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ABSTRACT: Mechanochemical synthesis is emerging as an environmentally friendly yet efficient approach to preparing metal—
organic frameworks (MOFs). Herein, we report our systematic investigation on the mechanochemical syntheses of Group 4
element-based MOFs. The developed mechanochemistry allows us to synthesize a family of Hf,0,(OH),(OOC),-based MOFs.
Integrating [Zr;O,(OH),(OAc),,], and [Hf,0,(OH),(OAc),,], under the mechanochemical conditions leads to a unique family of
cluster-precise multimetallic MOFs that cannot be accessed by the conventional solvothermal synthesis. Extensive efforts have not
yielded an effective pathway for preparing Ti" -derived MOFs, tentatively because of the relatively low Ti—O bond dissociation

energy.

M etal—organic frameworks (MOFs),"” a type of crystalline
porous materials, have garnered significant attention
because of their structural modularity and potential applications
in gas storage,3’4 separation,s_7 catalysis,g_11 and others.'>"?
Among them, Group 4 element-based MOFs, including
tetravalent Ti-,'*™*° Zr->"** and Hf-based ones, > >° are
some of the well-investigated families of MOFs, in part given
by their superior chemical stability.”® Conventional methods to
obtain crystalline MOFs have to involve the reversible formation
of coordination bonds, which typically relies on solvothermal
reactions at high temperature for an extended period of time in
the presence of excessive amounts of toxic solvents, e.g., N,N-
dimethylformamide (DMF).

Mechanochemical synthesis has emerged as an alternative
environmentally friendly approach to preparing MOFs in a short
time.”” ™% Zr'V-based MOFs, such as UiO-66,"* " Ui0-67,*%*°
and MOF-804,”° have been established by mechanochemical
syntheses of [ZrsO,(OH),(OOCR),,] [R = C(CH;)=CH, or
C¢H;] or [Zrs0,(OH),(OOCCHj,);,], molecular complexes
and the corresponding ligands (Figure 1a). Thus far, there have
been no reports about mechanochemical syntheses of MOFs
based on other elements in Group 4. Herein we report our
systematic efforts on the development of mechanochemical
syntheses for Group 4 element-based MOFs. A family of Hf'"-
based MOFs has been successfully synthesized by the
mechanochemical method based on a molecular precursor of
[Hf,0,(OH),(OOCCH;),,], (Figure 1b). The mechanochem-
ical method also allows us to prepare a unique family of cluster-
precise multimetallic MOFs derived from Zr,O,(OH), and
Hf,0,(OH), secondary building units (SBUs; Figure 1c), which
cannot be prepared by the conventional solvothermal method.
Extensive attempts have not afforded any Ti-derived MOFs,
presumably attributed to the low Ti—O bond enthalpy.
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Inspired by the facile ligand substitution of
[Zr;,0,(OH),(OOCCH,;),,], generating Zr,O,(OH),-based
MOFs under mechanochemical conditions, we initiated our
investigation by preparing a molecular compound with a
formula of [Hf,0,(OH),(OOCCH;);,],.*> The phase purity
of the molecular Hf complex is confirmed by powder X-ray
diffraction (PXRD) analysis (Figure S1). The complex of
[Hf,0,(OH),(OOCCHj;);,], (Figure 1b), isostructural to
[Zr;0,(OH),(OOCCH;),,],, is composed of two Hf, subunits,
which are connected by four acetate bridges. Given that
Hf,0,(OH),(O0C),, is a commonly encountered SBU in Hf-
based MOFs, we started to examine the role of
[Hf,0,(OH),(OOCCHj;);,], as a molecular precursor for the
mechanochemical synthesis of relevant MOFs.

Aiming at Hf-UiO-66, we chose 1,4-benzenedicarboxylic acid
(H,bdc) as the ligand in the initial mechanical syntheses. Ball
milling a 1:12 mixture of [Hf;O,(OH),(OOCCHs;);,], and
H,bdc in the presence of added DMF (n = 0.67 uL/mg)
afforded white crystalline solids, which did not dissolve in DMF
or methanol. PXRD analysis reveals that the obtained materials
match both the calculated PXRD patterns of Hf-UiO-66 and
those of solvothermally synthesized Hf-UiO-66 (Figure S2a,b).
The completeness of the mechanochemical reaction is
monitored through infrared (IR) spectroscopy by examining
the disappearance of carbonyl stretching from free carboxylic
acid groups at 1674 cm™" (Figure S3). The presence of DMF
and its amount employed as the assisting liquid during the
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Figure 1. (a) Reported mechanochemistry accessing
[Z140,(OH),(00C) ,]-based MOFs. (b) [Hf,0,(0H),(00C),,]-
based MOFs reported in this work to be accessible by mechanochem-
istry. (c) Family of cluster-precise multimetallic MOFs highlighted in
this work to be only accessible by mechanochemistry rather than
solvothermal methods.

synthesis are crucial, which is highlighted by control experi-
ments: (1) Milling a 1:12 mixture of
[Hf,0,(OH),(O0OCCH,;),,], and H,bdc under neat con-
ditions or in the presence of water did not generate any
crystalline phase of Hf-UiO-66 (Figure S4a). (2) The impact of
the DMF amount on the mechanochemical synthesis was
systemically explored, as shown in Figure S2c. The DMF loading
of 7 = 0.67 uL/mg affords the best crystallinity. The permanent
porosity of the mechanochemically synthesized Hf-UiO-66 was
characterized by the N, adsorption isotherm at 77 K (Figure
S4b). Hf-UiO-66 has a measured Brunauer—Emmett—Teller
(BET) surface area of 944 m*/g (P/P, = 0.02—0.15), which is
comparable to the reported BET surface area value (940 m*/g)
of the solvothermally prepared Hf-UiO-66.>

To generalize the developed mechanochemical synthetic
method, we successfully prepared a family of
Hf,0,(0OH),(00C),,-based MOFs under similar reaction
conditions, including Hf-UiO-66-NH,, Hf-MOF-804, Hf-
MOF-801, and Hf-UiO-67, based on 2-aminoterephthalic
acid, 2,5-dihydroxyterephthalic acid, fumaric acid, and biphen-
yl-4,4’-dicarboxylic acid, respectively (see details in the
Supporting Information, SI). Their crystalline phases were
characterized by PXRD analysis (Figures 2 and SS—S7), and the
surface area values were evaluated based on the N, adsorption
isotherms at 77 K (Figure S8a and Table S2). The linker
extension from fumaric acid to biphenyl-4,4’-dicarboxylic acid
leads to the corresponding peaks in the PXRD patterns shifting

_¢ = OSM HiUuio-66
NH,
o :{ OH
MO = O, Hf-UI0-66-NH,
OH
HO [¢]
H
M0 . HEMOF-804
o
[Hf,0,(0H),(0AC) ], H}_m
H
6 . H-MOF-801
HO o]
O 0%
Hf-UiO-67

Normalized Intensity
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Figure 2. Mechanochemistry affording a family of HfV-based MOFs.
The PXRD patterns of the mechanochemically prepared Hf-UiO-66
(black —; A = 0.45191 A), Hf-UiO-66-NH, (red —; 1 = 0.45174 A),
Hf-MOF-804 (blue —; A = 0.45174 A), HEMOF-801(pink —; A =
0.45174 A), and Hf-UiO-67 (green —; A = 0.45191 A) are presented.

toward the lower angle direction, which is consistent with the
increasing cavity space.

The developed mechanochemical synthesis also provides
access to a family of multimetallic MOF materials. By employing
[Zr40,(OH),(OOCH;),,], and [Hf0,(OH),(OOCCH;),,],
as molecular precursors with tunable ratios (e.g,, 1:4, 1:1, and
4:1) as well as the H,bdc ligand, we synthesized a family of
Hf,Zr,-based mixed-metal MOF materials mechanochemically.
These materials were characterized by PXRD analysis (Figures
3a and S9), which indicates that they are isostructural to Zr-
UiO-66 and Hf-UiO-66. Meanwhile, the metal ratios of Hf/Zr
were evaluated by energy-dispersive spectroscopy and in-
ductively coupled plasma mass spectrometry (ICP-MS) of
samples digested with nitric acid (see details in the SI). Both
techniques provide consistent Hf/Zr ratios, which are
comparable to the initial loading ratio of the mechanochemical
syntheses (Table S3). The increasing Zr content in the mixed-
metal MOFs results in a slight shift of the corresponding peaks in
the PXRD patterns toward the lower-angle direction (Figure
S9b), which is caused by the slightly larger ionic radius of Zr"”
(79 pm) than of HfY (78 pm). Their scanning electron
microscopy (SEM) images are shown in Figure S10, and the
BET surface areas derived from the N, adsorption isotherms at
77 K are reported in Figure S11 and Table S4.
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Figure 3. (a) Developed mechanochemistry accessing a family of
multimetallic MOFs. The PXRD patterns of the mechanochemically
prepared Hf-UiO-66 (black —), Hf,Zr-UiO-66 (red —), HfZr-UiO-66
(blue —), HfZr,-Ui0-66 (pink —), and Zr-UiO-66 (green —) were
collected. (b) Solvothermal reactions also afford a family of
multimetallic MOFs. The PXRD patterns of the solvothermally
synthesized Hf-UiO-66 (black —), Hf,Zr-UiO-66 (red —), HfZr-
Ui0-66 (blue —), HfZr,-UiO-66 (pink — ), and Zr-UiO-66 (green —)
were collected.

Meanwhile, solvothermal reactions employing both HfCI,
and ZrCl, with the addition of H,bdc, excessive DMF, and acetic
acid as the modulator at 120 °C for 24 h also provide crystalline
mixed-metal MOF materials (see details in the SI), isostructural
to UiO-66 (Figure 3b). For instance, the equimolar loading of
HfCl, and ZrCl, under solvothermal conditions provides a
crystalline multimetallic MOF, characterized by PXRD (Figure
3b) and the N, adsorption isotherm at 77 K (Figure S12a and
Table SS). The metal ratio of 1:1 was confirmed by ICP-MS
(Table S6).

X-ray absorption near-edge structure data for Zr and Hf
(Figure S13) indicate that Zr and Hf from the solvothermally
prepared and mechanochemically synthesized multimetallic
materials retain the Zr'" and Hf" oxidation states, respectively,
similar to that of Zr-UiO-66 and Hf-UiO-66. Moreover, Zr K-
edge extended X-ray absorption final structure (EXAFS) data
collected for the mechanochemically synthesized HfZr-UiO-

16081

66(mechano) (see details in Figures 4a and S14a,c and Table
S7) suggest that Zr;O,(OH),(OOC),, represents the Zr-

x(R)| / A+

Radial distance / A

x(R)| / A

Radial distance / A

Figure 4. (a) Zr K-edge EXAFS data in R space shown for HfZr-UiO-
66(mechano) (red —), Zr-UiO-66 (blue —), and HfZr-UiO-
66(solvo) (black —). The M—M scattering around 3.1 A is highlighted.
(b) Hf Lj-edge EXAFS data in R space shown for HfZr-UiO-
66(mechano) (red —), Hf-UiO-66 (blue —), and HfZr-UiO-
66(solvo) (blcak —). The M—M scattering around 3.1 A is highlighted.

containing cluster within the multimetallic framework, which is
consistent with the observation of the singular metal MOF Zr-
UiO-66 (see details in Figures 4a and S14b,c and Table S7).
However, the Zr K-edge EXAFS spectrum of the solvothermally
prepared HfZr-UiO-66(solvo) shows a much weaker and less
distinguishable peak around 3.1 A in R space (Figure 4a) than
those of Zr-UiO-66 and HfZr-UiO-66(mechano), which is
attributed to less Zr—Zr scattering®' in HfZr-UiO-66(solvo).
Thus, the mixed-metal cluster composed of both ZrY and HEV is
expected in the solvothermally prepared HfZr-UiO-66(solvo).
This is further evidenced by examination of the Hf L;-edge
EXAFS data (see details in Figures 4b and S15 and Table S8)
collected for HfZr-UiO-66(mechano), HfZr-UiO-66(solvo),
and Hf-UiO-66. They indicate that HfZr-UiO-66(mechano)
retains the single-metal cluster of Hf,O,(OH),(OOC),,, similar
to that of Hf-UiO-66, which is a significant departure from that
of HfZr-UiO-66(solvo) (Figure 4b). Therefore, two types of
single-metal clusters, ZrqO,(OH),(0OOC),, and
Hf;0,(0OH),(00C),,, are observed in the multimetallic
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materials prepared by the mechanochemistry. In comparison,
the conventional solvothermal method affords mixed metals in
the individual cluster.

The observed ligand substitution of Hf" and Zr" under
mechanochemical conditions generates extended corresponding
MOFs. This drove us to examine the possibility of preparing
Ti"-derived MOFs by mechanochemistry. Aiming at PCN-415,
a known MOF based on TigZr,0,,(0O0C),4 and H,bdc,” we
prepared a molecular complex with a formula of
[TigZr,0,,(O0CCH;);4)-0.33H,0 (see details in the SI) for
mechanochemical syntheses. This complex was characterized by
single-crystal X-ray diffraction (SCXRD; Table S9 and Figure
$16) and PXRD (Figure S17) analyses. SCXRD analysis reveals
that the metal cluster consists of a Tig cube capped by two Zr'"
cations on the top and bottom. All 18 acetate ligands in the
complex participate in the bridging of two adjacent metal
cations. Extensive trials using [TigZr,O0,,(OOCCHs;) 4]
0.33H,0 as the molecular precursor and H,bdc have been
attempted to build PCN-415 under mechanochemical con-
ditions without any success (Table S1 and Figure S18). This is
tentatively explained by the difference of the bond enthalpy
values: 662 kJ/mol of Ti—0O, 760 kJ/mol of Zr—O, and 791 kJ/
mol of Hf—O.* The relatively low bond energy in the Ti—O
bond possibly leads to rapid aggregation of the molecular
clusters by themselves under mechanochemical conditions,
observed from milling [TigZr,0,,(O0OCCHj;)4]-0.33H,0
alone without any H,bdc or solvents (Figure S18).

Overall, we not only report an effective mechanochemical
method to synthesize Hf;O,(OH),-based MOFs but also
demonstrate the mechanochemistry that provides a unique
family of cluster-precise multimetallic materials. In contrast to
the solvothermally prepared MOFs exhibiting mixed metals in
the individual metal cluster, the mechanochemically synthesized
multimetallic materials demonstrate two types of single-metal
clusters. Although extensive attempts fail to deliver the
mechanochemical synthesis of Ti-derived MOFs, we expect
our systematic investigation on the mechanochemical syntheses
of Group 4 element-based MOFs to be an alternative yet
unparalleled synthetic method for multimetallic materials with
controllable metal compositions.
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