, Sb, and Bi. This phenomenon arises because the 2p orbital lacks a core shell of the same angular momentum (l=1) and thus does not have a radial node, whereas radial nodes are requisite for all p orbitals of higher principal quantum number (n>2) to satisfy quantum orthogonality. In effect, the first-filled *p* orbital shell exerts an outward effect on all higher *p* shells through 'primogenic repulsion,' as coined by Pyykkö.^{106,107} Kaupp has further emphasized the importance of radial nodes in main group bonding and reactivity.^{108,109} Third, spin-orbit coupling and relativistic effects take on significant importance for bismuth.¹¹⁰⁻¹¹³ The $6p_{1/2}$ and $6p_{3/2}$ spinors diverge markedly in radial extension, and the 6s orbital experiences a significant contraction compared to a notional 'nonrelativistic bismuth.' The importance of these orbital effects, especially the latter, has very profound consequences for the chemical and redox reactivity of bismuth (vide infra).

Figure 1. (A) Atomic orbital radial probability function of Group 15 elements. (B) Valence atomic orbital 1-electron ionization energies of Group 15 elements.


2.1.2 Valence orbital ionization energies. A plot of the valence atomic orbital one-electron ionization energies is shown in Figure 1B.¹⁰¹ As seen especially for the heavier pnictogens (P–Bi), valence p orbital energy increases uniformly down group 15. By contrast, the s orbital ionization energy does not exhibit such a monotonic trend. Instead, the 'sawtooth' profile is again seen; note for instance that the magnitude of the one-electron binding energy of the As 4s orbital is slightly larger than that of the P 3s orbital and that the Bi 6s orbital ionization energy is substantially larger than that of the Sb 5s orbital. These effects can be traced back to the *d*- and *f*-block contractions,¹⁰⁴ which is augmented in the latter case by the relativistic stabilization of the Bi 6s orbital and spin-orbit splitting of the $p^{1}/_{2}$ and $p^{3}/_{2}$ orbital energies.¹¹⁴

2.2 Trends in Molecular and Electronic Structure.

2.2.1 Bonding and Hybridization. The interplay of AO radial sizes and energies has significant effects on the bonding of the heavier pnictogens. Kutzelnigg has explained that the decreased spatial overlap of the s and p orbitals down group 15 results in less s/p mixing and a lifting of the orthogonality for s/p hybrid orbitals.^{115,116} As illustrated by Kaupp for the series H₃Pn (Pn=P-Bi), valence s-character accumulates in the non-bonding lone-pair orbital down the group, and the Pn-H bonds tend to be made increasingly from essentially unhybridized *p*-orbitals.¹⁰⁹ This 'hybridization defect' arising from the increasingly disparate s and p orbital sizes generally leads to weakening of σ bond energies down group 15. Thus, for the series H₃Pn (Pn=P-Bi), a consistent decrease in the Pn-H bond dissociation enthalpy is observed down the group (P: 81.4, As: 74.6, Sb: 63.3, Bi: 51.8 kcal/mol).^{117,118}


2.2.2 Tricoordination. Data for the triphenylpnictogen(III) compounds (Ph₃Pn) in the Cambridge Structural Database ¹¹⁹ exemplify the periodic trend in molecular structure that trace the molecular-electronic structure nexus (Fig. 2). In accord with the trend in atomic size (Sect 2.1.1), a sawtooth-like increase in Pn–C bond lengths in the PnPh₃ series – PPh₃ (CSD-1238522), ¹²⁰ AsPh₃ (CSD-1318411), ¹²¹ SbPh₃ (CSD-1318403), ¹²² BiPh₃ (CSD-1468789)¹²³ - is observed, where P-C (1.93 Å) and As-C (1.96 Å) are shorter bond lengths than Sb-C (2.15 Å) and Bi–C (2.25 Å). Relatedly, the average bond angle ∠C-Pn-C decreases down the group: ∠C-P-C 102.7°, ∠C-As-C 100.4°, \angle C-Sb-C 96.6°, and \angle C-Bi-C 93.7°. Two mutually reinforcing effects drive this trend: (1) the longer bond lengths of the heavier pnictogens ease steric crowding between the aryl substituents and thus permit narrower bond angles, and (2) the s/p hybridization defect leads to increasingly directional bonding down the group (i.e. higher *p*-orbital contribution to Pn-C bonding and greater accumulation of s-character in the nonbonding lone pair). The longer bond lengths and greater pyramidalization of the heavier pnictogens are common features of trigonal tricoordinate group 15. As a corollary, the barrier to pyramidal inversion of trivalent organopnictogens via the 'umbrella coordinate' increases down the group.^{124,125} By transit from a pyramidal C_{3v} to a planar D_{3h} geometry, the HOMO nonbonding lone pair $(2a_1)$ correlates with the atomic *p* orbital oriented

along the rotational axis. The energetic penalty to planarization thus imposed, which is accentuated in the case of bismuth by the relativistic stabilization of the 6s orbital relative to the 6p set,¹²⁶ has been correlated with the electronegativity of the central pnictogen within the context of a second-order Jahn-Teller effect.¹²⁷

Figure 2. (*top*) Solid-state structures for Ph₃Pn (Pn = P, As, Sb, Bi) viewed orthonormal to one of the equivalent C_{α} -Pn- C_{α}' planes. Periodic variation in bond angles and pyramidalization are thereby best visualized. (bottom) Tabulated structural data for Ph₃Pn, and computed inversion barriers of PnH₃.

As will be detailed in subsequent sections, many of the organopnictogen compounds that exhibit catalytic redox properties are nontrigonal (i.e. no local threefold symmetry).⁷⁴ The interrelation of molecular geometry and electronic structure of nontrigonal compounds can be approached by reference to the frontier correlation diagram in Figure 3. Descent from local C_{3v} symmetry by progression along the bending (*e* symmetry) normal mode gives C_s -symmetric structures. Electronically, the consequence of this symmetry-lowering distortion is a lifting of the degeneracy of the unfilled orbitals resulting in a decrease in

Figure 3. Qualitative correlation diagram for frontier orbitals in C_{3v} symmetry (center) upon descent to C_s symmetry (left and right). Orbital projections are viewed down the σ plane.

the HOMO-LUMO energy gap. Computational and experimental validation for this electronic picture has been established for nontrigonal chelates of pnictogen(III) triamide compounds. ^{128 - 131} The ability to construct pnictogen compounds of diverse molecular shapes by appropriate constraint allows for electronic structure tailoring with profound consequences for the future of catalysis in this area.

2.2.3 Pentacoordination. In parallel to the foregoing discussion of tricoordinate pnictogen(III) compounds, the pentaphenylpnictogen(V) compounds (Ph₅Pn) first prepared by Wittig¹³²⁻¹³⁴ illustrate relevant periodic trends for molecular compounds in pentacoordination (Fig. 4). Solid state structures for Ph₅P (CSD-1232414)¹³⁵ and Ph₅As (CSD-1230863) ¹³⁶ are well-described as trigonal bipyramidal (τ = 0.90 and 0.98, respectively). By contrast, the heavier congeners Ph₅Sb (CSD-1232410)¹³⁷ and Ph₅Bi (CSD-1254431)¹³⁸ crystallize as distorted square pyramidal structures ($\tau = 0.25$ and 0.22, respectively).^{139,140} These static structures provide snapshots spanning the Berry pseudorotation coordinate, ¹⁴¹, ¹⁴² and spectroscopic evidence supports that they persist in solution. 143 Intriguingly, whereas Ph₅P, Ph₅As, and Ph₅Sb are all colorless solids, Ph₅Bi is violet.^{144,145} Seppelt and Pyykkö have provided evidence that a ligand-to-metal charge transfer excitation in the visible region results from Bibased LUMO composed of the relativistically-stabilized 6s orbital. 146, 147 Without relativistic considerations, the HOMO-LUMO gap is predicted to be 27% larger, such that "nonrelativistic' pentaphenylbismuth would not be violet." The connection between the observed low-energy optical transition and the propensity for Ph₅Bi to react as an electrophilic aryl transfer reagent has been noted.148

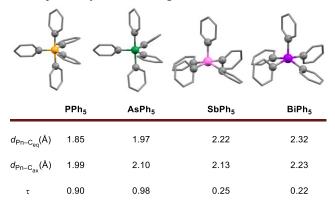


Figure 4. Solid-state structures and structural data of Ph₅Pn.

2.3 Trends in Dative and Redox Reactivity.

2.3.1 Measures of donor reactivity. The dissociation enthalpy for Lewis adducts with group 13 Lewis acids provides a measure of donor ability of trivalent organopnictogens.149 On the basis of gas phase experiments with AlH₃, acid-base adduct formation is most favorable for P and least favorable for Bi (Fig, 5, left). These findings correlate with qualitative observations regarding nucleophilic reactivity; triphenylphosphine and triphenylarsine readily undergo alkylation with methyl iodide, but triphenylstibine requires the more reactive trimethyloxonium electrophile (Me₃O)BF₄ to undergo quaternization, while triphenylbismuth is not quaternized even with (Me₃O)BF₄.^{150,151} However, steric effects often are entangled with this underlying trend. Specifically, the relatively small atomic radii of phosphines and arsines relative to stibines and bismuthines give rise to a substantial repulsive interaction with sterically encumbered Lewis acids ('Pr₃Pn-Al^tBu₃ series, Fig. 5, right), resulting in accordingly diminished energetic stabilization of the Lewis adduct. In effect, the lighter pnictogens are more sensitive to steric influences than their heavier congeners.¹⁵²⁻¹⁵⁴

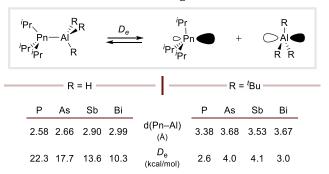


Figure 5. Gas-phase Pn–Al distances and dissociation enthalpies (D_e) of Lewis adducts H_3Al –Pn^{*i*}Pr₃ and ^{*i*}Bu₃Al–Pn^{*i*}Pr₃.

2.3.2 Aqueous reduction potentials. The standard electrode potentials for the group 15 ions in aqueous solution establish an important trend governing the redox reactivity of these elements.¹⁵⁵ As shown in the Frost diagram in Figure 6,¹⁵⁶ phosphorus is the only element for which the Pn(III) and Pn(V) oxyacids are more stable than the elemental form. These positive oxidation states become increasingly unstable down the group; high valent Bi(V) is the least stable among Pn(V) congeners. This increasing preference for the lower valent

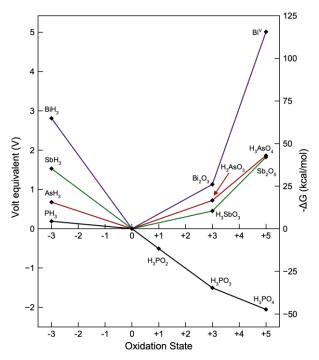
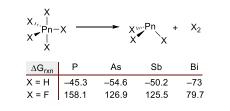



Figure 6. Frost oxidation state diagram for heavier pnictogens under acidic conditions.

state among the heavier group 15 elements can be viewed as a manifestation of the 'inert pair effect,^{98-100,157-159} which in turn may be related to the hybridization defects within the high-valent compounds.¹¹⁶ Computed Pn(V)=O bond energies from the reaction H₃Pn + 0.5O₂ \rightarrow H₃Pn=O series (MP2/DZ+d level) display a similar effect, wherein phosphorus forms the most stable oxide while bismuthine oxide is energetically uphill.¹⁶⁰ As such, as a general rule the Pn^{III}/Pn^V redox couples can be summarized as follow: P^{III}/P^V is strongly reducing, As^{III}/As^V and Sb^{III}/Sb^V are mildly oxidizing, and Bi^{III}/Bi^V is strongly oxidizing.

2.3.3 Thermodynamics of reductive elimination from 5coordinate pnictoranes. Similarly to the relative stabilities of the pnictide oxides described above, evaluation of the relative thermodynamic stabilities PnX₅ compounds with respect to PnX₃ illuminates a periodic trend (Fig. 7). Among the PnF₅ congeners, BiF₅, which is known to fluorinate hydrocarbons,^{161,162} is at least 45 kcal/mol less stable than the lighter congeners, ^{163,164} such as the stable, Lewis acidic PF₅. Similarly, the PnH₅ series ¹⁶⁵ displays an irregular thermodynamic trend for the liberation of H₂ and PnH₃, in which decomposition of BiH₅ is at least 20 kcal/mol more favorable than any of the lighter congeners, owing again to the substantially more oxidizing nature of Bi(V). As will be shown, these general characterizations manifest in markedly differing reactivity of organophictogens, and thus provide a framework for appreciating the divergences in application in redox catalysis.

Figure 7. Gas-phase energies (kcal/mol) for the reactions $PnF_5 \rightarrow PnF_3 + F_2$ and $PnH_5 \rightarrow PnH_3 + H_2$.

The foregoing atomic properties and molecular reactivity trends are the fundamental backdrop against which the varied organopnictogen reactivity described in this *Perspective* is brought into relief. As described below, these periodic trends govern much of the divergent structure, bonding, and electronic nature of the recently uncovered examples of organopnictogen redox catalysis.

3. State-of-the-Art Developments in Organopnictogen Redox Catalysis

Although an initial report can be traced to 1981,¹⁶⁶ the overwhelming majority of demonstrations in the field of organopnictogen redox catalysis have come in the past decade. In this section, the key developments will be discussed, organized first by pnictogen element and then by reaction type. The purpose of this section is to develop a systematic perspective on the state of the field, with an eye toward understanding prevailing themes and, accordingly, gaps in current knowledge which might present avenues for further research.

3.1. Organophosphorus Redox Catalysis. As described in the preceding section, the redox chemistry of organophosphorus molecules is primarily driven by the reducing nature of the P(III) state and the relative stability of the P(V) oxidation state, especially those compounds possessing P(V)=0 moieties.¹⁶⁷⁻¹⁶⁹ As such, the oxidation of P(III) compounds to stable P(V) species can be accomplished with a variety of oxidants of even modest oxidizing power.¹⁷⁰⁻¹⁷⁷ Conversely, the reduction of P(V) to P(III) is often contrathermodynamic, thus requiring relatively forcing conditions or bespoke molecular design; ^{178 - 182} *this presents the primary challenge* in achieving organophosphorus redox cycling.

In practice, the relatively strong P(V)=0 bond typically requires strong reductants¹⁸³ such as metal hydrides to generate the P(III) species via the intermediacy of a hydridophosphorane.¹⁸⁴ However, the barrier to reduction is lower for constrained cyclic phosphine oxides relative to unstrained cyclic¹⁸⁵ or acyclic^{186,187} congeners, providing a rationale for catalyst design operating in the $P^{III}/P^v=0$ couple. Reductive ligand coupling represents another available avenue for the reduction of P(V) species, as described in a seminal report by Mann in 1948¹⁸⁸⁻¹⁹² and modernized into a programmable process by McNally.¹⁹³⁻¹⁹⁵ Nevertheless, the poor driving force inherent to P(V) to P(III) reduction presents the key challenge in achieving selfcontained organophosphorus redox cycling.

3.1.1 Catalytic Wittig Reaction. The Wittig reaction is a cornerstone of organophosphorus chemistry, and efforts to render it catalytic in phosphine require a strategy for mild and swift reduction of the phosphine oxide byproduct to enable P^{III}/P^V redox cycling. The past 12 years have seen the successful application of novel organophosphorus molecules to achieve such a feat.¹⁹⁶⁻¹⁹⁹ In 2009, O'Brien reported the first example of organophosphorus redox catalysis using a five-membered phospholane oxide (3methyl-1-phenylphospholane 1-oxide) P1•[0] operating in the $P^{III}/P^{V}=0$ couple in the context of a Wittig reaction (Fig. 8A).²⁰⁰ This strategy uses a mild hydrosilane reductant, Ph₂SiH₂, to reduce the phospholane oxide precatalyst to the active P(III) species, which can then undergo quaternization, deprotonation, and Wittig reaction to obtain the desired product olefin and regenerate the phospholane oxide pre-catalyst. In 2013, O'Brien significantly lowered the reaction temperature for catalytic Wittig reactions to ambient temperature via the use of a Bronsted acidic additive, 4-nitrobenzoic acid, which enhances the rate of reduction of phosphine oxide **P2**•[0] (Fig. 8B).²⁰¹ O'Brien further developed a series of electrondeficient phospholane oxide precatalysts, including P3•[0], to enable the use of non-stabilized ylides in the catalytic Wittig reaction (Fig. 8C).²⁰²

Other organophosphorus catalyst scaffolds have proven adept at achieving catalytic Wittig reactions. In 2019, Werner demonstrated the utility of phosphetane²⁰³ oxide **P4**•**[0]**²⁰⁴ to enable catalytic Wittig reaction at 1 mol% catalyst loading at ambient temperature in the absence of any acidic additive (Fig. 9). 205 Simple phosphine oxide precatalysts, such as Ph₃PO, Oct₃PO, or Bu₃PO, have been explored for catalytic Wittig reactions, but to this point have required the assistance of microwave heating or Bronsted acid additive at high temperature.^{206,207}

In 2014, Werner demonstrated the first enantioselective catalytic Wittig reaction operating in a P^{III}/P^v=O couple, highlighting some challenges in realizing such a method (Fig. 10). In this work, a variety of chiral phosphine catalysts are applied for desymmetrization of prochiral haloketone 11 to give enantioenriched diketone 12. The most promising result utilizes (S,S)-Me-DuPhos (P5), a C_2 symmetric bisphospholane, ²⁰⁸ with phenylsilane as the terminal reductant in dioxane via microwave heating at 150 °C, which gives 39% yield and 62% *ee*.^{209,210}

The formation of the phosphorus vlide can also be achieved in the absence of base through conjugate addition to activated olefins and proton transfer, as exemplified by Werner and Lin (acrylates),²¹¹⁻²¹⁴ Vouturiez (ynoates),^{215,216} Kwon (allenes),²¹⁷ and Lin (enones)²¹⁸ using a selection of

A. Stabilized ylides (2009)

СНО

9 Me

ò

140 °C, toluene, 24 h

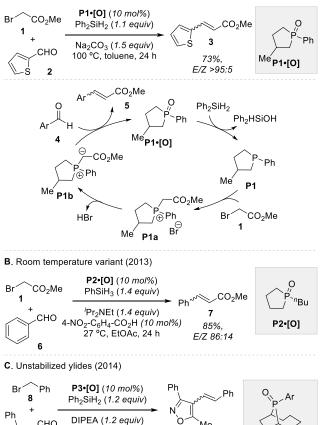


Figure 8. Phospholane-catalyzed Wittig reaction with (A) stabilized ylides and mechanism, (B) stabilized ylides at ambient temperature through inclusion of Brønsted acid additive, and (C) unstabilized ylides through development of electron-deficient phospholane catalyst.

Мe

3.5-diCF₃-C₆H₃

P3•[O]

10

80%

E/Z = 90:10

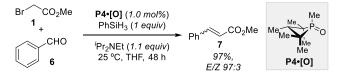
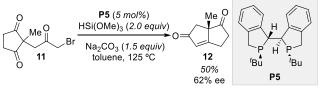
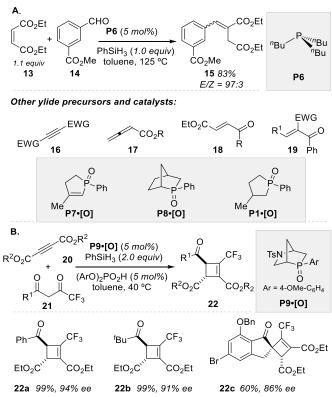
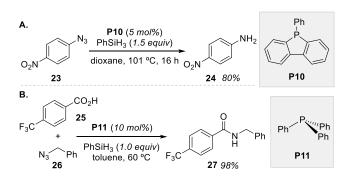
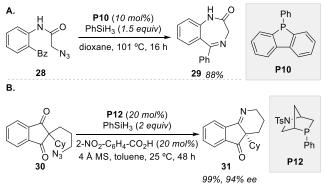


Figure 9. Phosphetane-catalyzed Wittig reaction with stabilized ylides at ambient temperature.

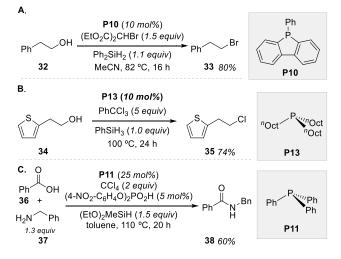




Figure 10. Chiral phospholane-catalyzed asymmetric Wittig cyclization.

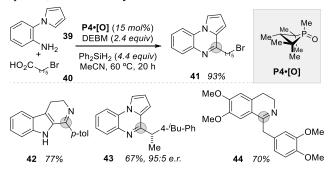
catalysts previously described (Fig. 11A). Of particular note is an enantioselective variant enabling the synthesis of (trifluoromethyl)cyclobutenes (Fig. 11B)²¹⁹ developed by Voituriez in 2018 with Kwon's bicyclic chiral phosphine oxide HypPhos **P7**•**[0]**.


Figure 11. A) Catalytic Wittig reactions from unsaturated ylide precursors. B) Asymmetric organophosphorus-catalyzed (trifluoromethyl)cyclobutene formation via a conjugate addition/Wittig olefination reaction.

3.1.2 Catalytic Staudinger Reactions and Aza-Wittig. In 2012, van Delft and Rutjes reported the first catalytic Staudinger reaction with a dibenzophosphole catalyst P10 and PhSiH₃ as reductant (Fig. 12A).²²⁰ In contrast to iminophosphorane hydrolysis employed in the stoichiometric reaction, the catalytic reaction involves direct reduction of the P(V) iminophosphorane with PhSiH₃ for the formation of the amine product and regeneration of the phosphine catalyst.²²¹ PPh₃ (P11) could also be used in place of the dibenzophosphole under identical conditions, albeit with significantly prolonged reaction times. Mecinović later demonstrated an ambient temperature protocol by employing an optimized hydrosilane reductant. 222 Catalytically formed iminophosphoranes from PPh₃ (P11) can also be used for Staudinger amidation reactions (Fig. 12B),²²³ although the precise mechanism of the redox cycle is unclear.224-226


Figure 12. A) Dibenzophosphole-catalyzed Staudinger reduction. B) PPh₃-catalyzed Staudinger ligation.

Other applications of iminophosphorane intermediates in the context of P^{III}/P^v=O cycling include catalytic aza-Wittig ²²⁷⁻²³⁰ and diaza-Wittig reactions (Fig. 13A). ²³¹ In 2018, Kwon demonstrated the first catalytic asymmetric Staudinger-aza-Wittig reaction ^{232, 233} with high levels of stereoinduction via desymmetrization of diketones using HypPhos catalyst **P12** with the assistance of a Brønsted acid additive (Fig. 13B).²³⁴


Figure 13. A) Catalytic aza-Wittig reactions using benzo[*b*]phosphindole. B) Catalytic enantioselective aza-Wittig synthesis of chiral heterocycles catalyzed by HypPhos. Bz = benzoyl; Cy = cyclohexyl; Ts = tosyl.

3.1.3 Catalytic Mitsunobu Appel and Reactions. Organophosphorus catalyzed oxidation-reduction condensation reactions, 235, 236 such as the Appel and Mitsunobu reactions, face challenges of reagent compatibility (between halenium/azo oxidant and hydrosilane reductant) and product stability. In 2011, Rutjes and van Delft achieved a P^{III}/P^v=O catalyzed Appel bromination (Fig. 14A).¹⁸⁵ In this transformation, diethyl bromomalonate (DEBM) is an ideal bromenium donor, showing good compatibility with hydrosilane reductants. Further, the dibenzophosphole catalyst **P10** is exclusively reactive toward the bromenium source, thus selectively generating the electrophilic bromophosponium ion, but unreactive towards the brominated products. ²³⁷, ²³⁸ Recently, Werner further extended the scope to chlorination of alcohols with benzotrichloride as oxidant and trioctylphosphine (P13) as the catalyst (Fig. 14B).²³⁹ Catalytic Appel conditions with PPh₃ (**P11**) can also be used to drive amide couplings between carboxylic acids and amines, as demonstrated by Mecinović in 2014 (Fig. 14C).²⁴⁰ Alternatively, Denton has extensively developed redoxneutral P^{v} -mediated dehydrative halogenation reactions using Ph₃PO as catalyst with oxalyl chloride as dehydrative reagent to enable phosphine oxide/phosphonium cycling.²⁴¹⁻²⁴⁸

Figure 14. Organophosphorus-catalyzed Appel A) bromination, B) chlorination, and C) amidation. Bn = benzyl.

Recently, an annulation of amines and carboxylic acids was described organophosphorus-driven recursive via dehydration using phosphetane catalyst P4•[0], DEBM, and PhSiH₃ or Ph₂SiH₂ (Fig. 15).²⁴⁹ In this tandem catalytic reaction, the catalytically-generated bromophosphonium first induces amide coupling and then cyclodehydration in a second catalytic turnover. To facilitate the coupling of alkyl amines, fully-substituted diethyl (methyl)bromomalonate (DEMBM) is required to suppress *N*-alkylation. These conditions enable the coupling of pharmaceuticals, such as ibuprofen, without racemization at adjacent stereocenters, as well as the synthesis of dihydroisoquinoline natural products such as dihydropapaverine. Interestingly, the use of diethyl chloromalonate as the oxidant, and thus a chlorophosphonium intermediate as the dehydrating species, results in only amide bond formation.

Figure 15. Phosphetane-catalyzed tandem annulation of amines and carboxylic acids by sequential C–N and C–C bond formation. *p*-tol = *para*-tolyl; ^{*i*}Bu = *iso*-butyl.

In 2010, O'Brien again successfully applied precatalyst **P1•[0]** in a catalytic Mitsunobu-type reaction (Fig. 16).²⁵⁰

Later, Aldrich disclosed some initial efforts into recycling both phosphine oxide and the azocarboxylate reagent, by an iron-phthalocyanine catalyzed process in the presence of oxygen. ²⁵¹ However, a detailed study from Taniguchi reported difficulty in reproducing both yield and enantiomeric ratio for some examples, as well as successful product formation in the absence of hydrazine catalyst. These results indicate this reaction might not undergo a true Mitsunobu process, and further study appears to be necessary.^{252,253} Recently, Denton has used creative catalyst design to enable redox-neutral P^v-based catalysis operating in a phosphine oxide/phosphonium cycle to achieve a highly successful catalytic Mitsunobu reaction.²⁵⁴

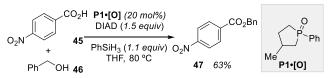
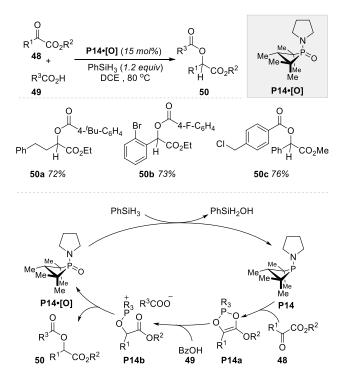
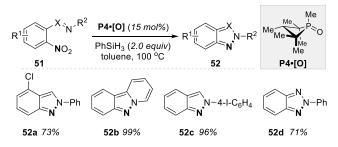



Figure 16. Phospholane-catalyzed Mitsunobu-type reaction.


3.1.4 Catalytic Reductive O-Atom Transfer. Owing to the strongly reducing nature of trivalent P(III) compounds, phosphines are excellent O-atom acceptors from a variety of oxygenated substrates. In 2010, Woerpel described the first P^{III}/P^V=O catalyzed reductive O-atom transfer by selective reduction of alkyl silyl peroxides to silyl ether products.²⁵⁵ The overall reaction is initiated by concerted insertion of triphenylphosphine into the O-O bond. Labeling and crossover studies demonstrate that a concerted elimination/silyl transfer step is operative in generating the silyl ether products and a phosphine oxide, which could in turn be selectively reduced by a titanium(III) hydride generated *in situ*.

To expand PIII/PV=O catalyzed O-atom transfer to lessoxidizing oxygenated substrates, the catalytic chemistry of a biphilic ²⁵⁶ phosphetane catalyst scaffold has been developed. In 2015, phosphetane-catalyzed а deoxygenative condensation reaction of α -keto esters and carboxylic acids via formal carbene insertion into the protic O-H bond of the acid was described (Fig. 17). 257 The reaction initiates by Kukhtin-Ramirez addition 258 of the P(III) phosphetane P14 to the keto ester substrate 48. Proton transfer from the benzoic acid followed by Arbuzovlike 259 displacement of phosphine oxide P14-[0] from intermediate **P14b** results in formation of α -acyloxy ester product 50. The catalytic cycle is closed by reduction of phosphetane oxide P14•[0] to P14 by the hydrosilane reductant.

Figure 17. $P^{III}/P^{V}=0$ catalyzed deoxygenative condensation of α -keto esters with carboxylic acids.

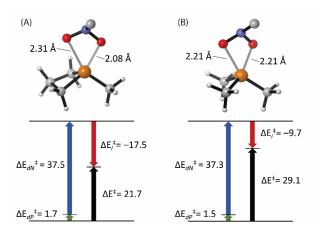

The phosphetane scaffold is also effective for engaging nitro groups in O-atom transfer. Building on seminal stoichiometric work by Cadogan,²⁶⁰⁻²⁶³ in 2017 a catalytic synthesis of indazoles and benzotriazoles from nitroimine and -azo starting materials, respectively, using **P4•[0]** as precatalyst under comparatively mild conditions was described (Fig. 18).²⁶⁴


Figure 18. Biphilic phosphetane-catalyzed N–N bond-forming Cadogan heterocyclization via P^{III}/P^v=O redox cycling.

In this transformation, DFT models implicate a [3+1] cycloaddition of P(III) species to the nitro group as the turnover-limiting step. In accord with empirical observations, the barrier to this step with a phosphetane is significantly lower in energy than with an acyclic trialkylphosphine. Distortion-interaction analysis²⁶⁵ of the relevant transition structures (Fig. 19) shows that the differential barrier arises from an enhanced stabilizing interaction energy for the phosphetane rather than a diminished distortion penalty.²⁶⁶⁻²⁶⁹ In effect, the contracted endocyclic C-P-C bond angle results in a low-lying LUMO, thus imbuing the phosphorus center with increased biphilic character relative to acyclic and larger phosphacyclic

compounds. For comparison, a similar catalytic Cadogan transformation described by Nazaré using a larger-ring phospholene oxide precatalyst requires higher catalyst loadings and significantly longer reaction times.²⁷⁰

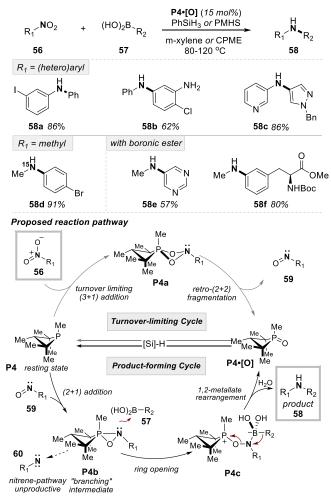

Figure 19. Transition structures and distortion/interaction analyses for (3+1) transition states (M06-2X/6-311++g(d,p)): (A) phosphetane TS and (B) Me₃P TS. Phosphine distortion energy (ΔE_{dP}^{\pm}) in green, nitromethane distortion energy (ΔE_{dN}^{\pm}) in blue, fragment interaction energy (ΔE_{i}^{\pm}) in red, activation energy (ΔE^{\pm}) in black. All energies in kcal/mol without zero-point correction.

Figure 20. Biphilic organophosphorus-catalyzed intramolecular C_{sp}^{2} -H amination and identification of oxazaphosphirane intermediate.

This approach to catalytic nitro deoxygenation has been similarly applied to C–N bond-forming reactions for the synthesis of carbazoles and indoles, as shown in Figure 20. ²⁷¹ Here, oxazaphosphirane intermediate **55** was observed at low temperature as the immediate precursor to carbazole formation. DFT calculations suggest an oxazaphosphirane as the pivotal intermediate, which thermally dissociates phosphine oxide **P4**•**[0]** to reveal a free nitrene capable of evolving to the carbazole product via C–H amination.²⁷²

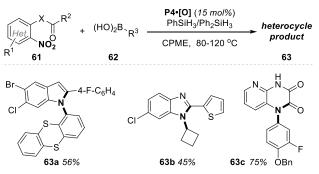
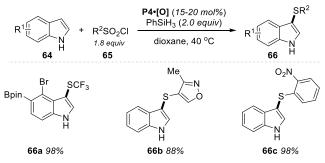
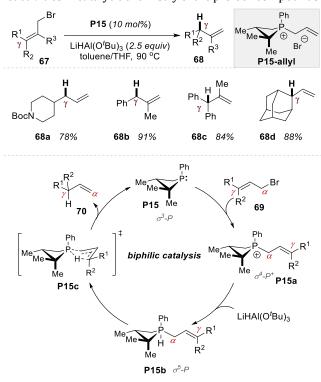

Given that such an oxazaphosphirane intermediate might be targeted to further reaction development via heterolytic ring opening with a Lewis acid, introduction of an arylboronic acid partner to the P^{III}/P^V=O catalyzed nitro deoxygenation manifold resulted in a new reductive C-N cross coupling of nitroarenes and boronic acids (Fig. 21).²⁷³ The scope was subsequently expanded to allow the reductive coupling of nitromethane with both boronic acids and esters, providing an efficient strategy for installation of the MeHN- fragment with inexpensive and easy-to-handle nitromethane as the methylamine surrogate.²⁷⁴ By virtue of the nonmetal main group-catalyzed conditions for this C-N coupling, useful chemoselectivities are observed, establishing the method as a complement to existing transition metal-catalyzed techniques. Mechanistic investigations support a pathway involving formation of the oxazaphosphirane

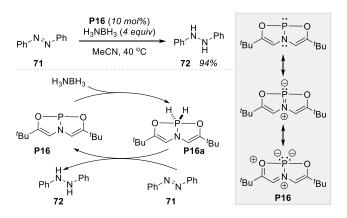
Figure 21. P^{III}/P^V=O catalyzed intermolecular reductive C-N cross coupling of nitroarenes and boronic acids. Boc = *tert*-butyloxycarbonyl.


intermediate **P4b**, followed by engagement with the boronic acid **57** to make betaine **P4c**, leading to product formation via 1,2-metallate shift. This pathway is predicted to outcompete evolution of the oxazaphosphirane to a free nitrene **60**, accounting for the excellent selectivity for intermolecular cross-coupling.^{275, 276} The C–N coupling

event can be telescoped with subsequent ring closing events to allow for the synthesis of N-aryl heterocycles (**58**) by a cross-coupling/condensation cascade, as depicted in Figure 22.²⁷⁷


Figure 22. P^{III}/P^V=O-catalyzed cascade synthesis of *N*-functionalized azaheterocycles.

Phosphetane oxide **P4•[0]** also efficiently catalyzes deoxygenative processing of sulfonyl chlorides (including trifluoromethyl- and heteroarylsulfonyl derivatives) by O-atom transfer (Fig. 23).²⁷⁸ This approach has been applied to an electrophilic sulfenylation of indoles via fleeting sulfenyl(ium) electrophilic equivalents.


Figure 23. Phosphetane-catalyzed (fluoroalkyl)sulfenylation via deoxygenation of sulfonyl chlorides. Pin = pinacol.

3.1.5 Catalytic Hydride and Hydrogen Transfer. Phosphetane-based catalysts have also been shown to drive regioselective transpositive reduction of allylic bromides through the intermediacy of P(V) hydrides (Fig. 24).²⁷⁹ The reaction benefits from the colocalized donor and acceptor properties of the phosphetane to achieve the necessary changes in both oxidation state and coordination number. Specifically, the reaction starts with quaternization of phosphetane P15 by the allylic bromide. In the presence of the stoichiometric reductant LiAlH(O-tBu)₃, hydride is delivered directly to the phosphorus center of allylic phosphonium cation **P15a** to give a hydridophosphorane P15b that is observable by low temperature ³¹P NMR spectroscopy. VT-NMR kinetics experiments and DFT that calculations indicate decomposition of pentacoordinate hydridophosphorane **P15b** to the reduction products occurs regiospecifically via a concerted 5-membered, 6-electron transition state (P15c). This pericylic y-reductive elimination illustrates the unique merger of conventional organic and organometallic reactivities in catalytic chemistry of the p-block compounds.

Figure 24. Organophosphorus-catalyzed regioselective reductive transposition of allylic bromides.

In a conceptually complementary hydride transfer reaction, an unusual transfer hydrogenation of azobenzene with ammonia borane catalyzed by P^{III}/P^V cycling was developed (Fig. 25). In this work, planar compound P16, introduced by Arduengo, ²⁸⁰ - ²⁸² reacts with H₃N•BH₃ to give dihydridophosphorane **P16a**.²⁸³ Dihydride **P16a** in turn serves as a reactive hydrogen donor, transferring an H₂ equivalent to a variety of electrophilic organic acceptors. The combined reactivities of **P16** as hydrogen acceptor from ammonia-borane and **P16a** as hydrogen donor to an organic substrate permit the use of this phosphorus platform as a catalyst for transfer hydrogenation. Although alternative pathways have been suggested via DFT studies,²⁸⁴⁻²⁸⁶ experimental mechanistic investigations lead to the assertion that hydrogen transfer catalysis in this case involves **P16⇒P16a** cycling. These results establish precedent for 'dihydride' transfer hydrogenation with a pblock catalyst.

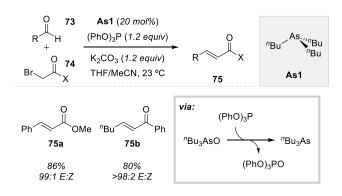
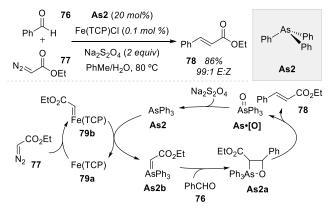


Figure 25. P^{III}/P^V-catalyzed transfer hydrogenation of azobenzene.

3.2 Organoarsenic Redox Catalysis. The redox reactivity of organoarsenic compounds is similar, albeit less well developed, when compared to organophosphorus congeners, as might be expected by the similar valence orbital IEs of P and As (see Fig. 2B). For instance, As(III) molecules similarly undergo oxidation to As(V) with mild oxidants,^{287,288} and arsonium ylides can be generated from arsonium salts^{289,290} or carbene transfer^{291,292} for use in Wittig-type olefination reactions. In contrast, the As(V) oxidation state is less thermodynamically stable than P(V) (see Fig. 6), such that pentacoordinate arsoranes are known to undergo reductive elimination via ligand coupling,²⁹³ and O-atom transfer of $R_3As=O + PR_3 \rightarrow R_3As + O=PR_3$ is both kinetically and thermodynamically accessible.^{294,295}


3.2.1 Catalytic Wittig Reactions. Taking advantage of the favorable deoxygenation of arsine oxides by P(III) reagents, the first report of organoarsenic redox catalysis was published in 1989 by Shi and Huang who described a tributylarsine-catalyzed Wittig olefination of aldehydes with activated bromoalkanes (Fig. 26). Triphenylphosphite, itself not competent to drive the direct olefination reaction, serves as a terminal O-atom acceptor by deoxygenation of the arsine oxide formed by Wittig olefination. Recently, Imoto and Naka have demonstrated the ability of an arsolane to efficiently catalyze similar transformations by As^{III}/As^v=0 cycling with a hydrosilane reductant at 100 °C.²⁹⁷

A second approach to arsine-catalyzed Wittig reactions involves Fe-porphyrin-catalyzed carbenoid transfer to generate the requisite arsenic ylide, as demonstrated by Tang (Fig. 27). ^{298, 299} In an initial report from 2007, triphenylarsine (**As2**) catalyzes the olefination of aldehydes with ethyl diazoacetate in the presence of an Fe-porphyrin catalyst, where sodium dithionite is the terminal reductant enabling turnover at As. In a follow-up

Figure 26. Organoarsine-catalyzed Wittig reaction employing triphenylphosphite as stoichiometric *O*-atom acceptor.

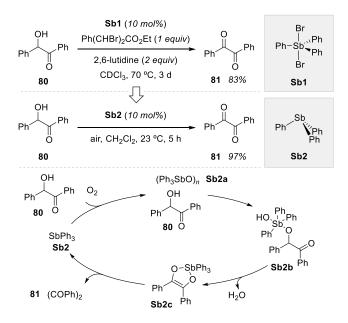
study in 2012, the arsine catalyst is immobilized on a polymer support to enable olefination of aldehydes and ketones with use of a soluble hydrosilane reductant, PMHS, at 110 °C to enable redox cycling of the arsine catalyst. Taken together, these reports demonstrate the utility of organoarsenic compounds in the catalytic generation of arsonium ylides for olefination and the propensity for reduction of the catalytic arsine oxides intermediates. However, concerns about toxicity and stability of the organoarsenic compounds have limited the utility of such transformations, especially as new strategies for facile turnover of phosphine oxides have emerged (see Sect 3.1.1). It remains to be seen whether there are any transformations unique to organoarsenic redox catalysis that would overcome the perceived barriers to use of As in synthesis.

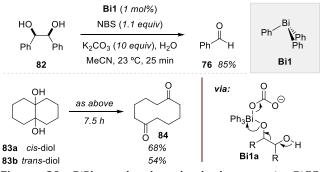
Figure 27. Organoarsine-catalyzed Wittig-type olefination of aldehydes with diazo compounds, with Fe-porphyrin co-catalyst to facilitate carbene transfer. TCP = tetra(*para*-chlorophenyl)porphyrinate.

3.3 Organoantimony Redox Catalysis. As compared to both P and As, the chemistry of organoantimony compounds is distinguished by the less reducing nature of the Sb(III) oxidation state and more oxidizing nature of the Sb(V) oxidation state.³⁰⁰ As such, whereas oxidation of Sb(III) species can be accomplished by reaction with strong oxidants such as bromine, peroxides, *o*-quinones, and iodoso compounds, stibines do not typically undergo quaternization with alkyl halides or Michael acceptors.³⁰¹

Conversely, the lower stability of the Sb(V) compounds results in enhanced oxidizing power in relation to the lighter pnictogens, as depicted in Fig. 9. Consequently, oxidative transformations of substrates, such as alcohol oxidation, have been described using Sb(V) compounds.³⁰² These stoichiometric reactions have been translated to a limited set of organoantimony-catalyzed methods.

3.3.1 Catalytic Oxidation Reactions. Organoantimony redox catalysis is characterized by a conspicuous opportunity for further development. At present, only two publications have appeared in this area, each of which describes an identical overall transformation under slightly modified conditions, depicted in Figure 28. In 1982, Akiba translated a stoichiometric triphenylantimony dibromide-mediated oxidation of α -hydroxyketones to α -diketones into a catalytic protocol, employing as little as 10 mol% of the Sb(V) catalyst. 303 Upon single turnover, the resultant reducing Ph₃Sb (Sb2) can be oxidized by the exogenous bromine surrogate 2,3-dibromo-3-phenylpropionate to regenerate the oxidizing Sb(V) dibromide (Sb1), turning over the cycle. 20 years later, Kurita described a more practical implementation, in which 10 mol% triphenylstibine (Sb2) is used directly as catalyst under aerobic oxidation conditions to effect the same transformation in nearly quantitative yield.³⁰⁴




Figure 28. Benzoin oxidation via organoantimony redox catalysis.

In contrast to this mild, efficient reaction with SbPh₃, the use of stoichiometric PPh₃ or BiPh₃ both provide no benzil product (**81**), owing to chemical inertness of the P(V) and Bi(III) states, respectively. In fact, this catalytic oxidation represents the microscopic reverse of well-established P(III)-mediated 1,2-dicarbonyl reduction by Kukhtin-Ramirez addition.³⁰⁵⁻³⁰⁸ Further, reaction employing AsPh₃ (**As2**) under air is sluggish and poorly efficient, demonstrating the varied reactivity of congeneric organopnictogens, which are each best suited to particular applications. However, this approach to catalytic alcohol oxidation via organoantimony catalysis has never been extended beyond these activated α -hydroxyketones.

3.4. Organobismuth Redox Catalysis. The redox chemistry of the Bi^{III}/Bi^V couple is dominated by the manifestation of the inert pair effect.^{98-100,157,158} Owing to the poor spatial and energetic overlap of Bi valence s and p orbitals,^{108-109,115-116} with drastic relativistic effects of the heavy atom nucleus, only very strong oxidants can convert a Bi(III) center to Bi(V); accordingly BiCl₃ does not yield BiCl₅ upon exposure to chlorine.³⁰⁹ However, Bi(V) species, such as Ph₃Bi(OAc)₂, are accessible through oxidation with peroxides, for example, and have been used extensively as strong oxidants, such as in alcohol oxidation, olefin oxidation, and oxidative cleavage of diols.^{310,311} Further, the strongly oxidizing nature of Bi(V) centers has resulted in the development of ligand coupling reactions utilizing triaryl Bi(V) reagents, e.g. in the arylation of phenols.⁴⁴⁻⁴⁶ Recently, these principles have been applied by Ball to programmed, stoichiometric *o*-arylation of phenols by arylboronic acids via the intermediacy of triaryl Bi(V) species.³¹²

The Bi^I/Bi^{III} couple has been much less studied in the context of organopnictogen chemistry, as only recently have discrete redox events in this manifold been explored. Of particular note is the seminal work of Dostál, who has demonstrated that Lewis base-stabilized aryl-Bi(III) dihydrides undergo facile release of H₂ to generate the corresponding aryl-Bi(I) compounds,^{313,314} which are then amenable to oxidative addition to deliver Bi(III) species.³¹⁷ Bismuth(III) alkoxides also undergo Bi–O homolysis in certain cases,³¹⁸⁻³¹⁹ a potentially relevant step in the SOHIO ammoxidation process for the synthesis of acrylonitrile from propylene.³²⁰⁻³²² These rare examples represent the early stages of accessing low-valent organobismuth centers to enable redox events and have begun to find application in catalysis.

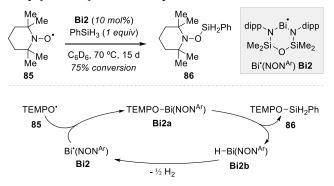
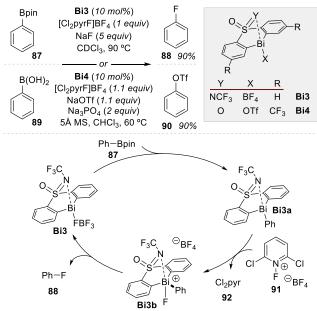

3.4.1 Catalytic Oxidation Reactions. Much of the pioneering synthetic method development using organobismuth molecules can be attributed to Barton and coworkers. Indeed, the very first demonstration of any organophictogen exhibiting redox catalysis was reported by Barton and Motherwell in 1981 (Fig. 29),¹⁶⁶ in which triphenylbismuth (Bi1) catalyzes oxidative cleavage of α glycols using a stoichiometric oxidant such as *tert*-butyl hydrogen peroxide (TBHP) or *N*-bromosuccinimide (NBS). This discovery was predicated upon the observation that, in the stoichiometric variant using triphenylbismuth carbonate as the oxidant, quantitative conversion to triphenvlbismuth (**Bi1**) is observed. As such, simply by slow addition of an exogenous oxidant to regenerate a Bi(V) species, catalytic turnover can be achieved with catalyst loadings as low as 1%. Similar reactivity of both cis- and *trans*-decalin-9,10-diols suggests an open intermediate enabling the oxidative cleavage, as opposed to a cyclic intermediate as has been invoked for Criegee, Malaprade, and related oxidations.³²³ Here, it is relevant to note the difference in reactivity as exhibited in the SbPh₃-catalyzed oxidation of benzoins as described in section 3.3.1, which is limited to more activated substrates. $^{\rm 304}$

Figure 29. BiPh₃-catalyzed α -glycol cleavage via Bi(V) oxidation. NBS = *N*-bromosuccinimide.


Postel and Duñach later described a series of oxidative cleavage reactions catalyzed by Bi(III) mandelate, under molecular oxygen in DMSO. ^{324,325} Here, epoxides can be oxidized *in situ* to α -diketones, which are further oxidatively converted to two equivalents of carboxylic acid. Related reactions point to a dual Lewis acidic and redox role for Bi(III) in these reactions. ^{326 - 329} Other Bi(III)-catalyzed oxidation reactions, including benzylic and allylic hydroxylation with TBHP, have been reported; however, mechanistic evidence is not supportive of a Bi-redox cycle.³³⁰⁻³³²

3.4.2 One-electron redox via open shell intermediates. The first demonstration of radical-mediated organobismuth catalytic reactivity was described by Coles in the context of oxidative coupling of TEMPO with phenylsilane with release of H₂ (Fig. 30).³³³ In this reaction, the isolable Bi(II) radical catalyst Bi2 can reversibly bond to TEMPO (85) to generate metastable Bi(III)-TEMPOxide Bi2a, which is proposed to undergo metathesis with a Si-H bond, generating the TEMPO-Si bonded product and Bi(III)-hydride Bi2b. This species was previously shown stoichiometrically to undergo oxidative loss of hydrogen, thus regenerating Bi(III) catalyst Bi2.318,319 Similar catalytic reactivity was recently demonstrated by Lichtenberg using а diaryl(bismuth)thiolate catalyst under UV irradiation.334

Figure 30. Bi^{II}/Bi^{III}-catalyzed dehydrogenative O–Si bond formation. Dipp = 2,6-di-*iso*-propylphenyl.

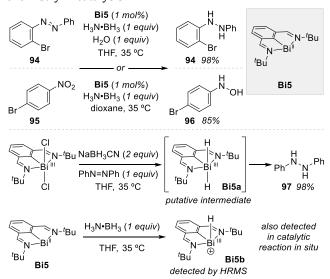
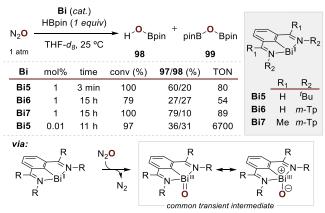

3.4.2 Catalytic Cross-Coupling. While Bi(III) and Bi(V) reagents have been used as organometallic nucleophiles and electrophiles, respectively, in transition metalcatalyzed cross couplings for more than 20 years, 335 Bicatalyzed redox cross-coupling reactions have only recently been reported. A transition metal-like cross-coupling reaction catalyzed by two electron-processes at a Bi center was described by Cornella in 2020 (Fig. 31).³³⁶ In this work, tethered Lewis base-supported Bi(III)-bismuthane catalyst Bi3 undergoes transmetalation with an aryl boronic ester to generate triarylbismuthane Bi3a. Then, oxidation by strongly oxidizing fluoropyridinium reagent **91** yields Bi(V) species **Bi3b**, which is stabilized by the pendant Lewis basic sulfoximine. Finally, reductive elimination forges the new C-F bond of product 88 and regenerate Bi(III) species Bi3, turning over the cycle. This chemistry takes advantage of a tethered biaryl sulfoximine ligand framework on Bi to both stabilize highly oxidizing Bi(V) intermediates with the pendant Lewis base and yield selective ligand coupling of the exocyclic aryl ligand with the apical fluoride substituent. As described in a follow-up report, perfluoroalkyl sulfonate salts are successfully coupled using bis-CF₃ bismuthane Bi4 bearing a sulfone tether to provide any triflate and nonaflate products. 337 In this catalytic platform, rational ligand design to optimize geometric and electronic properties at the central pnictogen atom serve to unveil novel, transition metal-like reactivity.

Figure 31. Bi-catalyzed fluorination and triflation of aryl boronic esters and acids, respectively. Proposed mechanism of fluorination. Tf = triflyl.


3.4.3 Catalytic Reductive Deoxygenation. Cornella has also explored the Bi¹/Bi^{III} couple for catalysis in the context of transfer hydrogenation of azoarenes and nitroarenes (Fig. 32).³³⁸ Using an NCN-chelated bismuthinidene (**Bi5**) first described by Dostál,^{313,314} an unstable Bi(III)-dihydride (**Bi5a**) is putatively formed by reaction with ammonia borane, in reverse analogy to the loss of H₂ from a Bi(III)-

dihydride (**Bi5a**) originally described by Dostál. In this catalytic reaction, the putative Bi(III)-dihydride (**Bi5a**) intermediate delivers H₂ across either N–N or N–O π -bonds, accomplishing a transfer hydrogenation with good functional group tolerance. Mechanistic studies support the intermediacy of the Bi(III)-dihydride (**Bi5a**), as its protonated cation (**Bi5b**) can be detected by HRMS in both stoichiometric and catalytic reactions. Here, the Bi¹/Bi^{III} cycle is exploited to first receive an equivalent of H₂ from ammonia borane and then deliver it to an activated π substrate, similarly to earlier work carried out in the P^{III}/P^V couple.²⁸³ This reaction is the first demonstration of organopnictogen catalysis operating in the Pn¹/Pn^{III} couple, thus paving the way for low-valent organopnictogen chemistry in catalysis.

Figure 32. Bismuthinidene-catalyzed transfer hydrogenation of azoarenes and nitroarenes to hydrazines and hydroxylamines, respectively, with ammonia borane.

Cornella further demonstrated the catalytic utility of the Bi¹/Bi¹¹ couple of bismuthinidenes such as **Bi5-Bi7** for the reductive deoxygenation of N₂O, through a distinct mechanistic pathway (Fig. 33). ³³⁹ In this study, rapid deoxygenation of N₂O by **Bi5** liberates N₂ and produces a dimeric [Bi₂O₂] species as detected by ESI-HRMS. Through careful tuning of the pendant imine ligands, aldimine-supported **Bi6** and ketimine-supported **Bi7** yield dimeric [Bi₂O₂] and monomeric [Bi–OH] scaffolds,

Figure 33. Bismuthinidene-catalyzed reductive deoxygenation of N_2O via the intermediacy of Bi(III)-oxide equivalents with pinacolborane. *m*-Tp = *meta*-terphenyl.

respectively, upon exposure to N₂O, with the structures unambiguously identified by single crystal X-ray crystallography. These results seemingly indicate an unstable, basic Bi^{III}-oxide intermediate derived from Oatom transfer from N₂O. Both aforementioned oxidederived adducts yield parent compounds **Bi6** and **Bi7**, along with HOBpin and O(Bpin)₂, upon exposure to HBpin at ambient temperature. Accordingly, catalytic reduction of N₂O is feasible using **Bi5**, **Bi6**, and **Bi7**, with **Bi5** delivering the most rapid and efficient conversion, even at catalyst loadings as low as 0.1 mol%. This demonstration of Bi¹/Bi^{III} catalysis combines the reducing nature of the Bi(I) state with a facile reduction of a Bi(III) oxide equivalent to enable redox cycling at ambient temperature, evocative of the body of work in P^{III}/P^v=O redox catalysis.

4. OUTLOOK

The quickening pace of progress in organopnictogen redox catalysis within the past fifteen years assures the continued vibrancy of this exciting area of research in the years to come. Looking ahead, we anticipate significant opportunities for ongoing discovery across a broad scientific front, including:

Designing Catalysts with Improved Redox Leveling. A greater mastery over precision redox tuning will be needed to enable catalysis with greater speed (turnover frequency) and greater durability (turnover number). An appreciation for the connection between catalyst composition/structure and redox driving force of elementary reaction steps will be a necessary initial step in this quest, but a further attentiveness to round-trip thermodynamics will also be needed for catalysis. Detailed mechanistic and thermochemical studies that identify kinetic bottlenecks and parasitic branching points will be essential to inform new catalyst designs that enable faster turnover at milder conditions with lower catalyst loading. In the limit, such a high level of redox mastery would enable the reversible use of a given Pn^n/Pn^{n+2} couple specified only by the reaction thermodynamics of the stoichiometric inputs.

• Taming Underexplored Two-Electron Redox Couples for Catalysis. Although periodic trends shape the innate driving

forces for two-electron redox events at pnictogens (Sect. 2), novel design of organophictogen compounds might open space for catalytic cycles operating within 'atypical' redox couples. As exemplified in Sect. 3, the Pn^{III}/Pn^V couple has been widely employed in catalysis; by contrast, the lowervalent Pn^I/Pn^{III} couple is still comparatively underdeveloped. Seminal work on the chemistry of Pn(I) centers have demonstrated their ability to achieve challenging bond activation reactions.^{340,341}Although the generation of low-valent Pn(I) species under mild conditions poses the most immediate barrier to expansion of organopnictogen redox catalysis to the Pn¹/Pn¹¹¹ couple, pioneering work from Cornella in Bi¹/Bi^{III} catalysis ^{338,339} establishes feasibility and points to further opportunities. By expanding the accessibility of diverse redox statespresumably through ligand design and substituent effectsnew channels of reactivity might be made available.

Controlling Stereochemistry in Organophictogen Redox *Catalysis.* The pioneering achievements of Werner.^{209,210} Voituriez,²¹⁹ and Kwon²³⁴ (Sect. 3.1) establish the viability of stereochemical control within organophictogen redox catalysis; however, new chiral organopnictogen catalysts will be needed to advance beyond these initial discoveries. For instance, it remains to be seen whether deliberate incorporation of 'secondary sphere' interactions can be leveraged to effect stereochemical discrimination.^{33,342-346} The opportunities and/or complexities associated with stereogenic pnictogen chirality centers and their fluxionality-especially stereochemical in pentacoordination (i.e. polytopal isomerism)141,142-have not yet been explored in a systematic fashion. Indeed, given challenges presented by the varying coordination numbers, geometries and valence electron counts encountered in organopnictogen redox catalysis, the emergence of new heuristics of asymmetric design may be needed.

• *Merging Organopnictogen Redox with Established Catalytic Modes.* The merger of organopnictogen redox catalysis with other enabling modes of catalysis (organocatalysis, transition metal catalysis, Bronsted acid/base catalysis, *inter alia*) could lead to the development of further powerful classes of reactions. Such catalytic cycles could be envisioned to work in tandem, cascade,³⁴⁷⁻³⁵¹ or synergistic modes,³⁵² owing to the mutual compatibility of each catalytic mode of molecular transformation. Such mergers could make use of the distinct reactivities inherent to the aforementioned platforms and create opportunities for unveiling novel transformations.

• *Embracing One-electron Open-shell Reactivity.* Stable covalent bonds are (mostly) two-electron constructs, but their catalytic synthesis by stepwise one-electron processes presents potentially enabling reaction channels. ^{353 - 359} Open-shell reactivity within organopnictogen catalysis is therefore ripe for development. Organopnictogen radicals and radical ions are well-known entities, ^{360 , 361} whose reactivity can be triggered by photochemistry ^{362 - 367} or electrochemistry. ^{368, 369} Among possible scenarios, single-electron oxidation or reduction of catalytic intermediates^{370.} ³⁷⁷ could unveil new reaction pathways, including selective bond activation or challenging atom transfer processes.³⁷⁸⁻

³⁸² Alternatively, single-electron pathways could be accessed to facilitate otherwise sluggish catalytic turnover, such as electrocatalytic reduction of phosphine oxides.³⁸³⁻³⁸⁶

Beyond Homogenous Organic Reaction Media. The development of catalytic systems that can operate in nonorganic media will be a necessity to realize a broader potential of group 15 redox catalysis in contexts beyond prevalence organic synthesis. Noting the of organophictogen redox chemistry in chemical biology in the form of the Staudinger ligation,³⁴⁻³⁹ the development of water-compatible reaction systems presents an appealing challenge to the growth of the field of organopnictogen redox catalysis. ³⁸⁷ Indeed, recent work utilizing P(V) chemistry to selectively label serine residues³⁸⁸ and Bi(V) chemistry to arylate phenols³¹² point to the potential of Pn(V) to enable selective bond-forming reactions. Alternatively, an adaptation of the design principles for homogeneous group 15 redox catalysis to heterogeneous catalyst development similarly presents untold prospects for discovery.

5. CONCLUDING REMARKS

To close, we return to the question posed at the end of the Abstract: "What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?"³⁸⁹ This is a critical question, and though a detailed answer may not be knowable except in hindsight, the contours of a reply surely can be traced in outline. Organophictogen redox catalysis is a relatively young entrant to the science of catalysis presently populated by numerous highly successful catalytic modalities, each a towering achievement. Within this crowded context, organopnictogen redox catalysis must aspire to more than mimicry of existing techniques; it must express something authentic and inimitable. On this front, it seems likely that the most compelling opportunities presented by this emerging field—those that will maximize scientific and practical impact—will be realized through the discovery of new bond (dis)connections or functional group interconversions that are truly native to *organophictogen* redox catalysis. We assert that the periodic trends—both within Group 15, and between Group 15 and others in the *p*-block—impart the pnictogens generally, and each of the pnictogen elements individually, with distinctive properties, providing a varied palette of components for catalyst design and reaction development. The diversity of characteristics in Group 15 position organophictogen redox catalysis to achieve unique reaction classes that are without direct precedent or complement in the armory of catalytic synthesis. Along this trajectory, the progress achieved thus far in organopnictogen redox catalysis is but a tantalizing preamble to a future of ongoing discovery.

Corresponding Author

Alexander T. Radosevich – Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; orcid.org/0000-0002-5373-7343; Email: radosevich@mit.edu

Authors

- Jeffrey M. Lipshultz Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; orcid.org/0000-0002-1384-9850; Email: jeflip@mit.edu
- **Gen Li** Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; orcid.org/0000-0001-6857-0235; Email: genli@mit.edu

Author Contributions

[†]J.M.L. and G.L. contributed equally to the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Dedicated to Prof. F. Dean Toste (UC Berkeley) on the occasion of his 50th birthday. Financial support was provided by NIH NIGMS (GM114547) and NSF (CHE-1900060). J.M.L. thanks the Camille and Henry Dreyfus Foundation for a postdoctoral fellowship in Environmental Chemistry. G.L. thanks Bristol Myers Squibb for a graduate fellowship. We extend our genuine thanks to the peer reviewers for their thorough and thoughtful comments.

REFERENCES

¹ Schwerdtfeger, P.; Smits, O.; Pyykkö, P. The periodic table and the physics that drives it. *Nat. Rev. Chem.* **2020**, *4*, 359–380.

² Mendeleev emphasized the periodic variation in oxidation number for the then-known elements: Mendelejeff, D. Ueber die Beziehungen der Eigeschaften zu den Atomgewichten der Elemente (On the Relationship of the Properties of the Elements to their Atomic Weights). *Z. Chem.* **1869**, *12*, 405-406.

³ According to IUPAC, "oxidation state of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds." IUPAC Compendium of Chemical Terminology. https://doi.org/10.1351/goldbook.004365. See also Refs. 18- 20.

⁴ Harder, S.; Piers, W. E. Organometallic and coordination chemistry of the s-block metals. *Dalton Trans.* **2018**, *47*, 12491–12492.

⁵ Krieck, S.; Westerhausen, M. Kudos and Renaissance of s-Block Metal Chemistry. *Inorganics* **2017**, *5*, 17.

⁶ Hill, M. S.; Liptrot, D. J.; Weetman, C. Alkaline earths as main group reagents in molecular catalysis. *Chem. Soc. Rev.* **2016**, *45*, 972–988.

⁷ Evans, W. J. The Importance of Questioning Scientific Assumptions: Some Lessons from f Element Chemistry. *Inorg. Chem.* **2007**, *46*, 3435–3449.

⁸ Arnold, P. L.; McMullon, M. W.; Rieb, J.; Kühn, F. E. C–H Bond Activation by f-Block Complexes. *Angew. Chem. Int. Ed.* **2015**, *54*, 82–100.

⁹ Astruc, D. Electron Transfer and Radical Processes in Transition Metal Chemistry; Wiley-VCH: New York, 1995.

¹⁰ Labinger, J. A. Tutorial on Oxidative Addition. *Organometallics* **2015**, *34*, 4784–4795.

¹¹ Kočovský, P.; Malkov, A. V.; Vyskočil, Š.; Lloyd-Jones, G. C. Transition metal catalysis in organic synthesis: reflections, chirality and new vistas. *Pure Appl. Chem.* **1999**, *71*, 1425–1433.

¹² King, A. O.; Yasuda, N. Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals. In *Organometallics in Process Chemistry*; Larsen, R. D., Ed.; Springer: Berlin, Heidelberg, 2004; pp 205–245.

¹³ Corbet, J.-P.; Mignani, G. Selected Patented Cross-Coupling Reaction Technologies. *Chem. Rev.* **2006**, *106*, 2651–2710.

¹⁴ Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. *Angew. Chem. Int. Ed.* **2012**, *51*, 5062–5085.

¹⁵ Girolami, G. Origin of the Terms *Pnictogen* and *Pnictide*. *J. Chem. Educ.* **2009**, *86*, 1200–1201.

¹⁶ Fluck, E. New Notations in the Periodic Table. *Pure Appl. Chem.* **1988**, *60*, 431–436.

¹⁷ In line with the view articulated by Vitz (Ref. 18) and endorsed by Karen et al. (Ref. 19), we consider for the purpose of this Perspective that redox (oxidation/reduction) reactions are "...those in which oxidation states of the reactant(s) change." Organopnictogen redox catalysis therefore concerns catalytic transformations operating by a closed cycle of elementary reactions involving oxidation state changes at the catalytic pnictogen center.

¹⁸ Vitz, E. Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions. *J. Chem. Educ.* **2002**, *79*, 397–400.

¹⁹ Karen, P.; McArdle, P.; Takats, J. Comprehensive definition of oxidation state (IUPAC Recommendations 2016). *Pure Appl. Chem.* **2016**, *88*, 831–839.

²⁰ Karen, P. Oxidation State, A Long-Standing Issue! *Angew. Chem. Int. Ed.* **2015**, *54*, 4716–4726.

²¹ For an insightful discourse on the oxidation state formalism and its connection to related descriptors, see: Parkin, G. Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts. *J. Chem. Educ.* **2006**, *83*, 791–799.

²² As correctly noted by a reviewer and reinforced by the IUPAC recommendations, 'oxidation state' is a formalism, and "[i]t is therefore not surprising that, for some compounds, one value does not fit all uses, or that dedicated measurements or computations are needed to ascertain the actual [oxidation state]" (Ref. 19). Especially in main group chemistry, questions about the assignment of nominal oxidation states have given rise to much critical (and colorful) analysis, as in Refs. 23-25.

²³ Himmel, D.; Krossing, I.; Schnepf, A. Dative Bonds in Main-Group Compounds: A Case for Fewer Arrows! *Angew. Chem. Int. Ed.* **2014**, *53*, 370–374.

²⁴ Frenking, G. Dative Bonds in Main-Group Compounds: A Case for More Arrows! *Angew. Chem. Int. Ed.* **2014**, *53*, 6040–6046.

²⁵ Himmel, D.; Krossing, I.; Schnepf, A. Dative or Not Dative? *Angew. Chem. Int. Ed.* **2014**, *53*, 6047–6048.

²⁶ Davy, H. XIV. Researches on the oxymuriatic acid, its nature and combinations; and on the elements of the muriatic acid. With some experiments on sulphur and phosphorus, made in the laboratory of the Royal Institution. *Phil. Trans. Royal Soc.* **1810**, *100*, 231–267.

²⁷ Davy, H. XXII. On some combinations of phosphorus and sulphur, and on some other subjects of chemical inquiry. *Phil. Trans. Royal Soc.* **1812**, *102*, 405–415.

²⁸ Staudinger, H.; Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. *Helv. Chim. Acta* **1919**, *2*, 635–646.

²⁹ Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Sixty Years of Staudinger Reaction. *Tetrahedron* **1981**, *37*, 437– 472.

³⁰ Gololobov, Y. G.; Kasukhin, L. F. Recent Advances in the Staudinger Reaction. *Tetrahedron* **1992**, *48*, 1353–1406.

³¹ Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. Bifunctional Iminophosphorane Organocatalysts for Enantioselective Synthesis: Application to the Ketimine Nitro-Mannich Reaction. *J. Am. Chem. Soc.* **2013**, *135*, 16348–16351.

³² Krawczyk, H.; Dzięgielewski, M.; Deredas, D.; Albrecht, A.; Albrecht, Ł. Chiral Iminophosphoranes—An Emerging Class of Superbase Organocatalysts. *Chem. Eur. J.* **2015**, *21*, 10268–10277.

³³ Formica, M.; Rozsar, D.; Su, G.; Farley, A. J. M.; Dixon, D. J. Bifunctional Iminophosphorane Superbase Catalysis:

Applications in Organic Synthesis. *Acc. Chem. Res.* **2020**, *53*, 2235–2247.

³⁴ Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. *Science* **2000**, *287*, 2007– 2010.

³⁵ Köhn, M.; Breinbauer, R. The Staudinger Ligation–A Gift to Chemical Biology. *Angew. Chem. Int. Ed.* **2004**, *43*, 3106–3116.

³⁶ van Berkel, S. S.; van Eldijk, M. B.; van Hest, J. C. M. Staudinger Ligation as a Method for Bioconjugation. *Angew. Chem. Int. Ed.* **2011**, *50*, 8806–8827.

³⁷ Schilling, C. I.; Jung, N.; Biskup, M.; Schepers, U.; Bräse, S. Bioconjugation *via* azide-Staudinger ligation: an overview. *Chem. Soc. Rev.* **2011**, *40*, 4840–4871.

³⁸ Liu, S.; Edgar, K. J. Staudinger Reactions for Selective Functionalization of Polysaccharides: A Review. *Biomacromolecules* **2015**, *16*, 2556–2571.

³⁹ Bednarek, C.; Wehl, I.; Jung, N.; Schepers, U.; Bräse, S. The Staudinger Ligation. *Chem. Rev.* **2020**, *120*, 4301–4354.

⁴⁰ Wittig, G.; Schöllkopf, U. Über Triphenyl-phosphinmethylene als olefinbildende Reagenzien (I. Mitteil.). *Chem. Ber.* **1954**, *87*, 1318–1330.

⁴¹ Wittig, G.; Haag, W. Über Triphenyl-phosphinmethylene als olefinbildende Reagenzien (II. Mitteil.). *Chem. Ber.* **1955**, *88*, 1654–1666.

⁴² Hoffmann, R. W. Wittig and His Accomplishments: Still Relevant Beyond His 100th Birthday. *Angew. Chem. Int. Ed.* **2001**, *40*, 1411–1416.

⁴³ Pommer, H. The Wittig Reaction in Industrial Practice. *Angew. Chem. Int. Ed.* **1977**, *16*, 423–492.

⁴⁴ Barton, D. H. R.; Charpiot, B.; Motherwell, W. B. Regiospecific Arylation by Acid/Base Controlled Reactions of Tetraphenylbismuth Ester. *Tetrahedron Lett.* **1982**, *23*, 3365–3368.

⁴⁵ Barton, D. H. R.; Bhatnagar, N. Y.; Blazejewski, J.-C.; Charpiot, B.; Finet, J.-P.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B.; Stanforth, S. P. Pentavalent Organobismuth Reagents. Part 2. The Phenylation of Phenols. *J. Chem. Soc., Perkin Trans.* 1 **1985**, 2657–2665.

⁴⁶ Barton, D. H. R.; Blazejewski, J.-C.; Charpiot, B.; Finet, J.-P.; Motherwell, W. B.; Papoula, M. T. B.; Stanforth, S. P. Pentavalent Organobismuth Reagents. Part 3. Phenylation of Enols and of Enolate and other Anions. *J. Chem. Soc., Perkin Trans.* **1 1985**, *53*, 2667–2675.

⁴⁷ Dagorne, S.; Wehmschulte, R. Recent Developments on the Use of Group 13 Metal Complexes in Catalysis. *ChemCatChem* **2018**, *10*, 2509–2520.

⁴⁸ Von Grotthuss, E.; Prey, S. E.; Bolte, M.; Lerner, H. W.; Wagner, M. Dual Role of Doubly Reduced Arylboranes as Dihydrogen- and Hydride-Transfer Catalysts. *J. Am. Chem. Soc.* **2019**, *141*, 6082–6091.

⁴⁹ Légaré, M. A.; Pranckevicius, C.; Braunschweig, H. Metallomimetic Chemistry of Boron. *Chem. Rev.* **2019**, *119*, 8231–8261

⁵⁰ Su, Y.; Kinjo, R. Small Molecule Activation by Boron-Containing Heterocycles. *Chem. Soc. Rev.* **2019**, *48*, 3613–3659.

⁵¹ Revunova, K.; Nikonov, G. I. Main Group Catalysed Reduction of Unsaturated Bonds. *Dalt. Trans.* **2014**, *44*, 840–866. ⁵² Hadlington, T. J.; Driess, M.; Jones, C. Low-Valent Group 14 Element Hydride Chemistry: Towards Catalysis. *Chem. Soc. Rev.* **2018**, *47*, 4176–4197.

⁵³ Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. *Angew. Chem. Int. Ed.* **2009**, *48*, 8409–8411.

⁵⁴ Breder, A.; Ortgies, S. Recent Developments in Sulfurand Selenium-Catalyzed Oxidative and Isohypsic Functionalization Reactions of Alkenes. *Tetrahedron Lett.* **2015**, *56*, 2843–2852.

⁵⁵ Ortgies, S.; Breder, A. Oxidative Alkene Functionalizations via Selenium-π-Acid Catalysis. *ACS Catal.* **2017**, *7*, 5828–5840.

⁵⁶ Shao, L.; Li, Y.; Lu, J.; Jiang, X. Recent Progress in Selenium-Catalyzed Organic Reactions. *Org. Chem. Front.* **2019**, *6*, 2999–3041.

⁵⁷ Singh, F. V.; Wirth, T. Selenium Reagents as Catalysts. *Catal. Sci. Technol.* **2019**, *9*, 1073–1091.

⁵⁸ Matviitsuk, A.; Panger, J. L.; Denmark, S. E. Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. *Angew. Chem. Int. Ed.* **2020**, *59*, 19796–19819.

⁵⁹ Stang, P. J.; Zhdankin, V. V. Organic Polyvalent Iodine Compounds. *Chem. Rev.* **1996**, *96*, 1123–1173.

⁶⁰ Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile Hypervalent-Iodine(III)-Catalyzed Oxidations with m-Chloroperbenzoic Acid as a Cooxidant. *Angew. Chem. Int. Ed.* **2005**, *44*, 6193–6196.

⁶¹ Richardson, R. D.; Wirth, T. Hypervalent Iodine Goes Catalytic. *Angew. Chem. Int. Ed.* **2006**, *45*, 4402–4404.

⁶² Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. *Chem. Commun.* **2009**, 2073–2085.

⁶³ Singh, F. V.; Wirth, T. Hypervalent Iodine-Catalyzed Oxidative Functionalizations Including Stereoselective Reactions. *Chem. Asian J.* **2014**, *9*, 950–971.

⁶⁴ Arnold, A. M.; Ulmer, A.; Gulder, T. Advances in Iodine(III)-Mediated Halogenations: A Versatile Tool to Explore New Reactivities and Selectivities. *Chem. Eur. J.* **2016**, *22*, 8728–8739.

⁶⁵ Yoshimura, A.; Zhdankin, V. V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. *Chem. Rev.* **2016**, *116*, 3328–3435.

⁶⁶ Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein *J. Org. Chem.* **2018**, *14*, 1813–1825.

⁶⁷ Flores, A.; Cots, E.; Berges, J.; Muniz, K. Enantioselective Iodine(I/III) Catalysis in Organic Synthesis. *Adv. Synth. Catal.* **2019**, *361*, 2–25.

⁶⁸ Lee, H.; Choi, S.; Hong, K. Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. *Molecules* **2019**, *24*, 2634.

⁶⁹ Power, P. P. Main-group elements as transition metals. *Nature* **2010**, *463*, 171–177.

⁷⁰ Chu, T.; Nikonov, G. I. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. *Chem. Rev.* **2018**, *118*, 3608–3680.

⁷¹ Weetman, S.; Inoue, S. The Road Travelled: After Main-Group Elements as Transiton Metals. *ChemCatChem* **2018**, *10*, 4213–4228.

⁷² Melen, R. Frontiers in molecular p-block chemistry: From structure to reactivity. *Science* **2019**, *363*, 479–484.

⁷³ Ruffell, K.; Ball, L. T. Organobismuth Redox Manifolds: Versatile Tools for Synthesis. *Trends Chem.* **2020**, 2, 867–869.

⁷⁴ Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. *Chem. Sci.* **2020**, *11*, 9728–9740.

⁷⁵ Hu, Z.; Gao, S. Upper crustal abundance of trace elements: A revision and update. *Chem. Geol.* **2008**, *253*, 205–221.

⁷⁶ U.S. Geological Survey Mineral Commodity Summaries 2020, Reston, VA, 2020, https://doi.org/10.3133/mcs2020.

⁷⁷ Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Lewis Acidity of Organofluorophosphonium Salts: Hydrodefluorination by a Saturated Acceptor. *Science* **2013**, *341*, 1374–1377.

⁷⁸ Bayne, J. M.; Stephan, D. W. Phosphorus Lewis acids: emerging reactivity and applications in catalysis. *Chem. Soc. Rev.* **2016**, *45*, 765–774.

⁷⁹ Werner, T. Phosphonium Salt Organocatalysis. *Adv. Synth. Catal.* **2009**, *351*, 1469–1481.

⁸⁰ Denmark, S. E.; Beutner, G. L. Lewis Base Catalysis in Organic Synthesis. *Angew. Chem. Int. Ed.* **2008**, 47, 1560–1638.

⁸¹ Wei, Y.; Shi, M. Applications of Chiral Phosphine-Based Organocatalysts in Catalytic Asymmetric Reactions. *Chem. Asian J.* **2014**, *9*, 2720–2734.

⁸² Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. *Chem. Rev.* **2018**, *118*, 10049–10293.

⁸³ Stephan, D. W. "Frustrated Lewis pairs": a concept for new reactivity and catalysis. *Org. Biomol. Chem.* **2008**, *6*, 1535–1539.

⁸⁴ Stephan, D. W. Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. *Dalton Trans.* **2009**, 3129–3136.

⁸⁵ Stephan, D. W.; Erker, G. Frustrated Lewis Pairs: Metalfree Hydrogen Activation and More. *Angew. Chem. Int. Ed.* **2010**, *49*, 49–76.

⁸⁶ Stephan, D. W. Frustrated Lewis Pairs: From Concept to Catalysis. *Acc. Chem. Res.* **2015**, *48*, 306–316.

⁸⁷ Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands; McAuliffe, C. A., Ed. MacMillan: London, 1973.

⁸⁸ Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. *Chem. Rev.* **1977**, *77*, 313–348.

⁸⁹ Champness, N. R.; Levason, R. Coordination chemistry of stibine and bismuthine ligands. *Coord. Chem. Rev.* **1994**, *133*, 115–217.

⁹⁰ Burt, J.; Levason, W.; Reid, G. Coordination chemistry of the main group elements with phosphine, arsine, and stibine ligands. *Coord. Chem. Rev.* **2004**, *260*, 65–115.

⁹¹ Levason, W.; Reid, G. Development in the coordination chemistry of stibine ligands. *Coord. Chem. Rev.* **2006**, *250*, 2565–2594.

⁹² Martin, R.; Buchwald, S. B. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. *Acc. Chem. Res.* **2008**, *41*, 1461–1473.

⁹³ Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications; Börner, A., Ed. Wiley-VCH: Weinheim, 2008.

⁹⁴ Jones, J. S.; Gabbaï, F. P. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony. *Acc. Chem. Res.* **2016**, *49*, 857–867.

⁹⁵ Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements*, 2nd ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 1997.

⁹⁶ Burford, N.; Carpenter, Y.-Y.; Conrad, E.; Saunders, C. D. L. The Chemistry of Arsenic, Antimony, and Bismuth. In *Biological Chemistry of Arsenic, Antimony and Bismuth*; Sun, H., Ed.; Wiley: Hoboken, NJ, 2010; pp 1–17.

⁹⁷ Zhao, L.; Pan, S.; Holzmann, N.; Schwerdtfeger, P.; Frenking, G. Chemical Bonding and Bonding Models of Main-Group Compounds. *Chem. Rev.* **2019**, *119*, 8781–8845.

 98 Power, P. P. $\pi\text{-Bonding}$ and the Lone Pair Effect in Multiple Bonds Involving Heavier Main Group Elements. *Chem. Rev.* **1999**, *99*, 3463–3503.

 99 Fischer, R. C.; Power, P. P. π -Bonding and the Lone Pair Effect in Multiple Bonds Involving Heavier Main Group Elements: Developments in the New Millennium. *Chem. Rev.* **2010**, *110*, 3877–3923.

¹⁰⁰ Power, P. P. An Update on Multiple Bonding between Heavier Main Group Elements: The Importance of Pauli Repulsion, Charge-Shift Character, and London Dispersion Force Effect. *Organometallics* **2020**, *39*, 4127–4138.

¹⁰¹ Desclaux, J. Relativistic Dirac-Fock expectation values for atoms with Z= 1 to Z= 120. *At. Data Nucl. Data Tables* **1973**, *12*, 311–406.

¹⁰² Pyykkö, P. Interpretation of secondary periodicity in the periodic system. *J. Chem. Res. Synop.* **1979**, 380–381.

¹⁰³ Imyanitov, N. S. Does the period table appear doubled? Two variants of division of elements into two subsets. Internal and secondary periodicity. *Found. Chem.* **2019**, *21*, 255–284.

¹⁰⁴ Seth, M.; Dolg, M.; Fulde, P.; Schwerdtfeger, P. Lanthanide and Actinide Contractions: Relativistic and Shell Structure Effects. *J. Am. Chem. Soc.* **1995**, *117*, 6597–6598.

¹⁰⁵ Wang, Z.-L.; Hu, H.-S.; von Sventály, L.; Stoll, H.; Fritzsche, S.; Pyykkö, P.; Schwarz, W. H. E.; Li, J. Understanding the Uniqueness of 2p Elements in Periodic Tables. *Chem. Eur. J.* **2020**, *26*, 15558–15564.

¹⁰⁶ Pyykkö, P. Dirac–Fock One-centre Calculaions. Part 7.– Divalent Systems MH⁺ and MH₂ (M = Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd, Hg, Yb and No). *J. Chem. Soc., Faraday Trans. 2* **1979**, *75*, 1256–1276.

 107 Pyykkö, P. Dirac-Fock One-centre Calculations Part 8. The $^{1}\Sigma$ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. *Physica Scripta* **1979**, *20*, 647–651.

¹⁰⁸ Kaupp, M. The Role of Radial Nodes of Atomic Orbitals for Chemical Bonding and the Periodic Table. *J. Comput. Chem.* **2007**, *28*, 320–325.

¹⁰⁹ Kaupp, M. Chemical Bonding of Main-Group Elements. The Chemical Bond. **2014**, *1*, 1–24. ¹¹⁰ Desclaux, J. P.; Kim, Y.-K. Relativistic effects in outer shells of heavy atoms. *J. Phys. B* **1975**, *8*, 1177–1182.

¹¹¹ Pitzer, K. Relativistic Effects on Chemical Properties. *Acc. Chem. Res.* **1979**, *12*, 271–276.

¹¹² Pyykkö, P.; Desclaux, J.-P. Relativity and the Periodic System of Elements. *Acc. Chem. Res.* **1979**, *12*, 276–281.

¹¹³ Pyykkö, P. Relativistic Effects in Structural Chemistry. *Chem. Rev.* **1988**, *88*, 563–594.

¹¹⁴ Bagus, P. S.; Lee, Y. S.; Pitzer, K. S. Effects of Relativity and of the Lanthanide Contraction on the Atoms from Hafnium to Bismuth. *Chem. Phys. Lett.* **1975**, *33*, 408–411.

¹¹⁵ Kutzelnigg, W. Chemical Bonding in Higher Main Group Elements. *Angew. Chem. Int. Ed.* **1984**, *23*, 272–295.

¹¹⁶ Kutzelnigg, W. Orthogonal and Non-orthogonal Hybrids. *J. Mol. Struct.* **1988**, *169*, 403–419.

¹¹⁷ Balasubramanian, K.; Chung, Y. S.; Glaunsinger, W. S. Geometries and bond energies of PH_n and PH_{n^+} (*n*=1–3). *J. Chem. Phys.* **1993**, *98*, 8859–8869.

¹¹⁸ Dai, D.; Balasubramanian, K. Geometries and energies of electronic states of AsH₃, SbH₃, and BiH₃ and their positive ions. *J. Chem. Phys.* **1990**, *93*, 1837–1846.

¹¹⁹ Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. *Acta Cryst. B* **2016**, *72*, 171–179.

¹²⁰ Dunne, B. J.; Orpen, A. G. Triphenylphosphine: a Redetermination. *Acta Cryst. C* **1991**, *47*, 345–347.

¹²¹ Sobolev, A. N.; Belsky, V. K.; Chernikova, N. Y.; Akhmadulina, F. Y. Structure Analysis of Triaryl Derivatives of the Group V Elements: VIII. The Crystal and Molecular Structure of Triphenylarsine, C18H15As. *J. Organomet. Chem.* **1983**, *244*, 129–136.

¹²² Adams, E. A.; Kolis, J. W.; Pennington, W. T. Structure of Triphenylstibine. *Acta Cryst. C* **1990**, *46*, 917–919.

¹²³ Bučinský, L.; Jayatilaka, D.; Grabowsky, S. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth. *J. Phys. Chem. A* **2016**, *120*, 6650–6669.

¹²⁴ Schwerdtfeger, P.; Laakonen, L.; Pyykkö, P. Trends in inversion barriers. I. Group-15 hydrides. *J. Chem. Phys.* **1992**, *96*, 6807–6819.

¹²⁵ Schwerdtfeger, P.; Boyd, P. D. W.; Fischer, T.; Hunt, P.; Liddell, M. Trends in Inversion Barriers of Group 15 Compounds. 2. Ab-Initio and Density Functional Calculations on Group 15 Fluorides. *J. Am. Chem. Soc.* **1994**, *116*, 9620–9633.

¹²⁶ Santiago, R. T.; Haiduke, R. L. A. Relativistic effects on inversion barriers of pyramidal group 15 hydrides. *Int. J. Quantum Chem.* **2018**, *118*, e25585.

¹²⁷ Levin, C. A Qualitative Molecular Orbital Picture of Electronegativity Effects on XH₃ Inversion Barriers. *J. Am. Chem. Soc.* **1975**, *97*, 5649–5655.

¹²⁸ Lee, K.; Blake, A. V.; Tanushi, A.; McCarthy, S. M.; Kim, D.; Loria, S. M.; Donahue, C. M.; Spielvogel, K. D.; Keith, J. M.; Daly, S. R.; Radosevich, A. T. Validating the Biphilic Hypothesis of Nontrigonal Phosphorus(III) Compounds. *Angew. Chem. Int. Ed.* **2019**, *58*, 6993–6998.

¹²⁹ Kindervater, M. B.; Marczenko, K. M.; Werner-Zwanziger, U.; Chitnis, S. S. A Redox-Confused Bismuth(I/III) Triamide with a T-Shaped Planar Ground State. *Angew. Chem. Int. Ed.* **2019**, *58*, 7850–7855. ¹³⁰ Marczenko, K M.; Zurakowski, J. A.; Kindervater, M. B.; Jee, S.; Hynes, T.; Roberts, N.; Park, S.; Werner-Zwanziger, U.; Lumsden, M.; Langelaan, D. N.; Chitnis, S. S. Periodicity in Structure, Bonding, and Reactivity for p-Block Complexes of a Geometry Constraining Triamide Ligand. *Chem. Eur. J.* **2019**, *25*, 16414–16424.

¹³¹ Marczenko, K. M.; Jee, S.; Chitnis, S. S. High Lewis Acidity at Planar, Trivalent, and Neutral Bismuth Centers. *Organometallics* **2020**, *39*, 4287–4296.

¹³² Wittig, G.; Rieber, M. Darstellung und Eigenschaften des Pentaphenyl-phosphors. *Justus Liebiegs Ann. Chem.* **1949**, *562*, 187–192.

¹³³ Wittig, G.; Clauß, K. Pentaphenyl-arsen und Pentaphenyl-antimon. *Justus Liebigs Ann. Chem.* **1952**, *577*, 26–39.

¹³⁴ Wittig, G.; Clauß, K. Pentaphenyl-wismut. *Justus Liebegs Ann. Chem.* **1952**, *578*, 136–146.

¹³⁵ Wheatley, P. J. 408. The Crystal and Molecular Structure of Pentaphenyl-phosphorus. *J. Chem. Soc.* **1964**, 2206–2222.

¹³⁶ Brock, C. P.; Webster, D. F. The Crystal structure of Pentaphenylarsenic: Implications for the Role of Crystal Packing Forces in the Structures of Penta-aryl Group V Molecules. *Acta. Cryst. B* **1976**, *32*, 2089–2094.

¹³⁷ Beauchamp, A. L.; Bennett, M. J.; Cotton, F. A. A Reinvestigation of the Crystal and Molecular Structure of Pentaphenylantimony. *J. Am. Chem. Soc.* **1968**, *90*, 6675– 6680.

¹³⁸ Schmuck, A.; Buschmann, J.; Fuchs, J.; Seppelt, K. Structure and Color of Pentaphenylbismuth. *Angew. Chem. Int. Ed.* **1987**, *26*, 1180–1182.

¹³⁹ Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogensulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6dithiaheptane]copper(II) perchlorate. *J.Chem. Soc., Dalton Trans.* **1984**, 1349–1356.

¹⁴⁰ The structural parameter τ is defined for 5-coordiante compounds as $\tau = (\beta - \alpha)/60^{\circ}$, where $\beta > \alpha$ are the two largest valence angles of the coordination center. At the two extremes, $\tau = 0$ for ideal square pyramidal and $\tau = 1$ for ideal trigonal bipyramidal geometries.

¹⁴¹ Ugi, I.; Marquarding, D.; Klusacek, H.; Gillespie, P.; Ramirez, F. Berry Pseudorotation and Turnstile Rotation. *Acc. Chem. Res.* **1971**, *4*, 288–296.

¹⁴² Gillespie, P.; Hoffman, P.; Klusacek, H.; Marquarding, D.; Pfohl, S.; Ramirez, F.; Tsolis, E. A.; Ugi, I. Non-rigid Molecular Skeletons—Berry Pseudorotation and Turnstile Rotation. *Angew. Chem. Int. Ed.* **1971**, *10*, 687–715.

¹⁴³ Beattie, I. R.; Livingston, K. M. S.; Ozin, G. A.; Sabine, R. The Shape of Pentaphenylantimony and Pentaphenylarsenic in Solution. *J. Chem. Soc., Dalton Trans.* **1972**, 784–786.

¹⁴⁴ Schmuck, A.; Seppelt, K. Strukturen von Pentaarylbismut-Verbindungen. *Chem. Ber.* **1989**, *122*, 803–808.

¹⁴⁵ Schmuck, A.; Leopold, D.; Wallenhauer, S.; Seppelt, K. Strukturen von Pentaarylbismut-Verbindungen. *Chem. Ber.* **1990**, *123*, 761–766.

¹⁴⁶ Schmuck, A.; Seppelt, K.; Pyykkö, P. Structure and Color of Substituted Pentaphenylbismuth. *Angew. Chem. Int. Ed.* **1990**, *29*, 213–215.

¹⁴⁷ Seppelt, K. Structure, Color, and Chemistry of Pentaaryl Bismuth Compounds. *Adv. Organomet. Chem.* **1992**, *34*, 207–217.

¹⁴⁸ Barton, D. H. R.; Blazejewski, J.-C.; Charpiot, B.; Lester, D. J.; Motherwell, W. G.; Papoula, M. T. B. Comparative Arylation Reactions with Pentaphenylbismuth and with Triphenylbismuth Carbonate. *J. Chem. Soc., Chem. Commun.* **1980**, 827–829.

¹⁴⁹ Kuczkowski, A.; Schulz, S.; Nieger, M.; Schreiner, P. R. Experimental and Computational Studies of R_3AI -ER'₃ (E = P, As, Sb, Bi; R = Et, *t*-Bu; R' = SiMe₃, *i*-Pr) Donor–Acceptor Complexes: Role of the Central Pnictine and the Substituents on the Structure and Stability of Alane Adducts. *Organometallics* **2002**, *21*, 1408–1419.

¹⁵⁰ Henry, M. C.; Wittig, G. The Organometallic Alkylidene Reaction. *J. Am. Chem. Soc.* **1960**, *82*, 563–564.

¹⁵¹ Matano, Y. Synthesis, Structure, and Reactions of Triaryl(methyl)bismuthonium Salts. *Organometallics* **2000**, *19*, 2258–2263.

¹⁵² Tolman, C. A. Phosphorus Ligand Exchange Equilibriums on Zerovalent Nickel. Dominant Role for Steric Effects. J. Am. Chem. Soc. **1970**, *92*, 2956–2965.

¹⁵³ Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. *Chem. Rev.* **1977**, *77*, 313–348.

¹⁵⁴ Levason, W.; McAuliffe, C. A. Coordination Chemistry of Organostibines. *Acc. Chem. Res.* **1978**, *11*, 363–368.

¹⁵⁵ Nitrogen, Phosphorus, Arsenic, Antimony, and Bismuth. In *Standard Potentials in Aqueous Solution*; Bard, A. J., Parsons, R., Jordan, J., Eds.; CRC Press: Boca Raton, FL, 1985; pp 127–187.

¹⁵⁶ For Group 15 Frost diagrams similar to Figure 6, see Refs. 95 and 96.

¹⁵⁷ Drago, R. S. Thermodynamic Evaluation of the Inert Pair Effect. *J. Phys. Chem.* **1958**, *62*, 353–357.

¹⁵⁸ Sanderson, R. T. The "Inert-Pair Effect" on Electronegativity. *Inorg. Chem.* **1986**, *25*, 1856–1858.

¹⁵⁹ Wheeler, R. A.; Kumar, P. N. V. P. Stereochemically Active or Inactive Lone Pair Electrons in Some Six-Coordinate, Group 15 Halides. *J. Am. Chem. Soc.* **1992**, *114*, 4776–4784.

¹⁶⁰ Naito, T.; Nagase, S.; Yamataka, H. Theoretical Study of the Structure and Reactivity of Ylides of N, P, As, Sb, and Bi. *J. Am. Chem. Soc.* **1994**, *116*, 10080–10088.

¹⁶¹ Fischer, J.; Rudzitis, E. Preparation, Properties and Reactions of Bismuth Pentafluoride. *J. Am. Chem. Soc.* **1959**, *81*, 6375–6377.

¹⁶² Gerstenberger, M. R. C.; Haas, A. Methods of Fluorination in Organic Chemistry. *Angew. Chem. Int. Ed.* **1981**, *20*, 647–667.

¹⁶³ Breidung, J.; Thiel, W. A Systematic *Ab Initio* Study of the Group V Trihalides MX_3 and Pentahalides MX_5 (M = P-Bi, X = F-I). *J. Comput. Chem.* **1992**, *13*, 165–176.

¹⁶⁴ Schwerdtfeger, P.; Heath, G. A.; Dolg, M.; Bennett, M. A. Low Valencies and Periodic Trends in Heavy Element Chemistry. A Theoretical Study of Relativistic Effects and Electron Correlation Effects in Group 13 and Period 6 Hydrides and Halides. J. Am. Chem. Soc. **1992**, 114, 7518–7527.

¹⁶⁵ Moc, J.; Morokuma, K. Ab Initio Molecular Orbital Study on the Periodic Trends in Structures and Energies of Hypervalent Compounds: Five-Coordinated XH₅ Species Containing a Group 15 Central Atom (X = P, As, Sb, and Bi). J. Am. Chem. Soc. **1995**, *117*, 11790–11797.

 166 Barton, D. H. R.; Motherwell, W. B.; Stobie, A. A Catalytic Method for α -Glycol Cleavage. *J. Chem. Soc., Chem. Commun.* **1981**, 1232–1233.

¹⁶⁷ Cahours, A.; Hofmann, A. W. Untersuchungen Über Die Phosphorbasen. *Ann. der Chemie und Pharm.* **1857**, *104*, 1– 39.

¹⁶⁸ Wiley, G. A.; Hershkowitz, R. L.; Rein, B. M.; Chung, B. C. Studies in Organophosphorus Chemistry. I. Conversion of Alcohols and Phenols to Halides by Tertiary Phosphine Dihalides. *J. Am. Chem. Soc.* **1964**, *86*, 964–965.

¹⁶⁹ Cadogan, J. I. G.; Mackie, R. K. Tervalent Phosphorus Compounds in Organic Synthesis. *Chem. Soc. Rev.* **1974**, *3*, 87–137.

¹⁷⁰ Denney, D. B.; DiLeone, R. R. Reactions of T-Alkyl Hypochlorites with Trisubstituted Phosphines and Phosphites. *J. Am. Chem. Soc.* **1962**, *84*, 4737–4743

¹⁷¹ Rabinowitz, R.; Marcus, R. Ylid Intermediate in the Reaction of Triphenylphosphine with Carbon Tetrachloride. *J. Am. Chem. Soc.* **1962**, *84*, 1312–1313.

¹⁷² Lee, J. B. Preparation of Acyl Halides under Very Mild Conditions. *J. Am. Chem. Soc.* **1966**, *88*, 3440–3441.

¹⁷³ Mukaiyama, T.; Ueki, M.; Maruyama, H.; Matsueda, R. A New Method for Peptide Synthesis by Oxidation-Reduction Condensation. *J. Am. Chem. Soc.* **1968**, *90*, 4490–4491.

¹⁷⁴ Denney, D. B.; Jones, D. H. The Peroxide Route to Pentaoxyphosphoranes. *J. Am. Chem. Soc.* **1969**, *91*, 5821– 5825.

¹⁷⁵ Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P–N Linkage. *Angew. Chem. Int. Ed.* **1975**, *14*, 801–811.

¹⁷⁶ Bartlett, P. D.; Baumstark, A. L.; Landis, M. E. Insertion Reaction of Triphenylphosphine with Tetramethyl-1,2-Dioxetane. Deoxygenation of a Dioxetane to an Epoxide. *J. Am. Chem. Soc.* **1973**, *95*, 6486–6487.

¹⁷⁷ Skowrońska, A.; Pakulski, M.; Michalski, J.; Cooper, D.; Trippett, S. The Arbuzov Reaction of Triethyl Phosphite with Elemental Iodine. *Tetrahedron Lett.* **1980**, *21*, 321– 322.

¹⁷⁸ Krenske, E. H. Reductions of Phosphine Oxides and Sulfides by Perchlorosilanes: Evidence for the Involvement of Donor-Stabilized Dichlorosilylene. *J. Org. Chem.* **2012**, *77*, 1–4.

¹⁷⁹ Covitz, F.; Westheimer, F. H. The Hydrolysis of Methyl Ethylene Phosphate: Steric Hindrance in General Base Catalysis. *J. Am. Chem. Soc.* **1963**, *85*, 1773–1777.

¹⁸⁰ Naumann, K.; Zon, G.; Mislow, K. The Use of Hexachlorodisilane as a Reducing Agent. Stereospecific Deoxygenation of Acyclic Phosphine Oxides. *J. Am. Chem. Soc.* **1969**, *91*, 7012–7023.

¹⁸¹ Imamoto, T.; Kikuchi, S. I.; Miura, T.; Wada, Y. Stereospecific Reduction of Phosphine Oxides to Phosphines by the Use of a Methylation Reagent and Lithium Aluminum Hydride. *Org. Lett.* **2001**, 3, 87–90.

¹⁸² Keglevich, G.; Gaumont, A. C.; Denis, J. M. Selective Reductions in the Sphere of Organophosphorus Compounds. *Heteroat. Chem.* **2001**, *12*, 161–167.

¹⁸³ Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F. J. Key Green Chemistry research areas from a pharmaceutical manufacturers' perspective revisited. *Green Chem.* **2018**, *20*, 5082–5103.

¹⁸⁴ Krenske, E. H. Theoretical Investigation of the Mechanisms and Stereoselectivities of Reductions of Acyclic Phosphine Oxides and Sulfides by Chlorosilanes. *J. Org. Chem.* **2012**, *77*, 3969–3977.

¹⁸⁵ van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. In Situ Phosphine Oxide Reduction: A Catalytic Appel Reaction. *Chem. Eur. J.* **2011**, *17*, 11290–11295.

¹⁸⁶ Keglevich, G.; Fekete, M.; Chuluunbaatar, T.; Dobó, A.; Harmat, V.; Toke, L. One-pot transformation of cyclic phosphine oxides to phosphine-boranes by dimethyl sulfide-borane. *J. Chem. Soc., Perkin Trans.* **1 2000**, 4451– 4455.

¹⁸⁷ Hérault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Reduction of secondary and tertiary phosphine oxides to phosphines. *Chem. Soc. Rev.* **2015**, *44*, 2508–2528.

¹⁸⁸ Mann, F. G.; Watson, J. Conditions of Salt Formation in Polyamines and Kindred Compounds. Salt Formation in the Tertiary 2-Pyridylamines, Phosphines and Arsines. *J. Org. Chem.* **1948**, *13*, 502–531.

¹⁸⁹ Newkome, G. R.; Hager, D. C. A New Contractive Coupling Procedure. Convenient Phosphorus Expulsion Reaction. *J. Am. Chem. Soc.* **1978**, *100*, 5567–5568.

¹⁹⁰ Uchida, Y.; Kozawa, H. Formation of 2,2'-Bipyridyl by Ligand Coupling on the Phosphorus Atom. *Tetrahedron Lett.* **1989**, *30*, 6365–6368.

¹⁹¹ Uchida, Y.; Onoue, K.; Tada, N.; Nagao, F.; Oae, S. Ligand Coupling Reaction on the Phosphorus Atom. *Tetrahedron Lett.* **1989**, *30*, 567–570.

¹⁹² Uchida, Y.; Kawai, M.; Masauji, H.; Oae, S. Reactions of Triarylphosphines with Organolithium Reagents. Formation of Biaryls. *Heteroat. Chem.* **1993**, *4*, 421–426.

¹⁹³ Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Heterobiaryl Synthesis by Contractive C–C Coupling via P(V) Intermediates. *Science* **2018**, *362*, 799–804.

¹⁹⁴ Koniarczyk, J. L.; Greenwood, J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. A Pyridine–Pyridine Cross-Coupling Reaction via Dearomatized Radical Intermediates. *Angew. Chem. Int. Ed.* **2019**, *58*, 14882–14886.

¹⁹⁵ Boyle, B. T.; Hilton, M. C.; McNally, A. Nonsymmetrical Bis-Azine Biaryls from Chloroazines: A Strategy Using Phosphorus Ligand-Coupling. *J. Am. Chem. Soc.* **2019**, *141*, 15441–15449.

¹⁹⁶ van Kalkeren, H. A.; van Delft, F. L.; Rutjes, F. P. J. T. Organophosphorus Catalysis to Bypass Phosphine Oxide Waste. *ChemSusChem* **2013**, *6*, 1615–1624.

¹⁹⁷ Marsden, S. P. Catalytic Variants of Phosphine Oxide-Mediated Organic Transformations. In *Sustainable Catalysis*; Dunn, P. J., Hii, K. K., Krische, M. J., Williams, M. T., Eds.; Wiley: New York, 2013; pp 339–361. ¹⁹⁸ Voituriez, A.; Saleh, N. From phosphine-promoted to phosphine-catalyzed reactions by in situ phosphine oxide reduction. *Tetrahedron Lett.* **2016**, *57*, 4443–4451.

¹⁹⁹ Longwitz, L.; Werner, T. Recent advances in catalytic Wittig-type reactions based on P(III)/P(V) redox cycling. *Pure Appl. Chem.* **2019**, *91*, 95–102.

²⁰⁰ O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Recycling the Waste: The Development of a Catalytic Wittig Reaction. *Angew. Chem. Int. Ed.* **2009**, *48*, 6836–6839.

²⁰¹ O'Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B. J. Breaking the Ring through a Room Temperature Catalytic Wittig Reaction. *Chem. Eur. J.* **2013**, *19*, 5854–5858.

²⁰² Coyle, E. E.; Doonan, B. J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske, E. H.; O'Brien, C. J. Catalytic Wittig Reactions of Semi- and Nonstabilized Ylides Enabled by Ylide Tuning. *Angew. Chem. Int. Ed.* **2014**, *53*, 585–12911.

²⁰³ Marinetti, A.; Carmichael, D. Synthesis and Properties of Phosphetanes. *Chem. Rev.* **2002**, *102*, 201–230.

²⁰⁴ Nykaza, T. V.; Cooper, J. C.; Radosevich, A. T. *anti*-1,2,2,3,4,4-Hexamethylphosphetane 1-Oxide. *Org. Synth.* **2019**, *96*, 418–435.

²⁰⁵ Longwitz, L.; Spannenberg, A.; Werner, T. Phosphetane Oxides as Redox Cycling Catalysts in the Catalytic Wittig Reaction at Room Temperature. *ACS Catal.* **2019**, *9*, 9237– 9244.

²⁰⁶ Hoffmann, M.; Deshmukh, S.; Werner, T. Scope and Limitation of the Microwave-Assisted Catalytic Wittig Reaction. *Eur. J. Org. Chem.* **2015**, 4532–4543.

²⁰⁷ Wang, L.; Sun, M.; Ding, M. W. Catalytic Intramolecular Wittig Reaction Based on a Phosphine/Phosphine Oxide Catalytic Cycle for the Synthesis of Heterocycles. *Eur. J. Org. Chem.* **2017**, 2568–2578.

²⁰⁸ Burk, M. J. Modular Phospholane Ligands in Asymmetric Catalysis. *Acc. Chem. Res.* **2000**, *33*, 363–372.

²⁰⁹ Werner, T.; Hoffmann, M.; Deshmukh, S. First enantioselective catalytic Wittig reaction. *Eur. J. Org. Chem.* **2014**, 6630–6633.

²¹⁰ Werner, T.; Hoffmann, M.; Deshmukh, S. Phospholane-Catalyzed Wittig Reaction. *Eur. J. Org. Chem.* **2015**, 3286– 3295.

²¹¹ Schirmer, M.-L. L.; Adomeit, S.; Werner, T. First Base-Free Catalytic Wittig Reaction. *Org. Lett.* **2015**, *17*, 3078– 3081.

²¹² Schirmer, M.-L.; Adomeit, S.; Spannenberg, A.; Werner, T. Novel Base-Free Catalytic Wittig Reaction for the Synthesis of Highly Functionalized Alkenes. *Chem. Eur. J.* **2016**, *22*, 2458–2465.

²¹³ Longwitz, L.; Werner, T. Reduction of Activated Alkenes by P^{III}/P^V Redox Cycling Catalysis. *Angew. Chem. Int. Ed.* **2020**, *59*, 2760–2763..

²¹⁴ Lee, C. J.; Chang, T. H.; Yu, J. K.; Madhusudhan Reddy, G.; Hsiao, M. Y.; Lin, W. Synthesis of Functionalized Furans via Chemoselective Reduction/Wittig Reaction Using Catalytic Triethylamine and Phosphine. *Org. Lett.* **2016**, *18*, 3758–3761.

²¹⁵ Saleh, N.; Voituriez, A. Synthesis of 9*H*-Pyrrolo[1,2*a*]indole and 3*H*-Pyrrolizine Derivatives via a PhosphineCatalyzed Umpolung Addition/Intramolecular Wittig Reaction. *J. Org. Chem.* **2016**, *81*, 4371–4377.

²¹⁶ Saleh, N.; Blanchard, F.; Voituriez, A. Synthesis of Nitrogen-Containing Heterocycles and Cyclopentenone Derivatives via Phosphine-Catalyzed Michael Addition/Intramolecular Wittig Reaction. *Adv. Synth. Catal.* **2017**, *359*, 2304–2315.

²¹⁷ Zhang, K.; Cai, L.; Yang, Z.; Houk, K. N.; Kwon, O. Bridged [2.2.1] Bicyclic Phosphine Oxide Facilitates Catalytic γ-Umpolung Addition–Wittig Olefination. *Chem. Sci.* **2018**, *9*, 1867–1872.

²¹⁸ Tsai, Y. L.; Lin, W. Synthesis of Multifunctional Alkenes from Substituted Acrylates and Aldehydes via Phosphine-Catalyzed Wittig Reaction. *Asian J. Org. Chem.* **2015**, *4*, 1040–1043.

²¹⁹ Lorton, C.; Castanheiro, T.; Voituriez, A. Catalytic and Asymmetric Process via P^{III}/P^V=O Redox Cycling: Access to (Trifluoromethyl)Cyclobutenes via a Michael Addition/Wittig Olefination Reaction. *J. Am. Chem. Soc.* **2019**, *141*, 10142–10147.

²²⁰ van Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Organophosphorus-Catalysed Staudinger Reduction. *Adv. Synth. Catal.* **2012**, *354*, 1417–1421.

²²¹ Lenstra, D. C.; Lenting, P. E.; Mecinović, J. Sustainable Organophosphorus-Catalysed Staudinger Reduction. *Green Chem.* **2018**, *20*, 4418–4422.

²²² Lenstra, D. C.; Wolf, J. J.; Mecinović, J. Catalytic Staudinger Reduction at Room Temperature. *J. Org. Chem.* **2019**, *84*, 6536–6545.

²²³ Kosal, A. D.; Wilson, E. E.; Ashfeld, B. L. Phosphine-Based Redox Catalysis in the Direct Traceless Staudinger Ligation of Carboxylic Acids and Azides. *Angew. Chem. Int. Ed.* **2012**, *51*, 12036–12040.

²²⁴ Di Santo, E.; Alberto, M. E.; Russo, N.; Toscano, M. Computational Investigation on the Mechanism of Amide Bond Formation by Using Phosphine-Based Redox Catalysis. *ChemCatChem* **2015**, *7*, 2309–2312.

²²⁵ Andrews, K. G.; Denton, R. M. A More Critical Role for Silicon in the Catalytic Staudinger Amidation: Silanes as Non-Innocent Reductants. *Chem. Commun.* **2017**, *53*, 7982– 7985.

²²⁶ White, P. B.; Rijpkema, S. J.; Bunschoten, R. P.; Mecinović, J. Mechanistic Insight into the Catalytic Staudinger Ligation. *Org. Lett.* **2019**, *21*, 1011–1014.

²²⁷ van Kalkeren, H. A.; Te Grotenhuis, C.; Haasjes, F. S.; Hommersom, C. A.; Rutjes, F. P. J. T.; van Delft, F. L. Catalytic Staudinger/Aza-Wittig Sequence by in Situ Phosphane Oxide Reduction. *Eur. J. Org. Chem.* **2013**, 7059–7066.

²²⁸ Wang, L.; Wang, Y.; Chen, M.; Ding, M. W. Reversible P(III)/P(V) Redox: Catalytic Aza-Wittig Reaction for the Synthesis of 4(3*H*)-Quinazolinones and the Natural Product Vasicinone. *Adv. Synth. Catal.* **2014**, *356*, 1098–1104.

²²⁹ Wang, L.; Xie, Y. B.; Huang, N. Y.; Yan, J. Y.; Hu, W. M.; Liu, M. G.; Ding, M. W. Catalytic aza-Wittig Reaction of Acid Anhydride for the Synthesis of 4*H*-Benzo[*d*][1,3]oxazin-4ones and 4-Benzylidene-2-aryloxazol-5(4*H*)-ones. *ACS Catal.* **2016**, *6*, 4010–4016.

²³⁰ Lao, Z.; Toy, P. H. Catalytic Wittig and Aza-Wittig Reactions. *Beilstein J. Org. Chem.* **2016**, *12*, 2577–2587.

²³¹ Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. Organophosphorus-Catalyzed Diaza-Wittig Reaction: Application to the Synthesis of Pyridazines. *Org. Biomol. Chem.* **2014**, *12*, 7159–7166.

²³² Lertpibulpanya, D.; Marsden, S. P.; Rodriguez-Garcia, I.; Kilner, C. A. Asymmetric Aza-Wittig Reactions: Enantioselective Synthesis of β-Quaternary Azacycles. *Angew. Chem. Int. Ed.* **2006**, *45*, 5000–5002.

²³³ Headley, C. E.; Marsden, S. P. Synthesis and Application of *P*-Stereogenic Phosphines as Superior Reagents in the Asymmetric Aza-Wittig Reaction *J. Org. Chem.* **2007**, *72*, 7185–7189.

²³⁴ Cai, L.; Zhang, K.; Chen, S.; Lepage, R. J.; Houk, K. N.; Krenske, E. H.; Kwon, O. Catalytic Asymmetric Staudinger– Aza-Wittig Reaction for the Synthesis of Heterocyclic Amines. *J. Am. Chem. Soc.* **2019**, *141*, 9537–9542.

²³⁵ Mukaiyama, T. Oxidation-Reduction Condensation. *Angew. Chem. Int. Ed.* **1976**, *15*, 94–103.

²³⁶ Mukaiyama, T. Explorations into New Reaction Chemistry. *Angew. Chem. Int. Ed.* **2004**, *43*, 5590–5614.

²³⁷ van Kalkeren, H. A.; van Delft, F. L.; Rutjes, F. P. J. T. Catalytic Appel Reactions. *Pure Appl. Chem.* **2012**, *85*, 817–828.

²³⁸ Hamstra, D. F. J.; Lenstra, D. C.; Koenders, T. J.; Rutjes, F. P. J. T.; Mecinović, J. Poly(Methylhydrosiloxane) as a Green Reducing Agent in Organophosphorus-Catalysed Amide Bond Formation. *Org. Biomol. Chem.* **2017**, *15*, 6426– 6432.

²³⁹ Longwitz, L.; Jopp, S.; Werner, T. Organocatalytic Chlorination of Alcohols by P(III)/P(V) Redox Cycling. *J. Org. Chem.* **2019**, *84*, 7863–7870.

²⁴⁰ Lenstra, D. C.; Rutjes, F. P. J. T.; Mecinović, J. Triphenylphosphine-Catalysed Amide Bond Formation between Carboxylic Acids and Amines. *Chem. Commun.* **2014**, *50*, 5763–5766.

²⁴¹ Denton, R. M.; An, J.; Adeniran, B. Phosphine oxidecatalysed chlorination reactions of alcohols under Appel conditions. *Chem. Commun.* **2010**, *46*, 3025–3027.

²⁴² Denton, R. M.; Tang, X.; Przeslak, A. Catalysis of Phosphorus(V)-Mediated Transformations: Dichlorination Reactions of Epoxides under Appel Conditions. *Org. Lett.* **2010**, *12*, 4678–4681.

²⁴³ Denton, R. M.; An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. Catalytic Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Development of a Catalytic Appel Reaction. *J. Org. Chem.* **2011**, *76*, 6749–6767.

²⁴⁴ Denton, R. M.; An. J.; Lindovska, P.; Lewis, W. Phosphonium salt-catalysed synthesis of nitriles from in situ activated oximes. *Tetrahedron* **2012**, *68*, 2899–2905.

²⁴⁵ An, J.; Tang, X.; Moore, J.; Lewis, W.; Denton, R. M. Phosphorus(V)-catalyzed dichlorination reactions of aldehydes. *Tetrahedron* **2013**, *69*, 8769–8776.

²⁴⁶ Tang, X.; An, J.; Denton, R. M. A procedure for Appel halogenations and dehydrations using a polystyrene supported phosphine oxide. *Tetrahedron Lett.* **2014**, *55*, 799–802.

²⁴⁷ Pongener, I.; Nikitin, K.; McGarrigle, E. M. Synthesis of glycosyl chlorides using catalytic Appel conditions. *Org. Biomol. Chem.* **2019**, *17*, 7531–7535.

²⁴⁸ Jordan, A.; Denton, R. M.; Sneddon, H. F. Development of a More Sustainable Appel Reaction. *ACS Sustain. Chem. Eng.* **2020**, *8*, 2300–2309.

²⁴⁹ Lecomte, M.; Lipshultz, J. M.; Kim-Lee, S. H.; Li, G.; Radosevich, A. T. Driving Recursive Dehydration by P^{III}/P^V Catalysis: Annulation of Amines and Carboxylic Acids by Sequential C-N and C-C Bond Formation. *J. Am. Chem. Soc.* **2019**, *141*, 12507–12512.

²⁵⁰ O'Brien, C. J (Univ. Texas, USA), Catalytic Wittig and Mitsunobu Reactions, US Patent 8901365, **2014**.

²⁵¹ Buonomo, J. A.; Aldrich, C. C. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System. *Angew. Chem. Int. Ed.* **2015**, *54*, 13041–13044.

²⁵² Hirose, D.; Gazvoda, M.; Košmrlj, J.; Taniguchi, T. The "Fully Catalytic System" in Mitsunobu Reaction Has Not Been Realized Yet. *Org. Lett.* **2016**, *18*, 4036–4039.

²⁵³ Beddoe, R. H.; Sneddon, H. F.; Denton, R. M. The catalytic Mitsunobu reaction: a critical analysis of the current state-of-the-art. *Org. Biomol. Chem.* **2018**, *16*, 7774–7781.

²⁵⁴ Beddoe, R. H.; Andrews, K. G.; Magné, V.; Cuthbertson, J. D.; Saska, J.; Shannon-Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R. M. Redox-neutral organocatalytic Mitsunobu reaction. *Science* 2019, *365*, 910–914.

²⁵⁵ Harris, J. R.; Haynes, M. T.; Thomas, A. M.; Woerpel, K. A. Phosphine-Catalyzed Reductions of Alkyl Silyl Peroxides by Titanium Hydride Reducing Agents: Development of the Method and Mechanistic Investigations. *J. Org. Chem.* **2010**, *75*, 5083–5091.

²⁵⁶ Kirby, A. J.; Warren, S. G. The Organic Chemistry of Phosphorus; Elsevier: Amsterdam, 1967; p 20.

²⁵⁷ Zhao, W.; Yan, P. K.; Radosevich, A. T. A Phosphetane Catalyzes Deoxygenative Condensation of α-Keto Esters and Carboxylic Acids via $P^{III}/P^{V}=O$ Redox Cycling. *J. Am. Chem. Soc.* **2015**, *137*, 616–619.

²⁵⁸ Osman, F. H.; El-Samahy, F. A. Reactions of α-Diketones and *o*-Quinones with Phosphorus Compounds. *Chem. Rev.* **2002**, *102*, 629–678.

²⁵⁹ Bhattacharya, A. K.; Thyagarajan, G. The Michaelis-Arbuzov Rearrangement. *Chem. Rev.* **1981**, *81*, 415–430.

²⁶⁰ Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. The Reactivity of Organophosphorus Compounds. Part XIX. Reduction of Nitro-Compounds by Triethyl Phosphite: A Convenient New Route to Carbazoles, Indoles, Indazoles, Triazoles, and Related Compounds. *J. Chem. Soc.* **1965**, 4831–4837.

²⁶¹ Cadogan, J. I. G. Reduction of Nitro- and Nitroso-Compounds by Tervalent Phosphorus Reagents. *Q. Rev. Chem. Soc.* **1968**, *22*, 222–251.

²⁶² Cadogan, J. I. G.; Todd, M. J. Reduction of Nitro- and Nitroso-Compounds by Tervalent Phosphorus Reagents. Part IV. Mechanistic Aspects of the Reduction of 2,4,6-Trimethyl-2'-Nitrobiphenyl, 2-Nitrobiphenyl, and Nitrobenzene. *J. Chem. Soc. C* **1969**, 2808–2813.

²⁶³ Armour, M.-A.; Cadogan, J. I. G.; Grace, D. S. B. Reduction of Nitro- and Nitroso Compounds by Tervalent Phosphorus Reagents. Part XI. A Kinetic Study of the Effects of Varying the Reagent and the Nitro-Compound in the Conversion of *o*-Nitrobenzylideneamines to 2-Substituted Indazoles. *J. Chem. Soc., Perkin Trans.* **2 1975**, 1185–1189. ²⁶⁴ Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. A Biphilic Phosphetane Catalyzes N-N Bond-Forming Cadogan Heterocyclization via P^{III}/P^V=O Redox Cycling. *J. Am. Chem. Soc.* **2017**, *139*, 6839–6842.

²⁶⁵ Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. *Angew. Chem. Int. Ed.* **2017**, *56*, 10070–10086.

²⁶⁶ Hawes, W.; Trippett, S. Steric Hindrance in the Alkaline Hydrolysis of Phosphinate Esters. *Chem. Commun.* **1968**, 577–578.

²⁶⁷ Corfield, J. R.; De'ath, N. J.; Trippett, S. Displacement at Phosphorus in a Four-membered Ring. *J. Chem. Soc. D* **1970**, 1502–1503.

²⁶⁸ Mislow, K. Role of Pseudorotation in the Stereochemistry of Nucleophilic Displacement Reactions. *Acc. Chem. Res.* **1970**, *3*, 321–331.

 269 Haake, P.; Ossip, P. S. $S_{\rm N}1$ Mechanisms in Displacement at Phosphorus. Solvolysis of Phosphinyl Chlorides. J. Am. Chem. Soc. **1971**, 93, 6924–6930.

²⁷⁰ Schoene, J.; Bel Abed, H.; Schmieder, P.; Christmann, M.; Nazaré, M. A General One-Pot Synthesis of 2H-Indazoles Using an Organophosphorus–Silane System. *Chem. Eur. J.* **2018**, *24*, 9090–9100

 271 Nykaza, T. V; Ramirez, A.; Harrison, T. S.; Luzung, M. R.; Radosevich, A. T. Biphilic Organophosphorus-Catalyzed Intramolecular C_{sp}2–H Amination: Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. *J. Am. Chem. Soc.* **2018**, *140*, 3103–3113.

²⁷² Tsao, M.-L.; Gritsan, N.; James, T. R.; Platz, M. S.; Hrovat, D. A.; Borden, W. T. Study of the Chemistry of ortho- and para-Biphenylnitrenes by Laser Flash Photolysis and Time-Resolved IR Experiments and by B3LYP and CASPT2 Calculations. *J. Am. Chem. Soc.* **2003**, *125*, 9343-9358 and references therein.

²⁷³ Nykaza, T. V; Cooper, J. C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T. Intermolecular Reductive C–N Cross Coupling of Nitroarenes and Boronic Acids by $P^{III}/P^{V}=0$ Catalysis. *J. Am. Chem. Soc.* **2018**, *140*, 15200–15205.

²⁷⁴ Li, G.; Qin, Z.; Radosevich, A. T. P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C–N Coupling with Nitromethane as a Methylamine Surrogate. *J. Am. Chem. Soc.* **2020**, *142*, 16205– 16210.

²⁷⁵ Li, G.; Nykaza, T. V.; Cooper, J. C.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T. An Improved P^{III}/P^V=O-Catalyzed Reductive C-N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- And Product-Determining Steps. *J. Am. Chem. Soc.* **2020**, *142*, 6786–6799.

²⁷⁶ Li, G.; te Grotenhuis, C.; Radosevich, A. T. Reductive Csp²–N Coupling by P^{III}/P^V=O–Catalysis. *Trends Chem.* **2021**, *3*, 72.

²⁷⁷Nykaza, T. V.; Li, G.; Yang, J.; Luzung, M. R.; Radosevich, A. T. P^{III}/P^V=O Catalyzed Cascade Synthesis of *N*-Functionalized Azaheterocycles. *Angew. Chem. Int. Ed.* **2020**, *59*, 4505–4510.

²⁷⁸ Ghosh, A.; Lecomte, M.; Kim-Lee, S. H.; Radosevich, A. T. Organophosphorus-Catalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)Sulfenylation by P^{III}/P^v=0 Redox Cycling. Angew. Chem. Int. Ed. **2019**, 58, 2864–2869.

²⁷⁹ Reichl, K. D.; Dunn, N. L.; Fastuca, N. J.; Radosevich, A. T. Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via P^{III}/P^V Redox Cycling. *J. Am. Chem. Soc.* **2015**, *137*, 5292–5295.

²⁸⁰ Culley, S. A.; Arduengo, A. J. Synthesis and structure of the first 10-P-3 species. *J. Am. Chem. Soc.* **1984**, *106*, 1164–1165.

²⁸¹ Arduengo, A. J.; Stewart, C. A.; Davidson, F.; Dixon, D. A.; Becker, J. Y.; Culley, S. A.; Mizen, M. B. The synthesis, structure, and chemistry of 10-Pn-3 systems: tricoordinate hypervalent pnicogen compounds. *J. Am. Chem. Soc.* **1987**, *109*, 627–647.

²⁸² Arduengo, A. J.; Stewart, C. A. Low coordinate hypervalent phosphorus. *Chem. Rev.* **1994**, *94*, 1215–1237.

²⁸³ Dunn, N. L.; Ha, M.; Radosevich, A. T. Main Group Redox Catalysis: Reversible P(III)/P(V) Redox Cycling at a Phosphorus Platform. *J. Am. Chem. Soc.* **2012**, *134*, 11330– 11333.

²⁸⁴ Zeng, G.; Maeda, S.; Taketsugu, T.; Sakaki, S. Catalytic Transfer Hydrogenation by a Trivalent Phosphorus Compound: Phosphorus-Ligand Cooperation Pathway or P^{III}/P^{V} Redox Pathway? *Angew. Chem. Int. Ed.* **2014**, *53*, 4633–4637.

²⁸⁵Zeng, G.; Maeda, S.; Taketsugu, T.; Sakaki, S. Theoretical Study of Hydrogenation Catalysis of Phosphorus Compound and Prediction of Catalyst with High Activity and Wide Application Scope. *ACS Catal.* **2016**, *6*, 4859–4870.

²⁸⁶ Zeng, G.; Maeda, S.; Taketsugu, T.; Sakaki, S. Catalytic Hydrogenation of Carbon Dioxide with Ammonia-Borane by Pincer-Type Phosphorus Compounds: Theoretical Prediction. *J. Am. Chem. Soc.* **2016**, *138*, 13481–13484.

²⁸⁷Ang, H. G.; Lien, W. S. Oxidative Addition of Substituted Arsines and Stibines with Bis(Trifluoromethyl)Nitroxyl. *J. Fluor. Chem.* **1980**, *15*, 453–470.

²⁸⁸ Smith, M. D. Product Class 1: Arsenic Compounds. In *Science of Synthesis: Organometallics*; Fleming, I., Ed.; Thieme: Stuttgart, 2002; Vol. 4, pp 13–51.

²⁸⁹ Gosney, I.; Lillie, T. J.; Lloyd, D. Reaction of Arsonium Ylides with Carbonyl Compounds—Effect of Substituents at Arsenic. *Angew. Chem. Int. Ed.* **1977**, *16*, 487–488.

²⁹⁰ Lloyd, D.; Gosney, I.; Ormiston, R. A. Arsonium Ylides (with some mention also of Arsinimines, Stibonium and Bismuthonium ylides). *Chem. Soc. Rev.* **1987**, *16*, 45–74.

²⁹¹ Aggarwal, V. K.; Patel, M.; Studley, J. Synthesis of epoxides from aldehydes and tosylhydrazone salts catalysed by triphenylarsine: Complete *trans* selectivity for all combinations of coupling partners. *Chem. Commun.* **2002**, 1514–1515.

²⁹² Zhu, S.; Liao, Y.; Zhu, S. Transition-Metal-Catalyzed Formation of *trans* Alkenes via Coupling of Aldehydes. *Org. Lett.* **2004**, *6*, 377–380.

²⁹³ Hellwinkel, D.; Knabe, B. Eliminierungen Und Umlagerungen Bei Alkyl- Und Alkenyl-bis-2.2'biphenylylen-arsenen. *Chem. Ber.* **1971**, *104*, 1761–1782.

²⁹⁴ Ciganek, E. Negatively Substituted Acetylenes. III. Reverse Wittig Reactions with Triphenylphosphine Oxide and Triphenylarsine Oxide. *J. Org. Chem.* **1970**, *35*, 1725– 1729. ²⁹⁵ Lu, X.-Y.; Wang, Q.-W.; Tao, X.-C.; Sun, J.-H.; Lei, G.-X. Novel methods for the deoxygenation of triphenylarsine oxide to triphenylarsine. *Acta Chim. Sinica* **1985**, *3*, 337– 341.

²⁹⁶ Shi, L.; Wang, W.; Wang, Y.; Huang, Y. Z. The First Example of a Catalytic Wittig-Type Reaction. Tri-*n*-Butylarsine-Catalyzed Olefination in the Presence of Triphenyl Phosphite. *J. Org. Chem.* **1989**, *54*, 2027–2028.

²⁹⁷ Inaba, R.; Kawashima, I.; Fujii, T.; Yumura, T.; Imoto, H.; Naka, K. Systematic Study on the Catalytic Arsa-Wittig Reaction. *Chem. Eur. J.* **2020**, *26*, 13400–13407.

²⁹⁸ Cao, P.; Li, C. Y.; Kang, Y. B.; Xie, Z.; Sun, X. L.; Tang, Y. Ph₃As-Catalyzed Wittig-Type Olefination of Aldehydes with Diazoacetate in the Presence of Na₂S₂O₄. *J. Org. Chem.* **2007**, *72*, 6628–6630.

²⁹⁹ Wang, P.; Liu, C. R.; Sun, X. L.; Chen, S. S.; Li, J. F.; Xie, Z.; Tang, Y. A Newly-Designed PE-Supported Arsine for Efficient and Practical Catalytic Wittig Olefination. *Chem. Commun.* **2012**, *48*, 290–292.

³⁰⁰ Akiba, K. Mechanism of ligand coupling of hypervalent pentaarylantimony compounds. *Pure Appl. Chem.* **1996**, *68*, 837–842.

³⁰¹ Huang, Y. Synthetic Applications of Organoantimony Compounds. *Acc. Chem. Res.* **1992**, *25*, 182–187.

³⁰² Huang, Y.; Shen, Y.; Chen, C. Bromodiphenylstibine-Mediated Oxidation of Benzyl Alcohols by Bromine. *Synthesis* **1985**, 651–652.

 303 Akiba, K.; Ohnari, H.; Ohkata, K. Oxidation of α -Hydroxyketones with Triphenylantimony Dibromide and its Catalytic Cycle. *Chem. Lett.* **1985**, *14*, 1577–1580.

³⁰⁴ Yasukie, S.; Koshi, Y.; Kawara, S.; Kurita, J. Catalytic Action of Triarylstibanes: Oxidation of Benzoins into Benzyls using Triarylstibanes under an Aerobic Condition. *Chem. Pharm. Bull.* **2005**, *53*, 425–427.

 305 Zhang, W.; Shi, M. Reduction of activated carbonyl groups by alkyl phosphines: Formation of α -hydroxy esters and ketones. *Chem. Commun.* **2006**, 1218–1220.

³⁰⁶ Wei, Y.; Liu, X.-G.; Shi, M. Reduction of Activated Carbonyl Groups using Alkylphosphanes as Reducing Agents: A Mechanistic Study. *Eur. J. Org. Chem.* **2012**, 2386–2393.

 307 Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A. T. A Nonmetal Approach to α -Heterofunctionalized Carbonyl Derivatives by Formal Reductive X–H Insertion. *Angew. Chem. Int. Ed.* **2012**, *51*, 10605–10609.

³⁰⁸ Zhao, W.; Fink, D. M.; Labutta, C. A.; Radosevich, A. T. A $C_{sp3}-C_{sp3}$ Bond Forming Reductive Condensation of α-Keto Esters and Enolizable Carbon Pronucleophiles. *Org. Lett.* **2013**, *15*, 3090–3093.

³⁰⁹ Hutchins, E. B., Jr.; Lenher, V. Pentavalent Bismuth. *J. Am. Chem. Soc.* **1907**, *29*, 31–33.

³¹⁰ Barton, D. H. R.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B. Oxidation of Organic Substrates by Pentavalent Organobismuth Reagents. *J. Chem. Soc., Chem Commun.* **1979**, 705–707.

³¹¹ Barton, D. H. R.; Kitchin, J. P.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B. Functional Group Oxidation by Pentavalent Organobismuth Reagents. *Tetrahedron* **1981**, *37*, 73–79. ³¹² Jurrat, M.; Maggi, L.; Lewis, W.; Ball, L. T. Modular bismacycles for the selective C–H arylation of phenols and naphthols. *Nature Chem.* **2020**, *12*, 260–269.

³¹³ Šimon, P.; De Proft, F.; Jambor, R.; Růžička, A.; Dostál, L. Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures. *Angew. Chem. Int. Ed.* **2010**, *49*, 5468–5471.

³¹⁴ Vránová, I.; Alonso, M.; Lo, R.; Sedlák, R.; Jambor, R.; Růžička, A.; De Proft, F.; Hobza, P.; Dostál, L. From Dibismuthenes to Three- and Two-Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC₃N Rings through a Combined Experimental and Theoretical Study. *Chem. Eur. J.* **2015**, *21*, 16917– 16928.

³¹⁵ Šimon, P.; Jambor, R.; Růžička, A.; Dostál, L. Oxidative addition of organic disulfides to low valent *N*,*C*,*N*-chelated organobismuth(I) compound: Isolation, structure and coordination capability of substituted bismuth(III) bis(arylsulfides). *J. Organomet. Chem.* **2013**, *740*, 98–103.

³¹⁶ Šimon, P.; Jambor, R.; Růžička, A.; Dostál, L. Oxidative Addition of Diphenyldichalcogenides PhEEPh (E = S, Se, Te) to Low-Valent CN- and NCN-Chelated Organoantimony and Organobismuth Compounds. *Organometallics* **2013**, *32*, 239–248.

³¹⁷ Hejda, M.; Jirásko, R.; Růžička, A.; Jambor, R.; Dostál, L. Probing the Limits of Oxidative Addition of C(sp³)–X Bonds toward Selected *N,C,N* -Chelated Bismuth(I) Compounds. *Organometallics* **2020**, *39*, 4320–4328.

³¹⁸ Ishida, S.; Hirakawa, F.; Furukawa, K.; Yoza, K.; Iwamoto, T. Persistent Antimony- and Bismuth-Centered Radicals in Solution. *Angew. Chem. Int. Ed.* **2014**, *53*, 11172– 11176.

³¹⁹ Schwamm, R. J.; Harmer, J. R.; Lein, M.; Fitchett, C. M.; Granville, S.; Coles, M. P. Isolation and Characterization of a Bismuth(II) Radical. *Angew. Chem. Int. Ed.* **2015**, *54*, 10630– 10633.

³²⁰ Callahan, J. L.; Grasselli, R. K.; Milberger, E. C.; Strecker, H. A. Oxidation and Ammoxidation of Propylene over Bismuth Molybdate Catalyst. *Ind. Eng. Chem. Prod. Res. Dev.* **1970**, *9*, 134–142.

³²¹ Pudar, S.; Oxgaard, J.; Goddard, W. A., III. Mechanism of Selective Ammoxidation of Propene to Acrylonitrile on Bismuth Molybdates from Quantum Mechanical Calculations. *J. Phys. Chem. C* **2010**, *114*, 15678–15694.

 322 Licht, R. B.; Bell, A. T. A DFT Investigation of the Mechanism of Propene Ammoxidation over α -Bismuth Molybdate. *ACS Catal.* **2017**, *7*, 161–176.

³²³ Perlin, A. S. Glycol-Cleavage Oxidation. In *Adv. Carbohydr. Chem. Biochem.* Horton, D., Ed.; Academic Press: 2006; Vol. 60, pp 183–250.

³²⁴ Zevaco, T.; Duñach, E.; Postel, M. Bi(III)mandelate/DMSO: A New Oxidizing System for the Catalyzed C-C Cleavage of Epoxides. *Tetrahedron Lett.* **1993**, *34*, 2601–2604.

³²⁵ Le Boisselier, V.; Duñach, E.; Postel, M. Bismuth(III)catalyzed oxidative cleavage of aryl epoxides: substituent effects on the kinetics of the oxidation reaction. *J. Organomet. Chem.* **1994**, *482*, 119–123. ³²⁶ Le Boisselier, V.; Coin, C.; Postel, M.; Duñach, E. Molecular Oxygen Oxidative Carbon-Carbon Bond Cleavage of α-Ketols Catalyzed by Bi(III) Carboxylates. *Tetrahedron* **1995**, *51*, 4991–4996.

 327 Antoniotti, S.; Duñach, E. Novel and catalytic oxidation of internals epoxides to α -diketones. *Chem. Commun.* **2001**, 2566–2567.

³²⁸ Favier, I.; Duñach, E. Oxidation of mandelic acid derivatives catalysed by $Bi(0)/O_2$ systems: mechanistic considerations. *Tetrahedron* **2003**, *59*, 1823–1830.

 329 Antoniotti, S.; Duñach, E. Mechanistic Aspects of the Bismuth-Catalysed Oxidation of Epoxides to α -Diketones. *Eur. J. Org. Chem.* **2004**, 3459–3464.

³³⁰ Salvador, J. A. R.; Silvestre, S. M. Bismuth-catalyzed allylic oxidation using *t*-butyl hydroperoxide. *Tetrahedron Lett.* **2005**, *46*, 2581–2584.

³³¹ Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Bismuth-Catalyzed Benzylic Oxidations with *tert*-Butyl Hydroperoxide. *Org. Lett.* **2005**, *7*, 4549–4552.

³³² Callens, E.; Burton, A. J.; White, A. J. P.; Barrett, A. G. M. Mechanistic study on benzylic oxidations catalyzed by bismuth(III) salts: X-ray structures of two bismuthpicolinate complexes. *Tetrahedron Lett.* **2008**, *49*, 3709– 3712.

³³³ Schwamm, R. J.; Lein, M.; Coles, M. P.; Fitchett, C. M. Catalytic oxidative coupling promoted by bismuth TEMPOxide complexes. *Chem. Commun.* **2018**, *54*, 916–919.

³³⁴ Ramler, J.; Krummenacher, I.; Lichtenberg, C. &Homogeneous Catalysis Well-Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions. *Chem. Eur. J.* **2020**, *26*, 14551– 14555.

³³⁵ Shimada, S., Rao, M. L. N. Transition-Metal Catalyzed C–C Bond Formation Using Organobismuth Compounds. *Top. Curr. Chem.* **2012**, *311*, 199–228.

³³⁶ Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Flourination of arylboronic esters enabled by bismuth redox catalysis. *Science* **2020**, *317*, 313–317.

³³⁷ Planas, O.; Peciukenas, V.; Cornella, J. Bismuth-Catalyzed Oxidative Coupling of Arylboronic Acids with Triflate and Nonaflate Salts. *J. Am. Chem. Soc.* **2020**, *142*, 11382–11387.

³³⁸ Wang, F.; Planas, O.; Cornella, J. Bi(I)-Catalyzed Transfer-Hydrogenation with Ammonia-Borane. *J. Am. Chem. Soc.* **2019**, *141*, 4235–4240.

³³⁹ Pang, Y.; Leutzsch, M.; Nöthling, N.; Cornella, J. Catalytic Activation of N_2O at a Low-Valent Bismuth Redox Platform. *J. Am. Chem. Soc.* **2020**, *142*, 19473–19479.

³⁴⁰ Cowley, A. H.; Kemp, R. A. Synthesis and Reaction Chemistry of Stable Two-Coordinate Phosphorus Cations (Phosphenium Ions). *Chem. Rev.* **1985**, *85*, 367–382.

³⁴¹ Dostál, L. Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds. *Coord. Chem. Rev.* **2017**, *353*, 142–158.

³⁴² Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. *Chem. Rev.* **2007**, *107*, 5713–5743. ³⁴³ Phipps, R. J.; Hamilton, G. L.; Toste, F. D. The Progression of Chiral Anions from Concepts to Applications in Asymmetric Catalysis. *Nat. Chem.* **2012**, *4*, 603–614.

³⁴⁴ Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing Catalysis. *Angew. Chem. Int. Ed.* **2013**, *52*, 534–561.

³⁴⁵ Mahlau, M.; List, B. Asymmetric Counteranion-Directed Catalysis: Concept, Definition, and Applications. *Angew. Chem. Int. Ed.* **2013**, *52*, 518–533.

³⁴⁶ Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations. *Acc. Chem. Res.* **2016**, *49*, 1369–1378.

³⁴⁷ Bruggink, A.; Schoevaart, R.; Kieboom, T. Concepts of Nature in Organic Synthesis: Cascade Catalysis and Multistep Conversions in Concert. *Org. Process Res. Dev.* **2003**, *7*, 622–640.

³⁴⁸ Fogg, D. E.; Dos Santos, E. N. Tandem Catalysis: A Taxonomy and Illustrative Review. *Coord. Chem. Rev.* **2004**, *248*, 2365–2379.

³⁴⁹ Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent Tandem Catalysis. *Chem. Rev.* **2005**, *105*, 1001–1020.

³⁵⁰ Shindoh, N.; Takemoto, Y.; Takasu, K. Auto-Tandem Catalysis: A Single Catalyst Activating Mechanistically Distinct Reactions in a Single Reactor. *Chem. Eur. J.* **2009**, *15*, 12168–12179.

³⁵¹ Lohr, T. L.; Marks, T. J. Orthogonal Tandem Catalysis. *Nat. Chem.* **2015**, *7*, 477–482.

³⁵² Allen, A. E.; MacMillan, D. W. C. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development. *Chem. Sci.* **2012**, *3*, 633–658.

³⁵³ Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. *Chem. Rev.* **2013**, *113*, 5322–5363.

³⁵⁴ Studer, A.; Curran, D. P. The Electron Is a Catalyst. *Nat. Chem.* **2014**, *6*, 765–773.

³⁵⁵ Staveness, D.; Bosque, I.; Stephenson, C. R. J. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. *Acc. Chem. Res.* **2016**, *49*, 2295–2306.

³⁵⁶ Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. *J. Org. Chem.* **2016**, *81*, 6898–6926.

³⁵⁷ Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals: Reactive Intermediates with Translational Potential. *J. Am. Chem. Soc.* **2016**, *138*, 12692–12714.

³⁵⁸ Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods since 2000: On the Verge of a Renaissance. *Chem. Rev.* **2017**, *117*, 13230–13319.

³⁵⁹ Smith, J. M.; Harwood, S. J.; Baran, P. S. Radical Retrosynthesis. *Acc. Chem. Res.* **2018**, *51*, 1807–1817.

³⁶⁰ Bentrude, W. G. The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley: Chichester, 1990; Vol. 1, pp 531–566.

³⁶¹ Marque, S.; Tordo, P. Reactivity of Phosphorus Centered Radicals. *Top. Curr. Chem.* **2005**, *250*, 43–76.

³⁶² Yasui, S.; Shioji, K.; Ohno, A.; Yoshihara, M. Reactivity of Phosphorus-Centered Radicals Generated during the Photoreaction of Diphenylphosphinous Acid with 10-Methylacridinium Salt. *J. Org. Chem.* **1995**, *60*, 2099–2105. ³⁶³ Nakamura, M.; Miki, M.; Majima, T. Substituent Effect on the Photoinduced Electron-Transfer Reaction of Para-Substituted Triphenylphosphines Sensitised by 9,10-Dicyano-Anthracene. *J. Chem. Soc. Perkin Trans. 2* **2000**, *7*, 1447–1452.

³⁶⁴ Ohkubo, K.; Nanjo, T.; Fukuzumi, S. Photocatalytic Electron-Transfer Oxidation of Triphenylphosphine and Benzylamine with Molecular Oxygen via Formation of Radical Cations and Superoxide Ion. *Bull. Chem. Soc. Jpn.* **2006**, *79*, 1489–1500.

³⁶⁵ Yasui, S.; Tojo, S.; Majima, T. Effects of Substituents on Aryl Groups during the Reaction of Triarylphosphine Radical Cation and Oxygen. *Org. Biomol. Chem.* **2006**, *4*, 2969–2973.

³⁶⁶ Yasui, S.; Tsujimoto, M. Investigation of Non-Rehm-Weller Kinetics in the Electron Transfer from Trivalent Phosphorus Compounds to Singlet Excited Sensitizers. *J. Phys. Org. Chem.* **2013**, *26*, 1090–1097.

³⁶⁷ Zhang, Y.; Ye, C.; Li, S.; Ding, A.; Gu, G.; Guo, H. Eosin Y-Catalyzed Photooxidation of Triarylphosphines under Visible Light Irradiation and Aerobic Conditions. *RSC Adv.* **2017**, *7*, 13240–13243.

³⁶⁸ Kargin, Y. M.; Budnikova, Y. G. Electrochemistry of organophosphorus compounds. *Russ. J. Gen. Chem.* **2001**, *71*, 1393.

³⁶⁹ Shao, X.; Zheng, Y.; Ramadoss, V.; Tian, L.; Wang, Y. Recent Advances in P^{III}-Assisted Deoxygenative Reactions under Photochemical or Electrochemical Conditions. *Org. Biomol. Chem.* **2020**, *18*, 5994–6005.

³⁷⁰ Complexes of Sb and Bi with redox-active ligands, particularly porphyrins, have been used as photocatalysts and photosensitizers (Refs. 371–375) as well as electrocatalysts (Refs. 376–377).

³⁷¹ Kalyanasundaram, K.; Shelnutt, J. A.; Grätzel, M. Sensitization and Photoredox Reactions of Zinc(II) and Antimony(V) Uroporphyrins in Aqueous Media. *Inorg. Chem.* **1988**, *27*, 2820–2825.

³⁷² Knör, G.; Vogler, A. Photochemistry and Photophysics of Antimony(III) *Hyper* Porphyrins: Activation of Dioxygen Induced by a Reactive sp Excited State. *Inorg. Chem.* **1994**, *33*, 314–318.

³⁷³ Knör, G.; Vogler, A.; Roffia, S.; Paolucci, F.; Balzani, V. Switchable photoreduction pathways of antimony(v) tetraphenylporphyrin. A potential multielectron transfer photosensitizer. *Chem. Commun.* **1996**, 1643–1644.

³⁷⁴ Shiragami, T.; Matsumoto, J.; Inoue, H.; Yasuda, M. Antimony porphyrin complexes as visible-light driven photocatalyst. *J. Photochem. Photobiol. C* **2005**, *6*, 227–248.

³⁷⁵ Ertl, M.; Wöß, E.; Knör, G. Antimony porphyrins as redlight powered photocatalysts for solar fuel production from halide solutions in the presence of air. *Photochem. Photobiol. Sci.* **2015**, *14*, 1826–1830.

³⁷⁶ Jiang, J.;Materna, K. L.; Hedström, S.;Yang, K. R.; Crabtree, R. H.; Batista, V. S.; Brudvig, G. W. Antimony Complexes for Electrocatalysis: Activity of a Main-Group Element in Proton Reduction. *Angew. Chem. Int. Ed.* **2017**, *56*, 9111–9115.

³⁷⁷ Xiao, W.-C.; Tao, Y.-W.; Luo, G.-G. Hydrogen formation using a synthetic heavier main-group bismuth-based electrocatalyst. *Int. J. Hydrog. Energy* **2020**, *45*, 8177–8185. ³⁷⁸ Pan, D.; Nie, G.; Jiang, S.; Li, T.; Jin, Z. Radical reactions promoted by trivalent tertiary phosphines. *Org. Chem. Front.* **2020**, *7*, 2349–2371.

³⁷⁹ Stache, E. R.; Ertel, A. B.; Rovis, T.; Doyle, A. G. Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage–Independent Activation of Strong C–O Bonds. *ACS Catal.* **2018**, *8*, 11134–11139.

³⁸⁰ Fedorov, O. V.; Scherbinina, S. I.; Levin, V. V.; Dilman, A. D. Light-Mediated Dual Phosphine-/Copper-Catalyzed Atom Transfer Radical Addition Reaction. *J. Org. Chem.* **2019**, *84*, 11068–11079.

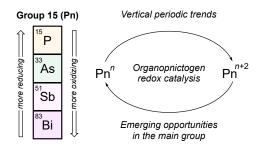
³⁸¹ Martinez Alvarado, J. I.; Ertel, A, B.; Stegner, A.; Stache, E. E.; Doyle, A. G. Direct Use of Carboxylic Acids in the Photocatalytic Hydroacylation of Styrenes to Generate Dialkyl Ketones. *Org. Lett.* **2019**, *21*, 9940–9944.

³⁸² Rossi-Ashton, J. A.; Clarke, A. K.; Unsworth, W. P.; Taylor, R. J. K. Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. *ACS Catal.* **2020**, *10*, 7250–7261.

³⁸³ Manabe, S.; Wong, C. M.; Sevov, C. S. Direct and Scalable Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine. *J. Am. Chem. Soc.* **2020**, *142*, 3024–3031.

³⁸⁴ Chakraborty, B.; Kostenko, A.; Menezes, P. W.; Driess, M. A Systems Approach to a One-Pot Electrochemical Wittig Olefination Avoiding the Use of a Chemical Reductant or Sacrificial Electrode. *Chem. Eur. J.* **2020**, *26*, 11829–11834.

³⁸⁵ Charaborty, B.; Menezes, P. W.; Driess, M. Beyond CO₂ Reduction: Vistas on Electrochemical Reduction of Heavy Non-metal Oxides with Very Strong E–O Bonds (E = Si, P, S). *J. Am. Chem. Soc.* **2020**, *142*, 14772–14788.


³⁸⁶ Elias, J. S.; Costentin, C.; Nocera, D. G. Direct Electrochemical P(V) to P(III) Reduction of Phosphine Oxide Facilitated by Triaryl Borates. *J. Am. Chem. Soc.* **2018**, *140*, 13711–13718.

³⁸⁷ Martínez-Calvo, M.; Mascareñas, J. L. Organometallic Catalysis in Biological Media and Living Settings. *Coord. Chem. Rev.* **2018**, *359*, 57–79.

³⁸⁸ Vantourout, J. C.; Adusumalli, S. R.; Knouse, K. W.; Flood, D. T.; Ramirez, A.; Padial, N. M.; Istrate, A.; Maziarz, K.; deGruyter, J. N.; Merchant, R. R.; Qiao, J. X.; Schmidt, M. A.; Deery, M. J.; Eastgate, M. D.; Dawson, P. E.; Bernardes, G. J. L.; Baran, P. S. Serine-Selective Bioconjugation. *J. Am. Chem. Soc.* **2020**, *142*, 17236–17242.

³⁸⁹ A similar question was framed by a reviewer of this Perspective: "What outstanding problem[s] in chemical catalysis will be solved by all of this effort?".

TOC Graphic

