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Cryo-electron microscopy (EM) requires molecular modeling to refine structural details from
data. Ensemble models arrive at low free-energy molecular structures, but are computa-
tionally expensive and limited to resolving only small proteins that cannot be resolved by
cryo-EM. Here, we introduce CryoFold - a pipeline of molecular dynamics simulations that
determines ensembles of protein structures directly from sequence by integrating density
data of varying sparsity at 3–5 Å resolution with coarse-grained topological knowledge of
the protein folds. We present six examples showing its broad applicability for folding pro-
teins between 72 to 2000 residues, including large membrane and multi-domain systems, and
results from two EMDB competitions. Driven by data from a single state, CryoFold discovers
ensembles of common low-energy models together with rare low-probability structures that
capture the equilibrium distribution of proteins constrained by the density maps. Many of
these conformations, unseen by traditional methods, are experimentally validated and func-
tionally relevant. We arrive at a set of best practices for data-guided protein folding that are
controlled using a Python GUI.
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1 Introduction

Cryo-electron microscopy (cryo-EM) is a powerful tool for determining the structures of biomolecules.
It serves a niche – such as large complexes or membrane proteins or molecules that are not easily
crystallizable – that traditional methods, such as X-ray diffraction, electron or neutron scattering,
or NMR often cannot handle. Routine cryo-EM structure determination has a number of com-
ponents: the experiment produces raw data in the form of single-particle images, correction and
processing of this data recovers an electrostatic potential map (henceforth referred to as a density
map), and finally molecular modeling is required to determine structures from the map. Currently,
there are two broad classes of methods for molecular modeling. First, established algorithms for
refining X-ray structures, such as Phenix, Coot, or REFMAC are often used, even for ensemble
determination 1. They offer complete models with data of 2 Å or better resolution 2. A challenge
arises because the Cryo-EM datasets are commonly of lower resolution, reflecting a broad diver-
sity of underlying conformations. Second, integrative approaches leverage data from multiple
experimental sources 3–5, identifying consensus structures compatible with the different datasets.
The challenge here is that cryo-EM data is heterogeneous, meaning that some parts of a protein
structure are well-determined by the data while others are more poorly defined 6.

The uneven resolution of the datasets poses a need for extensive conformational sampling
of the computational models, and identifying the most biophysically relevant conformations from
the poorly resolved regions. The span of this biophysically relevant conformational search space
is large and grows non-linearly with system size 7. Multi-model approaches have been recently
conceived to interpret sub-5 Å structural data with atomistic ensembles 8. These methods focus
on sampling the conformational space, constrained by the knowledge of only the experimentally
observed states. However, ensembles constructed around a known conformation are not represen-
tative of the thermodynamic state of a protein 9. Their truncated sampling offers an incomplete
estimate of the number of structures and the corresponding ensemble of states that a protein can
assume during equilibrium. Thus, a substantial portion of the conformational space that contributes
to the heterogeneity of the observed data remains unresolved 10.

Here, we describe CryoFold, a multiphysics algorithm that derives equilibrium ensembles
of folded protein structures from cryo-EM data. Illustrated in Fig. 1, CryoFold is a combina-
tion of three methods: (1) MAINMAST 11, MAINchain Model trAcing from Spanning Tree – a
method that generates the trace of the connected peptide chain when provided with EM data, (2)
ReMDFF 12, Resolution exchange Molecular Dynamics Flexible Fitting – a MD method for refin-
ing protein conformations from electron-density maps, and (3) MELD 13, 14, Modeling Employing
Limited Data – a Bayesian engine that can work from insufficient data to accelerate the MD sam-
pling of rare events, such as those needed for protein folding. Starting with density maps of resolu-
tion 5.0 Å and better, first, MAINMAST is employed to derive a chain trace of C↵ atoms. Then we
use this trace as a template to iterate between MELD and ReMDFF. While MELD explores a large
conformational space, visiting multiple plausible secondary structures consistent with the MAIN-
MAST template, ReMDFF simulations refine the protein backbone and sidechain conformations
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to fit to the density map for each one of the assumed secondary structures (Fig. 2A) 15. Taken
alone, ReMDFF fits models into density features, but fails to explore the variations in secondary
structures 12. MELD addresses this issue by partial folding, unfolding and reformation of sec-
ondary structures 13, 14, integrating the coarse physical insights (CPI) available on web-servers 14, 16

and that from MAINMAST’s initial trace. For example, based on sequences, CPI includes specific
fractions of hydrophobic contacts, �-strand pairing and secondary structures required to minimize
protein frustration (see Methods) 13. Taken together, a hybrid iterative MELD-ReMDFF approach
allows the determination of a set of complete all-atom models from sequence information merged
with available structural data of varying coarseness, and infer a subset of models that best matches
with the target dataset. Also, MELD with only CPI is limited to folding small soluble proteins
of up to 100 residues. The data-guidance from ReMDFF allows MELD to fold larger structures,
with at least 10-fold more residues, inside CryoFold. For intermediate to low-resolution data (less
than 5 Å) wherein C-alpha tracing is unreliable, the MAINMAST step can be avoided. Nonethe-
less, if successful, the search template derived from backbone tracing almost always accelerates
convergence of CryoFold.

The guidance from experimental data allows CryoFold to derive transmembrane systems
and asymmetric multi-protein complexes. More importantly, unlike homology models, the free
energy description of folded and unfolded populations accessible to MELD enables the clustering
of structures into distinct metastable states. Thus, starting with the structural data from a partic-
ular protein conformation, CryoFold predicts on one hand, the energetically favorable ensemble
of structures that are consistent with the data, while on the other hand, discovers multiple new
low-energy protein states distal to the fitted model. Going beyond the determination of a stationary
structure or local fluctuations in its vicinity 17, 18, CryoFold offers a collective interpretation of the
major equilibrium conformations. This ensemble view of the data comes from MELD, wherein
the 3D map-fitted search models from MAINMAST are first translated into a set of hundreds of
high-dimensional structural restraints. The molecular ensembles are then generated by exchanging
between these sets of restraints. The generalized ensemble methodology allows knowledge from
the cryo-EM data to be imposed as an average boundary condition that all the resulting models
follow either partially or entirely, rather than as a single holonomic boundary restraint traditionally
imposed in real-space refinements. Thus, model populations are determined that either completely
or partially satisfy the data. As ReMDFF iteratively improves the consistency between the search
model and the density data, the set of MELD restraints derived from the fitted models improve. The
ensemble generated with these data-guided restraints reveals simultaneously the most-likely set of
refined structures, as well as molecular dynamics underlying the protein’s conformational hetero-
geneity. Any structure from the MELD ensemble can be refined using ReMDFF to derive models
consistent with the experimental data. However, to ensure rapid convergence, structures from the
MELD ensembles are clustered based on their correlation coefficient (CC) relative to the exper-
imental data. The one with the highest map-model correlation (also validated using EMRinger
scores) is refined employing ReMDFF.

The states discovered by CryoFold scan the equilibrium protein ensemble either by visiting

3



diverse manifestations of the same structural data or by visiting new energy basins, structures from
which are verified against orthogonal NMR, X-ray crystallography or cryo-EM datasets. All exist-
ing X-ray 1, NMR 19 or Cryo-EM 18 ensemble refinement tools focus on interpretation of a chosen
dataset via locally restrained model construction. Extending this paradigm, CryoFold enables the
generation of global ensembles, encompassing a considerably higher dimensional conformational
space, that we cluster and re-refine against multiple independent datasets. The multitude of struc-
tures so resolved enables the generation of “molecular movies” directly from experimental data,
wherein structures are seen transitioning between multiple energy states 20.

We report data-guided structural ensembles for six different examples here, for proteins from
72 to 618 residues, extending to heterogeneous multi-protein complexes of up to 2000 residues,
and across both soluble and membrane systems. CryoFold overcomes the sampling limitations
of traditional MD predictions, producing high-quality structural models: it convergences to so-
lution(s) starting with partially folded models from MELD, and iteratively refining soluble and
transmembrane structures with consistently > 90% favored backbone and sidechain statistics, and
high EMRinger scores 21. The results are independent of the initial estimated conformation and
consistent with physics and stereochemistry, highlighted through results in 2016 and 2019 EMDB
competitions. The hybrid protocol is available through a python-based graphical user interface
with a video tutorial and list of best practices.

2 Results

We describe six systems, chosen to highlight the pros and cons of the component methods in
the CryoFold pipeline. Three are soluble proteins, with varying degrees of local resolution in
the density maps. One is from the 2019 EMDB competition challenge, in which data on the
same protein was provided at three different resolutions 22. These examples bring to light how
MELD-ReMDFF recover correct ensembles when the MAINMAST predictions are challenged,
and vice versa. One is a large asymmetric multi-protein complex that allowed us to test how big a
structure CryoFold could handle. And, one is a transmembrane system, to see if MELD’s implicit-
solvent model would be adequate for ensemble determination in the membrane environment. At
any given resolution, the accuracy of CryoFold ensemble predictions depends on: (1) quality of
C↵ traces by MAINMAST, (2) variations in secondary structure within the MELD ensemble, and
(3) convergence of ReMDFF. A set of best practices required for controlling these dependencies,
and regulating the size of the data-guided ensembles is outlined in the Methods.

Proof of principle on a small known protein In this case, we began with a synthetic map of
ubiquitin, a small 72-residue protein. Ubiquitin is a good test system because, on the one hand, it
is small enough to fold computationally, and yet on the other hand its experimental folding time
is in the millisecond range, so it is hard to fold by brute force MD simulation 23, and even, to a
lesser extent, by the MELD approach 14. From the known X-ray crystal structure of ubiquitin,
we generated a synthetic density map at 3.0 Å resolution, and asked if CryoFold could correctly
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recover the X-ray structure.

We found that only two MELD-ReMDFF iterations were needed to give a model having a
root mean square difference or RMSD of 2.53 Å from the crystal structure (PDB id: 1UBQ, see
Table S1). Starting from a random coil, the overall ubiquitin topology was already recovered in the
first iteration (Fig. 2B). The ensembles are reminiscent of the F’ and F1 intermediates of ubiquitin
folding 23. Secondary structure refinement of the small fourth �-strand and 310 helical loop yielded
a fully folded state after the second iteration. Notably, MELD alone was unable to recover the he-
lical loop (seen in MELD Step 1) despite sampling key folding intermediates seen in 2D-NMR 24.
The synthetic density data reinforced such key secondary structural information during ReMDFF.
This yielded more accurate CPI or coarse physical information for the next iteration of MELD, and
subsequently secondary structure restraints for the next round of ReMDFF. Altogether, the proof of
principles example demonstrates that the new data-driven pipeline is capable of attaining multiple
equilibrium states that the too narrow ensembles in ReMDFF 12 or the too extensive ensembles in
MELD 13 cannot individually achieve.

Test on a soluble lipoprotein with a uniformly high-resolution data Francisella lipoprotein
Flpp3 is a 108 amino acids long membrane-interacting protein that serves as a target for drug de-
velopment against tularemia25. In this case, we had two datasets: one at high resolution (1.8 Å)
from our Serial Femtosecond X-ray (SFX) crystallography experiments of Flpp3, PDB: 6PNY (See
Supplementary Information and 26), and another truncated at low resolution (5.0 Å). The point of
this test was to see if we could use the low-resolution data to achieve the high-resolution struc-
ture. For both sets, we used MAINMAST 11 to introduce the C↵ traces as constraints for MELD
(Fig. 3A,B). Convergent ensembles derived from this MAINMAST-guided MELD step were then
refined by ReMDFF to improve the sidechains until the density was resolved with models of reli-
able geometry. MAINMAST’s spanning tree algorithm alone cannot offer any reliable sidechain
geometry, it just places the C↵ atoms in the density. We found that one iteration of the MELD-
ReMDFF cycle following MAINMAST sufficed to resolve an all-atom model of Flpp3 from the
SFX density, with accurate secondary and tertiary structure assignments, and sidechain packing
(structural statistics summarized in Table S2). At 5 Å resolution MAINMAST produced low qual-
ity backbone traces (Fig. 3B). Remarkably, even these low quality C↵ traces were enough for
MELD-ReMDFF to successfully produce models comparable to our high-resolution refinements.
After two MELD-ReMDFF iterations, the best structure obtained was within 2.29 Å RMSD from
the SFX model. The overall ensemble from the second MELD-ReMDFF iteration (inset in graph
of Fig. 3B) also samples a narrower range of RMSD and global correlation coefficient (CC) val-
ues showing the convergence towards a set of conformations in good agreement with the cryo-EM
data. However, for the same RMSD relative to the known target model, we find structures covering
a broad range of CCs within the MELD ensembles. This breadth of the CC values corresponding
to the models in the lowest RMSD window, which is reproducible across all the following exam-
ples, confirms that while CryoFold focuses on the possible best fit, the collection of data-guided
structures concomitantly accounts for uncertainty about the best fit.

5



The MELD-only predictions modelled the �-sheets accurately; however, they failed to ac-
curately converge on all helices (Supplementary Fig. S1). For example, a 4-turn helix was un-
derestimated to contain only 2-3 turns. Similar to the ubiquitin example, but now using empirical
X-ray maps, guidance by the density in CryoFold recovered these turns in both the high and low
resolution cases (Tables S2 and S3). Thus, the Flpp3 test further demonstrates that the CryoFold
trio of methods gives accurate structures for longer chains than is otherwise possible with any one
of these methods.

Here, we are also able to test an important aspect of physics-based structure determination,
namely whether we can generate meaningful conformational ensembles, not just single average
structures. The quality of the CryoFold ensembles is assessed against a set of 20 NMR models of
Flpp3 25 by looking at the conformation of key residues (Y83,K35 and D4) responsible for bind-
ing tularemia drugs (Fig. S2A) 26. Upon projecting the ensemble of 50 lowest-energy CryoFold
structures onto a space defined by the distance between Y83-K35 & Y83-D4, where closed F lpp3

is represented by (Y83-K35 <5.0 Å & Y83-D4 > 10.0 Å), and open F lpp3 implies (Y83-K35
>10.0 Å & Y83-D4 < 5.0 Å) 26, all the major conformational states seen in the NMR experiments
have been recovered (Fig. S2B). Thus, extending beyond the prediction of a single stationary struc-
ture, the cluster of low-energy conformations predicted by CryoFold captures both the open and
closed conformations, starting only with the 6PNY data from the closed state.

The classification of structural ensembles based on projections onto the distance space re-
quires a priori knowledge of the structural features of all the major states in the ensemble. In
an alternate scheme that does not require such knowledge, the models were classified based on
their Rosetta-energy and RMSD relative to the crystal structure 27. Rosetta is chosen as a bench-
mark due to its use of energy functions analogous to the CHARMM or AMBER force fields in
MDFF/ReMDFF and MELD. In this energy space, the ensemble of 50 Flpp3 structures derived
from CryoFold at 1.8 Å resolution recovered only a minimum number of the states observed
in NMR (Fig. S3). This limitation is explained by our recent studies showing that very high-
resolution data of 1-3 Å poses stiff data constraints that make it entropically unfavorable for an MD
simulation to overcome and explore states that are not strictly defined by the data 28. Consequently,
the sampling becomes highly localized to only one state and the ensemble is overpopulated with
similar structures, cutting down on conformational diversity. Rosetta-EM visited almost all the
NMR states, potentially benefiting from its Monte Carlo sampling scheme, but still using a 20-fold
larger ensemble size than used in CryoFold. In contrast, for the 5.0 Å regime, CryoFold produces a
markedly better performance with the 50-model ensemble overlapping with the majority of NMR
intermediates and the final SFX solution, as well as consistently determining structures with lower
energy than Rosetta-EM. Therefore, the extended sampling benefits of CryoFold are more apparent
in fuzzier datasets. Here, a broader segment of the protein folding funnel is accessed by MELD,
recovering models even from the poor initial guesses generated by MAINMAST(Fig. S4).

Taken together, the ubiquitin and Flpp3 examples establish CryoFold as an enhanced sam-
pling tool for resolving multiple metastable states of proteins with > 100 residues, guided only by
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a single experimental dataset at 3-5 Å. Instead of individually determining multi-model interpreta-
tions for the 1 SFX and 20 NMR datasets, CryoFold allowed the generation of all the druggable vs.
non-druggable models as part of a single ensemble driven by just one piece of information. In the
absence of the NMR knowledge, even a multi-model refinement of the high-resolution SFX data
would have produced a narrow ensemble, artifactually suggesting that this protein is rigid (Figs. S2
and S3). The multi-state equilibrium ensemble generation in CryoFold removes such assumptions
and brings to light the dynamic nature of this protein in addition to resolving the experimental
structures.

Test on soluble domains of a membrane protein with heterogeneous-resolution data We look
at the cytoplasmic domain of a large trans-membrane protein, TRPV1, a heat-sensing ion channel
(592 amino acids long). The point of this test is that the data is highly heterogeneous, with exper-
imental density maps ranging between 3.8 to 5.0 Å 29, as determined by Resmap. Furthermore,
TRPV1 has two apo-structures deposited in the RCSB database, one with moderately resolved
transmembrane helices and cytoplasmic domains (pdb id: 3J5P, EMDataBank: EMD-5778), and
another with highly-resolved transmembrane helices (pdb id:5IRZ, EMDataBank: EMD-8118)
but with the cytoplasmic regions, particularly the �-strands, less locally resolved than in 3J5P.
CryoFold was employed to regenerate these unresolved segments of the cytoplasmic domain from
the heterogeneous lower-resolution data of 5IRZ. We compare the CryoFold model to the reported
3J5P structure (Fig. 4), where these domains are much better resolved showing clear patterns of
�-sheets. The final model was observed to be at an RMSD of 3.41 Å with a CC of 0.74 relative
to 5IRZ. The same model with some loops removed for consistency with the EMD-5778 density
produced an RMSD of 2.49 Å and CC of 0.73 with respect to the reported 3J5P model. Taken
together, models derived from the CryoFold refinement of 5IRZ capture in atomistic details the
highly resolved features of this density, yet without compromising with the mid-resolution cyto-
plasmic areas where it performs as well as the 3J5P model (Table S4).

TRPV1 was part of the 2016 Cryo-EM modeling challenge where only ReMDFF was used 30.
Presented in Table S5, our updated CryoFold model of TRPV1 (model no. 4), represents the top
- 20% of the submissions with > 90% Ramachandran favored statistics, and an EMRinger score
of 2.54. This model is now refined over the originally reported structure with a score of 1.75, and
our previous submission at 2.25. Comparisons with the results from other methods is provided in
the supplement, and summarized in the Discussions. The improvement is attributed solely to the
higher-quality �-sheet models that is now derived from the enhanced sampling obtained by running
MELD and ReMDFF in tandem. Starting with a random coil as search model (Fig. 4B), the
recovery of these �-sheets is highly improbable with the limited conformational space that MDFF
visits. In fact, MAINMAST and MDFF combined also could not resolve the cytoplasmic region of
TRPV1 31. Addressing this issue, MELD invokes a multi-replica temperature exchange scheme,
wherein at high replica indices it samples many distinct structures that have short lifetimes 13. At
the lower-temperature replica a stronger coupling with the data is achieved, and these structures are
folded into a smaller number of long-lived clusters, each with varying degrees of native contacts
and secondary structure (Fig.S5). The 5.0 Å local resolution of TRPV1’s soluble region is the
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fuzziest density feature that CryoFold is tasked to resolve. Consequently, refinement of the TRPV1
�-sheets required MELD to sample the broadest structural funnel among all the chosen examples
(Fig. S4). It focuses initial models starting within an RMSD span of 10–25 Å from the target
down to refined structures displaying four classes of low-energy topologies (Fig. S5). Thus, unlike
MDFF (or ReMDFF), MELD allows for a much broader search of structural motifs hidden within
the same density features. In Fig. 4D we see the conformational diversity of the refined ensemble
coming from MELD. When these methods are combined inside CryoFold, both the backbone and
sidechain geometries are refined against the target 5IRZ density to find the most probable set of
conformations (80% of the ensemble population) that capture the TRPV1’s labile �-strands.

An analysis of the less probable CryoFold ensembles reveals partial unfolding of the �-
strands in the soluble domains of TRPV1 with around 3-4% of the structures presenting incomplete
�-sheets, akin to the model originally submitted with 5IRZ (Fig. S5C). Partial unfolding of these
regions have not been attributed to any functional implications in TRPV1, though some periph-
eral evidence of functional advantages from unfolding exist in TRPV3 channels 32. The �-strands
and loops from the soluble domains form the inter-protomer interface within the tertrameric chan-
nel. Secondary structural changes at these interfaces, triggers coupling between cytoplasmic and
transmembrane domains, priming the channel for opening. Such changes, though rare, are indeed
apparent in our MELD assignments. Therefore, the ensemble of structures and not merely the most
probable model that CryoFold offers, opens the door to analyzing a number of distinct folded and
unfolded conformations, all of which can contribute to the same density map with different weights
22, 33. Also evident from the TRPV1 case study, we can generate such atomistic ensembles with
data of low local resolution, yet with accuracy commensurate to structures derived from higher
resolution density maps.

Tests on apoferritin at three different resolutions from the 2019 EMDB modeling challenge
The EMDB competition is a community-wide effort to assess the limits of structure prediction
using cryo-EM data. Here we were tasked to determine the structure of a 174-residue apoferritin
monomer using data at 1.8, 2.3 and 3.1 Å resolution. Following an initial tracing by MAINMAST
on the monomeric map, it took two iterations for CryoFold to arrive at the final model for the
first two resolutions, and three iterations for the third map. In total 13 teams participated in the
2019 competition that focused primarily on ab-initio structure determination, and all the results
are reported on the EMDB website. CryoFold (team 73) models were independently assessed to
be of high accuracy (Fig. S6 (scale labeled in green)), specifically for three different categories of
scores: Reference-free, EM-map and target-structure scores. The results were robust over the nar-
row range of resolutions tested, earning us the top rank for multiple entries 22. Comparability with
respect to the target structures is almost always very high, as also reflected in commensurately
high Fourier Shell Coefficient (FSC = 0.5) and the correlation coefficient with the experimental
map. Another noticeable strength is the strong EMRinger scores of the MD-based refinement,
very similar to ReMDFF’s performance in the 2016 competition 30. A relatively new measure
to evaluate mainchain geometry and to identify areas of probable secondary structure based on
C-Alpha geometry, called CaBLAM 34 also found the CryoFold models to be favorable. One lim-
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itation however, is the increased number of Ramachandran outliers observed in the CryoFold and
MDFF determined structures, which implicates the assumptions of classical CHARMM-type force
fields30. Our recently developed neural network potentials have already been useful to circumvent
this issue 35.

Test on a large multi-chain protein complex with mid-resolution data A grand challenge for
cryo-EM is to determine structures of multi-chain complexes. Symmetry is used wherever possi-
ble, e.g., in viruses or homo-oligomeric membrane proteins 32. However, most protein-protein or
protein-nucleic acid complexes are asymmetric. Our test here is whether CryoFold could obtain
the structure in an asymmetric complex. We focused on ATP synthase. Recently Murphy et al.
reported 30 distinct conformations of this motor at 2.7-4.5 Å resolution 36. A majority of these
structures contain rotating conformations of the so called transmembrane c-ring. For simplicity,
we have removed this c-ring (the transmembrane problem will be addressed in the next section)
and chose to model specific ATP synthase conformations that do not contribute to the rotation of
the ring. Therefore, we started refining PDB ID: 6RET that contains 31 chains resolved at 4.3 Å,
which is one of the lower resolution densities wherein the c-ring is in a non-rotatable conformation.

Similar to the Flpp3 and TRPV1 cases, here the ensemble computed by CryoFold correctly
captured the low-lying states of the multi-chain system in addition to the target 6RET conforma-
tion. For example, seven of the thirty models reported by Murphy et al. which include overall
deformations of the 2000-residue system without rotation of the c-ring were represented well in
the CryoFold ensemble. Using RMSD matrices (Fig. S7A), these structures were clustered in
4 distinct states (States I: 6RET; II: 6RDQ, 6RDR; III: 6RDW, 6RDX; and IV: 6RDK, 6RDL).
Remarkably, all these four states are identifiable in an RMSD matrix of 2200 MELD structures
within CryoFold (Fig. 5B). States II, III and IV from MELD are initially at backbone RMSD 7.6,
12.0 and 8.4 Å from 6RET, respectively (Fig: S7B). After ReMDFF refinements, structures are
consistent with the experimental models from Murphy et al. for states II, III and IV which were
refined to RMSD values of 2.1, 2.8, and 1.8 Å, respectively (Fig. 5C, S7C and S8C). Beyond
sampling the rare secondary structural changes, seen in the first few examples, here MELD visits
states separated by variations in tertiary structures of the protein-protein interfaces (Fig. S9). A
simple multi-model ensemble from ReMDFF of the individual density maps completely misses
the existence of the other states. Therefore, starting with an ensemble of structures generated to
resolve 6RET, the inter-state exchange promoted by MELD’s enhanced sampling of the interface
contacts 37, allowed ReMDFF to resolve three more conformations of ATP synthase consistent
with 6RDQ, 6RDW and 6RDK (Tables: S6 and S7).

A key biophysical outcome that we make from the CryoFold ensembles of ATP synthase
is the flexibility of this motor’s peripheral stalk domains. Specifically, the OSCP hinge (chain P)
assumes a number of distinct open and closed conformations with an RMSD of 3.3-6.4 Å (Fig.
5D) relative to the hinge from 6RET. The elastic coupling in ATP synthase has remained a topic of
contention in the bioenergy community with crystallographers claiming minimum flexibility of the
stalk regions 38, in sharp contrast to single-molecule observations of “power-strokes” that originate
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from deformations of the stalk 39. Within the CryoFold ensembles incorporating all the states I-IV,
we see that the central stalk is in fact less flexible than the peripheral stalk with an RMSD ranging
between 2.4-3.8 Å relative to 6RET. So, our results show that most of the elastic coupling in
polytomella ATP synthase comes from the flexibility of the peripheral stalk, rather than the central
stalk. Going beyond the knowledge derived from stationary models, our resolution of structural
ensembles exchanging between four low-energy states clearly suggests stalk deformability, and
adds credence to the power-stoke mechanism of ATP turnover.

Tests on soluble and membrane domains of a large ion channel with mid-resolution data A
second major challenge in structural ensemble determination arises from the modeling of com-
plete transmembrane protein systems, including structure of both the soluble and TM domains.
The refinement becomes particularly daunting for CryoFold, as MELD simulations fail to capture
structural changes from explicit protein-membrane interactions 13. Consequently, the accuracy of
the model will depend on the structural information available from the map, and less on the fidelity
of the physical interactions that underscore MELD.

Addressing this challenge, CryoFold was employed to model a monomer from the pen-
tameric Magnesium channel CorA, containing 349 residues, at 3.80 Å resolution 40 (pdb id: 3JCF,
EMDataBank: EMD-6551) (Figs. 6 and S10). An initial topological prediction of the channel was
obtained by flexibly fitting of a linear polypeptide onto the C↵ trace obtained from the cryo-EM
density using MAINMAST. These traces were already within 6.0 Å of the target C↵ conformation
in 3JCF, providing high-confidence coarse-grained information for MELD to operate. Leveraging
the MAINMAST trace, MELD was used to perform local conformational sampling, regenerating
most of the secondary structures. Such local refinement requires a narrow sampling of the folding
funnel (Fig. S4). The model with the highest correlation coefficient to the map was then refined
using ReMDFF, resulting in models which were at 2.90 Å RMSD to the native state. Even though
this model possessed high secondary structure content of 76%, substantial unstructured regions
remained both in the cytoplasmic and the transmembrane regions, warranting a further round of
refinement. In the subsequent MELD-ReMDFF iteration, the resulting models were re-refined to
2.60 Å RMSD from the native state and final CC of 0.84 with the map. The CryoFold models were
also comparable in geometry to that deposited in the database (Fig. 6 and Table S8).

We find that starting with high-quality chain traces, CryoFold ensembles can indeed be
guided to model helical membrane segments even in an implicit solvent environment. The �-sheet
rich soluble domains are concomitantly refined from lower resolution features of the same map.
Seen in Fig. 6B, the uncertainty in the ensemble is broader in the soluble domains, which, similar
to TRPV1 are verified to be more flexible and engage in Magnesium-mediated pore opening 40.
Convergence of the refined MELD ensemble is further indicated by tighter clusters of structures
with systematic improvement in CCs and RMSD values relative to the target Fig. 6C across three
rounds of ReMDFF MELD iterations. CryoFold therefore overcomes MELD’s traditional weak-
nesses, and going beyond the limited convergence radius and over-fitting artifacts of flexible fitting
methodologies 41, establishes MD simulation as a data-guided ensemble determination tool for
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transmembrane proteins and their complexes.

3 Discussion

The systems presented here have been chosen as challenging problems to the methods that consti-
tute CryoFold. We have not over-optimized any aspect of the protocol to fit one problem, rather
complemented the uncertainties and weakness of one method with the strengths of another. This
approach is akin to the consensus methods that are known to improve performance over single
methods in blind prediction challenges 42. In light of the current results, it is expected that a se-
lected combination of methods within CryoFold’s plug-and-play protocol will enable the resolution
of novel protein folds (Fig. S11) from density data, where the individual methods will potentially
fail.

The probability of a structure contributing to one or more subsets of data, or the converse,
is determined by their energies derived from the all-atom force field (GBneck2 and ff14SB). Sev-
eral subsets of data can contribute to the same metastable state or different – and some might be
incompatible with the force field leading to very low populations. Therefore, the ratio of refined
structures populating multiple metastable states maintains the same ratio of Boltzmann weights
between these states as in the unbiased force field, while still agreeing with one or more subset of
data. This unique facet of MELD allows the determination of thermodynamic averages, such as
relative binding free energies37. Within CryoFold, since thermodynamic averages are not our fo-
cus, we have focused only on the construction of the data-guided ensembles and, using ReMDFF,
extraction of the best possible single-structure representation of the data.

How much data we enforce is set as a prior (explained at lengths in the SI). If the uncertainty
prior is set too low, MELD sampling is compromised and we cannot identify structures consistent
with the data. If it is set too high, the lower replicas will increase in restraint energies, creating
difficulty in the identification of the biologically relevant metastable states and deforming their
conformations. Iteration between ReMDFF and MELD produces new sets of contact maps that
gives rise to better priors and faster convergence to the relevant metastable states. Thus, during
these iterations the coarse physical information or CPI derived from the experimental data is used
as an average quantity, arising from different subsets of the contact data and affecting the refined
models with varying degrees of uncertainty, rather than all the contacts being enforced on a single
model. Only in the final iteration, the agreement with the experimental data is enforced. Here,
we used ReMDFF to find a single model that is best fitted into the density map. Cryofold offers
therefore, both the single best data-guided structure as well as an associated ensemble, where all
the data is not satisfied by a single structure.

While CryoFold appears promising for obtaining biomolecular structures from cryo-EM, we
are aware of some limitations. First, its success depends upon the correctness of the initial trace
generated by MAINMAST. It is not clear when and whether the MD tools can recover from a wrong
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chain trace, particularly for resolving the transmembrane systems. We do not expect that sequence
assignment in MAINMAST model is perfect. Therefore, we use the MELD-MDFF protocol for
refinement. When an initial map has low resolution resulting in a lower quality MAINMAST trace,
we de-weight the accompanying contact information. For this reason, we chose to perform a re-
finement of Flpp3 protein at a 5 Å resolution, wherein indeed, the MAINMAST alignment was
incorrect. Here, the MAINMAST contacts were employed with softer restraints inside MELD rel-
ative to the 1.8 Å case. Protein folding (primarily driven by force fields) via the replica-exchange
sampling inside MELD recovered the all-atom structure from the initial misalignments to one that
is commensurate to the higher-resolution model. If the protein segments are small (within 115
residues) misfolding errors coming from incorrect sequence alignments can be corrected by the
force fields, ensuring local refinements. But if such errors become global, physics simulations will
find it difficult to handle the problem. Thus, unlike Flpp3, repeating the CorA refinement with a
misaligned MAINMAST trace resulted in unreliable models. Deep learning tools such as Deep-
Tracer offer a tangible alternative to the MAINMAST traces for providing templates for ensemble
generation at sub-4 Å resolution. Second, we do not have a good implicit membrane model to
use in the MELD simulations and the use of explicit solvent would require many replicas, seek-
ing more resources than currently available. Thus, by relying solely on the information coming
from the density map we impose positional restraints and focus sampling on the transmembrane
domains. Third, as with any MD simulation of biomolecules, the force fields are still not perfect
and larger structures will be a challenge for the searching and sampling, even with an accelera-
tor such as MELD. Finally, in our current approach, MELD is the most computationally limiting,
requiring between one and ten days of sampling with 30 GPUs for the systems studied. These
resources might be prohibitive for single lab resources but accessible through supercomputing re-
sources available to academic researchers. Future research will aim at reducing the computational
expense required for CryoFold. The computing need will be particularly pressing in multi-chain
systems where map segmentation becomes an additional issue that we have not addressed during
ensemble generation. Fortunately, MAINMAST has a recently developed multi-segment version
which naturally lends to our pipeline 43, and MD simulations have been historically successful in
modeling multi-subunit systems 9. Thus, scaling CryoFold with segmented-MAINMAST offers a
viable way forward for data-guided ensemble generation of large protein complexes.

Despite the aforementioned limitations, CryoFold has been compared to popular structure
determination protocols. Barring the Flpp3 case at 1.8 Å, CryoFold was always found to offer
higher quality models, but more importantly a diverse range of structures consistent with the ex-
pected biophysics. While for TRPV1 and CorA, other available multi-model protocols converged
to structures with unphysical overlap between the �-strands (Fig. S5 and S12), a multi-protein
refinement for ATP synthase could not be reproduced using standard resources, though individual
chain refinements were achieved and are reported in Fig. S14. A key benefit of this work, justifying
the need for intense computations, is the ability to capture ensembles rather than single structures.
Consequently, we identify conformations that are close to the native structure, but also some alter-
native meta-stable states that are favored by the combination of force field and data. An important
question follows – are these structures really relevant or just spurious? To this end, we have vali-
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dated using NMR and cryo-EM experiments that in addition to the narrow set of models consistent
with one density map, there exists orthogonal states that are observed both in the experiments in
CryoFold refinements. These orthogonal structures sampled by MELD are indeed leveraged in
biological functions, as found in the open!close transition in Flpp3, secondary structure-induced
pore opening in the TRPV channels or flexibility of the peripheral stalks in elastic coupling of the
ATP synthase example, and yet behooves resolution by the limited sampling capacity of brute-
force MD or Monte Carlo sampling used in stationary structure determination. Also, deep learning
tools (e.g. AlphaFold) though have championed single protein structure prediction, their role in
the prediction of ensemble dynamics for multi-domain systems is yet to be determined, keeping
the physics approaches still the first choice.

Finally, evident from the 2016 and 2019 EMDB competition results, heterogeneous map
resolutions affect the completeness of all the ensuing models. While a significant number of mod-
elers prefer to truncate the more dynamic regions, MDFF offers a way to quantify uncertainty of
the dynamic regions with root mean square deviations from an average model 12, and to corre-
late the inherent flexibility of complete protein models with the local resolution of density maps.
Now, inside CryoFold, the flexible regions are even more thoroughly sampled by MELD offer-
ing the possibility of seeking hidden states in these fuzzy regions. Altogether, we present the
first MD based methodology for data-guided protein folding and ensemble refinement, bridging
the strengths from two distinct areas of Biophysics. The implementation is semi-automated, and
manual fitting is completely avoided. However, the user will require to control the Input/Output be-
tween the three methods, and optimize the default parameters as required. Detailed in the Methods
and in the SI, we have provided a GUI to facilitate this stage.

4 Conclusions

Structures, dynamics and function are interlinked. We often concentrate on a set of tools to deter-
mine structures from data and then use alternate computational techniques to determine dynamics
between these metastable structures to ultimately elucidate biological functions. By leveraging the
parallel algorithms with techniques such as CryoEM that capture multiple states (but an unknown
number of them) computations can go beyond single structures to establish molecular dynamics
directly from data. CryoFold is a first step in that direction.

5 Materials and Methods

The data-guided fold and fitting paradigm presented herein combines three real-space refinement
methodologies, namely MELD, MAINMAST and ReMDFF. In what follows, these three formula-
tions are articulated individually and the readers are referred to the original publications for details.
Then, we outline the hybridization of the methods to provide a molecular dynamics-based de novo
structure determination tool, CryoFold. Details of the setup for each individual system, as well
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as, an outline of the computational resources required is outlined in Supplementary Information to
showcase the different contexts in which CryoFold can operate (see Table S9).

MELD Modeling Employing Limited Data (MELD) employs a Bayesian inference approach (eq.
(1)) to incorporate empirical data into MD simulations13, 14. The bayesian prior p(~x) comes from an
atomistic force field (ff14SB sidechain, ff99SB backbone) and an implicit solvent model (General-
ized born with neck correction, gb-neck2) 44, 45. The likelihood p(

~

D|~x), representing a bias towards
known information, determines how well do the sampled conformations agree with known data, D.
p(

~

D) refers to the likelihood of the data, which we take as a normalization term that can typically
be ignored. Taken together,

posteriorz }| {
p(~x| ~D) =

p(

~

D|~x)p(~x)
p(

~

D)

⇠

likelihoodz }| {
p(

~

D|~x)
priorz}|{
p(~x) . (1)

MELD is designed to handle data with one or more of these features: sparsity, noise and
ambiguity. Brute-force use of such data leads to incorrect models46 as not all the data is compatible
with the native state. MELD addresses the refinement of low-resolution data by enforcing only a
fraction (x%) of this data at every step of the MD simulation. Although x is kept fixed, the subset
of data chosen to bias the simulation keeps changing with the simulation steps in a deterministic
way. For a given structure all the data is evaluated, sorted according to their energy penalty and
the x% with lowest energy guide the simulation until the next step. The data is incorporated as
flat-bottom harmonic restraints E(rij) for evaluating the likelihood (p( ~D|~x)).

E(rij) =

8
>>>>>><

>>>>>>:

1
2k(r1 � r2)(2rij � r1 � r2) if rij < r1

1
2k(rij � r2)

2 if r1  rij < r2

0 if r2  rij < r3

1
2k(rij � r3)

2 if r3  rij < r4

1
2k(r4 � r3)(2rij � r4 � r3) if r4  rij,

(2)

When these restraints are satisfied they do not contribute to the energy or forces, contributing
for flat bottom region of eq. 2 and (Fig. S13). When the restraints are not satisfied they add
energy penalties and force biases to the system – guiding it to regions that satisfy a subset of
the data, or conformational envelopes. MELD is available as a plugin on the MD simulation
platform OpenMM. Details of MELD implementation and ensemble generation are provided in
Supplementary methods: Description of MELD and Data-guided ensemble generation.

MAINMAST MAINchain Model trAcing from Spanning Tree (MAINMAST) is a de novo mod-
eling program that directly builds protein main-chain structures from an EM map of around 4-5
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Å or better resolutions11. MAINMAST automatically recognized main-chain positions in a map
as dense regions and does not use any known structures or structural fragments.The procedure of
MAINMAST consists of mainly four steps (Fig. S15). In the first step, MAINMAST identifies
local dense points (LDPs) in an EM map by mean shifting algorithm. All grid points in the map
are iteratively shifted by a gaussian kernel function and then merged to the clusters. The repre-
sentative points in the clusters are called LDPs. In the second step, all the LDPs are connected by
constructing a minimum spanning tree (MST). It is found that the most edges in the MST covers the
main-chain of the protein structure in EM map11. In the third step, the initial tree structure (MST)
is refined iteratively by the so-called tabu search algorithm. This algorithm attempts to explore a
large search space by using a list of moves that are recently considered and then forbidden. In the
final step, the longest path of the refined tree is aligned with the amino acid sequence of the target
protein. This process assigns optimal C↵ positions of the target protein on the path and evaluates
the fit of the amino acid sequence to the longest path in a tree. MAINMAST is now available as
a plugin on Chimera. Details of MAINMAST implementation are provided in Supplementary
methods: Description of MAINMAST.

Traditional MDFF The protocol for molecular dynamics flexible fitting (MDFF) has been de-
scribed in detail15. Briefly, a potential map VEM is generated from the cryo-EM density map, given
by

VEM(r) =

(
⇣

⇣
1� �(r)��thr

�max��thr

⌘
if �(r) � �thr ,

⇣ if �(r) < �thr .
(3)

where �(r) is the biasing potential of the EM map at a point r, ⇣ is a scaling factor that controls
the strength of the coupling of atoms to the MDFF potential, �thr is a threshold for disregarding
noise, and �max = max(�(r)).

A search model is refined employing MD, where the traditional potential energy surface is
modified by VEM. The density-weighted MD potential conforms the model to the EM map, while
simultaneously following constraints from the traditional force fields.

ReMDFF While traditional MDFF works well with low-resolution density maps, recent high-
resolution EM maps have proven to be more challenging. This is because high-resolution maps
run the risk of trapping the search model in a local minimum of the density features. To overcome
this unphysical entrapment, resolution exchange MDFF (ReMDFF) employs a series of MD sim-
ulations. Starting with i = 1, the ith map in the series is obtained by applying a Gaussian blur of
width �i to the original density map. Each successive map in the sequence i = 1, 2, . . . L has a
lower �i (higher resolution), where L is the total number of maps in the series (�L = 0 Å). The
fitting protocol assumes a replica-exchange approach described in details12 and illustrated in Fig.
S16. At regular simulation intervals, replicas i and j, of coordinates xi and xj and fitting maps
of blur widths �i and �j , are compared energetically and exchanged with Metropolis acceptance
probability p(xi, �i,xj, �j) =
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✓
1 , exp

✓
�V (xi, �j)� V (xj, �i) + V (xi, �i) + V (xj, �j)

kBT

◆◆
(4)

where kB is the Boltzmann constant, V (x, �) is the instantaneous total energy of the con-
figuration x within a fitting potential map of blur width �. Thus, ReMDFF fits the search model
to an initially large conformational space that is shrinking over the course of the simulation to-
wards the highly corrugated space described by the original MDFF potential map. Both MDFF
and ReMDFF are available as plugins on VMD. Details of ReMDFF implementation are provided
in Supplementary methods: Description of Resolution exchange MDFF.

CryoFold (MELD-MAINMAST-ReMDFF) protocol and best practices Illustrated in Fig. 1,
the CryoFold protocol begins with MELD computations, which guided by backbone traces from
MAINMAST yields folded models. These models are flexibly fitted into the EM density by
ReMDFF to generate refined atomistic structures.

1. First, information for the construction of Bayesian likelihood is derived from secondary
structure predictions (PSIPRED), which were enforced with a 70% confidence. This percent-
age of confidence offers an optimal condition for MELD to recover from the uncertainties
in secondary structure predictions16. For membrane proteins, this number can be increased
to 80% when the transmembrane motifs are well-defined helices. MELD extracts additional
prior information from the MD force field and the implicit solvent model (see eq.1).

2. In the second step, any region determined with high accuracy will be kept in place with
cartesian restraints imposed on the C↵ during the MELD simulations. This way, the already
resolved residues can fluctuate about their initial position.

3. In the third step, contact restraints (e.g. distance between the C↵ traces of MAINMAST) are
derived. The threshold value of density chosen for MAINMAST chain-tracing is 0.5-1.0.
A second important MAINMAST parameter is the number of iterations. If the chain length
>115 residues, it requires between 1000-5000 iterations to converge. For smaller protein
segments (<100 residues), up to 500 iterations suffice.

The application of MAINMAST allows construction of pairwise interactions as MELD-
restraints directly from the EM density features. Together with the cartesian restraints of
step 2, these MAINMAST-guided distance restraints are enforced via flat-bottom harmonic
potentials (see eq. 2) to guide the sampling of a search model; notably, the search model is
either a random coil or manifests some topological features when created by fitting the coil
to the C↵ trace with targeted MD. Depending upon the stage of CryoFold refinements, only
a percent of the cartesian and distance restraints need be satisfied. The cartesian restraints
are often localized on the structured regions, while the distance restraints typically involve
regions that are more uncertain (e.g loop residues).
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The two parameters that are relevant in going from MAINMAST models to MELD setup
is the threshold C↵-C↵ distance to consider and the number of contacts to trust. At lower
resolution, we set a higher distance threshold (e.g. 8Å) and reduce the per cent of contacts
to trust (e.g (55%). Ultimately, after running MELD simulations, the agreement with the
density map and violations on the number of restraints can provide a good estimate of the
quality of the initial assumptions. If large number of violations are detected, the percentage
of trusted contacts should decrease or the distance threshold increase.

4. Fourth, a Temperature and Hamiltonian replica exchange protocol (H,T-REMD) is employed
(using data from steps 1 to 3) to accelerate the sampling of low-energy conformations in
MELD13, 14, refining the secondary-structure content of the model. The Hamiltonian is
changed by changing the force constant applied to the restraints. Simulations at higher
replica indexes have higher temperatures and lower (vanishing) force constants so sampling
is improved. At low replica indices, temperatures are low and the force constants are en-
forced at their maximum value (but only a certain per cent of the restraints, the ones with
lower energy, are enforced). See SI for details for individual applications. Simulations of
30 ns per replica with 15 to 25 replicas are routinely applied to construct the conformational
ensembles.

5. Fifth, the correlation coefficient of the H,T-REMD-generated structures with the EM-density
is employed as a metric to select the best model for subsequent refinement by ReMDFF (Fig.
S16). Resolution exchange across 5 to 11 maps with successively increasing Gaussian blur
of 0.5 Å (� in eq. 4) sufficed to improve the correlation coefficient and structural statistics.
The model with the highest EMringer score forms the starting point of the next round of
MELD simulations, where now the contact information come from the ReMDFF models.
Thereafter, another round ReMDFF is initiated, and this iterative MELD-ReMDFF protocol
continues until the � CC between two consecutive iterations is <0.1.

ReMDFF employs secondary structure (or ssrestraints) to avoid over-fitting of structures
into the density maps. In CryoFold, these constraints are employed starting from the second
iteration of the MELD-ReMDFF cycle, only after the first MELD step is complete, wherein
secondary structure from PSI and MAINMAST data are translated in all-atom structures.
The gscales parameter ranges between 0.1–0.3 in earlier MELD-ReMDFF iterations till the
topology information in MELD converges. In subsequent iterations when the map resolution
is between 3–4.5 Å, the temperature is brought to 80 K and in the final step the gscale is
increased to 1.0 to enable sidechain refinements. For maps lower than 5 Å resolution, only
backbone fitting is performed.

As more iteration cycles between MELD and ReMDFF are done, the contact distance thresh-
old and percentage of data to trust increases. At the last stages of refinement C↵-C↵ thresh-
olds of 6 Å and percentages as high as 80% are used. The decisions are based on the agree-
ment between ReMDFF models and the CryoEM map.

Throughout different rounds of iterative refinement, the structures from ReMDFF are used as seeds
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in new MELD simulations. At the same time, distance restraints from the ReMDFF model are
updated and the pairs of residues present in those contact interactions are enforced at different ac-
curacy levels. As expected, the more rounds of refinement we do, the higher the accuracy levels
for the contacts is achieved in CryoFold. In going through this procedure, the ensembles produced
get progressively narrower as we increase the amount of restraints enforced. The discussed pa-
rameters can be conveniently set in the GUI. A video tutorial and the description of this pipeline
encompassing Chimera, OpenMM and VMD is provided in Supplementary methods: Graphical
User Interface.
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Figure 1: An overview of the CryoFold protocol. For a high-resolution density map (data-rich case), backbone
tracing is performed using MAINMAST to determine C↵ positions, and a random coil is fitted to these positions using
targeted MD. This fitted protein model is subjected to the next MELD-ReMDFF cycles as a search model. For a low or
medium resolution density map (data-poor case), a search model is constructed from primary sequence using MELD.
This search model is fitted into the density map using ReMDFF. The ReMDFF output is fed back to MELD for the
next iteration, and the cycle continues until convergence. The last iteration of the cycle yeilds a refined model and
refined ensemble.
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STEP 3: MELD
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STEP 2: MDFF
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STEP 4: MDFF
RMSD 2.53 Å
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Figure 2: Ensemble models for TRPV1 and the refinement protocol for ubiquitin. (A) Ensemble refinement
with CryoFold showcased for the soluble domain of TRPV1. Several conformations from the TRPV1 ensemble
are superimposed; color coding from blue (N-terminal) to red (C-terminal). In a MELD-only simulation, a soluble
loop (indicated in red) artifactually interacted with the transmembrane domains. Following the data-guidance from
ReMDFF, this loop interacted with the soluble domains and a more focused ensemble is derived that agrees with
the density map. (B) Stages of the refinement protocol for a test case, ubiquitin. The initial model is an unfolded
coil. MELD was used to generate 50 search models from just the amino acid sequence, and no usage of the density
map data. Then, these models were rigid-fitted into the density map using Chimera47, and ranked based on their
global correlation coefficient. ReMDFF refined the best rigid-fitted model even further. The ReMDFF model with the
highest correlation coefficient (CC) to the density map served as a template for the subsequent iteration with MELD.
In two consecutive MELD-ReMDFF iterations the RMSD of the folded model relative to the crystal structure (1UBQ)
attenuated from 25.04Å to 2.53Å. The RMSD for unlabeled C↵-C↵ pairing, reflecting that fit of atoms to density
maps do not depend on the labels of the residues, changes from 3.18 Å (step 1) ! 1.99 Å (step 2) ! 1.54 Å (step 3)
! 1.28 Å (step 4). However, unlike all-atom RMSD, such estimates are less sensitive to topological correctness of the
model as poor connectivity can still reflects in low deviations from the standard.
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Figure 3: Hybrid structure determination of Flpp3. (A) High-resolution density map at 1.8 Å resolution. An
unfolded structure was used as the initial model. A SFX density map at 1.8 Å resolution was employed to generate
the C↵ position (green spheres) using MAINMAST, and the initial model was fitted into these positions by targeted
MD. The resulting structure (green cartoon model) was then subjected to MELD-ReMDFF refinement. This procedure
yielded a structure with RMSD of 1.56 Å relative to the native SFX structure (yellow). The global CC of this structure
is 0.83 and Molprobity score is 0.93 with 94.34 % Ramachandran favoured backbones and 98.78 % favoured sidechains
(Table S2). The Rosetta-EM model (cyan) has an RMSD of 1.28 Å with respect to the SFX structure. (B) Lower-
resolution density map at 5 Å resolution. An initial C↵ trace in the map was computed using MAINMAST. Subsequent
MELD-ReMDFF refinement resulted in a structure (green cartoon model) with an RMSD of 2.29 Å from the SFX
structure (yellow) (Table S3). The best Rosetta-EM model has (cyan) an RMSD of 2.35 Å to the SFX structure.
Bar plots depict the evolution of RMSD of the CryoFold models with each subsequent MELD-ReMDFF refinement.
The inset of the bar plot in panel B is an RMSD vs global CC scatter plot for the first and second cycle of MELD
refinements shown in lime green and dark green, respectively.
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Figure 4: Modeling of the soluble domain of TRPV1. (A) TRPV1 structures deposited in 2016 (pdb 5IRZ in
yellow) and in 2013 (pdb 3J5P in cyan in cartoon representation, showing the latter has a more resolved �-sheet while
the former possess an additional extended loop. (B) The 5IRZ model was heated at 600 K using brute-force MD, while
constraining the ↵ helices. After 10 ns of simulation, this treatment resulted in a search model with the loop regions
significantly deviated and the � sheets completely denatured. The search model was subjected to MELD-ReMDFF
refinement. A single round of MELD regenerated most of the �-sheet from this random chain, however the 5- to 15-
residue long interconnecting loops still occupied non-native positions. Subsequent ReMDFF refinement with the 5IRZ
density resurrected the loop positions. One more round of the MELD and ReMDFF resulted in the further refinement
of the model. The final refined model agrees well with 5IRZ. (C) Progress of the refinement in each step of CryoFold.
MELD step 1 shows the � sheets modeled correctly, while the loops recovered in ReMDFF step 2, and refinement was
complete by step 4. The approach resulted in structures with 93.75% Ramachandran favored backbones and 92.37%
favored sidechains and the Molprobity score of 1.67 (Table S4). Similar to the ubiquitin example, the RMSD for
unlabeled C↵-C↵ pairing, changes from 2.25 Å (step 1) ! 1.28 Å (step 2) ! 1.15 Å (steps 3-4). (D) Analysis of the
MELD ensembles from the first and second MELD-ReMDFF iterations. The scatter plot shows RMSD vs CC for each
structure from both ensembles. The ensemble statistics significantly shifts towards models consistent with the density
maps, and yet capturing deviations around the best-fitted model, concomitantly accounting for data uncertainty.
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Figure 5: CryoFold samples several biologically relevant states of the soluble domain of mitochondrial F1 - F0
ATPsynthase. We modeled mitochondrial F1 - F0 ATPsynthase starting from pdb 6RET (state I) and excluding the
grey region embedded in the membrane from refinement. CryoFold samples different conformations through a hinge
motion in the OSCP region (orange) connecting the arm (blue) with the rotary domains (cyan). Clustering and 2D-
RMSD analysis shows Cryofold samples conformations of additional ATPsynthase states represented by pdb codes
6RDK, 6RDL (state IV). Ohter states represented by pdb codes 6RDQ, 6RDR (state II) and 6RDW, 6RDX (state III)
are included in SI.
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Figure 6: Modeling transmembrane Magnesium-channel CorA. (A) The CryoFold protocol on CorA. A starts
from an C↵ trace based Cryo-EM density map using MAINMAST and refined through different cycles of MELD
and ReMDFF produces a structure that agrees well with the reported native structure (yellow), featuring accurate
beta structures. (B) CryoFold produces narrower, more constraint ensembles as we iterate through MELD/MDFF.
(C) A scatter plot of RMSD vs CC derived from the MELD ensembles at every stage of three MELD-ReMDFF
iterations. The end-model refined using ReMDFF of the third-stage MELD ensemble is 2.60 Å RMSD from the
reported structure.
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