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The combination of fast propagation speeds and highly localized nature has hindered the direct
observation of the evolution of shock waves at the molecular scale. To address this limitation, an
experimental system is designed by tuning a one-dimensional magnetic lattice to evolve benign waveforms
into shock waves at observable spatial and temporal scales, thus serving as a “magnifying glass” to
illuminate shock processes. An accompanying analysis confirms that the formation of strong shocks is fully
captured. The exhibited lack of a steady state induced by indefinite expansion of a disordered transition
zone points to the absence of local thermodynamic equilibrium and resurfaces lingering questions on the
validity of continuum assumptions in the presence of strong shocks.
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The propagation of shock waves in solids has received
enormous attention in the last several decades [1–4].
Experiments, molecular dynamic simulations, and con-
tinuum mechanics modeling have been performed to
investigate shock waves [5–8] and their interactions with
complex material response such as plasticity [9], damage
[10], dislocation and twinning [11–13], and phase
transformation [14–16]. However, the microscopic
mechanisms behind their formation are yet to be fully
understood.
Since the first development of modern shock wave

theory, it is widely accepted that, at the continuum scale,
shock waves can be modeled as steadily propagating
discontinuities within a medium [17]. While it is acknowl-
edged that, in a physical system, even vanishing levels of
viscosity or rate sensitivity promote a continuous wave-
form, the thickness of this wave is thought to be steady and
infinitesimal compared to the scale of the continuum
process [18]. Hence, the main features of shock wave
propagation can be captured using one-dimensional rate-
independent theories [19]. However, over the years, there
have been indications of situations in which these assump-
tions break down [20–24]. Since the macroscopic response
of a solid is intrinsically linked to its response at the
microscopic scale, it is plausible that in these situations
additional information on the microscopic process occur-
ring within the narrow region of the shock is needed to
explain the continuum level observations. However, to the
best of our knowledge, the evolution and propagation of
shock waves at the molecular scale has only been captured
via numerical simulations [24–26]; whereas their direct
observation can serve to better elucidate shock wave
phenomena and to distinguish between artifacts of numeri-
cal modeling and the actual physics.

Packed granular chains serve as an example discrete
system, which has been extensively studied due to its
ability to generate strongly nonlinear waves, including
shock waves [27] and Nesterenko solitary waves [28]. In
these chains, the Hertzian contact between particles leads to
their deformation in a highly nonlinear process, which is
also responsible for significant energy dissipation. The
response of these systems is thus not directly comparable to
molecular-scale phenomena.
To mimic the molecular-scale response, we develop a

desktop-scale experimental realization of shock wave
evolution in a tunable magnetic lattice. We demonstrate
the propagation of strong shocks and capture their entire
evolution from a benign wave. Our validated numerical
model provides a comprehensive understanding of the
observed phenomena and its sensitivity to both external
damping and the imposed waveform. Moreover, it confirms
that this system supports the propagation of quasisteady
strong shocks, in which the shock front exhibits “soliton-
like” features propagating at constant velocity and strength,
while the particle velocity profile reaches a steady oscil-
latory state. It is shown that for strong shocks a highly
disordered transition regime emerges, from the shock front
to the steady oscillatory state, and expands indefinitely,
thus revealing an unsteady feature of shock waves that
nucleates at the molecular scale and can grow to the
macroscopic scale.
To realize shock wave evolution that is comparable to a

molecular-scale process, but in a desktop-scale system, the
experimental setup requires a tunable lattice with minimal
levels of dissipation. Provided a finite imaging window, the
system should evolve a benign impact into a shock within a
prescribed propagation distance and at sufficiently slow
velocities. The former can be achieved by particles with
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highly nonlinear repelling forces (i.e., strongly convex
force-separation curve) and the latter by tuning the stiff-
ness-to-mass ratio (i.e., the ratio between the local slope of
the force-separation curve and the particle mass). To meet
these requirements, we take advantage of the highly non-
linear repelling nature of rare-Earth magnets and construct
a lattice of 21 particles with outer diameter of 6.35 mm,
length of 6.35 mm, and mass of m ¼ 1.084 g, as shown in
Fig. 1(a). The magnets are free to slide on a nonmagnetic,
minimal friction, supporting cylindrical rod. The first
magnet (on the left) is attached to two tilted prestretched
rubber bands through a plastic connector, while the last
magnet is fixed. The magnets are initially equispaced and
preloaded to tune the repulsive force (or, equivalently, the
stiffness) before impact. The imparted wave is generated by
releasing the first magnet, thus allowing the rubber bands to
contract and initiate the propagation [see Fig. 1(b) and
Video S1 [29] ]. The dynamic process is recorded by a
high-speed camera (Photron SA5, 1280 × 800 pixels) at
8 kHz, allowing the measurement of magnet displacement,
velocity, and acceleration via digital image correlation
method. Using this setup the impact strengths and lattice
stiffness are separately tuned by varying the prestretch of
the rubber bands or the initial separation between the
magnets, respectively. More details of the experimental
system are given in Sec. S1 of the Supplemental
Material [29].
To show that this system is capable of evolving an

ordinary waveform into a shock, within the allocated
propagation distance, we examine its response to an impact.
The magnet trajectories are shown in Fig. 1(b) for the case
with maximum impact velocity VI ¼ 2.81 m=s and with an
initial magnet separation of r0 ¼ 12 mm. As indicated by
the red arrow, the evolution of the magnet displacements

shows a wave propagating from the impacted end, into the
lattice at VP ¼ 6.42 m=s. Then, upon arrival at the last
magnet, a reflection wave propagates back. It is seen from
the displacement profiles that, although the imparted wave-
form is smooth, its propagation induces sharp oscillations
in magnet particle displacement curves, indicating rapid
changes in magnet velocities.
If a shock forms, the wave profile is expected to steepen.

By examining the velocity profiles of different magnet
particles in Fig. 1(c), it is clearly observed that in our
system significant steepening occurs and is accompanied
by oscillations that become more violent as propagation
proceeds. In particular, notice the decreasing rise times
(i.e., the duration from zero velocity to first peak velocity),
which reduce from 23.9 ms for the first particle (n ¼ 1)
to 4.9 ms for n ¼ 6. This result clearly demonstrates the
realization of a longitudinal shock wave and its evolution
from a simple wave. Moreover, the violent oscillations
of increasing amplitude, in what seems to be a highly
disordered process, are indicative of strong shocks.
To better understand the observed shock evolution, we

numerically model the system as a chain of particles
connected by nonlinear springs. In the following analysis,
we only consider the interaction between first neighboring
magnets. Although some influence may arise from the
magnetic field of the non-nearest particles, it is a second-
order effect (see Sec. S3 in the Supplemental Material
[29]). Additionally, we neglect magnet rotations, and the
length of the magnet is not considered in the calculation of
propagation velocity. Accordingly, the equation of motion
for the nth magnet reads

m
d2un
dt2

¼ Fn−1 − Fn − fn; ð1Þ

where un denotes the particle displacement, and Fn and fn
are the repulsive and frictional forces, respectively. In
particular, based on experimental measurement of the
force-displacement curve [Fig. 2(a)], the repulsive force
is approximated using the formula F ¼ K=ðrþ bÞq, where
r is the separation between two neighbor particles, and the
coefficient values are K ¼ 413.8 Nmm3, b ¼ 3.917 mm,
and q ¼ 3. A Coulomb model captures the influence of
friction between the rod and the magnets via the formula
fn ¼ μ½mgþ pðFn−1 þ FnÞ�, where the coefficients
μ ¼ 0.285 and p ¼ 0.012 are experimentally calibrated
(see Supplemental Material Sec. S4 [29]), and g is the
gravitational acceleration. The measured motion of the
impacting magnet u1ðtÞ is given as a boundary condition at
one end, while at the other end we impose u21ðtÞ ¼ 0. The
equations of motion are numerically solved using a finite-
difference method [32]. Numerical results obtained using
this model are compared with experimental curves for the
second and eighth magnets in Figs. 2(b)–2(e) and show
excellent agreement for the velocity profiles. The

FIG. 1. Experimental setup and representative results with
initial magnet separation r0 ¼ 12 mm. (a) Experimental system
consisting of magnet lattice threaded on a rigid rod. The impact
pulse wave is generated by releasing the left magnet. (b) Magnet
trajectories are shown as white curves, by vertically stacking
images of the system at different times. (c) Magnet particle
velocity profiles reconstructed via digital image correlation.
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acceleration profiles are also well captured by the simu-
lation. The discrepancy in peak accelerations can be
explained by the limited image resolution (∼20 pixels
per ring magnet particle length), which is insufficient to
capture sharp changes in acceleration (see Sec. S2 of the
Supplemental Material [29]).
Next, we use our calibrated model to investigate the

long-time behavior of strong shocks. For simplicity, we
consider a long lattice subjected to a constant impactor
velocity (a long lattice is used to avoid wave reflections).
Figure 3(a) shows a typical velocity profile obtained for an
impactor velocity of VI ¼ 2 m=s, in the absence of friction.
Upon arrival of the shock front, the particle velocity is
shown to rapidly increase to 3.87 m=s, followed by strong
oscillations with a decaying amplitude. Unlike a linear
system, for which the vibration amplitude decays com-
pletely (see Supplemental Material Secs. S5 and S9 [29]), a
stable finite-amplitude oscillation about the impactor
velocity is eventually attained. Note that this motion is

nonharmonic due to the nonlinearity of the system.
Examining the corresponding propagation velocity of the
shock front in Fig. 3(b), we show that it gradually
approaches a constant value of VP ¼ 3.92 m=s. It is
notable that this stabilized propagation velocity is signifi-
cantly larger than the impactor velocity and the linear
propagation velocity V0 ¼ 1.62 m=s [33]. If frictional
effects are included, a gradual decay of the propagation
velocity is expected beyond a peak value (see Sec. S6 in the
Supplemental Material [29]). Nonetheless, once developed,
the early-time propagation velocity (i.e., for the first ∼20
magnets) is comparable to the propagation velocity in the
frictionless system. Figure 3(c) shows that both the first
peak velocity and the first peak acceleration increase with
increasing particle number, which is an intrinsic feature of
strong shock waves. Eventually, the competition between
nonlinearity and dispersion in the system results in

FIG. 2. Comparison of experimental and numerical results.
(a) Force-displacement curve and instantaneous stiffness for the
nearest magnet interaction. (b)–(e) Experimental (continuous
blue lines) and numerical (dashed red lines) results for magnet
particle velocities and accelerations. The uncertainties in the
velocity and acceleration measurements are 0.16 m=s and
170.67 m=s2, respectively. Details of the derivation process are
shown in Sec. S2 of the Supplemental Material [29].

FIG. 3. Long-time dynamic response of the system without
friction. (a) Typical velocity profile of a particle. (b) Variation of
propagation velocity as the wave progresses through particles into
the lattice. (c) First peak velocity and first peak acceleration of
each particle. (d) Evolution of peak velocity (both local maxi-
mum and minimum peaks) with time for various particles.
(e) Evolution of oscillation frequency with time for various
particles. Results are shown for the system with initial separation
r0 ¼ 12 mm.

PHYSICAL REVIEW LETTERS 127, 014302 (2021)

014302-3



saturation of the first peak velocity and peak acceleration.
In particular, the saturated first peak velocity is 2VI .
Further, to understand the transition from the wave front

to the stabilized oscillatory state, Figs. 3(d) and 3(e) present
the peak velocity and the corresponding oscillation fre-
quency for different particle numbers as a function of time.
We find that both the amplitude and the period decrease
with time; moreover, after a rapid increase in stabilized
oscillation amplitude (from the first magnet to the fifth
magnet), the following particles arrive at the same oscil-
latory state (same amplitude and same period).
Nonetheless, it is observed that the time of transitioning
from peak velocity to the stabilized state is longer for the
larger particle numbers, resulting in the highly disordered
transition zone that expands indefinitely as the shock front
penetrates deeper into the undisturbed lattice (see Video S2
[29]). Analogous to the interpretation of molecular-scale
response, the finite-amplitude steady oscillation in the wake
of a shock is consistent with an increase in temperature
[34], whereas the disordered transition region appears to be
out of thermodynamic equilibrium and its growth can be
attributed to increasing entropy.
To further understand the range of shock wave response

realized in our experiments, we explore the effect of the
impactor velocity on the propagation velocity of the
quasisteady shock wave in Fig. 4(a). The nearly linear
dependence observed in both experimental and numerical
results resembles the reported experimental findings of
shock Hugoniot data in metallic materials [35] and
molecular simulations of shock waves [36]. The agreement
between theory and experiments is shown with slight
deviations attributed primarily to effects of friction and
the precise form of the imparted wave that is neglected in
the simulation (see Supplemental Material Secs. S6 and S7
[29]). While these curves, as well as the corresponding
oscillation frequency [Fig. 4(b)], do not reveal information
on the shock strength, we examine in Fig. 4(c) the kinetic
energy associated with the steady-state oscillation. Quite
noticeably, the increase in oscillation energy becomes
pronounced beyond a critical impactor velocity V�, which
is smaller than the linear propagation velocity (i.e.,
V� < V0). This threshold velocity represents the transition
into the strong shock regime, which is characterized by a
dramatic increase in energetic consumption.
In the absence of a unified quantitative definition of

strong shocks, which are typically distinguished from weak
and moderate shocks by virtue of the very large magnitude
jump in field variables that they impose [37], here we
propose a quantitative definition of strong shocks based on
the oscillation energy ratio, which is directly linked to the
level of energy dissipation. We identify the critical impact
velocity V� for the onset of a strong shock as velocity at
which the curvature of the oscillation energy ratio curve
changes sign, namely d2η=dV2

I ¼ 0 [see inset in Fig. 4(d)].
Accordingly, strong shocks occur for VI > V�, and

moderate shocks occur in the finite range VI ∈ ð0; V�Þ.
A weak shock appears at the limit VI → 0 [38]. From this
definition it is clear that strong shocks are observed in our
experiments [see Fig. 4(a)]. Moreover, despite the 8 orders
of magnitude difference in length scale, the desktop-scale
magnet lattice system preserves the key quantitative fea-
tures of shock wave propagation in an analogous atomic
system (as compared to a copper atomic lattice in Sec. S8 of
the Supplemental Material [29]).
In Fig. 4(d), we further investigate this critical threshold

by examining the influence of the stiffening law or, in
particular, the power q. We observe that a system with
increased stiffening can be driven beyond the critical
threshold by lower impactor velocities.
In conclusion, we have shown that the desktop-scale

experimental system presented here allows for complete
spatiotemporal capture of the evolution of strong shocks
from benign imparted waveforms. This is facilitated by
taking advantage of the highly nonlinear repelling force
between neighboring rare-earth magnets in a tunable one-
dimensional lattice. Comprehensive investigation of the
lattice response uncovers behaviors of strong shocks, which
agree with predictions from molecular dynamic simula-
tions. Hence, this Letter gives rise to a new avenue for

FIG. 4. Dependence of the stabilized shock response
on impact velocity. Curves represent numerical solutions.
Experimental data are shown as colored markers with error
bars. (a) Shock wave propagation velocity. (b) Stabilized oscil-
lation frequency f. (c) Oscillation energy ratio η. (d) Critical
velocity. Here f0 represents the linear oscillation

frequency, defined as f0 ¼ 1=π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ð1=mÞdFðrÞ=drjr¼r0

q

, and

η ¼ 1=T
R t0þT
t0 ½VðtÞ=VI − 1�2dt, where T ¼ 1=f. If the oscilla-

tion is harmonic, η ¼ 0.5.
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investigation of shock wave phenomena at the microscopic
scale. Moreover, through this analysis, we observe the
formation of a highly disordered transition region in the
wake of strong shocks. This region nucleates at the particle
scale, but continues to grow indefinitely. Observation of
this phenomena at the macroscale, raises questions on the
validity of continuum assumptions in the presence of strong
shocks. Future work can take advantage of this system to
expand beyond uniaxial propagation and can include
additional physical effects, such as structure defects,
thermal vibrations, and dissipation. Moreover, it is worth
mentioning that the current design could also be modified
to explore other nonlinear wave phenomena, such as
solitons [39–41], elastic band gaps [42], and nonreciprocal
waves [43–45].
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S1. EXPERIMENTAL DETAILS

The experimental setup is shown in Fig. S1. The system consists of a lattice of ring magnet particles, which is
threaded along the rod such that the polarity of neighboring magnets has an opposite orientation (i.e. [N-S]-[S-N]-
...-[N-S]-[S-N]), thus exerting a repulsive force. Each magnet particle is composed of two ring magnets with outer
diameter of 6.35 mm, inner diameter of 3.175 mm, length of 3.175 mm, and mass of 0.542 g (KJ Magnetics Inc,
Grade N42, R422). The rod has an outer diameter of 3.150 mm and is made of epoxy resin with fiberglass fabric
reinforcement (McMaster-Carr, High-Temperature Garolite G-11 Rod). The rod with fixed ends on an aluminum alloy
rail, is pre-stretched to minimize bending deformations. Both magnets and rod were lubricated by a PTFE based
lubricant to reduce the friction. The last magnet on the left side is fully fixed to the rod. The first magnet on the right
side is attached to two tilted pre-stretched rubber bands through a plastic connector. The magnets are disturbed to
be equispaced. Note that we wait long enough to ensure that all magnets are in static equilibrium before initiating the
propagation. In addition, each magnet is covered by a white label, to enhance contrast for optical tracking. Finally,
a pulse wave is generated by releasing the first magnet, which then propagates into the lattice. The dynamic process
is recorded using a high-speed camera (Photron SA5, 1280 x 800 pixels) at 8 kHz. The space resolution of recorded
images is 0.30 mm. The magnet displacement is obtained via a specialized Matlab Digital Image Correction (DIC)
code.

FIG. S1. Experimental setup.
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FIG. S2. Velocity profiles of the impact signal. Different rows show profiles obtained with different initial separations and
thus represent systems with different initial stiffnesses. Different columns show profiles obtained for different impact strengths.

In experiments, different impact strengths are tuned by adjusting the pre-stretch of the rubber bands, and the
stiffness of the system (by modifying the separation between magnets). Note that each set of experiment is repeated
three times. The impactor velocity signals (i.e. the velocity profiles of the 1st magnet) are shown in Fig. S2.

S2. ESTIMATION OF UNCERTAINTY IN VELOCITY AND ACCELERATION DERIVATION

The finite resolution of images obtained via the high speed camera leads to an uncertainty in the measured magnet
displacement. This uncertainty propagates to the derivation of the velocity and acceleration. Assuming images with
space resolution δ are recorded at sampling frequency f , we obtain a discrete time series for the displacements as (s1,
t1), (s2, t2),...,(sn, tn) via DIC. The uncertainty in displacement is ∆s = 0.5δ. To calculate the velocity at time tk,
an interval of l measurements can be used to write

V =
sk+l − sk
tk+l − tk

=
sk+l − sk

l
f. (S1)

Since the uncertainty of sampling frequency f is very small [S1], we neglect its effect and the velocity uncertainty can
be calculated as

∆V =
δ

l
f. (S2)

Accordingly, for the same chosen interval, l, the acceleration uncertainty can be calculated as

∆A =
2∆V

l
f =

2δ

l2
f2. (S3)
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From Eqs. (S2) and (S3) it can be seen that for a given spatial resolution and sampling frequency, the larger the
interval, l, the smaller the uncertainty in the estimation of the velocity and acceleration. On the other hand, the larger
the interval that is used, the more loss of accuracy in estimation of the instantaneous velocity and acceleration. For
our system, to compromise between uncertainty and accuracy, we select l = 15. Given the space resolution δ = 0.30
mm and sampling frequency 8 kHz, the uncertainties of velocity and acceleration are directly obtained from Eqs. (S2)
and (S3), as ∆V = 0.16 m/s, and ∆A = 170.67 m/s2.

S3. MEASUREMENT OF THE MAGNETIC INTERACTION FORCE

To quantify the magnetic interaction force, we develop a setup to measure the 1st neighbor and 2nd neighbor
interactions. As shown in Fig. S3, three magnets are aligned with opposite polarity (i.e. [N-S]-[S-N]-[N-S]) as in the
chain magnet, thus the nearest interaction is a repulsive force, while the 2nd nearest interaction is an attractive force.
The gap between the 2nd magnet and the 3rd magnet is fixed at a prescribed separation r0. Using an Instron universal
testing instrument we displace the 1st magnet along the vertical direction and measure the interaction force. We then
employ the principle of superposition to recover the magnet force for the nearest interaction (i.e. with r0 →∞) and
2nd nearest interaction. Fig. S3 shows that the 2nd nearest interaction force is about 5% of the nearest interaction
force, thus the non-nearest interaction is not considered in the numerical model.
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FIG. S3. Magnetic force for the nearest interaction F1−2 and the 2th nearest interaction F1−3.

S4. CALIBRATION OF THE COULOMB FRICTION COEFFICIENT

Here we quantify the value of friction in our experimental system. The Coulomb friction model, which assumes
that the friction force is proportional to the normal contact force, is employed. Fig. S4(a) illustrates the magnetic
forces acting on a particle within the lattice. Since the non-nearest interaction is much weaker than the nearest
interaction (as shown in Fig. S3), only the nearest interaction force is considered. Hence, along the horizontal
direction, the repelling forces are F1−2 and F3−2. Additionally, the repelling/attracting force couples induce a torque
which is denoted by M1−2 and M3−2, respectively. Given the horizontal orientation of the lattice, gravitation induces
a normal force mg, where m is the particle mass. Reactions from the suspending rod constrain the particle against
rotation and translation in the vertical direction. The contact between the particle and the rod adds to the normal
force, which contributes to the frictional force and thus resists to sliding of the magnets. We model the normal force
as an additive contribution of the gravitational force and the reaction to the torque, which is proportional to the sum
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of the repelling forces (i.e. F1−2 + F3−2) as

f2 = µ(mg + p(F1−2 + F3−2)), (S4)

where µ is the Coulomb friction coefficient and p is an unknown dimensionless scaling coefficient. Both are determined
via a dedicated calibration method, as detailed next. First, as shown in Fig. S4(b), we conduct an experiment in
the system with three magnet particles. In particular, the left magnet and the right magnet are fixed at a certain
separation r1, the central magnet is displaced towards the left magnet with a separation r0. Then, upon removing
the applied force, the central magnet oscillates between two fixed magnets with a decaying amplitude (due to the
existence of friction) until reaching a static equilibrium. In calibration experiments, r0 is set to be constant (i.e.
r0 = 1.8 mm), while r1 varies from 249.5 mm to 30.1 mm. Finally, using the hypothesised friction law (i.e. Eq.
(S4)) we solve the equation of motion for the one-degree-of freedom damped vibration of the central magnet, using
the appropriate boundary conditions. The coefficients are then estimated by fitting to the experimentally measured
results. Through this procedure, we obtain µ = 0.285 and p = 0.012. Figs. S4(c-h) shows the comparison between
experimental and numerical results with the fitted coefficients. We observe an excellent agreement over a wide range
of oscillation amplitudes. It is worth noting that, due to friction, the central magnet need not return to its central
position as it reaches a new equilibrium state. When the initial separation between the left magnet and right magnet
is small, the repulsive forces are dominant and the central magnet finds equilibrium at the central position (see Figs.
S4(g,h)). However, when the initial separation is large, the friction force is dominant, and thus the final position of
the central magnet significantly depends on the friction (see Figs. S4(a,b)).

S5. DYNAMIC RESPONSE OF A LINEAR LATTICE

For comparison with the nonlinear response provided in the main text, in Fig. S5 we provide results for a linear
lattice under constant impact velocity. Here, the linear lattice implies that the interaction force between neighboring
particles is proportional to the particle separation, namely F = kr, and k represents the stiffness. As shown in Fig.
S5(a) for n = 20, upon arrival of the wave front, the particle velocity rapidly increases to a peak value, then oscillates
with a decaying amplitude about the impactor velocity. Moreover, the propagation velocity gradually decreases and
asymptotically approaches the analytical linear wave velocity (see Fig. S5(b)). In terms of first peak velocity and
acceleration, Fig. S5(c) shows that the larger magnet number has a larger first peak velocity, but a smaller first peak
acceleration, which is opposite to nonlinear stiffening system (the larger magnet number has a larger acceleration, see
Fig. 3c). In Figs. S5(d) and (e), we find that both the oscillation amplitude and the period decrease with the increase
of propagation time; in particular, the oscillation amplitude eventually decays completely.

S6. EFFECT OF FRICTION ON PROPAGATION VELOCITY

Fig. S6 reports the effect of friction on the propagation velocity in the nonlinear lattice. Our results reveal that
the friction dramatically affects the propagation velocity. When no friction is considered, the propagation velocity
eventually approaches a constant value. However, even vanishing levels of friction eventually lead to decay of the
propagation velocity. In addition, systems with larger values of the friction coefficient exhibit a more dramatic decrease
in the propagation velocity.

S7. EFFECT OF LOADING PROFILE IN THE NONLINEAR SYSTEM

Here we investigate the effect of the loading profile on the dynamic response of the nonlinear system. We first
discuss the case characterized as a linear ramp - constant impact velocity (as shown in Fig. S7(a)). Fig. S7(b) shows
that the loading profile with a longer acceleration time, Tr (i.e. smaller acceleration) requires a longer propagation
time to reach the steady propagation velocity, while the steady propagation velocity is independent of the acceleration
time. Moreover, Figs. S7(c,d) show that the stabilized oscillation amplitude and frequency are also independent of
the acceleration time.

When considering a sinusoidal pulse impact wave (illustrated in Fig. S8a), the steady propagation velocity decreases
dramatically when the signal duration time is smaller than the linear oscillation period, T0, of the system (Fig. S8b) .
Moreover, when Ts << T0, the steady propagation velocity tends to the linear propagation velocity; when Ts >> T0
the steady propagation velocity approaches the propagation velocity of the case with constant impact velocity. After
passing through the pulse wave, Figs. S8(c,d) shows that the particle oscillates rapidly decrease in both amplitude and
period, until the amplitude finally vanishes, implying that the particles eventually reach a static equilibrium state.



S5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 83 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 5 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 83 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 5 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8
4 5 0

5 0 0

5 5 0

6 0 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8
5 0 0
5 2 0
5 4 0
5 6 0
5 8 0
6 0 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 85 4 0

5 6 0

5 8 0

6 0 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 25 6 0

5 8 0

6 0 0

( c )

r  = 2 4 9 . 5  m m

T i m e ,  s

Ma
gne

t p
osi

tio
n, m

m

� = 0 . 2 8 5 ,  p = 0 . 0 1 2  I n i t i a l  d i s t a n c e  D = 1 . 8  m m

( a )
( a )

( d )

r  = 1 9 9 . 1  m m

Ma
gne

t p
osi

tio
n, m

m

T i m e ,  s

( e )

r  = 1 4 9 . 8  m m

Ma
gne

t p
osi

tio
n, m

m

T i m e ,  s

( f )

r  = 1 0 0 . 8  m m

Ma
gne

t p
osi

tio
n, m

m
T i m e ,  s

( g )

r  = 5 0 . 4  m m

T i m e ,  s

Ma
gne

t p
osi

tio
n, m

m

   L e f t  m a g n e t  p o s i t i o n
   R i g h t  m a g n e t  p o s i t i o n
   M i d d l e  m a g n e t  p o s i t i o n - E x p .
   M i d d l e  m a g n e t  p o s i t i o n - S i m .

( h )
r  = 3 0 . 1  m m

T i m e ,  s

Ma
gne

t p
osi

tio
n, m

m

���

0 rr 0

( b )( a )

FIG. S4. Calibration of the Coulomb friction coefficient. (a) Schematic illustration of the exerted force and moment by the
nearest magnet. (b) Calibration experiment setup. (c-h) Comparison of experimental (continuous back curves) and numerical
(dashed blue curves) results on the central magnet position under different initial magnet separations. The numerical results
are obtained with friction coefficients µ = 0.285 and p=0.012.
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obtained by the calibrated simulation model with initial magnet separation r0 = 12 mm and neglecting friction.
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S8. QUANTITATIVE COMPARISON OF MAGNETIC SYSTEM AND COPPER ATOM LATTICE

To establish a quantitative comparison of the proposed magnetic lattice system with the response of atomic scale
lattices, we examine the properties of the magnetic lattice with separation r0=12 mm in comparison to a copper atom
lattice with a classical Lennard-Jones potential [S2]

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (S5)

where r denotes the separation between atoms, ε =6.55e-20 J is the depth of the potential well, σ =2.34e-10 m is the
distance at which the atom-atom potential energy is zero. Table S1 summarizes physical properties of the copper atom
lattice alongside those of the magnetic lattice. It is shown that through scaling particle mass, and lattice separation,
while preserving a similar stiffness, the linear propagation velocity is scaled down by three orders of magnitude.
This reduction in propagation speed is key for our observations via high-speed camera. Interestingly, despite scaling
the size of the system by 8 orders of magnitude, our proposed macroscopic magnet lattice system preserves the key
quantitative features of shock wave propagation as the atomic system: both our magnetic system and the copper
atomic model show that shock propagation velocity is nearly linearly dependent on the impactor velocity with a
coefficient ∼1 (Figs. S9(a,c)). Additionally, the critical velocity (for onset of strong shock waves) is of the same order
of magnitude as the linear propagation velocity (Figs. S9(b,d)). These similarities further support our approach of
experimentally studying shock wave behavior at the molecular scale via a macroscopic desktop-scale system.

TABLE S1. Comparison of physical properties of magnetic system and copper atom lattice. The linear stiffness of the copper
lattice is calculated at the equilibrium separation r = r0 as d2φ/dr2.

Particle mass [kg] Lattice separation [m] Stiffness [N/m] Linear propagation velocity [m/s]
Copper atom lattice 1.055e-25 2.63e-10 68.36 6.69e3

Magnetic lattice 1.084e-3 1.20e-2 19.31 1.60
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FIG. S9. Dynamic response of shock wave in copper atom lattice with Lennard-Jones potential (a, b) and in magnetic system
with r0=12 mm (c, d). Results are given for the shock propagation velocity (a, c) and oscillation energy ratio (b, d).
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S9. EFFECT OF IMPACTOR VELOCITY ON THE DYNAMIC RESPONSE OF THE NONLINEAR
SYSTEM

Here we show the effect of the impactor velocity on the dynamic response of the nonlinear system. Fig. S10
shows the particle velocity as a function of magnet separation. Upon the arrival of the shock front, the particle
velocity rapidly increases and oscillates about the impactor velocity. Remarkably, when moderate impactor velocity is
considered, the particle finally reaches a steady state in which it adopts the velocity of the impactor (see Figs. S10(a)
and (b)); however, as the impactor velocity exceeds a threshold value, the particle at long propagation time exhibits
a steady oscillation about the impactor velocity, altering the particle kinetic energy and system potential energy (see
Figs. S10(c) and (d)). Moreover, it is observed that the larger impactor velocity takes less transition cycles to reach
the steady oscillatory state.
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FIG. S10. Particle velocity versus magnet separation for various impactor velocities. (a) VI = 0.01 m/s, (b) VI = 0.10 m/s,
(c) VI = 1.0 m/s, (d) VI = 2.0 m/s. Results are given for the 10th magnet and are obtained by the calibrated simulation model
with initial magnet separation r0 = 12 mm and neglecting friction under constant impact velocity. The magnet separation is
calculated as the gap between the 10th and 11th magnets.
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