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A B S T R A C T

One of the most celebrated contributions to the study of the mechanical behavior of materials
is due to J.D. Eshelby, who in the late 50s revolutionized our understanding of the elastic stress
and strain fields due to an ellipsoidal inclusion/inhomogeneity that undergoes a transformation
of shape and size. While Eshelby’s work laid the foundation for significant advancements in
various fields, including fracture mechanics, theory of phase transitions, and homogenization
methods, its extension into the range of large deformations, and to situations in which the
material can actively reorganize in response to the finite transformation strain, is in a nascent
state. Beyond the theoretical difficulties imposed by highly nonlinear material response, a
major hindrance has been the absence of experimental observations that can elucidate the
intricacies that arise in this regime. To address this limitation, our experimental observations
reveal the key morphogenesis steps of Vibrio cholerae biofilms embedded in hydrogels, as they
grow by four orders of magnitude from their initial size. Using the biofilm growth as a case
study, our theoretical model considers various growth scenarios and employs two different
and complimentary methods – a minimal analytical model and finite element computations
– to obtain approximate equilibrium solutions. A particular emphasis is put on determining the
natural growth path of an inclusion that optimizes its shape in response to the confinement, and
the onset of damage in the matrix, which together explain the observed behavior of biofilms.
Beyond bacterial biofilms, this work sheds light on the role of mechanics in determining the
morphogenesis pathways of confined growing bodies and thus applies to a broad range of
phenomena that are ubiquitous in both natural and engineered material systems.

. Introduction

In nature, morphogenesis is the process by which an organism acquires its shape as it grows. This process results from an
nterplay between the organism’s developmental blueprint and environmental factors. The two driving forces together determine
he fate of the growing body.2 A plant adjusting itself to gather more sunlight (photomorphogenesis) (Kendrick and Kronenberg,
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Fig. 1. Tomato grown inside a cuboidal box. As the tomato grows, it experiences confinement from the box and adapts its shape resulting in a cuboidal tomato.
Once the tomato is fully grown, removing it from the box does not imply recovery of its initially desired shape. Similar process has been applied to other fruits
as well to obtain pentagonal oranges and pyramidal watermelons, for instance. Beyond aesthetics, this practice has the potential to substantially reduce storage
and transportation costs. (Image credit: Flickr/moonimage).

2012), adaption of root systems to optimize nutrients and water supply (Sutton et al., 1980), healing of a broken bone in response
to external stresses (Nomura and Takano-Yamamoto, 2000; Ghiasi et al., 2017), a tomato achieving a cuboidal shape when growing
under mechanical confinement (Fig. 1) and permanent deformities resulting from ancient foot-binding practices (Richardson, 2009;
Gu et al., 2013) are examples of the strong role that different local (nutrition, temperature) and global (sunlight, mechanical
confinement) environmental factors can play in morphogenesis. The intimate coupling between the environment and morphogenesis
is further highlighted by noting that the adjustment of environmental factors does not simply reverse their effect to result in the
same final state as the body would have reached had it grown in absence of these factors. For instance, removal of mechanical
confinement does not return the tomato to a round shape and neither does it return the deformed feet to their regular structure.
It is evident through these examples that the feedback between the environment and morphogenesis continually and progressively
determines the shape of the body. However, how this crosstalk occurs remains an open question.

Beyond nature, processes of growth and morphogenesis are ubiquitous in engineered systems, where understanding the
dominant role of environmental factors in determining the evolution of a material is imperative to optimize its durability and
sustainability. Precipitation, aggregation, swelling, thermal expansion, phase-transitions, and chemical reactions, can all lead to
internal reorganization in the material that are akin to the growth and morphogenisis in nature. One of the most pressing challenges
in this context is understanding the deterioration of concrete structures due to internal precipitation and swelling (Gallyamov
et al., 2020). Similar processes occur in metals and can alter their mechanical properties (Fratzl et al., 1999; Porter and Easterling,
2009; Ueland and Schuh, 2013; Kothari et al., 2019), and in advanced fabrication techniques, such as additive manufacturing and
frontal polymerization (Robertson et al., 2018; Goli et al., 2019), where thermal expansion, precipitation and chemical reactions
spontaneously emerge in the material. Similarly, biofabrication technologies use living cells and extracelluar matrix to construct
tissue-like structures (Morley et al., 2019). However, understanding how these constructs continue to adapt and change their
morphology after fabrication is imperative to tailor the resulting tissue as well as its desired functionalities (Deo et al., 2020; Levato
et al., 2020).

In all of the examples mentioned above, the growing body can be highly heterogeneous with regions that may evolve over time
through various mechanisms and can lead to large deformations and failure. In this work, we limit our attention to what can be
considered as an elemental unit within the larger body, a growing and morphing inclusion embedded in an unbonded homogeneous
medium. We focus on the role of the mechanical confinement on the morphogenesis.

Growth of a single body in a mechanically confined environment is ubiquitous not only as a representative unit within a
heterogeneous medium, but also in diverse examples ranging across length scales. Embryogenesis is perhaps the most fundamental
example where the extreme growth of an embryo leads to large deformation of the embedding medium. Other examples include
growth of biomolecular condensates inside cells (Banani et al., 2017), growth of tumors inside normal tissues (Balkwill et al., 2012),
and growth of plant roots in soil. Liquid–liquid phase separation, if it occurs within a solid matrix, provides another example where
the nonlinear effects are significant (Rosowski et al., 2020; Kothari and Cohen, 2020; Kim et al., 2020; Wei et al., 2020; Ronceray
et al., 2021). The organization and dynamics of the separating phases, as they condense and grow, is strongly influenced by the
elastic resistance of the matrix. Finally, emerging techniques for characterization of soft materials grow fluid filled cavities inside the
material to estimate its nonlinear properties (Kundu and Crosby, 2009; Raayai-Ardakani et al., 2019; Yang et al., 2019; Chockalingam
et al., 2021). Notably, these experiments also indicate morphological transitions from regular-shaped cavities to branched fracture
patterns as the cavity grows (Raayai-Ardakani et al., 2019; Yang et al., 2019; Morelle et al., 2021).

Any discussion on the mechanics of an embedded body growing inside another body is incomplete without acknowledging the
pioneering work of Eshelby (1957, 1959). Through an elegant sequence of ‘imaginary cutting, straining and welding operations’
Eshelby calculated the elastic fields (strain, stress and displacement) in an infinite medium (the matrix) that contains an embedded
2

ellipsoidal region (the inclusion) undergoing stress-free strain (the transformation strain) and obtained closed-form analytical
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solutions for special cases (Eshelby, 1957). This work laid the foundation for significant advances in mechanics, materials science,
and geomechanics (Lee et al., 1977; Johnson et al., 1988; Fratzl et al., 1999; Khachaturyan, 2013; Meng and Pollard, 2014; Krichen
et al., 2019; Sharma and Ganti, 2004). However, Eshelby’s solutions are limited to linear elasticity and therefore apply only at the
limit where changes of volume and shape are infinitesimal.

To model morphogenesis one must forfeit the luxuries of linear elasticity which enabled ‘imaginary cutting, straining and welding’
perations by virtue of the superposition principle (Diani and Parks, 2000; Yavari and Goriely, 2013). Moreover, systems undergoing
arge strains are inevitably prone to damage. This presents a unique challenge from the modeling point of view as these different
hysical scenarios translate into an evolving reconfiguration of both the inclusion and the matrix.3 In this context, the current work

will address two major challenges and gaps in the existing literature. Firstly, to the best of our knowledge, the pivotal question of
determining the natural growth trajectory of a growing material system remains unanswered.4 This motivation for a natural growth
law was concisely stated by D’arcy Thompson in his seminal work (Thompson, 1942): ‘‘An organism is so complex a thing, and growth
so complex a phenomenon, that for growth to be so uniform and constant in all the parts as to keep the whole shape unchanged would
indeed be an unlikely and an unusual circumstance. Rates vary, proportions change, and the whole configuration alters accordingly." In
this spirit, this work takes an alternative view on the question of growth and morphogenesis in an attempt to understand how the
configuration alters in response to external mechanical constraints. Secondly, obtaining analytical solutions for growth problems
has been challenging due to the ensuing large deformations and nonlinear constitutive response. Existing solutions in the literature
are thus limited to simple geometries. Here we develop an approximate quasi-analytical theory that can capture the nonlinear
morphogenesis of a growing inclusion and we compare it with finite element simulations.

Next, before proceeding to describe our theory (Sections 3 and 4) and its results (Section 5), we further establish the notion of a
natural growth path and the possible emergence of various growth scenarios in nonlinear deformation through observations of the
growth and morphogenesis of confined biofilms.

2. Case study: Confined growth of bacterial biofilms

In this work, we develop a theory that can apply to material systems in which the growing body is not intrinsically programmed
to follow a particular blueprint, and as such its growth path depends solely on the external constraints. At first, such an assumption
on the growth scenario may seem limiting, but in fact its manifestations are ubiquitous in both natural and engineered systems.
A quintessential example is the growth of bacterial biofilms (Hall-Stoodley et al., 2004; Mukherjee and Bassler, 2019; Dufrêne
and Persat, 2020). These biofilms are aggregates of cells that duplicate at a steady time period, given enough nutrition and ideal
conditions, leading to exponential growth in time. With the extracellular matrix serving as a glue that holds the cells together,
the resulting macroscopic formation behaves like a soft solid with measurable mechanical properties (e.g. mechanical stiffness,
viscoelasticity, and yield stress) Yan et al. (2019). In absence of mechanical confinement, biofilm organization is random; the biofilm
cluster takes an irregular shape when suspended, and hemispherical when attached to a solid substrate (Yan et al., 2016).

Biofilms are present almost everywhere on our planet; they perform several functions that are an essential part of carbon
turnover in the environment (Ebrahimi et al., 2019; Enke et al., 2018), but can also become a nuisance that leads to fouling
of ships (de Carvalho, 2018), or water filtration systems (Liu et al., 2016). Biofilms also grow in our bodies — pores in our
skin (Alexeyev, 2013), teeth (Saini et al., 2011), and gut (Probert and Gibson, 2002) are examples of hot spots for bacterial colonies,
which can also grow on surgical implants, and in chronic infections (Rybtke et al., 2015). Forming biofilms drastically enhances the
resistance of the individual cells to antibiotics, and thus accounts for a significant part of all human microbial infections (Bryers,
2008). Understanding the growth of biofilms in settings that simulate their natural environment is thus essential in the pursuit
of future therapies (Vasudevan, 2014). Beyond medicine, it can elucidate various processes in the environment and can help to
alleviate their unwanted growth in engineered systems.

While several studies have examined the formation of biofilms on flat substrates (Garrett et al., 2008; Seminara et al., 2012;
Fei et al., 2020; Song et al., 2015), it is only recently that their growth and morphogenesis in confined three-dimensional settings
has been observed. This has been made possible due to the development of cell-level imaging techniques (Zhang et al., 2021) that
track the formation of bacterial colonies starting from a single seed bacteria embedded in the bulk of a confining medium. Here,
we use the same experimental system to further examine the sensitivities of the growth process in comparison with the theoretical
predictions. In particular, we focus on the influence of material properties on the morphogenesis.

In our experimental system, isolated Vibrio cholerae bacteria are embedded inside an agarose gel where they begin to multiply to
form a biofilm. There are three key features of this system that are imperative to enable interpretation of the mechanical phenomena:

3 We note that in the classical literature (Eshelby, 1957; Mura, 2013) the term ‘inclusion’ is used to describe the embedded region when it has the same
lastic properties as that of the matrix. The term ‘inhomogeneity’ is employed when the embedded region differs in elastic properties from the medium. While we
re cognizant of this terminology, in the regime of nonlinear constitutive response, both the embedded region and the medium can exhibit different properties
epending on their local deformation state and therefore the distinction based on material properties does not carry over from the linear theory. In this work,
e use the term inclusion more freely for any embedded body undergoing growth and morphogenesis.
4 In a continuum formulation this translates to determining the natural evolution of the growth tensor, as opposed to prescribing it through a kinematics
3

otivated constitutive law.
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(i) Biofilm morphogenesis is captured with high spatiotemporal resolution over the full course of its growth. This is achieved using an
adaptive imaging technique Yan et al. (2016) that enables visualization of both the global morphology and the single-cell level
architecture of an embedded biofilm containing up to 104 cells. The experimental technique allows us to fully reconstruct the
biofilm morphology and its internal architecture in silico at different times throughout its growth, as shown for two example
cases in Fig. 2. This also confirms that there is no penetration of single bacteria into the confining matrix, and that there is
no fracturing.

(ii) The stiffness of the confining medium and the biofilm are separately tunable. This is an important and unique feature of this system
that enables us to determine the constitutive sensitivity of morphogenesis over a broad range of properties. The stiffness of the
biofilm is tuned by mutagenesis. Five different mutants that lack one or more extracellular matrix components are used (Yan
et al., 2018) and correspond to biofilm shear moduli in the range ∼ 0.1–10 kPa. The stiffness of the confining body is tuned by
adjusting the concentration of the agarose matrix. Varying the concentration in the range 0.3–2% translates to shear moduli
in the range ∼ 1–100 kPa.

(iii) Bacteria reproduce at a constant rate that is not influenced by the confining medium. The agarose gel matrix is biocompatible and
infused with sufficient nutrient to sustain the biofilm growth. Additionally, we use the well characterized rugose Vibrio cholerae
strain that is locked in a high cyclic diguanylate level (Beyhan and Yildiz, 2007). This insensitivity is confirmed by counting
the number of cells as a function of time for different biofilm/agarose combinations and observing exponential growth with
a division time that is independent of the external confinement. The constant reproduction rate also confirms that the local
growth rate of the biofilm is uniform and constant throughout the process.

or more details on the experimental protocols and measurement techniques, the reader is referred to Zhang et al. (2021).
The experimental results in Fig. 2 show that the confinement plays a crucial role in driving the morphogenesis of biofilms.

irst, we focus on two example cases (shown on the left side of the figure). The morphology of the observed ellipsoid-like shapes
an be quantified by two aspect ratios; 𝑎∕𝑐 - the ratio between the major and minor axes, and 𝑎∕𝑏 - the ratio between the major

and median axes (see inset). Although the initial shape (with only few bacteria) is not well defined, after ∼ 6 hours a clear shape
merges and begins to evolve. The two example cases exhibit distinct morphogenesis: In both cases we initially observe a gradual
endency towards a spherical shape, with both 𝑎∕𝑐 → 1 and 𝑎∕𝑏 → 1. This tendency persists in Case 1, whereas in Case 2 a shift is
bserved at 𝑉 ∼ 100 μm3; the tendency of 𝑎∕𝑐 flips and the biofilm morphology tends towards an oblate spheroid shape. The phase
iagram in Fig. 2 examines the influence of the respective stiffnesses of the biofilm and the agarose, giving rise to these two typical
orphological trends. It is shown that the transition towards an oblate shape emerges if the agarose is stiffer than the biofilm.
therwise, the tendency towards a spherical shape is maintained.

In this work we aim to explain the emergence of these different trends as well as their constitutive sensitivity. Although it has
een experimentally confirmed that fracture is not culpable at this scale (Zhang et al., 2021; Kim et al., 2020), large deformations
nduced by a body that has grown by four orders of magnitude must be accompanied by damage, which will be considered in this
ork. Additionally, our models will allow us to decipher between the separate roles of deformation and growth in determining the
bserved shapes.5

. Problem definition and modeling approach

Consider a body that can change its shape as it grows. This body, the inclusion, is embedded within an unbounded confining
edium, the matrix. In its undeformed, stress-free state, the matrix occupies the region R

𝑀 . This state can be achieved if the grown
nclusion is removed from the matrix (Fig. 3). The boundary of the remaining void is denoted by 𝜕R

𝑀 ; its undeformed volume is
enoted by 𝑉0. The volume of the inclusion, 𝑉 (𝑡), varies with time6; we assume that if it were removed from the matrix, it would
ecover an undeformed stress-free state7 that occupies the region R

𝐼 (𝑡), and its boundary is denoted by 𝜕R
𝐼 (𝑡). In their stress-free

tates, the inclusion and the matrix are incompatible. In the physical space, the matrix and the inclusion occupy the regions 𝑀 (𝑡) and
𝐼 (𝑡), respectively, and their boundaries intersect, i.e. 𝜕𝑀 (𝑡) = 𝜕𝐼 (𝑡), to enclose the volume 𝑉 (𝑡).

eformation gradient. At a given time, in the undeformed state, material points are labeled using the Cartesian coordinate
ystem 𝑿 = (𝑋, 𝑌 ,𝑍) where 𝑿 ∈ R

𝑀 (𝑡) or 𝑿 ∈ R
𝐼 (𝑡), for the matrix and the inclusion, respectively. Upon deformation, a

lacement map 𝒙(𝑡) = 𝝌(𝑿, 𝑡) assigns the material points their location in the physical space, as labeled by the Cartesian coordinates
(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) where 𝒙 ∈ 𝑀 (𝑡) or 𝒙 ∈ 𝐼 (𝑡), respectively. Accordingly, we can write the deformation gradient 𝐅(𝑡) = 𝜕𝝌∕𝜕𝑿.
ote that this mapping is defined from the stress-free state at time 𝑡.

onfigurational tensor. In this work we account for changes that may occur in the configurations (i.e. the stress-free states) of
oth the inclusion and the matrix, which can be affected, for example, by growth, remodeling, and damage. The mathematical
reatment that we employ transcends different configurational forces, hence we coin the general term - configurational tensor. If one
an identify an initial state of the body, at say 𝑡 = 0, such that 𝑿0 = 𝑿(0), then a placement map 𝑿(𝑡) = 𝝌0(𝑿0, 𝑡) can be defined

5 In Zhang et al. (2021) it was shown that upon dissolving the agarose around a mature oblate biofilm, its recovered stress free aspect ratio 𝑎∕𝑐 further
increases.

6 Here ‘time’ (denoted by 𝑡) is a surrogate variable that determines the process. No dynamic, or rate dependent effects are included in this work.
7 We restrict our attention to compatible growth of the inclusion. This simplification allows us to focus on incompatibility between the inclusion and the
4

matrix.
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Fig. 2. Bacterial Biofilm Observations. (top left) Time-lapse images of biofilms reconstructed in 3D at the level of a single cell. Color coding is defined by the
orientation of the cells in respect to the minor axis. Two different cases are shown and their corresponding moduli are indicated in the phase diagram. The length
of a single bacteria is ∼ 1 μm; (bottom left) evolution of the biofilm aspect ratios for the two cases. For Case 1 - behavior is monotonic. For Case 2 - transition
towards an oblate shape is observed; (right) phase diagram distinguishing two typical morphogenesis paths, i.e monotonic (red) and non-monotonic(blue) as
shown for Cases 1 and 2, and estimated based on combination of time evolution data, and final aspect ratios of mature colonies. Additional experimental details
can be found in Zhang et al. (2021).

and the configurational tensor is 𝐅0(𝑡) = 𝜕𝝌0∕𝜕𝑿0. If the changes in configuration are due to growth, then 𝐅0(𝑡) is more commonly
referred to as the growth tensor.8

Remote field. In the remote field we require that the influence of the growing inclusion vanishes, and thus we apply the condition

𝐅 → 𝐅∞ for |𝒙| → ∞, (1)

where 𝐅∞ is an applied deformation.

The interface. It is instructive to parameterize the collection of material points on the boundaries of the matrix and the inclusion
(at a given time) by9

𝑿𝑏 = 𝑿𝑏(𝑠) ∈ 𝜕R
𝑀 and 𝑿𝑏𝐼 = 𝑿𝑏𝐼 (𝑠𝐼 ) ∈ 𝜕R

𝐼 , (2)

respectively.10 Upon deformation, compatibility implies that these boundaries map to the same surface, namely

𝒙𝑏(𝑠) = 𝝌(𝑿𝑏(𝑠)), 𝒙𝑏𝐼 (𝑠𝐼 ) = 𝝌𝐼 (𝑿𝑏𝐼 (𝑠𝐼 )) ∈ 𝜕𝑀 = 𝜕𝐼 . (3)

Mathematically this implies that there exists a transformation 𝑠𝐼 = 𝜉(𝑠) such that

𝒙𝑏(𝑠) = 𝒙𝑏𝐼 (𝜉(𝑠)). (4)

Namely, if the interface is free to slip, 𝜉(𝑠) is a degree of freedom in the system, whereas if the interface is strictly adhered, such that
there is correspondence between points on either side of the interface, then 𝜉(𝑠) is a prescribed kinematic constraint. In this work
we will consider both limits of strictly bonded and free to slip. We will further discuss the consequences of this interface constraint
in the following sections.

With these definitions in place we can now state the primary question that we seek to answer:

8 The common multiplicative form of the deformation gradient (from an arbitrary initial state 𝑿0) can be written as 𝐅̂(𝑡) = 𝐅𝐅0, and follows from the
differentiation of 𝒙(𝑡) = 𝝌(𝝌0(𝑿0), 𝑡) by making use of the chain rule.

9 Note that from hereon the subscript (⋅)𝐼 will denote values for the inclusion. Also, for mathematical compactness, we omit the time dependence, nonetheless
all fields and boundaries in both the reference and current frames can vary with time.

10 Note that 𝑠 ∈ R1 in a 2D setting, and 𝑠 ∈ R2 in a 3D setting.
5
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Fig. 3. Schematic illustration of the stress-free and deformed states of the inclusion–matrix system.

Question A: Given the volume 𝑉 (𝑡) of an inclusion, what shape, 𝑿𝑏𝐼 , would it take?

This question centers on determining changes in configuration, which may ultimately affect changes in the observed deformed
orphology. Changes in configuration may follow an inherent path that is encoded in the growing system, or may arise solely as
response to the mechanical constraint. In what follows we will further refine this problem statement as it applies to different

ossible growth scenarios and may be affected by damage in the matrix.
Upon obtaining an answer to our primary question, an additional question that we seek to answer is a nonlinear analogue to

he classical Eshelby problem:

Question B: Given the volume 𝑉 (𝑡) of an inclusion and its undeformed shape, 𝑿𝑏𝐼 , what deformed shape, 𝒙𝑏, would we observe in
the physical space?

For simplicity, we will restrict our attention to incompressible materials under plane-strain conditions, such that det 𝐅 = 1 and
≡ 𝑍. Additionally, in what follows, we neglect effects of interfacial friction, surface tension, and rate dependence11 and we model

the constitutive behavior of both bodies via free energy density that depends only on the deformation gradient 𝐅.

Scenario #1: General anisotropic growth
We begin by considering growth scenarios that are kinematically prescribed. Namely, at a given time, 𝑡, with corresponding 𝑉 (𝑡),

the stress-free configurations of both the inclusion and the body (i.e. 𝑿𝑏 and 𝑿𝑏𝐼 ) are known, as illustrated schematically in Fig. 4.
Such situations may arise, for example, if the growth is a result of thermal expansion or is biologically encoded in the inclusion.
With the kinematics fully defined, we have a trivial answer to Question A, and it remains to determine the deformed state of the
bodies to answer Question B. Hence, we now proceed to consider the potential energy of the two-body system to examine possible
solutions that minimize this energy.

Let 𝜇𝑀𝛹 (𝐅) be the strain energy density per unit volume, dV, of the matrix, and let 𝜇𝐼𝛹𝐼 (𝐅𝐼 ) be the strain energy density per
unit volume, dV𝐼 , of the inclusion, where the coefficients 𝜇𝑀 and 𝜇𝐼 are the shear moduli of the matrix and the inclusion in the
linear range, respectively. The total potential energy in the system is

(𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 , 𝜉, 𝑝) = 𝜇𝑀 ∫
R
𝑀

𝛹 (𝐅)dV + 𝜇𝐼 ∫
R
𝐼

𝛹𝐼 (𝐅𝐼 )dV𝐼 + 𝑝[𝒙𝑏(𝑠) − 𝒙𝑏𝐼 (𝜉(𝑠))], (5)

where the last term arises as a response to the compatibility constraint (4) and 𝑝 is a Lagrangian multiplier.
For the general case (with arbitrary boundary geometries) an equilibrium solution can be obtained numerically by minimizing

the above functional. This can be particularly challenging as the interface condition must be applied with respect to the deformed
configuration. Alternatively, if the deformed shape of the interface 𝒙𝑏 and the corresponding parameterizations (𝜉), are prescribed,
the energy functional simplifies to the form

(𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ;𝒙𝑏) = 𝜇𝑀 ∫
R
𝑀

𝛹 (𝐅)dV + 𝜇𝐼 ∫
R
𝐼

𝛹𝐼 (𝐅𝐼 )dV𝐼 . (6)

11 In certain material systems and at different scales these effects may become important and should be subject for future work.
6
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Fig. 4. Schematic of Scenario #1.

Among all possible deformed shapes, 𝒙𝑏, for a given reference configuration defined by the set (𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ), an equilibrium
solution would select the shape that minimizes the energy, namely

𝒙𝑏 = arg min
𝒙̄𝑏

{

min (𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ; 𝒙̄𝑏)
}

. (7)

The energy minimization in (7) provides the formal solution to Question B. Upon substituting 𝒙𝑏 and the corresponding placement
maps back in (5), we can write the minimal energy for a given set of parameters as

𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ), (8)

and the deformed shape as

𝒙𝑏 = 𝒙𝑏(𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ). (9)

In this work we will use computational simulations and quasi-analytical methods to obtain solutions for arbitrary anisotropic
growth scenarios (as detailed in Section 4). These solutions, and their corresponding energy (5) will serve as a foundation to
investigate more complex growth scenarios.

Elliptic stress-free configurations. While any stress-free configuration can be considered, we will limit our attention to an elliptic
family of stress-free configurations. Hence, the shapes of the void and the inclusion are uniquely prescribed by their aspect ratios
𝛷 = 𝐵∕𝐴 and 𝛷𝐼 = 𝐵𝐼∕𝐴𝐼 , with 𝐴,𝐴𝐼 the semi-minor axes, and 𝐵,𝐵𝐼 the semi-major axes of the void and inclusion, respectively
(Fig. 3). In the deformed state, although the shape may not be of an ellipse, we define a corresponding aspect ratio 𝜙 = 𝑏∕𝑎.
Accordingly, we can rewrite the energy minimization in (7), such that among all possible deformed aspect ratios, 𝜙, for a given
reference configuration defined by the set (𝑉0, 𝑉 (𝑡), 𝛷,𝛷𝐼 ), an equilibrium solution would select the shape that minimizes the energy,
namely

𝜙 = arg min
𝜙̄

{

min (𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ; 𝜙̄)
}

. (10)

The corresponding energy, and deformed aspect ratio then simplify to the respective forms

𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑉0, 𝑉 (𝑡), 𝛷,𝛷𝐼 ), 𝜙 = 𝜙(𝑉0, 𝑉 (𝑡), 𝛷,𝛷𝐼 ). (11)

Scenario #2: An energy-based growth law
Here we consider growth scenarios that lack any developmental blueprint to guide the growth, such as the bacterial biofilms

described in Section 2. In the absence of such a blueprint, mechanical confinement plays the decisive role in determining the
morphology of the system and the answer to Question A is no longer trivial.

We postulate that, in such growth scenarios, morphogenesis will proceed in a way to minimize the total mechanical energy of the system.
This postulate introduces the stress-free shape of the inclusion, 𝑿𝑏𝐼 , as an additional degree of freedom in the system, thus

implying that the inclusion can explore multiple growth pathways (see illustration in Fig. 3). For each growth pathway 𝑿𝑏𝐼 is
known, hence the answer to Question B follows directly from (7), and provides a sequence of candidate solutions, 𝒙𝑏 = 𝒙𝑏(𝑿𝑏𝐼 ), that
are in mechanical equilibrium (9). Question A is subsequently answered by selecting among all candidate solutions the one with
least energy to obtain the optimal shape 𝑿𝑏𝐼 , as illustrated schematically in Fig. 5.

By building on the machinery developed in Scenario #1, we can write the above solution procedure as

𝑿𝑏𝐼 = arg min
𝑿̄𝑏𝐼

{

min (𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ;𝒙𝑏(𝑿̄𝑏𝐼 ))
}

. (12)

The above energy minimization provides the formal solution to Question A for Scenario #2. Specializing this solution procedure to
the case of elliptic stress-free configurations, reads

𝛷𝐼 = arg min
{

min (𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ;𝜙(𝛷̄𝐼 ))
}

. (13)
7
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Fig. 5. Schematic of Scenario #2.

In this scenario we have assumed that the confining body accommodates the growth and reconfiguration of the inclusion through
deformation. Since at every stage of growth the system optimizes over its stress-free shapes to select the candidate with the least
total energy, the global optimal solution is path independent (Fig. 5). Next, we will consider two scenarios by which the matrix can
also evolve its configuration to accommodate the growth.

Scenario #3: Damage induced shape change
The large deformations experienced by the confining matrix as the inclusion expands its volume can induce damage. For example,

in our Case Study (Section 2) the growth of an inclusion, from a single bacteria to a colony of 104 cells, inevitably introduces extreme
deformations that cannot be elastically sustained by the agarose gel. While different failure mechanisms may emerge, here we will
focus our attention to diffuse damage, which is the primary mode at small-scales (Zhang et al., 2021; Kim et al., 2020), before
fracture initiates. Various mechanisms can be involved in damage processes; they depend on the specific material system, and can
be modeled by increasingly complex methods (Zhang and Cai, 2010; Besson, 2010; Ambati et al., 2015; de Borst, 2002; Narayan
and Anand, 2021; Talamini et al., 2018; Wu et al., 2016; Miehe and Schänzel, 2014; Raina and Miehe, 2016; Keralavarma and
Chockalingam, 2016) which include various model parameters. Without a particular material or damage mechanism at hand, in
what follows, we will establish a minimal approach to capture the influence of damage on the observed shape of the inclusion.

Within the term ‘damage’ we distinguish between irreversible deformation (that does not incur shape change), and volume
preserving changes in the matrix configuration. This distinction acknowledges the fact that inelastic deformation does not necessarily
lead to changes in shape.12 At onset of damage, without unloading, the energetic cost of irreversible deformations is readily captured
by the general constitutive model 𝛹 (𝐅), while changes in configuration can be interpreted as a change in the effective stress-free shape
of the void.13 The change in configuration is associated with a configurational tensor, 𝐅0, which transforms 𝑿𝑏 to a new effective
shape by 𝑿𝑑

𝑏 . This transformation also incurs an energetic cost. If we can estimate the volume of material that has undergone shape
change, say 𝑉𝑑 = 𝑉𝑑 (𝐅0), we can assign to it an energy cost

𝑊𝑑 = 𝐺𝑣𝑉𝑑 , (14)

where the coefficient 𝐺𝑣 is the energy required per unit volume, and can be considered as an effective material parameter. We
emphasize that (14) accounts for the portion of work invested in altering the configuration of the matrix (i.e. its shape), in the
reference frame.

We can now compare the total work invested in the growth process with or without damage. Before onset of damage at a given
state, as prescribed by the set (𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ), the invested energy follows directly from (8), hence we write

𝑊𝑒 = 𝑚𝑖𝑛(𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ). (15)

Upon damage, an instantaneous change in the configuration may occur, to arrive at a new effective void shape 𝑿𝑑
𝑏 , without change

in 𝑿𝑏𝐼 . The total work invested in the deformation can be decomposed into two parts; the work needed for shape change (14), and

12 As for example in spherically symmetric expansion of a cavity.
13 Here the term ‘effective’ indicates that this shape may not be the actual observed shape, since damaged material is not removed.
8
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Fig. 6. Schematic of Scenario #3.

for deformation from the new configuration, namely

𝑊𝑒𝑑 = 𝑊𝑑 + 𝑚𝑖𝑛(𝑉0, 𝑉 (𝑡),𝑿𝑑
𝑏 ,𝑿𝑏𝐼 ). (16)

For the material system to instantaneously transition to a damaged state with the same volume and stress-free shape of the inclusion
(𝑿𝑏𝐼 , 𝑉 (𝑡)), the mechanical process must obey the thermodynamic inequality

 = 𝑊𝑒 −𝑊𝑒𝑑 ≥ 0, (17)

where  is the energy dissipated in the transition. This implies that damage may initiate once 𝑊𝑒 = 𝑊𝑒𝑑 .
To examine this limit, it is instructive to define the auxiliary function

(𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ,𝑿𝑑
𝑏 ) =

𝛥𝑚𝑖𝑛
𝑉𝑑

, (18)

where

𝛥𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑉0, 𝑉 (𝑡),𝑿𝑏,𝑿𝑏𝐼 ) − 𝑚𝑖𝑛(𝑉0, 𝑉 (𝑡),𝑿𝑑
𝑏 ,𝑿𝑏𝐼 ), (19)

and the volume expansion is defined as 𝛥𝑉 = 𝑉 (𝑡) − 𝑉0.
If damage onset occurs at a critical expansion 𝛥𝑉𝑐 with a known shape of the inclusion 𝑿𝑏𝐼 , then according to the inequality

(17) we can write

𝛥𝑉 < 𝛥𝑉𝑐 ∶ max
𝑿𝑑
𝑏

 < 𝐺𝑣 (no damage),

𝛥𝑉 = 𝛥𝑉𝑐 ∶ max
𝑿𝑑
𝑏

 = 𝐺𝑣 (onset of damage),

𝛥𝑉 > 𝛥𝑉𝑐 ∶ max
𝑿𝑑
𝑏

 > 𝐺𝑣 (post damage).

(20)

This process of determining if the system is damaged or not is illustrated in Fig. 6. To understand how damage can affect changes
in the observed shape, we will focus our attention to determining 𝑿𝑑

𝑏 at onset of damage, and the corresponding deformed shape
𝒙𝑑𝑏 . Before we can do so, it remains to prescribe a functional form of 𝑉𝑑 = 𝑉𝑑 (𝐅0). A simplistic estimate of the damaged volume
can be chosen as the minimal region that encloses the initial void, but has the shape of the effective damaged void, as illustrated
schematically by the red shaded regions in Fig. 6. This assumption complies with the basic physical requirement that if there is no
shape change there is no damaged volume (i.e. 𝑉𝑑 (𝐈) = 0).

In restricting our attention to elliptic stress-free shapes of the inclusion and the matrix, the set (𝑿𝑏,𝑿𝑏𝐼 ,𝑿𝑑
𝑏 ) simplifies to the

corresponding aspect ratios (𝛷,𝛷𝐼 , 𝛷𝑑 ). The volume of the minimal concentric elliptic region that encloses an ellipse with the initial
aspect ratio 𝛷, and has the damaged aspect ratio 𝛷𝑑 is readily obtained as 𝑉0𝛺(𝛷,𝛷𝑑 ), where

𝛺(𝛷,𝛷𝑑 ) =

{

𝛷𝑑∕𝛷 − 1 𝛷𝑑 ≥ 𝛷,
𝛷∕𝛷𝑑 − 1 𝛷𝑑 < 𝛷.

(21)

Since damage can be directional and thus partial (i.e. 𝐺𝑣 is the upper bound on the energy per unit volume), a similar effective
shape can be achieved with different regions of partial damage, and will be chosen based on the particular constitutive model. To
9
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Fig. 7. Schematic of Scenario #4.

account for this effect we introduce an additional effective material parameter, 𝑛, and define the damaged volume as

𝑉𝑑 = 𝑉0𝛺
𝑛. (22)

Thence, using (11), we can rewrite (18) as

(𝛷,𝛷𝑑 ) =
𝛥𝑚𝑖𝑛(𝛷𝑑 −𝛷)
𝑉0𝛺(𝛷,𝛷𝑑 )𝑛

, (23)

where without loss of generality we replace 𝛥𝑚𝑖𝑛(𝛷,𝛷𝑑 ) = 𝛥𝑚𝑖𝑛(𝛷−𝛷𝑑 ) and use the shorthand notation to write the above relation
for a given set (𝑉0, 𝑉 (𝑡), 𝛷𝐼 ).

Now, we use (23) to consider the physical bounds on the parameter 𝑛:
First, if 𝒏 > 𝟏, through Taylor expansion of 𝛥𝑚𝑖𝑛, it can be shown that max  → ∞ at 𝛷𝑑 = 𝛷 for all (𝑉0, 𝑉 (𝑡), 𝛷𝐼 ). Hence, damage

will always initiate immediately at onset of loading and will not induce shape change. This result is considered to be nonphysical.
Next, if 𝛥𝑚𝑖𝑛 is concave (i.e. 𝛥

′′
𝑚𝑖𝑛 < 0), we can write the inequality14

(𝛷,𝛷𝑑 ) ≤
𝛥

′
𝑚𝑖𝑛(0)
𝑉0

{

𝛷𝑛(𝛷𝑑 −𝛷)1−𝑛 𝛷𝑑 ≥ 𝛷,
−𝛷𝑛

𝑑 (𝛷 −𝛷𝑑 )1−𝑛 𝛷𝑑 < 𝛷.
(24)

Accordingly, if 𝒏 = 𝟏, then the maximum, max  = 𝛷𝑛𝛥
′
𝑚𝑖𝑛(0)∕𝑉0, appears at 𝛷 = 𝛷𝑑 and onset of damage will not lead to

changes in shape.
If 𝒏 < 𝟏, a solution for which max  = 𝐺𝑣 and 𝛷𝑑 ≠ 𝛷 may exist. Thence, using (23), at onset of damage we can find the

corresponding effective shape from 𝛷𝑑 = arg max
𝛷̄𝑑

(𝛷, 𝛷̄𝑑 ) and the observed shape, 𝜙, is obtained from (11), by setting 𝛷 = 𝛷𝑑 .

Overall, our minimal damage model introduces two material parameters whose physical values are in the ranges 𝐺𝑣 ≥ 0 and
𝑛 ≤ 1. The sensitivity of the response to these parameters will become apparent in view of results in Section 5.

Scenario #4: Matrix remodeling in response to growth
An alternative adaptation that may manifest in the confining medium, in response to the expanding inclusion, is remodeling. As

in Scenario #2, we can postulate that morphogenesis of the matrix will proceed in a way to minimize the total mechanical energy
of the system. Hence, if the matrix were able to adapt the volume of the void (in its stress-free state) to accommodate the growing
body, the system would remain stress-free. On the other hand, if changes in volume are prohibited, volume preserving changes in
configuration, can potentially allow the two body system to further alleviate the strains of growth, or in other words, the amount
of elastic energy in the system.

To capture this growth Scenario we extend Scenario #2, to include the stress-free shape of the void 𝑿𝑏 as an additional parameter.
Accordingly, (12) takes the form

(𝑿𝑏,𝑿𝑏𝐼 ) = arg min
(𝑿̄𝑏 ,𝑿̄𝑏𝐼 )

{

min (𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ;𝒙𝑏(𝑿̄𝑏, 𝑿̄𝑏𝐼 ))
}

, (25)

14 Here we use the inequality 𝛥 (𝛷 −𝛷 ) ≤ 𝛥 (0) + 𝛥
′

(0) ⋅ (𝛷 −𝛷 ).
10
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and specializing this solution procedure to the case of elliptic stress-free configurations, reads

(𝛷,𝛷𝐼 ) = arg min
(𝛷̄,𝛷̄𝐼 )

{

min (𝝌 ,𝝌𝐼 ,𝐅,𝐅𝐼 ;𝜙(𝛷̄, 𝛷̄𝐼 ))
}

. (26)

Even for the simplified geometry, the above solution procedure requires a double optimization scheme on a two-dimensional space,
as illustrated in Fig. 7.

Solutions procedures for this growth scenario, as well as Scenarios #2 and #3, rely on equilibrium solutions for arbitrary aspect
ratios and volume expansions, obtained in Scenario #1. In this work, we will use two different approximate methods to obtain
solutions for Scenario #1, as detailed in the next section.

4. Equilibrium solutions for prescribed anisotropic growth

The optimization schemes theorized for the different growth scenarios in the previous section, rely on the knowledge of
equilibrium solutions for arbitrary shapes and volume expansions (i.e. Scenario #1). Then optimization is conducted among all
possible configurations at finite levels of volume expansion. While solution for a single prescribed anisotropic growth process within a
finite deformation continuum framework can be challenging, optimization among all possible configurations can become intractable.

In this section, we present two alternative modeling approaches in which we restrict our attention to elliptic stress-free shapes of
both the inclusion and the void. Each of these methods has its own limitations: First we will employ a minimal analytical approach
that applies stringent kinematic assumptions to reduce the number of unknown field variables, thus permitting quasi-analytical
treatment, but reducing the accuracy of our results (Ericksen, 1954, 1955). This solution applies for situations in which sliding is
permitted at the interface (i.e there is no transmission of shear traction). Then, we employ finite element method, that allows for
high accuracy, but requires long computation times. This solution considers a strictly bonded interface. In the following section
(Section 5) we will compare the results obtained using the different methods and will consider also their agreement with exact
solutions obtained at the linear limit.

4.1. Quasi-Analytical Method (QAM)

To describe this growth process, we begin by making a simplifying assumption on the deformation field. We consider situations
in which the different shapes of the void and the inclusion can be represented reasonably well as ellipses in both their stress-free
and deformed configurations.

Reference configuration. In the undeformed state, we define the cartesian coordinate system (𝑋, 𝑌 ,𝑍) whose origin is at the center
f the void. The former two coordinates are along the minor and major axis of the ellipse, respectively, and the latter points out of
he plane to complete the right-handed orthogonal set (Fig. 3). Now, considering the undeformed states of both the matrix and the
nclusion, we can parameterize the field as a continuum of concentric ellipses, which have the same aspect ratio as the undeformed
oid and inclusion, respectively. In the plane, this parameterization is chosen such that an ellipse is identified by the location of
ts intersection with the minor axis, 𝛬, and particles along its circumference are identified by their location 𝛩. Mathematically, this
mplies

𝑿(𝛬,𝛩,𝑍;𝛷) ∶= (𝛬 cos𝛩,𝛷𝛬 sin𝛩,𝑍), (27)

nd thus, in the reference state, the matrix occupies the region

𝐴 ≤ 𝛬 <∞, 0 ≤ 𝛩 < 2𝜋, −∞ < 𝑍 <∞, (28)

hereas the inclusion occupies the region

0 ≤ 𝛬 < 𝐴𝐼 , 0 ≤ 𝛩 < 2𝜋, −∞ < 𝑍 <∞. (29)

urrent configuration. Upon deformation we assume that these ellipses are mapped into new ellipses. Hence, given the deformed
artesian coordinate system (𝑥, 𝑦, 𝑧), we write the parameterization in terms of the deformed aspect ratio 𝜑, as

𝒙(𝛼, 𝜃,𝑍;𝜑) ∶= (𝛼 cos 𝜃, 𝜑𝛼 sin 𝜃, 𝑧), (30)

nd thus, in the reference state, the matrix occupies the region

𝑎 ≤ 𝛼 <∞, 0 ≤ 𝜃 < 2𝜋, −∞ < 𝑧 <∞, (31)

hereas the inclusion occupies the region

0 ≤ 𝛼 < 𝑎, 0 ≤ 𝜃 < 2𝜋, −∞ < 𝑧 <∞. (32)

lacement map and its gradient. Next, we define a placement map that assigns an undeformed ellipse to its new deformed position,

amely 𝒙 = 𝝌(𝑿, 𝑡). Notice that this mapping varies with time; the consequence of this evolution will become apparent soon. Within
11
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the confines of our assumption that ellipses remain ellipses in a plane-strain setting, the most general transformation that excludes
any rigid body translations or rotations and permits analytical treatment,15 is

𝛼 = 𝛼(𝛬), 𝜑 = 𝜑(𝛬), 𝜃 = 𝛩, 𝑧 = 𝑍, (33)

Provided this transformation we can now write the mapping as

𝝌(𝑿, 𝑡) = 𝒙(𝛼(𝛬), 𝜑(𝛬), 𝛩,𝑍), (34)

and its gradient is derived by invoking the chain rule to write

𝐅 = 𝜕𝒙
𝜕𝑿

= 𝜕𝒙
𝜕𝛼

⊗
( 𝜕𝛼
𝜕𝛬

𝜕𝛬
𝜕𝑿

)

+ 𝜕𝒙
𝜕𝜑

⊗
(

𝜕𝜑
𝜕𝛬

𝜕𝛬
𝜕𝑿

)

+ 𝜕𝒙
𝜕𝜃

⊗
( 𝜕𝜃
𝜕𝛩

𝜕𝛩
𝜕𝑿

)

+ 𝜕𝒙
𝜕𝑧

⊗
( 𝜕𝑧
𝜕𝑍

𝜕𝑍
𝜕𝑿

)

. (35)

To specify this deformation gradient in Cartesian coordinates, we first write the covariant vectors of the curvilinear coordinates in
the current frame, as

𝜕𝒙
𝜕𝛼

= (cos 𝜃, 𝜑 sin 𝜃, 0) , 𝜕𝒙
𝜕𝜃

= (−𝛼 sin 𝜃, 𝜑𝛼 cos 𝜃, 0) , 𝜕𝒙
𝜕𝑧

= (0, 0, 1) , 𝜕𝒙
𝜕𝜑

= (0, 𝛼 sin 𝜃, 0) , (36)

and the contravariant vectors, in the reference frame, as
𝜕𝛬
𝜕𝑿

= 1
𝛷

(𝛷 cos𝛩, sin𝛩, 0) , 𝜕𝛩
𝜕𝑿

= 1
𝛷𝛬

(−𝛷 sin𝛩, cos𝛩, 0) , 𝜕𝑍
𝜕𝑿

= (0, 0, 1) . (37)

ere the vectors are written with their components in the directions of the cartesian unit vectors (𝐞x, 𝐞y , 𝐞z), which are identical in
the reference and current frames. Now, by inserting (36) and (37) into (35) we rewrite the deformation gradient as

𝐅 =
(

𝜆̄ sin2 𝛩 + 𝜆 cos2 𝛩
)

𝐞x ⊗ 𝐞x +
1
𝛷
(𝜆 − 𝜆̄) sin𝛩 cos𝛩 𝐞x ⊗ 𝐞y

+ 𝜑(𝜆 − 𝜆̄ + 𝛽) sin𝛩 cos𝛩 𝐞y ⊗ 𝐞x +
𝜑
𝛷

(

(𝜆 + 𝛽) sin2 𝛩 + 𝜆̄ cos2 𝛩
)

𝐞y ⊗ 𝐞y + 𝐞z ⊗ 𝐞z,
(38)

where we have substituted the shorthand notations

𝜆 = d𝛼
d𝛬

, 𝜆̄ = 𝛼
𝛬
, 𝛽 = 𝛼

𝜑

(

d𝜑
d𝛬

)

. (39)

For future use, the first invariant of the left Cauchy Green deformation tensor 𝐁 = 𝐅𝐅T is readily written, after some algebra, as

𝐼1 =
(

𝜑2

𝛷2
(𝜆 + 𝛽)2 + 𝜆̄2

)

sin4 𝛩 +
(

𝜆2 +
𝜑2

𝛷2
𝜆̄2
)

cos4 𝛩

+
(

1
𝛷2

(𝜆 − 𝜆̄)2 + 𝜑2(𝜆 − 𝜆̄ + 𝛽)2 + 2𝜆𝜆̄ + 2
𝜑2

𝛷2
(𝜆 + 𝛽)𝜆̄

)

sin2 𝛩 cos2 𝛩 + 1,
(40)

and the third invariant 𝐽 = det 𝐅, simplifies to

𝐽 =
𝜑
𝛷
𝜆̄(𝜆 + 𝛽 sin2 𝛩). (41)

Boundary and compatibility conditions. While the above mapping applies for both the matrix and the inclusion, the field must

be solved separately for each, to obtain 𝛼(𝛬) and 𝛼𝐼 (𝛬), respectively. Compatibility of the two bodies, in the current frame, follows
from (4), which for the present setting implies the boundary condition

𝑎 = 𝛼(𝐴) = 𝛼𝐼 (𝐴𝐼 ). (42)

Similarly, the deformed aspect ratio 𝜑(𝛬) may vary in the matrix. In the inclusion, we anticipate a uniform deformation, such that
𝜑𝐼 (𝛬) ≡ 𝜙. Accordingly, we write an additional compatibility condition

𝜙 = 𝜑𝐼 = 𝜑(𝐴). (43)

The remaining boundary, is the remote boundary of the matrix. It is expected that the remote field is undisturbed by the presence
of the growing inclusion16 and is thus uniform, as is the deformation field in the inclusion. Hence, for the present setting the remote
boundary condition (1) specializes to

𝜆(𝛬→ ∞) → 𝜆∞, (44)

15 Note that, conceptually, a more general transformation can include changes in 𝜃 in the form 𝜃 = 𝛩 + 𝜗(𝛬,𝛩), where admissibility implies the additional
equirement of periodicity, such that 𝜗(𝛬, 𝑛𝜋∕2) = 0, for 𝑛 = 0, 1, 2. However, such an assumption renders an analytical derivation untractable.
16 In this work we limit our discussion to situations in which the inclusion remains small compared to the size of the medium within it is growing. It is

traightforward to modify this boundary condition to account for finite matrix dimensions, however within the assumptions of the present framework, this matrix
12
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if the remote stretch (𝜆∞) is imposed. Or if the remote field is undisturbed, we have 𝜆∞ = 1. The corresponding aspect ratio in the
emote field then follows from the requirement of incompressibility.

ncompressibility constraint. Limiting our formulation to incompressible materials, we require that concentric elliptical regions
ithin the material preserve their volume. For the inclusion, this implies

𝜋𝜙𝛼2 = 𝜋𝛷𝐼𝛬
2 → 𝜆̄ =

√

𝛷𝐼∕𝜙. (45)

whereas the total volume of the inclusion is 𝑉 (𝑡) = 𝜋𝜙𝑎2 = 𝜋𝛷𝐼𝐴2
𝐼 . In the matrix, the additional volume due to expansion of the

inclusion must be accounted for to write

𝜋𝜑𝛼2 − 𝜋𝛷𝛬2 = 𝛥𝑉 → 𝜑 = 𝛥𝑉 + 𝜋𝛷𝛬2

𝜋𝛼2
, (46)

where the total volume change is 𝛥𝑉 = 𝑉 (𝑡) − 𝑉0 = 𝜋(𝛷𝐼𝐴2
𝐼 −𝛷𝐴

2).
Note that both (45) and (46) identically satisfy the integral requirement of incompressibility

𝛬2

∫
𝛬1

2𝜋

∫
0

(𝐽 − 1)𝛬d𝛩d𝛬 = 2𝜋
𝛷

𝛬2

∫
𝛬1

[

𝜑𝜆̄
(

𝜆 +
𝛽
2

)

− 1
]

𝛬d𝛬 = 0, (47)

hich implies

𝜑𝜆̄
(

𝜆 +
𝛽
2

)

= 1 → 𝛽 = 2
(

1
𝜑𝜆̄

− 𝜆
)

, (48)

in any elliptical subregion 𝛬 ∈ [𝛬1, 𝛬2].
By inserting the above relations in (38) and (40) and recalling the definitions (39), the deformation gradient and the first invariant

in the matrix can be written as functions of17 (𝛬, 𝛼, 𝛼′, 𝛩), for a given set of model parameters (𝛷,𝐴, 𝑉0, 𝑉 (𝑡)), namely

𝐅 = 𝐅(𝛬, 𝛼, 𝛼′, 𝛩;𝛷,𝐴, 𝑉0, 𝑉 (𝑡)), 𝐼1 = 𝐼1(𝛬, 𝛼, 𝛼′, 𝛩;𝛷,𝐴, 𝑉0, 𝑉 (𝑡)). (49)

For the inclusion, combining (42), (43), and (45) implies 𝜆 = 𝜆̄ = 𝑎∕𝐴𝐼 and 𝜑 = 𝜙 = 𝛷𝐼 (𝐴𝐼∕𝑎)2, such that 𝛽 = 0. Hence, the
deformation gradient and the first invariant reduce to the expected results

𝐅 = 𝑎
𝐴𝐼

𝐞x ⊗ 𝐞x +
𝐴𝐼
𝑎

𝐞y ⊗ 𝐞y + 𝐞z ⊗ 𝐞z, 𝐼1 =
(

𝑎
𝐴𝐼

)2
+
(

𝐴𝐼
𝑎

)2
+ 1, (50)

which, given the undeformed semi-minor axis - 𝐴𝐼 , depends only on the deformed value - 𝑎.

Summary of kinematic assumptions. Before proceeding to consider the kinetics of this problem, we summarize the two
assumptions that have been used to define the kinematics:

1. We have restricted the deformation such that concentric ellipses in the reference frame are mapped into new concentric
ellipses in the current frame. This assumption entails the limitation that the shapes of the void and the inclusion in the
reference frame can be represented reasonably well as ellipses.

2. We limit our discussion to incompressible materials. This volume constraint is imposed in an averaged sense, such that any
elliptic sub-region within the matrix or the inclusion preserves its volume.

At the limit of axially symmetric expansion, these assumptions are identically satisfied and the results of our model are exact. For
non-circular expansion, the consequences of these assumptions, will be further examined in comparison with numerical solutions
and linear elastic results.

Equilibrium. With the kinematics fully defined, we now proceed to consider the potential energy of the two body system to examine
possible solutions, which minimize this energy. Recalling the total energy in (5), and in view of (49), (50), we define the two auxiliary
functions for mathematical convenience

𝜓(𝛬, 𝛼, 𝛼′;𝛷,𝐴, 𝑉0, 𝑉 (𝑡)) = 𝛬
2𝜋

2𝜋

∫
0

𝛹 (𝐅)d𝛩, 𝜓𝐼 (𝑎, 𝐴𝐼 ) =
1
2𝜋

2𝜋

∫
0

𝛹𝐼 (𝐅)d𝛩. (51)

These definitions are now inserted into (5) to rewrite the energy as a functional, which depends on one unknown function, 𝛼(𝛬),
for a given set (𝛷,𝐴, 𝑉0, 𝑉 (𝑡)), in the form

(𝛼(𝛬))
2𝜋𝛷𝜇𝑀

=

∞

∫
𝐴

𝜓(𝛬, 𝛼, 𝛼′;𝛷,𝐴, 𝑉0, 𝑉 (𝑡))d𝛬 +
𝜇𝐼
𝜇𝑀

(

𝑉 (𝑡)
2𝜋𝛷

)

𝜓𝐼 (𝑎, 𝐴𝐼 ). (52)

Note that in this formulation, provided the kinematic assumption that ellipses remain ellipses, the constraint in (5) is identically
satisfied, and sliding between the two surface is permitted.

17 Here we have introduced the shorthand notation 𝛼′ = d𝛼∕d𝛬.
13
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Now, following the basic principles of calculus of variations,18 we seek a function, 𝛼(𝛬), which makes  stationary, and obeys
both the compatibility requirements and boundary conditions. To this end, we consider variations of 𝛼 in the form 𝛼̂(𝛬) = 𝛼(𝛬)+𝜀𝜂(𝛬)

here 𝜀 is a small constant and 𝜂(𝛬) is an arbitrary function, which must vanish in the remote field, i.e. 𝜂(𝛬 → ∞) = 0, to
ccommodate the displacement boundary condition (44), which implies a prescribed value of 𝛼. We insert this variation in (52)
nd require an extremum such that

𝛿 = lim
𝜀→0

d(𝛼 + 𝜀𝜂)
d𝜀

= 0. (53)

Explicitly, this reads

𝛿
2𝜋𝛷𝜇𝑀

=

∞

∫
𝐴

(

𝜕𝜓
𝜕𝛼
𝜂 +

𝜕𝜓
𝜕𝛼′

d𝜂
d𝛬

)

d𝛬 +
𝜇𝐼
𝜇𝑀

(

𝑉 (𝑡)
2𝜋𝛷

)

𝜕𝜓𝐼
𝜕𝑎

𝜂(𝐴)

=

∞

∫
𝐴

(

𝜕𝜓
𝜕𝛼

− d
d𝛬

(

𝜕𝜓
𝜕𝛼′

))

𝜂d𝛬 −
(

𝜕𝜓
𝜕𝛼′

|

|

|

|𝛬=𝐴
−
𝜇𝐼
𝜇𝑀

(

𝑉 (𝑡)
2𝜋𝛷

)

𝜕𝜓𝐼
𝜕𝑎

)

𝜂(𝐴) = 0,

(54)

here we have already accounted for the vanishing value of 𝜂 at the remote boundary.
Finally, for this expression to vanish identically for any arbitrary variation, we require that both terms vanish separately, to

rite
𝜕𝜓
𝜕𝛼

− d
d𝛬

(

𝜕𝜓
𝜕𝛼′

)

= 0, and 𝜕𝜓
𝜕𝛼′

|

|

|

|𝛬=𝐴
=
𝜇𝐼
𝜇𝑀

(

𝑉 (𝑡)
2𝜋𝛷

)

𝜕𝜓𝐼
𝜕𝑎

. (55)

he first relation is a second order nonlinear differential equation in 𝛼(𝛬), which serves as the governing equation in the matrix.
he latter is a natural boundary condition that applies at the interface between the matrix and the inclusion, and replaces the
inimization in (10). From this boundary condition it is seen that the present reduced model affords only one generalized reaction
orce acting between the two bodies. This reaction force is directly proportional to the deformation of the inclusion (i.e. 𝜕𝜓𝐼∕𝜕𝑎).

Provided a constitutive response function, the above second order nonlinear differential equation is integrated numerically and
he two boundary conditions, (44), (55)2, are enforced through a shooting method, along with the compatibility condition (42).
pon obtaining an equilibrium solution, the energy in the system can be calculated by inserting the equilibrium field in (52) and
erforming integration.

pecific constitutive model. To examine solutions, in this work we will use the neo-Hookean material model for both the matrix
nd the inclusion. Hence, we have 𝛹 = 1

2

(

𝐼1 − 3
)

. By inserting the first invariants (49), (50) in (51) and integrating over the angular
oordinate, we obtain

𝜓 = 𝛬
16

(

3(𝜑2(𝜆 + 𝛽)2 +𝛷2𝜆̄2 +𝛷2𝜆2 + 𝜑2𝜆̄2) + (𝜆 − 𝜆̄)2 + 𝛷2𝜑2(𝜆 − 𝜆̄ + 𝛽)2 + 2𝛷2𝜆𝜆̄ + 2𝜑2(𝜆 + 𝛽)𝜆̄ − 16
)

, (56)

for the matrix, and

𝜓𝐼 = 1
2

(

𝑎2 − 𝐴2
𝐼

𝑎𝐴𝐼

)2

, (57)

for the inclusion.

Analytical result for Scenario #2. Recall that in Scenario #2 we seek the shape of the inclusion that minimizes the energy in
the system. Among the set (𝑉 (𝑡), 𝛷𝐼 , 𝐴𝐼 ) two independent parameters are sufficient to describe the shape and size of the inclusion,
provided the relation 𝑉 (𝑡) = 𝜋𝛷𝐼𝐴2

𝐼 . Hence, for a given volume, 𝑉 (𝑡), with finite stiffness ratio 𝜇𝐼∕𝜇𝑀 the minimization in (13)
translates to

𝜕𝑚𝑖𝑛
𝜕𝐴𝐼

= 0
(52)
←←←←←←←←←←←←←←←←←→

𝜕𝜓𝐼
𝜕𝐴𝐼

= 0
(57)
←←←←←←←←←←←←←←←←←→ 𝐴𝐼 = 𝑎. (58)

Here we obtain that for this reduced model, by allowing the inclusion to select a shape that minimizes the energy of the entire
system, it selects a response of a perfectly rigid inclusion (with 𝜓𝐼 = 0), independent of the stiffness ratio. For this simple model, at
this limit, the response of a rigid inclusion, and that of fluid expansion in Scenario #1 are indistinguishable and imply vanishing of
the generalized reaction force (55)2. We will further discuss the limitations of this result in the next section.

4.2. Finite Element Model (FEM)

While the quasi-analytical model detailed above can provide insights into the mechanical problem at hand with minimal
computational effort, the kinematic assumptions that it employs inevitably limit its quantitative accuracy. An alternative and more
accurate solution can be obtained via the direct application of a finite element method, as detailed in this section. However, this
approach also has some limitations. First, the computation is vastly more time consuming. Recall that the different scenarios that we

18 For completeness, we show here the full derivation.
14
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Fig. 8. Scenario #1 results for isotropic expansion with (𝛷 = 𝛷𝐼 = 5). The deformed shape of the inclusion is shown as a function of the expansion ratio using
for different models that account for the two limits of the interface condition.

consider require selection among various candidate solutions (Section 3). Using the FEM for just one expansion into the nonlinear
range (i.e. Scenario #1) is already computationally-intensive, let alone the computation of a continuum of expansion scenarios
among which one optimal solution is selected. Second, relative motion between points at the interface even further complicates the
solution procedure. For this reason, in the FEM solution, we will simplify the interface condition to be strictly bonded. Additionally,
to reduce computation times, we will examine solutions at discrete values of volume expansion.

All of our finite element solutions initiate from a stress-free compatible state,19 such that 𝑉 (0) = 𝑉0 with 𝛷𝐼 (0) = 𝛷 and 𝐴𝐼 (0) = 𝐴.
It is this initial state that defines the bonding between material points at the interface. Then, expansion of the inclusion is prescribed
at every time via the configurational tensor, 𝐅0(𝑡), which for elliptical stress-free shapes reads

𝐅0 =
𝐴𝐼
𝐴

𝐞x ⊗ 𝐞x +
𝛷𝐼𝐴𝐼
𝛷𝐴

𝐞y ⊗ 𝐞y + 𝐞z ⊗ 𝐞z, where det 𝐅0 =
𝑉 (𝑡)
𝑉0

. (59)

This procedure is implemented in COMSOL 5.3a and employs a nearly incompressible neo-Hookean constitutive relation.20 To
simulate the response of an unbounded confining medium, we set the radius of the matrix to 103 times the semi-major axis of the
elliptical inclusion. For computational efficiency, only one quarter of the region is modeled and symmetry boundary conditions are
imposed. A highly refined mesh is generated in the vicinity of the inclusion and it becomes coarser as the remote field is approached.
Mesh sensitivity analysis confirms that simulation results are mesh-size independent.

In the next section, we compare results of the different modeling approaches to examine the morphogenesis of an inclusion as
it grows in confinement following different growth Scenarios.

5. Results and discussion

In this section, we will analyze results obtained for the various growth scenarios to answer Questions A and B posed in Section 3.
We use both the quasi-analytical and the finite element methods while limiting our attention to elliptical stress-free shapes, as
described above.

Scenario #1. As a first example we consider a representative case where the void and the inclusion have the same stress-free aspect
ratio 𝛷 = 𝛷𝐼 = 5. The inclusion undergoes isotropic expansion such that its volume 𝑉 (𝑡) is prescribed as it maintains its stress-free
shape 𝛷𝐼 (𝑡) = 5. This defines the set (𝑉0, 𝑉 , 𝛷,𝛷𝐼 ) which completes the energy functional in (6). Using energy minimization (10),
we solve for the deformed shape, characterized by 𝜙. Results in Fig. 8 are shown for a broad range of stiffness ratios. Recall that
our QAM permits slipping at the interface while the FEM approach has no slip, such that the strict bonding between the two bodies
is defined by the initial state. Hence, for the purposes of comparison, we also include curves obtained using Linear Elastic inclusion
theory (LE) for both the ‘no slip’ and the ‘with slip’ interface conditions. The ‘no slip‘ solution procedure follows the methodology
outlined by Eshelby (1957), based on the Eshelby tensor, and specializes it for a two-dimensional elliptic cylindrical inclusion. The
‘with slip’ solution procedure employs a different approach based on series solutions for Papkovich–Neuber potentials (Neuber,
1934), supplemented with appropriate boundary conditions, namely, zero tangential traction, continuity of normal traction, and
continuity of normal displacement along the inclusion–matrix interface (Tsuchida et al., 1986).

19 Note that in principle there need not be such a state.
20 The bulk modulus is set to 103 times the shear modulus, and it is confirmed that volume changes are negligible.
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Fig. 9. Scenario #2 results. Deformed shape of the inclusion as a function of the expansion ratio for two different stress-free aspect ratios of the void 𝛷 = 2, 5.
EM curves show an insensitivity to stiffness ratio. For 𝜇𝐼∕𝜇𝑀 = 103 computation is conducted at discrete points. For the case with vanishing stiffness, computation
s conducted by pressurization of the void, hence the curves are continuous.). For the QAM, black curves correspond to all stiffness ratios.

Quite notably, despite the differences in interface conditions, all the models (in Fig. 8) qualitatively predict similar trends and
xhibit a similar sensitivity to the stiffness ratio. These qualitative trends hold for all stress-free aspect ratios (see Fig. A.1 in the
ppendix for another example with 𝛷 = 𝛷𝐼 = 2). From these results, it is already apparent that the isotropic expansion of the
iofilm (that is the mode of growth in absence of a confinement) cannot explain the tendency of stiffer inclusions (i.e. inclusions
ith 𝜇𝐼∕𝜇𝑀 ≫ 1) towards a circular state (Fig. 2). By extending our FEM curves into the deep nonlinear range (see Fig. A.1), we

ee that the deformed aspect ratio does not continue to decrease towards a circular shape and, in-fact, the trend can reverse for
ery stiff inclusions. We also note that the QAM results become unreliable in this deeply nonlinear regime. Further, in this regime,
amage must be accounted for.

Next, it is instructive to compare the solutions in the two limiting cases of vanishing stiffness ratio and rigid inclusion. In both
he limiting cases, we expect the differences due to interface conditions to become negligible and the deformed shapes should unite.
herefore, the FEM solution also serves as a benchmark to compare the accuracy of the QAM in these two limits. Indeed, we see
hat the QAM results are in reasonable agreement with the FEM predictions for both the limiting cases, despite the simplifying
ssumptions. In general, we find that the QAM performs better with increasing stiffness of the inclusion. At the small-strains limit,
EM and LE no-slip results are in agreement, as expected. The QAM and LE with-slip results do not unite even at the small-strains
imit. We speculate that this behavior is due to the averaged nature of the incompressibility constraint in the QAM.

In view of these results, it is worth mentioning the work of Mills et al. (2014), which aims to explain the oblate shapes of
revascular tumors grown in agarose gel using FEM with a ‘no slip’ condition at the interface. By prescribing similar isotropic
rowth (but in 3D) and comparing the elastic energy of the system at 𝛥𝑉 ∕𝑉0 = 10, they conclude that the lowest energy state is the
ne with the highest aspect ratio (within the considered range of 𝛷 = 𝛷𝐼 ∈ [1−3]). Hence, this study selects among several isotropic
xpansions the one that has minimal energy (at 𝛥𝑉 ∕𝑉0 = 10) to infer the optimal initial state of the system (at 𝛥𝑉 ∕𝑉0 = 0). This
pproach implicitly restricts the solution space to isotropic (Scenario # 1 type) expansions. In contrast, the current work assumes
hat the initial state is known and simplifies the deformation field to 2D, but rather than prescribing the growth path, it explores
ifferent growth scenarios and entertains the possibility that the system chooses to evolve its stress-free configuration. Next, we
xplore the implications of these different assumptions by examining results for an energy-based growth law.

cenario #2. In contrast to Scenario #1, now we allow the inclusion the freedom to choose its stress-free aspect ratio, 𝛷𝐼 , to
inimize the total potential energy of the system at every time. Following the procedure outlined in Eqs. (12) and (13), we construct

he answer to Questions A and B, to determine the deformed aspect ratio of the inclusion throughout its growth, as shown in Fig. 9.
irst, we notice that both FEM and QAM results predict that as the inclusion grows, its deformed shape becomes increasingly circular.
y comparison with Fig. 8, it is apparent that the undeformed shape is also evolving. Hence, when the inclusion is active, that is,

t can adapt its configuration, the lowest energy state is achieved when its shape becomes more circular with increasing size. In
he spirit of D’arcy Thompson’s quote cited earlier, rather than growing uniformly to keep the whole shape unchanged, the system
refers to grow in a non-self-similar way to maintain an energetically favorable configuration. Additionally, Fig. 9 shows that both
odels demonstrate a striking insensitivity to the stiffness ratio. For the QAM, this insensitivity has been explained analytically, in

ection 4. Quite interestingly, it appears also for situations in which the two bodies are bonded at the interface (i.e. no slip). Note
hat although results in Fig. 9 are only shown for limiting values of the stiffness ratio, it has been confirmed that this insensitivity
ccurs in the entire range. Experimentally, this insensitivity implies that, in the elastic range, observation of shape is insufficient
o determine the mechanical response of an inclusion. Namely, the fact that it appears to behave like a fluid, does not imply that
16
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Fig. 10. Scenario #3 results from QAM, indicating the conditions at onset of damage for a given critical expansion (𝛥𝑉𝑐 ), from a Scenario #2 expansion. (a)
Non-dimensionalized 𝛥𝑚𝑖𝑛as a function of candidate undeformed damaged void aspect ratios for three different critical expansion ratios with 𝜇𝐼∕𝜇𝑀 = 1; (b)
on-dimensionalized 𝐺𝑣 as a function of critical expansion ratio; (c) undeformed aspect ratio of the void at the onset of damage as a function of the critical
xpansion ratio; (d) deformed shape of the inclusion at the onset of damage as a function of the critical expansion ratio. The black curve represents the path
rom which damage onsets.

t is a fluid. Instead, subsequent loading of the material system, to deform the matrix and the embedded inclusion can reveal more
nformation on their respective stiffnesses.

Readers familiar with the theory of classical phase transformations in metallic alloys – that predicts the formation of spherical
recipitates for stiffer inclusions and disk-like precipitates for inclusions softer than the matrix (Fratzl et al., 1999) – will notice
he apparent discrepancy in the predictions of the two theories. However, there are a few important differences between the two
heories. Firstly, in the case of metallic alloys, a common assumption is to choose the misfit strain as a constant that depends only on
he lattice parameters of the precipitate and the matrix. By contrast, in the current treatment, the misfit keeps increasing with the size
f the inclusion and surface energy effects are neglected, thus making the energetic scaling of the two problems different. Secondly,
onsidering the geometric and constitutive nonlinearity of both the matrix and the inclusion, distinguishing between reference and
eformed states is of prime importance in the current problem. Lastly, the metallic precipitates, generally, do not have the freedom
o evolve their stress-free states as they grow, in sharp contrast to the current growth scenario.

cenario #3. Here, we examine how damage leads to change in the deformed shape of the inclusion. At onset, damage may alter
he configuration of the matrix resulting in a new observed shape, while the stress-free shape of the inclusion remains the same, as
xplained in Section 3.
stimation of 𝐺𝑣: In Eq. (14) we defined 𝐺𝑣 as a material parameter that accounts for energy required per unit volume to alter the
onfiguration of the matrix. Although there are no direct methods to measure the value of this effective parameter, we propose a
ay to estimate 𝐺𝑣 based on the experimental observations of damage-induced shape change. Assuming that we know the critical
olume, 𝑉𝑐 , at the onset of damage, and the mechanical state of the body (which is fully defined by the pair (𝛷,𝛷𝐼 ) at 𝑉 (𝑡) = 𝑉𝑐
rior to damage), we calculate  from (23) for various candidates of the damaged shape of the void 𝛷𝑑 . Finally, from (20) we obtain
𝑣 as the maximal value of  at the onset of damage.

Figs. 10–12 summarize the results obtained from the above procedure using both the QAM and FEM for 𝛷 = 2, 𝑛 = 0.5 and
ith Scenario # 2 as the expansion path from which damage initiates. First, for the QAM, the non-dimensionalized plot of 𝛥𝑚𝑖𝑛 for
ifferent values of critical expansion ratio are shown in Fig. 10(a) and clearly exhibit a maximum value that varies in its location
ith increasing expansion (𝛥𝑉𝑐 ). These curves are substituted in (23) to find 𝐺𝑣 = max as a function of 𝛥𝑉𝑐 . As shown in Fig. 10(b),

𝐺𝑣 is found to be a monotonic function in this range of the critical expansion ratio, implying that if the material has a higher 𝐺𝑣, it
will damage at a higher expansion ratio. Furthermore, we observe that for a softer inclusion to induce damage at the same volume
expansion, the matrix must have a higher 𝐺𝑣 (for a given 𝜇𝑀 ). Notably, at the onset of damage both the effective undeformed
17

aspect ratio of the void and the deformed aspect ratio always choose a more elongated shape, as seen in Figs. 10(c,d), respectively.
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Fig. 11. Sensitivity of 𝐺𝑣 to (a) the material parameter 𝑛 (for 𝛷 = 2), and to (b) the void aspect ratio 𝛷 (for 𝑛 = 0.5). All curves are shown for 𝜇𝐼∕𝜇𝑀 = 1. The
lack curves are the same in (a) and (b).

Fig. 12. Scenario #3 results from FEM, indicating the conditions at onset of damage for a given critical expansion (𝛥𝑉𝑐 ), from a Scenario # 2 expansion.
a) Non-dimensionalized 𝛥𝑚𝑖𝑛 for three different critical expansion ratios 𝜇𝐼∕𝜇𝑀 = 1; (b) non-dimensionalized 𝐺𝑣 as a function of critical expansion ratio; (c)
ndeformed aspect ratio of the void at the onset of damage as a function of the critical expansion ratio; (d) deformed shape of the inclusion at the onset of
amage as a function of the critical expansion ratio. The black curve represents the path from which damage onsets. .

onetheless significant deviations from the Scenario #2 path upon damage, are only observed for inclusions that are much softer
han the matrix. The implications of this result will be further discussed in the context of our observations of biofilm growth.

Next, we examine the sensitivity of the above results to 𝛷 and the material parameter 𝑛. Recall that the constitutive parameter 𝑛
lays a key role in determining the damaged volume (22). For the results shown in Fig. 11(a), smaller 𝑛 results in a higher damaged
olume which in turn leads to a smaller value of 𝐺𝑣 that is necessary to incur the same energy cost (14). Similarly, the stress-free
spect ratio at the onset of damage has a strong bearing on the estimated value of 𝐺𝑣 – more oblate the shape at the onset of damage
comparing at the same critical volume), lower is the 𝐺𝑣 (Fig. 11(b)).

Finally, we examine the predictions of the FEM for the damage transition in Fig. 12. Recall that in contrast to the QAM, here there
s perfect bonding between the inclusion and the matrix (i.e. no slip). Again, FEM results are in good qualitative agreement with
he predictions from QAM — 𝐺𝑣∕𝜇𝑀 increases monotonically with the critical expansion ratio and lower 𝜇𝐼∕𝜇𝑀 implies higher
𝑣. Nonetheless, a more noticeable change of the deformed aspect ratio is found for soft inclusions (Fig. 12(d)). These findings
mphasize that differences in interfacial conditions between QAM and FEM do not qualitatively change the behavior of the system.
18
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Fig. 13. Energy landscape for scenario #4 (with 𝛥𝑉 ∕𝑉0 = 1 and 𝜇𝐼∕𝜇𝑀 = 1). (a) Colormap showing the energy landscape, where the dashed straight lines
represent constant values of 𝛷∕𝛷𝐼 ; (b) elastic energy as a function of 𝛷, along different lines of constant 𝛷∕𝛷𝐼 . In both plots the energy is normalized by 𝜇𝑀𝑉0.

Similar behaviors appear also for different initial aspect ratios (𝛷). It should be noted however that we restrict our investigation to
moderate expansions where the model assumptions apply.

Scenario #4. In this scenario both the inclusion and the matrix can remodel themselves to minimize the total energy. Thus, the
system has increased freedom when compared to Scenario #2 and, as illustrated in Fig. 7, an entire 2D plane of solutions for
(𝛷,𝛷𝐼 ) ∈ [1,∞) must be scanned to identify optimal solutions. Given the long computation times that this would entail using the
FEM, and having established that the results of the FEM and the QAM lead to qualitatively similar results, we take advantage of
the simplicity of QAM to determine the growth path. Fig. 13(a) shows the energy landscape in the (𝛷,𝛷𝐼 ) plane for 𝛥𝑉 ∕𝑉0 = 1 and
with 𝜇𝐼∕𝜇𝑀 = 1. Different shades imply different normalized energy and the various lines indicate fixed ratios 𝛷∕𝛷𝐼 . A valley is
observed near 𝛷∕𝛷𝐼 = 1.8. To determine where the minimum is found along this valley, we examine the normalized energy as a
function of 𝛷 along the lines plotted of constant 𝛷∕𝛷𝐼 in Fig. 13(b). It clearly shows that the energy monotonically decreases along
the 𝛷∕𝛷𝐼 = 1.8. Hence, the system will choose a ‘sliver-like’ shape with infinite aspect ratio. We find that these results hold for any
stiffness ratio. Therefore, when the system has the freedom to remodel both the inclusion and the matrix, it is always energetically
favorable to expand along the major axis and become more oblate.21 Clearly, if surface tension effects exist, this tendency would be
restricted.

Analysis of Bacterial Biofilms. Equipped with the knowledge of different scenarios, we can now return to our case study (Section 2)
in an attempt to elucidate the morphological evolution of bacterial biofilms. Initially, as the bacteria start to multiply and the biofilm
grows, it is anticipated that elastic deformation is the dominant mode in the matrix, and thus that the system undergoes Scenario
#2 type expansion wherein the biofilm inclusion has the freedom to rearrange internally, which in absence of any other apparent
physical mechanisms that can drive changes of shape, allows it to achieve the state with lowest total energy. Recall that Scenario
#2 expansion is insensitive to the respective stiffnesses of the matrix and the inclusion. Indeed, in our experiments, tracking of
several colonies did not reveal any clear correlation between the growth path and the stiffnesses, thus providing further evidence
to support the hypothesis of an energy-based growth law. However, it is not possible to make a strong conclusion based on the data
in this regard, due to the uncertainty in quantifying the initial conditions of the biofilm–agarose system.

It is conceivable that morphogenesis along the Scenario #2 branch is limited by the onset of damage in the embedding media
(agarose). Hence, after monotonically tending towards a spherical shape, at a critical threshold (defined by the yield stress/strain of
the confining gel), the agarose gel starts to accumulate diffuse damage that affects the observed shapes of the biofilm, but without
fracturing it. Accordingly, we expect that at the onset of damage, the system undergoes a Scenario #3 type transition whereby the
matrix can instantaneously change its stress-free shape. In making this transition, the stiffness ratio between the biofilm and the gel
plays a crucial role, as shown in Figs. 10 and 12. In particular, it is found that if the biofilm is softer, the configuration becomes
more oblate, as shown through an example morphogenesis pathway for 𝜇𝐼∕𝜇𝑀 = 0.1 in Fig. 14. In contrast, if the biofilm is stiffer,
the damage branch is indistinguishable from Scenario #2 and the biofilm retains its deformed aspect ratio. Together, the soft and
stiff cases explain the two different trends observed in our Case Study (Fig. 2). While our purely mechanical model predicts a sudden
jump in state upon damage, in real systems such as bacterial biofilms, this transition will manifest slowly due to rate dependent
effects arising from the viscoelastic nature of both the biofilm and the agarose gel.

Furthermore, by studying the two extreme interfacial conditions between the inclusion and the matrix and obtaining very
similar qualitative trends, we can confidently remark that the current theory presents a minimal model that explains the major
morphological trends. A more refined picture for the interfacial conditions in bacterial biofilms and other biological and engineering
systems that covers the spectrum between no-slip and perfectly bonded interface, and also accounts for surface energy considerations
is an important future step in the modeling of these systems.

21 Although not a complete investigation of the energy landscape, anecdotal results obtained from the FEM confirm this trend also for the case with no slip.
19



Journal of the Mechanics and Physics of Solids 159 (2022) 104709J. Li et al.

(
s

I

Fig. 14. Model-based explanation of the shape evolution of bacterial biofilms. The red curve represents the typical path of the system with a softer inclusion
shown for 𝛷 = 2 with 𝜇𝐼∕𝜇𝑀 = 0.1); following a Scenario #2 type expansion, at onset of damage, transition to a more elongated shape (via Scenario #3) is
hown using both QAM and FEM. For stiffer inclusions (𝜇𝐼∕𝜇𝑀 > 1), Scenarios #2 and #3 curves become indistinguishable and thus onset of damage does not

induce an apparent change of shape.

6. Concluding remarks

Instances of growth and morphogenesis of bodies, or inclusions, as they are embedded in a confining medium, are ubiquitous
in both natural and engineered systems, with examples ranging from the growing roots of a plant, to the formation of precipitates
in metals. However, how the accumulating mechanical stresses and the driving mechanisms of growth collaborate to determine
the morphological fate of the growing body is not well understood. In this work, we show that the mechanical confinement can
have a nontrivial effect on the morphogenesis. To capture the ability of the material to adapt its configuration by way of internal
reorganization or damage, we consider various growth scenarios by which the system can choose to evolve as it deforms into
the nonlinear range. Motivated by our experimental case study that examines the growth of confined biofilms, we put a special
emphasis on determining a natural growth law that dominates in absence of an inherent tendency towards a specific configuration.
Hence, we postulate that morphological evolution will proceed to minimize the total energy of the system. Further, to model realistic
growth scenarios we extend Eshelby’s classical inclusion theory into the nonlinear range by developing minimal quasi-analytical and
computational (finite element) approaches. We limit our attention to incompressible bodies undergoing plane-strain deformation,
and consider two physical limits of the interfacial condition spectrum (perfect bonding and perfect slip). Advances on these two
fronts allow us to mathematically pose and answer fundamental questions concerning the evolving configuration and the observed
shape of the growing inclusion, under different representative scenarios. We apply this development to explain the morphological
evolution of bacterial biofilms including the intriguing non-monotonic transition from a tendency towards a circular shape to the
subsequent elongation towards an oblate shape. Our modeling reveals that for the class of elliptic cylindrical inclusions, the energy-
based growth law predicts insensitivity to the respective stiffnesses of the inclusion and the matrix. Furthermore, diffuse damage
in the matrix that may emerge at large volumetric expansions, drives the shape away from circular to elongated if the inclusion is
softer than the matrix.

While the current work addresses the coupling between the fate of a growing body and its mechanical confinement, it is a
first step towards gaining a more comprehensive understanding of the role of environmental factors in growth of a complex body
— both geometry and material-wise. A natural extension is towards the modeling of three-dimensional inclusions. Furthermore,
a variety of interfacial considerations, such as partially slipping interactions, surface energy, dynamically evolving interfaces, and
frictional slipping, are also opportunities to extend the modeling framework. Beyond the onset of damage, future work should center
on examining the incremental evolution of damage and the potential occurrence of fracture that may dominate at larger volume
expansions. Finally, it remains to extend this framework to more complex growth scenarios in which an inherent developmental
blueprint is confronted by an external constraint, much like an embryo growing inside the womb, or fruit growing in confinement
(Fig. 1).
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ppendix

See Fig. A.1.

Fig. A.1. Scenario #1 results for isotropic expansion with (𝛷 = 𝛷𝐼 = 2). On the left — the deformed shape of the inclusion is shown as a function of the
xpansion ratio using for different models that account for the two limits of the interface condition. On the right — we extend only the FEM curves to larger
xpansion, showing saturation of the aspect ratio, and even a change in trend for 𝜇𝐼∕𝜇𝑀 = 10.

References

Alexeyev, O.A., 2013. Bacterial landscape of human skin: seeing the forest for the trees. Exp. Dermatol. 22 (7), 443–446.
Ambati, M., Gerasimov, T., De Lorenzis, L., 2015. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55 (2),

383–405.
Balkwill, F.R., Capasso, M., Hagemann, T., 2012. The tumor microenvironment at a glance. The Company of Biologists Ltd.
Banani, S.F., Lee, H.O., Hyman, A.A., Rosen, M.K., 2017. Biomolecular condensates: organizers of cellular biochemistry. Nature Rev. Mol. Cell Biol. 18 (5),

285–298.
Besson, J., 2010. Continuum models of ductile fracture: a review. Int. J. Damage Mech. 19 (1), 3–52.
Beyhan, S., Yildiz, F.H., 2007. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling

pathway. Mol. Microbiol. 63 (4), 995–1007.
de Borst, R., 2002. Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Eng. Fract. Mech. 69 (2), 95–112.
Bryers, J.D., 2008. Medical biofilms. Biotechnol. Bioeng. 100 (1), 1–18.
de Carvalho, C.C., 2018. Marine biofilms: a successful microbial strategy with economic implications. Front. Mar. Sci. 5, 126.
Chockalingam, S., Roth, C., Henzel, T., Cohen, T., 2021. Probing local nonlinear viscoelastic properties in soft materials. J. Mech. Phys. Solids 146, 104172.
Deo, K.A., Singh, K.A., Peak, C.W., Alge, D.L., Gaharwar, A.K., 2020. Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds.

Tissue Eng. Part A 26 (5–6), 318–338.
Diani, J.L., Parks, D., 2000. Problem of an inclusion in an infinite body, approach in large deformation. Mech. Mater. 32 (1), 43–55.
Dufrêne, Y.F., Persat, A., 2020. Mechanomicrobiology: how bacteria sense and respond to forces. Nature Rev. Microbiol. 18 (4), 227–240.
Ebrahimi, A., Schwartzman, J., Cordero, O.X., 2019. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter

degradation in marine bacteria. Proc. Natl. Acad. Sci. 116 (46), 23309–23316.
Enke, T.N., Leventhal, G.E., Metzger, M., Saavedra, J.T., Cordero, O.X., 2018. Microscale ecology regulates particulate organic matter turnover in model marine

microbial communities. Nature Commun. 9 (1), 1–8.
Ericksen, J.L., 1954. Deformations possible in every isotropic, incompressible, perfectly elastic body. Zeitschrift FÜR Angewandte Mathematik Und Physik ZAMP

5 (6), 466–489.
Ericksen, J., 1955. Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys. 34 (1–4), 126–128.
Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. Lond. Ser. A. Math. Phys. Sci. 241,

376–396.
Eshelby, J.D., 1959. The elastic field outside an ellipsoidal inclusion. Proc. Royal Soc. Lon. Ser. A. Math. Phys. Sci. 252 (1271), 561–569.
Fei, C., Mao, S., Yan, J., Alert, R., Stone, H.A., Bassler, B.L., Wingreen, N.S., Košmrlj, A., 2020. Nonuniform growth and surface friction determine bacterial

biofilm morphology on soft substrates. Proc. Natl. Acad. Sci. 117 (14), 7622–7632.
Fratzl, P., Penrose, O., Lebowitz, J.L., 1999. Modeling of phase separation in alloys with coherent elastic misfit. J. Stat. Phys. 95 (5–6), 1429–1503.
21

http://refhub.elsevier.com/S0022-5096(21)00323-9/sb1
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb2
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb2
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb2
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb3
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb4
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb4
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb4
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb5
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb6
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb6
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb6
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb7
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb8
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb9
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb10
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb11
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb11
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb11
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb12
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb13
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb14
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb14
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb14
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb15
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb15
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb15
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb16
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb16
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb16
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb17
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb18
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb18
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb18
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb19
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb20
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb20
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb20
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb21


Journal of the Mechanics and Physics of Solids 159 (2022) 104709J. Li et al.

G
G

G

G
H

J
K
K
K
K

K
K

K

K
L

L
L

M
M

M
M

M

M
M
N
N

N
P
P
R
R
R
R

R

R

R

S
S

S

S
S
T
T
T
U

V
W
W

Y

Y

Gallyamov, E.R., Ramos, A.C., Corrado, M., Rezakhani, R., Molinari, J.-F., 2020. Multi-scale modelling of concrete structures affected by alkali-silica reaction:
Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration. Int. J. Solids Struct. 207, 262–278.

arrett, T.R., Bhakoo, M., Zhang, Z., 2008. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18 (9), 1049–1056.
hiasi, M.S., Chen, J., Vaziri, A., Rodriguez, E.K., Nazarian, A., 2017. Bone fracture healing in mechanobiological modeling: A review of principles and methods.

Bone Rep. 6, 87–100.
oli, E., Robertson, I.D., Agarwal, H., Pruitt, E.L., Grolman, J.M., Geubelle, P.H., Moore, J.S., 2019. Frontal polymerization accelerated by continuous conductive

elements. J. Appl. Polym. Sci. 136 (17), 47418.
u, Y., Li, J., Li, Z., 2013. Deformation of female foot binding in China. JCR: J. Clin. Rheumatol. 19 (7), 418.
all-Stoodley, L., Costerton, J.W., Stoodley, P., 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2 (2),

95–108.
ohnson, W., Berkenpas, M., Laughlin, D., 1988. Precipitate shape transitions during coarsening under uniaxial stress. Acta Metall. 36 (12), 3149–3162.
endrick, R.E., Kronenberg, G.H., 2012. Photomorphogenesis in Plants. Springer Science & Business Media.
eralavarma, S., Chockalingam, S., 2016. A criterion for void coalescence in anisotropic ductile materials. Int. J. Plast. 82, 159–176.
hachaturyan, A.G., 2013. Theory of Structural Transformations in Solids. Courier Corporation.
im, J.Y., Liu, Z., Weon, B.M., Cohen, T., Hui, C.-Y., Dufresne, E.R., Style, R.W., 2020. Extreme cavity expansion in soft solids: Damage without fracture. Sci.

Adv. 6 (13), eaaz0418.
othari, M., Cohen, T., 2020. Effect of elasticity on phase separation in heterogeneous systems. J. Mech. Phys. Solids 145, 104153.
othari, M., Niu, S., Srivastava, V., 2019. A thermo-mechanically coupled finite strain model for phase-transitioning austenitic steels in ambient to cryogenic

temperature range. J. Mech. Phys. Solids 133, 103729.
richen, S., Liu, L., Sharma, P., 2019. Liquid inclusions in soft materials: Capillary effect, mechanical stiffening and enhanced electromechanical response. J.

Mech. Phys. Solids 127, 332–357.
undu, S., Crosby, A.J., 2009. Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5 (20), 3963–3968.
ee, J.K., Barnett, D., Aaronson, H., 1977. The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids. Metall. Trans. A 8 (6),

963–970.
evato, R., Jungst, T., Scheuring, R.G., Blunk, T., Groll, J., Malda, J., 2020. From shape to function: the next step in bioprinting. Adv. Mater. 32 (12), 1906423.
iu, S., Gunawan, C., Barraud, N., Rice, S.A., Harry, E.J., Amal, R., 2016. Understanding, monitoring, and controlling biofilm growth in drinking water distribution

systems. Environ. Sci. Technol. 50 (17), 8954–8976.
eng, C., Pollard, D.D., 2014. Eshelby’s solution for ellipsoidal inhomogeneous inclusions with applications to compaction bands. J. Struct. Geol. 67, 1–19.
iehe, C., Schänzel, L.-M., 2014. Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure. J. Mech. Phys. Solids

65, 93–113.
ills, K.L., Kemkemer, R., Rudraraju, S., Garikipati, K., 2014. Elastic free energy drives the shape of prevascular solid tumors. PLoS One 9 (7), e103245.
orelle, X.P., Sanoja, G.E., Castagnet, S., Creton, C., 2021. Visualization of bond scission due to nucleation and growth of gas bubbles in elastomers. arXiv

preprint arXiv:2101.00709.
orley, C.D., Ellison, S.T., Bhattacharjee, T., O’Bryan, C.S., Zhang, Y., Smith, K.F., Kabb, C.P., Sebastian, M., Moore, G.L., Schulze, K.D., et al., 2019. Quantitative

characterization of 3D bioprinted structural elements under cell generated forces. Nature Commun. 10 (1), 1–9.
ukherjee, S., Bassler, B.L., 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nature Rev. Microbiol. 17 (6), 371–382.
ura, T., 2013. Micromechanics of Defects in Solids. Springer Science & Business Media.
arayan, S., Anand, L., 2021. Fracture of amorphous polymers: A gradient-damage theory. J. Mech. Phys. Solids 146, 104164.
euber, H.v., 1934. Ein neuer ansatz zur lösung räumlicher probleme der elastizitätstheorie. der hohlkegel unter einzellast als beispiel. ZAMM-J. Appl. Math.

Mech./Zeitschrift FÜR Angewandte Mathematik Und Mechanik 14 (4), 203–212.
omura, S., Takano-Yamamoto, T., 2000. Molecular events caused by mechanical stress in bone. Matrix Biol. 19 (2), 91–96.
orter, D.A., Easterling, K.E., 2009. Phase Transformations in Metals and Alloys (Revised Reprint). CRC Press.
robert, H.M., Gibson, G.R., 2002. Bacterial biofilms in the human gastrointestinal tract. Curr. Issues Intestinal Microbiol. 3 (2), 23–27.
aayai-Ardakani, S., Earl, D.R., Cohen, T., 2019. The intimate relationship between cavitation and fracture. Soft Matter 15 (25), 4999–5005.
aina, A., Miehe, C., 2016. A phase-field model for fracture in biological tissues. Biomech. Model. Mechanobiol. 15 (3), 479–496.
ichardson, M.L., 2009. Chinese foot binding: radiographic findings and case report. Radiol. Case Rep. 4 (1), 270.
obertson, I.D., Yourdkhani, M., Centellas, P.J., Aw, J.E., Ivanoff, D.G., Goli, E., Lloyd, E.M., Dean, L.M., Sottos, N.R., Geubelle, P.H., et al., 2018. Rapid

energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557 (7704), 223.
onceray, P., Mao, S., Košmrlj, A., Haataja, M.P., 2021. Liquid demixing in elastic networks: cavitation, permeation, or size selection? arXiv preprint

arXiv:2102.02787.
osowski, K.A., Sai, T., Vidal-Henriquez, E., Zwicker, D., Style, R.W., Dufresne, E.R., 2020. Elastic ripening and inhibition of liquid–liquid phase separation. Nat.

Phys. 16 (4), 422–425.
ybtke, M., Hultqvist, L.D., Givskov, M., Tolker-Nielsen, T., 2015. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and

immune response. J. Mol. Biol. 427 (23), 3628–3645.
aini, R., Saini, S., Sharma, S., 2011. Biofilm: A dental microbial infection. J. Nat. Sci.Biol. Med. 2 (1), 71.
eminara, A., Angelini, T.E., Wilking, J.N., Vlamakis, H., Ebrahim, S., Kolter, R., Weitz, D.A., Brenner, M.P., 2012. Osmotic spreading of bacillus subtilis biofilms

driven by an extracellular matrix. Proc. Natl. Acad. Sci. 109 (4), 1116–1121.
harma, P., Ganti, S., 2004. Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71 (5),

663–671.
ong, F., Koo, H., Ren, D., 2015. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 94 (8), 1027–1034.
utton, R., et al., 1980. Root system morphogenesis. NZJ for. Sci 10 (1), 264–292.
alamini, B., Mao, Y., Anand, L., 2018. Progressive damage and rupture in polymers. J. Mech. Phys. Solids 111, 434–457.
hompson, D.W., 1942. On growth and form. Growth Form.
suchida, E., Mura, T., Dundurs, J., 1986. The elastic field of an elliptic inclusion with a slipping interface. J. Appl. Mech. 53 (1), 103–107.
eland, S.M., Schuh, C.A., 2013. Transition from many domain to single domain martensite morphology in small-scale shape memory alloys. Acta Mater. 61

(15), 5618–5625.
asudevan, R., 2014. Biofilms: microbial cities of scientific significance. J. Microbiol. Exp. 1 (3), 00014.
ei, X., Zhou, J., Wang, Y., Meng, F., 2020. Modeling elastically mediated liquid-liquid phase separation. Phys. Rev. Lett. 125 (26), 268001.
u, J., McAuliffe, C., Waisman, H., Deodatis, G., 2016. Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method.

Comput. Methods Appl. Mech. Engrg. 312, 596–634.
an, J., Fei, C., Mao, S., Moreau, A., Wingreen, N.S., Košmrlj, A., Stone, H.A., Bassler, B.L., 2019. Mechanical instability and interfacial energy drive biofilm

morphogenesis. Elife 8, e43920.
an, J., Moreau, A., Khodaparast, S., Perazzo, A., Feng, J., Fei, C., Mao, S., Mukherjee, S., Košmrlj, A., Wingreen, N.S., et al., 2018. Bacterial biofilm material

properties enable removal and transfer by capillary peeling. Adv. Mater. 30 (46), 1804153.
22

http://refhub.elsevier.com/S0022-5096(21)00323-9/sb22
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb22
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb22
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb23
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb24
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb24
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb24
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb25
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb25
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb25
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb26
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb27
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb27
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb27
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb28
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb29
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb30
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb31
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb32
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb32
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb32
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb33
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb34
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb34
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb34
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb35
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb35
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb35
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb36
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb37
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb37
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb37
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb38
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb39
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb39
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb39
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb40
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb41
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb41
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb41
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb42
http://arxiv.org/abs/2101.00709
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb44
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb44
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb44
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb45
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb46
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb47
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb48
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb48
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb48
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb49
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb50
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb51
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb52
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb53
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb54
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb55
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb55
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb55
http://arxiv.org/abs/2102.02787
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb57
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb57
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb57
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb58
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb58
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb58
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb59
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb60
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb60
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb60
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb61
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb61
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb61
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb62
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb63
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb64
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb65
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb66
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb67
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb67
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb67
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb68
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb69
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb70
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb70
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb70
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb71
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb71
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb71
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb72
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb72
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb72


Journal of the Mechanics and Physics of Solids 159 (2022) 104709J. Li et al.

Y

Y
Z
Z

Yan, J., Sharo, A.G., Stone, H.A., Wingreen, N.S., Bassler, B.L., 2016. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.
Proc. Natl. Acad. Sci. 113 (36), E5337–E5343.

ang, S., Bahk, D., Kim, J., Kataruka, A., Dunn, A.C., Hutchens, S.B., 2019. Hydraulic fracture geometry in ultrasoft polymer networks. Int. J. Fract. 219 (1),
89–99.

avari, A., Goriely, A., 2013. Nonlinear elastic inclusions in isotropic solids. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 469 (2160), 20130415.
hang, W., Cai, Y., 2010. Review of damage mechanics. In: Continuum Damage Mechanics and Numerical Applications. Springer, pp. 15–57.
hang, Q., Li, J., Nijjer, J., Lu, H., Kothari, M., Alert, R., Cohen, T., Yan, J., 2021. Morphogenesis and cell ordering in confined bacterial biofilms. Proc. Natl.

Acad. Sci. 118 (31).
23

http://refhub.elsevier.com/S0022-5096(21)00323-9/sb73
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb73
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb73
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb74
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb74
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb74
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb75
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb76
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb77
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb77
http://refhub.elsevier.com/S0022-5096(21)00323-9/sb77

	Nonlinear inclusion theory with application to the growth and morphogenesis of a confined body
	Introduction
	Case study: Confined growth of bacterial biofilms
	Problem definition and modeling approach
	Equilibrium solutions for prescribed anisotropic growth
	Quasi-Analytical Method (QAM)
	Finite Element Model (FEM)

	Results and discussion
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	References


