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a b s t r a c t

One challenge in the optimization and control of societal systems is to handle the unknown and
uncertain user behavior. This paper focuses on residential demand response (DR) and proposes a
closed-loop learning scheme to address these issues. In particular, we consider DR programs where an
aggregator calls upon residential users to change their demand so that the total load adjustment is close
to a target value. To learn and select the right users, we formulate the DR problem as a combinatorial
multi-armed bandit (CMAB) problem with a reliability objective. We propose a learning algorithm:
CUCB-Avg (Combinatorial Upper Confidence Bound-Average), which utilizes both upper confidence
bounds and sample averages to balance the tradeoff between exploration (learning) and exploitation
(selecting). We consider both a fixed time-invariant target and time-varying targets, and show that
CUCB-Avg achieves O(log T ) and O(

√
T log(T )) regrets respectively. Finally, we numerically test our

algorithms using synthetic and real data, and demonstrate that our CUCB-Avg performs significantly
better than the classic CUCB and also better than Thompson Sampling.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Unknown and uncertain user behavior is common in many
sequential decision-making problems of societal systems, such as
transportation, electricity grids, communication, crowd-sourcing,
and resource allocation problems in general (Belleflamme, Lam-
bert, & Schwienbacher, 2014; Kuderer, Gulati, & Burgard, 2015; Li
& Li, 2017; O’Neill, Levorato, Goldsmith, & Mitra, 2010). One key
challenge caused by the unknown and uncertain user behavior
is how to ensure reliability or reduce risks for the system. This
paper focuses on addressing this challenge for residential demand
response (DR) in power systems.

Residential DR refers to adjusting power consumption of res-
idential users, e.g. by changing the temperature setpoints of air
conditioners, to relieve the supply–demand imbalances of the
power system (Edison, 2019; FERC, 2017; O’Neill et al., 2010;
PSEG, 2019; ThinkEco, 2019). In most residential DR programs,
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customers can decide to respond to a DR signal or not, and the
decisions are usually highly uncertain. Moreover, the pattern of
the user behavior is not well understood by the DR aggregator.
Such unknown and uncertain behavior may cause severe troubles
for the system reliability: without enough knowledge of the user
behavior, the DR load adjustment is likely to be very different
from a target level, resulting in extra power imbalances and
fluctuations. Therefore, it is critical for residential DR programs to
learn the user behavior and ensure reliability during the learning.

Multi-armed bandit (MAB) emerges as a natural framework
to learn the user behavior (Auer, Cesa-Bianchi, & Fischer, 2002;
Bubeck, Cesa-Bianchi, et al., 2012). In a simple setting, MAB con-
siders n independent arms, each providing a random contribution
according to its own distribution at time step 1 ≤ t ≤ T .
Without knowing these distributions, a decision maker picks one
arm at each time step and tries to maximize the total expected
contribution in T time steps. When the decision maker can select
multiple arms at each time, the problem is often referred to as
combinatorial multi-armed bandit (CMAB) in literature (Chen,
Wang, Yuan, & Wang, 2016; Kveton, Wen, Ashkan, & Szepesvari,
2015). (C)MAB captures a fundamental tradeoff in most learning
problems: exploration vs. exploitation. A common metric to eval-
uate the performance of (C)MAB learning algorithms is regret,
which captures the difference between the optimal expected
value when the probability model is known and the expected
value achieved by the online learning algorithm. It is desirable
to design online algorithms with sublinear o(T ) regrets, which
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roughly indicates that the learning algorithm eventually learns
the optimal solution.

Though there have been studies on DR via (C)MAB, most litera-
ture aims at maximizing the load reduction (Jain, Narayanaswamy,
& Narahari, 2014; Lesage-Landry & Taylor, 2017; Wang, Liu,
& Mathieu, 2014). There is a lack of efforts on improving the
reliability of CMAB algorithms for DR as well as the theoretical
reliability guarantees.

1.1. Our contributions

In this paper, we formulate the DR as a CMAB problem with
a reliability objective, i.e. we aim to minimize the deviation
between the actual total load adjustment and a target signal.
The target might be caused by a sudden change of renewable
energy or a peak load reduction event. We consider a large
number of residential users, and each user can commit one unit
of load change with an unknown probability. The task of the DR
aggregator is to select a subset of the users to guarantee the
actual load adjustment to be as close to the target as possible.
The number of users to select is not fixed, providing flexibility
for the aggregator for achieving different target levels.

In order to design our online learning algorithm, we first de-
velop an offline combinatorial optimization algorithm that selects
the optimal subset of the users when the user behavior models
are known. Based on the structure of the offline algorithm, we
propose an online algorithm CUCB-Avg (Combinatorial Upper
Confidence Bound-Average) and provide a rigorous regret analy-
sis. We show that, over T time steps, CUCB-Avg achieves O(log T )
regret given a static target and O(

√
T log(T )) regret given time-

varying targets. The regrets in both cases depend polynomially on
the number of users n. We also conduct numerical studies using
real DR data and show that the performance of CUCB-Avg is much
better than the classic algorithm CUCB (Chen et al., 2016; Kveton
et al., 2015), and also better than Thompson sampling (Russo,
Van Roy, Kazerouni, & Osband, 2017). In addition, we numerically
show that, with minor modifications, CUCB-Avg can cope with
more realistic behavior models with user fatigue effects.

Lastly, we would like to mention that though the DR model
considered in this paper is very simple, the model is motivated
by real pilot studies of residential DR programs, and the results
have served as a guideline for designing the learning protocols in
DR programs (ThinkEco, 2019). In addition, since real-world DR
programs vary a lot among each other (depending on the DR com-
panies, local policies, reward schemes, data infrastructure, etc.),
abstracting the DR model can be useful for a broad range of DR
programs by providing common insights and general guidelines.
When designing algorithms for different DR programs, we could
modify the vanilla method to suit specific requirements. Further,
this paper may also provide insights for other societal system
applications.

1.2. Related work

Combinatorial multi-armed bandits. There is a rich body of
literature in CMAB aiming to maximize the total (weighted) con-
tribution of K arms with a fixed integer K (and known weights)
(Bubeck et al., 2012; Kveton et al., 2015). There are also papers
considering more general reward functions, for example, Chen
et al. (2016) consider objective functions that are monotonically
nondecreasing with the parameters of the selected arms and
design Combinatorial Upper Confidence Bound (CUCB) under the
principle of optimism in the face of uncertainty. However, the
reliability objective of our CMAB problem does not satisfy the
monotonicity assumption, thus the study of CUCB cannot be
directly applied here. Another line of work follows the Bayesian

approach and studies Thompson sampling (Gopalan, Mannor, &
Mansour, 2014; Wang & Chen, 2018). However, the regret bound
of Thompson sampling consists of a term that is independent of
T but depends exponentially on the number of arms K ∗ in the
optimal subset (Wang & Chen, 2018). Further, Wang and Chen
(2018) show that the exponential dependence is unavoidable. In
the residential DR problems, K ∗ is usually large, so Thompson
sampling may generate poor performance especially when T is
not very large, which is consistent with our numerical results in
Fig. 3 in Lemma 5. Finally, there is a lack of analysis on time-
varying objective functions, but in many real-world applications
the objectives change with time, e.g., the DR target would depend
on the time-varying renewable generation. Therefore, either the
learning algorithms or the theoretical analysis in literature does
not directly apply to our CMAB problem, which motivates this
paper.

Risk-aversion MAB. There is a related line of research on re-
ducing risks in MAB by selecting the single arm with the best
return–risk tradeoff (Sani, Lazaric, & Munos, 2012; Vakili & Zhao,
2016). However, there is a lack of studies on selecting a subset of
arms so that the total contribution of the selected arms is close to
a certain target.1

Learning-based demand response. In addition to the demand
response program considered in this paper and in Edison (2019),
Lesage-Landry and Taylor (2017), PSEG (2019), ThinkEco (2019)
and Wang et al. (2014), where customers are directly selected
by the aggregator to perform demand response, there is a dif-
ferent type of DR programs based on dynamic pricing, where
the goal is to design time-varying electricity prices to automat-
ically incentivize desirable load reduction behaviors from the
consumers (Faruqui, Sergici, & Palmer, 2010). Learning-based al-
gorithms are also proposed for this type of DR programs to
deal with, for example, the unknown utility functions of the
consumers (Khezeli & Bitar, 2017; Li, Wang, & Zhang, 2017;
Moradipari, Silva, & Alizadeh, 2018).

Preliminary work. Some preliminary work was presented in
the conference paper (Li, Hu, & Li, 2018). This journal version
strengthens the regret bounds, especially for the time-varying
target case, conducts more intensive numerical analysis using
realistic data from ISOs, provides more complete proofs, and adds
more intuitions and discussions to both theoretical and numerical
results.
Notations. Let Ē and |E| be the complement and the cardinality
of the set E respectively. For any positive integer n, let [n] =

{1, . . . , n}. Let IE(x) be the indicator function: IE(x) = 1 if x ∈ E
and IE(x) = 0 if x ̸∈ E. For any two sets A, B, we define A−B := {x |
x ∈ A, x ̸∈ B}. When k = 0, let

∑k
i=1 ai = 0 for any ai, and define

the set {σ (1), . . . , σ (k)} = ∅ for any σ (i). For x ∈ Rk, we consider
∥x∥∞ = maxi∈[k] |xi|, and write f (x) = O(g(x)) as ∥x∥∞ → +∞

if there exists a constant M such that |f (x)| ≤ M|g(x)| for any
x with ∥x∥∞ ≥ M; and f (x) = o(g(x)) if f (x)/g(x) → 0 as
∥x∥∞ → +∞. We usually omit ‘‘as ∥x∥∞ → +∞’’ for simplicity.
For the asymptotic behavior near zero, we define it by letting the
inverse of ∥x∥∞ go to infinity.

2. Problem formulation

Motivated by the discussion above, we formulate the demand
response (DR) as a CMAB problem in this section. We focus on
load reduction to illustrate the problem. The load increase can be
treated in the same way.

Consider a DR program with an aggregator and n residential
customers over T time steps, where each time step corresponds

1 In our online supplementary file (Li, Hu, & Li, 2020), we provide an
algorithm based on the risk-aversion MAB ideas and provide numerical results.
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to one DR event.2 Each customer is viewed as an arm in our
CMAB problem. We consider a simple user (customer) behavior
model, where each customer may either respond to a DR event
by reducing one unit of power consumption with probability 0 ≤

pi ≤ 1, or not respond with probability 1 − pi. We denote the
demand reduction by customer i at time step t as Xt,i, which is
assumed to follow Bernoulli distribution, Xt,i ∼ Bern(pi), and is
independent across time.3 Different customers behave indepen-
dently and may respond to the same DR event with different
probabilities. Though this behavior model may be oversimplified
by neglecting the influences of temperatures, humidities, user
fatigue, changes in lifestyles, etc., this simple model allows us
to provide useful insights on improving the reliability of the DR
programs and lay the foundation for future research on more
realistic behavior models.

At each time 1 ≤ t ≤ T , there is a DR event with a nonnegative
demand reduction target Dt determined by the power system.
This reduction target might be caused by a sudden drop of re-
newable energy generation or a peak load reduction request, etc.
The aggregator aims to select a subset of customers, i.e. St ⊆ [n],
such that the total demand reduction is as close to the target
as possible. The cost at time t can be captured by the squared
deviation of the total reduction from the target Dt :

Lt (St ) =

(∑
i∈St

Xt,i − Dt

)2

.

Due to the randomness of the demand reduction Xt,i, we aim to
select a subset of customers St to minimize the squared deviation
in expectation, that is,

S∗t = argmin
St⊆[n]

E [Lt (St )] . (1)

When there are multiple optimal solutions to (1), S∗t is defined as
any one of the optimal solutions.

In this paper, we will first study the scenario where the target
D is time-invariant (Sections 3 and 4). Then, we will extend the
results to cope with time-varying targets to incorporate different
DR signals resulted from the fluctuations of power supply and
demand (Section 5).

When the response probability profile p = (p1, . . . , pn) is
known, the problem (1) is a combinatorial optimization. In Sec-
tion 3, we will provide an offline combinatorial optimization
algorithm to solve the problem (1).

In reality, the response probabilities are usually unknown.
Thus, the aggregator should learn the probabilities from the feed-
back of the previous demand response events, then make online
decisions to minimize the difference between the total demand
reduction and the target Dt . The learning performance is mea-
sured by Regret(T ), which compares the total expected cost of
online decisions and the optimal total expected costs in T time
steps4:

Regret(T ) := E

[
T∑

t=1

Rt (St )

]
, (2)

2 The specific definition of DR events and the duration of each event are up
to the choice of the system designer. Our methods can accommodate different
scenarios.
3 For simplicity, we only consider that each customer has one unit to reduce.

Our learning method can be extended to multi-unit setting and/or the setting
where different users have different sizes of units. But the regret analysis will be
more complicated which we leave as future work. As mentioned before, results
in the paper have been used as a guideline for DR field studies (Edison, 2019).
4 Strictly speaking, this is the definition of pseudo-regret, because its bench-

mark is the optimal expected cost: minSt⊆[n] ELt (St ), instead of the optimal cost
for each time, i.e. minSt⊆[n] Lt (St ).

where Rt (St ) := Lt (St )− Lt (S∗t ) and the expectation is taken with
respect to Xt,i and the possibly random St .

The feedback of previous demand response events includes the
response of every selected customer, i.e. {Xt,i}i∈St . Such feedback
structure is called semi-bandit in literature (Chen et al., 2016),
and carries more information than bandit feedback which only
includes the realized cost Lt (St ).

Lastly, we note that our problem formulation can be applied
to other applications beyond demand response. One example is
provided below.

Example 1. Consider a crowd-sourcing related problem. Given a
budget Dt , a survey planner sends out surveys and offers one unit
of reward for each participant. Each potential participant may
participate with probability pi. Let Xt,i = 1 if agent i participates;
and Xt,i = 0 if agent i ignores the survey. The survey plan-
ner intends to maximize the total number of responses without
exceeding the budget too much. One possible formulation is to
select subset St such that the total number of responses is close
to the budget Dt ,

min
St

E

(∑
i∈St

Xt,i − Dt

)2

.

Since the participation probabilities are unknown, the planner
can learn the participation probabilities from the previous actions
of the selected agents and then try to minimize the total costs
during the learning process.

3. Algorithm design

This section considers time-invariant target D. We will first
provide an optimization algorithm for the offline problem, then
introduce the notations for online algorithms and discuss two
simple algorithms: greedy algorithm and CUCB. Finally, we intro-
duce our online algorithm CUCB-Avg.

3.1. Offline optimization

When the probability profile p is known and Dt = D, the
problem (1) becomes a combinatorial optimization problem:

min
S⊆[n]

[
(
∑
i∈S

pi − D)2 +
∑
i∈S

pi(1− pi)

]
. (3)

Though general combinatorial optimization is NP-hard and only
has approximate algorithms, we introduce our Algorithm 1 which
can solve the problem (3) exactly. Roughly speaking, Algorithm 1
takes two steps: (i) rank the arms according to pi, (ii) determine
the number k according to the probability profile p and the target
D and select the top k arms. The output of Algorithm 1 is denoted
by φ(p,D) ⊆ [n]. The next theorem shows that Algorithm 1
outputs an optimal solution to (3).
Algorithm 1 Offline optimization algorithm

1: Inputs: p1, . . . , pn ∈ [0, 1], D > 0.
2: Rank pi in a non-increasing order:

pσ (1) ≥ . . . ≥ pσ (n).
3: Find the smallest k ≥ 0 such that

k∑
i=1

pσ (i) > D− 1/2.

Let k = n if
∑n

i=1 pσ (i) ≤ D− 1/2. Ties are broken randomly.
4: Outputs: φ(p,D) = {σ (1), . . . , σ (k)}
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Theorem 1. For any D > 0, the output of Algorithm 1, φ(p,D), is
an optimal solution to (3).

Proof sketch. We defer the detailed proof to our supplementary
material (Li et al., 2020) and only introduce the intuition here. An
optimal set S should enjoy two properties: (i) the total expected
contribution of S, i.e.

∑
i∈S pi, is closed to the target D, (ii) the total

variance of arms in S is minimized. (i) is roughly guaranteed by
Line 3 of Algorithm 1: it is easy to show that |

∑
i∈φ(p,D) pi − D| ≤

1/2. (ii) is roughly guaranteed by only selecting arms with higher
response probabilities, as indicated by Line 2 of Algorithm 1. The
intuition is the following. Consider an arm with a large parameter
p1 and two arms with smaller parameters p2, p3. For simplicity,
we let p1 = p2 + p3. Thus, replacing p1 with p2, p3 will not affect
the first term in (3). However, p1(1−p1) ≤ p2(1−p2)+p3(1−p3)
by p21 = (p2 + p3)2 ≥ p22 + p23. Hence, replacing one arm with
a higher response probability by two arms with lower response
probabilities will increase the variance. □

Corollary 1. When D < 1/2, the empty set is optimal.

Remark 1. There might be more than one optimal subset. Algo-
rithm 1 only outputs one of them.

3.2. Notations for online algorithms

Let p̄i(t) denote the sample average of parameter pi by time t
(including time t), i.e.

p̄i(t) =
1

Ti(t)

∑
τ∈Ji(t)

Xτ ,i,

where Ji(t) denotes the set of time steps when arm i is selected
by time t (including t) and Ti(t) = |Ji(t)| denotes the number
of times that arm i has been selected by time t . Let p̄(t) =

(p̄1(t), . . . , p̄n(t)). Notice that before making decisions at time t ,
only p̄(t − 1) is available.

3.3. Two simple online algorithms: Greedy algorithm and CUCB

Next, we introduce two simple methods: greedy algorithm and
CUCB, and explain their poor performance in our problem to gain
intuitions for our algorithm design.

Greedy algorithm uses the sample average of each parameter
p̄i(t − 1) as an estimation of the unknown probability pi and
chooses a subset based on the offline oracle described in Algo-
rithm 1, i.e. St = φ(p̄(t−1),D). The greedy algorithm is known to
perform poorly because it only exploits the current information,
but fails to explore the unknown information, as demonstrated
below.

Example 2. Consider two arms that generate Bernoulli rewards
with expectation p1 > p2 > 0. The goal is to select the arm with
the higher reward in expectation, which is arm 1 in this case.
Suppose after some time steps, arm 1’s history sample average
p̄1(t) is zero, while arm 2’s history average p̄2(t) is positive. In
this case, the greedy algorithm will always select the suboptimal
arm 2 in the future since p̄2(t) > p̄1(t) = 0 for all future time
t and arm 1’s history average will remain 0 due to insufficient
exploration. Hence, the regret will be linear with T .

A well-known algorithm in CMAB literature that balances the
exploration and exploitation is CUCB (Chen et al., 2016). Instead
of using sample average p̄(t−1) directly, CUCB considers an upper
confidence bound:

Ui(t) = min

(
p̄i(t − 1)+

√
α log t

2Ti(t − 1)
, 1

)
, (4)

where α ≥ 0 is the parameter to balance the tradeoff between
p̄i(t − 1) (exploitation) and Ti(t − 1) (exploration). The output
of CUCB is St = φ(U(t),D). CUCB performs well in classic CMAB
problems, such as maximizing the total contribution of K arms
for a fixed K .

However, CUCB performs poorly in our problem, as shown in
Lemma 5. The major problem of CUCB is the over-estimate of the
arm parameter p. By choosing St = φ(U(t),D), CUCB selects less
arms than needed, which not only results in a large deviation
from the target, but also discourages exploration.
Algorithm 2 CUCB-Avg

1: Notations: Ti(t) is the number of times selecting arm i by time
t , and p̄i(t) is the sample average of arm i by time t (both
including time t).

2: Inputs: α, D.
3: Initialization: For t = 1, . . . ,

⌈
n

⌈2D⌉

⌉
, select ⌈2D⌉ arms each

time until each arm has been selected for at least once. Let St
be the set of arms selected at time t . Initialize Ti(t) and p̄i(t)
by the observation {Xt,i}i∈St .

5

4: for t =
⌈

n
⌈2D⌉

⌉
+ 1, . . . , T do

5: Compute the upper confidence bound for each i
Ui(t) = min

(
p̄i(t − 1)+

√
α log t

2Ti(t−1) , 1
)
.

6: Rank Ui(t) by a non-increasing order:
Uσ (t,1)(t) ≥ . . . ≥ Uσ (t,n)(t).

7: Find the smallest kt ≥ 0 such that
kt∑
i=1

p̄σ (t,i)(t − 1) > D− 1/2

or let kt = n if
∑n

i=1 p̄σ (t,i)(t − 1) ≤ D− 1/2.
8: Select St = {σ (t, 1), . . . , σ (t, kt )}
9: Update Ti(t) and p̄i(t) by observations {Xt,i}i∈St

10: end for

3.4. Our proposed online algorithm: CUCB-Avg

Based on the discussion above, we propose a new method
CUCB-Avg. The novelty of CUCB-Avg is that it utilizes both sample
averages and upper confidence bounds by exploiting the structure
of the offline algorithm.

We note that the offline Algorithm 1 selects the right subset of
arms in two steps: (i) rank (top) arms, (ii) determine the number
k of the top arms to select. In CUCB-Avg, we use the upper
confidence bound Ui(t) to rank the arms in a non-increasing
order. This is the same as CUCB. However, the difference is that
our CUCB-Avg uses the sample average p̄i(t − 1) to decide the
number of arms to select at time t . The details of the algorithm
are given in Algorithm 2.

Now we explain why the ranking rule and the selection rule
of CUCB-Ave would work for our problem.

The ranking rule is determined by Ui(t). An arm with larger
Ui(t) is given a priority to be selected at time t . We note that Ui(t)
is the summation of two terms: the sample average p̄i(t − 1) and
the confidence interval radius that is related to how many times
the arm has been explored. Therefore, an arm with a large Ui(t)
may either have a small Ti(t − 1), meaning that the arm has not
been explored enough; or have a large p̄i(t − 1), indicating that
the arm frequently responds in the history. In this way, CUCB-Avg
selects both the under-explored arms (exploration) and the arms
with good performance in the past (exploitation).

5 The initialization method is not unique and can be any method that selects
each customer for at least once.
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When determining k, CUCB-Avg uses the sample averages and
selects enough arms such that the total sample average is close
to D. Compared with CUCB which uses upper confidence bounds
to determine k, our algorithm selects more arms, which reduces
the load reduction difference from the target and also encourages
exploration.

4. Regret analysis

In this section, we will prove that our algorithm CUCB-Avg
achieves O(log T ) regret when D is time invariant.

4.1. The main result

Theorem 2. There exists a constant ϵ0 > 0 determined by p and D,
such that for any α > 2, the regret of CUCB-Avg is upper bounded
by

Regret(T ) ≤ M
(⌈

n
⌈2D⌉

⌉
+

2n
α − 2

)
+

αMn log T
2ϵ2

0
, (5)

where M = max(D2, (n− D)2). □

We make a few comments before the proof.
Dependence on T and n. The dependence on the horizon
T is O(log T ), so the average regret diminishes to zero as T
increases, indicating that our algorithm learns the customers’
response probabilities effectively. The dependence on n is poly-
nomial, i.e. O(n3) by M ∼ O(n2), showing that our algorithm can
handle a large number of arms effectively. The cubic dependence
is likely to be a proof artifact and improving the dependence on
n is left as future work.
Role of ϵ0. The bound depends on a constant term ϵ0 determined
by p and D and such a bound is referred to as a distribution-
dependent bound in literature. We defer the explicit expression of
ϵ0 to Li et al. (2020) and only explain the intuition behind ϵ0 here.
Roughly, ϵ0 is a robustness measure of our offline optimal algo-
rithm, in the sense that if the probability profile p is perturbed
by ϵ0, i.e., |p̃i − pi| < ϵ0 for all i, the output φ(p̃,D) of Algorithm
1 would still be optimal for the true profile p. Intuitively, if ϵ0
is large, the learning task is easy because we are able to find
an optimal subset given a poor estimation, leading to a small
regret. This explains why the upper bound in (5) decreases when
ϵ0 increases.

To discuss what factors will affect the robustness measure ϵ0,
we provide an explicit expression of ϵ0 under two simplifying
assumptions in the following proposition.

Proposition 1. Consider the following assumptions.
(A1) pi are positive and distinct pσ (1) > · · · > pσ (n) > 0.
(A2) There exists k ≥ 1 such that

∑k
i=1 pσ (i) > D − 1/2, and∑k−1

i=1 pσ (i) < D− 1/2.
Then the ϵ0 in Theorem 2 can be determined by:

ϵ0 = min
(

δ1

k
,
δ2

k
,
∆k

2

)
, (6)

where k = |φ(p,D)|,
∑k

i=1 pσ (i) = D − 1/2 + δ1,
∑k−1

i=1 pσ (i) =

D− 1/2− δ2, and ∆i = pσ (i) − pσ (i+1),∀ i = 1, . . . , n− 1.

We defer the proof of the proposition to our online report (Li
et al., 2020) and only make two comments here. Firstly, it is easy
to verify that Assumptions (A1) and (A2) imply ϵ0 > 0. Secondly,
we explain why ϵ0 defined in (6) is a robustness measure, that
is, we show if ∀ i, |p̃i − pi| < ϵ0, then φ(p̃,D) = φ(p,D). This
can be proved in two steps. Step 1: when ϵ0 ≤

∆k
2 , the k arms

with higher p̃i are the same k arms with higher pi because for
any 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, we have p̃σ (i) > pσ (k) − ϵ0 ≥

pσ (k+1) + ϵ0 > p̃σ (j). Step 2: by ϵ0 ≤ min
(

δ1
k ,

δ2
k

)
and the

definition of δ1 and δ2, when |p̃i − pi| < ϵ0 for all i, we have∑k
i=1 p̃σ (i) > D− 1/2 and

∑k−1
i=1 p̃σ (i) < D− 1/2. Consequently, by

Algorithm 1, φ(p̃,D) = {σ (1), . . . , σ (k)} = φ(p,D).
Finally, we briefly discuss how to generalize the expression (6)

of ϵ0 to cases without (A1) and (A2). When (A1) does not hold,
we only consider the gap between the arms that are not in a tie,
i.e. {∆i| ∆i > 0, 1 ≤ i ≤ n − 1}. When (A2) does not hold
and

∑k−1
i=1 pσ (i) = D − 1/2, we consider less than k − 1 arms to

ensure the total expected contribution below D−1/2. An explicit
expression of ϵ0 is provided in our report (Li et al., 2020).
Comparison with the regret bound of classic CMAB. In classic
CMAB literature when the goal is to select K arms with the
highest parameters given a fixed integer K , the regret bound
usually depends on ∆K

2 (Kveton et al., 2015). We note that ∆K
2

is similar to ϵ0 in our problem, as it is the robustness measure
of the top-K -arm problem in the sense that given any estimation
p̃ with estimation error at most ∆K

2 : ∀ i, |p̃i − pi| <
∆K
2 , the top

K arms with the profile p̃ are the same as that with the profile
p. In addition, we would like to mention that the regret bound
in literature is usually linear with 1/∆K , while our regret bound
is 1/ϵ2

0 . This difference may be an artificial effect of the proof
techniques because our CMAB problem is more complicated. We
leave it as future work to strengthen the results.

4.2. Proof of Theorem 2

Proof outline: We divide the T time steps into four parts, and
bound the regret in each part separately. The partition of the
time steps are based on event Et and the event Bt (ϵ0) defined
below. Let Et be the event when the sample average is outside
the confidence interval considered in Algorithm 2:

Et :=

{
∃ i ∈ [n], |p̄i(t − 1)− pi| ≥

√
α log t

2Ti(t − 1)

}
.

For any ϵ > 0, let Bt (ϵ) denote the event when Algorithm 2 selects
an arm who has been explored for no more than α log T

2ϵ2
times:

Bt (ϵ) :=
{
∃ i ∈ St , s.t. Ti(t − 1) ≤

α log T
2ϵ2

}
. (7)

Let ϵ0 > 0 be a small number such that Lemma 3 holds.
Now, we will define the four parts of the T time steps, and

briefly introduce the regret bound of each part.

(1) Initialization: the regret bound does not depend on T (In-
equality (8)).

(2) When event Et happens: the regret bound does not de-
pend on T because Et happens rarely due to concentration
properties in statistics (Lemma 1).

(3) When event Ēt and Bt (ϵ0) happen: the regret is at most
O(log T ) because Bt (ϵ0) happens for at most O(log T ) times
(Lemma 2).

(4) When event Ēt and B̄t (ϵ0) happen, the regret is zero due to
the enough exploration of the selected arms (Lemma 3).

Notice that the time steps are not divided sequentially here. For
example, it is possible that t = 10 and t = 30 belong to Part 2
while t = 20 belongs to Part 3.
Proof details: Firstly, it is without loss of generality to require
D ≥ 1/2 because when D < 1/2, the optimal set is known to be
the empty set by Corollary 1, so the regret is zero by selecting no
customers.

Secondly, we note that for all time steps 1 ≤ t ≤ T and any
St ⊆ [n], the regret at t is upper bounded by

Rt (St ) ≤ Lt (St ) ≤ max(D2, (n− D)2) =: M. (8)
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Thus, the regret of initialization (Part 1) at t = 1, . . . ,
⌈

n
⌈2D⌉

⌉
is

bounded by M
⌈

n
⌈2D⌉

⌉
.

Next, we bound the regret of Part 2 by the Chernoff–Hoeffding’s
concentration inequality. The intuition behind the proof is that
Et happens rarely because the sample average p̄i(t) concentrates
around the true value pi with a high probability.

Theorem 3 (Chernoff–Hoeffding’s Inequality). Consider i.i.d. random
variables X1, . . . , Xm with support [0, 1] and mean µ, then we have

P

(⏐⏐⏐⏐⏐
m∑
i=1

Xi −mµ

⏐⏐⏐⏐⏐ ≥ mϵ

)
≤ 2e−2mϵ2 . (9)

Lemma 1. When α > 2, we have

E

[
T∑

t=1

IEtRt (St )

]
≤

2Mn
α − 2

.

Proof. The number of times Et happens is bounded by

E

[
T∑

t=1

IEt

]
=

T∑
t=1

P(Et )

≤

T∑
t=1

n∑
i=1

P

(
|p̄i(t − 1)− pi| ≥

√
α log t

2Ti(t − 1)

)

≤

T∑
t=1

n∑
i=1

t−1∑
s=1

P(|p̄i(t − 1)− pi| ≥

√
α log t
2s

, Ti(t − 1) = s)

≤

T∑
t=1

n∑
i=1

t−1∑
s=1

2
tα

≤

T∑
t=1

2n
tα−1 ≤

2n
α − 2

,

where the first inequality is by enumerating possible i ∈ [n], the
second inequality is by enumerating possible values of Ti(t − 1):
{1, . . . , t − 1}, the third inequality is by Chernoff–Hoeffding’s
inequality, and the last inequality is by

∑T
t=1

1
tα−1 ≤

∫
+∞

1
1

tα−1 ≤

1
α−2 . Then by inequality (8) the proof is completed. □

Next, we show the regret of Part 3 is at most O(log T ).

Lemma 2. For any ϵ0 > 0, the regret in Part 3 is bounded by

E
[∑T

t=1 Rt (St )I{Ēt ,Bt (ϵ0)}
]
≤

αMn log T
2ϵ20

Proof. By the definition of Bt (ϵ0) in (7), whenever Bt (ϵ0) happens,
the algorithm selects an arm i that has not been selected for α log T

2ϵ20
times, increasing the selection time counter Ti(t) by one. Hence,
Bt (ϵ0) can happen for at most αn log T

2ϵ20
times. Then, by inequality

(8), the proof is completed. □

When Ēt and B̄t (ϵ0) happen (Part 4), every selected arm is fully
explored and every arm’s sample average is within the confidence
interval. As a result, CUCB-Avg selects the right subset and hence
contributes zero regret. This is formally stated in the following
lemma.

Lemma 3. There exists ϵ0 > 0, such that for each 1 ≤ t ≤ T ,
if Ēt and B̄t (ϵ0) happen, CUCB-Avg selects an optimal subset and
E
[
Rt (St )I{Ēt ,B̄t (ϵ0)}

]
= 0. Consequently, the regret in Part 4 is 0.

Proof Sketch: We defer the proof to Li et al. (2020) and sketch the
proof ideas here, which is based on two facts.

Fact 1. when Ēt and B̄(ϵ0) happen, the upper confidence bounds
can be bounded by Ui(t) > pi for all i ∈ [n], and the confidence
bounds of the selected arm j satisfy⏐⏐p̄j(t − 1)− pj

⏐⏐ < ϵ0, Uj(t) < pj + 2ϵ0, ∀ j ∈ St .

Fact 2. when ϵ0 is small enough, CUCB-Avg selects an optimal
subset.

To obtain the intuition for Fact 2, we consider the expression
of ϵ0 in (6) under Assumption (A1) (A2) in Proposition 1. Let
φ(p,D) = {σ (1), . . . , σ (k)} denote the optimal subset. In the fol-
lowing, we roughly explain why the selected subset St is optimal
given ϵ0 defined in (6):

(i) By ϵ0 ≤
∆k
2 , we can show that the selected subset St is ei-

ther a superset or a subset of the optimal subset {σ (1), . . . , σ (k)}.
(ii) By ϵ0 ≤ δ1/k, we can show that we will not select more

than k arms, because, informally, even if we underestimate pi, the
sum of arms in {σ (1), . . . , σ (k)} is still larger than D− 1/2.

(iii) By ϵ0 ≤ δ2/k, we can show that we will not select less than
k arms, because, informally, even if we overestimate pi, the sum
of k− 1 arms in {σ (1), . . . , σ (k)} is still smaller than D− 1/2. □

The proof of Theorem 2 is completed by summing up the
regret bounds of Part 1-4.

5. Time-varying target

In practice, the load reduction target is usually time-varying.
We will study the performance of CUCB-Avg in the time-varying
case below.

Notice that CUCB-Avg can be directly applied to the time-
varying case by using Dt in Algorithm 2 at each time step t .

Next, we provide a regret bound for CUCB-Avg in the time-
varying case. Notice that we impose no assumption on Dt except
that it is bounded, which is almost always the case in practice.

Assumption 1. There exists a finite D̄ > 0 such that 0 < Dt ≤

D̄, ∀ 1 ≤ t ≤ T .

Theorem 4. Suppose Assumption 1 holds. When T > 2, for any
α > 2, the regret of CUCB-Avg is bounded by

Regret(T ) ≤ M̄n+
2M̄n
α − 2

+
αM̄n log T

2ϵ2
1

+ 2n2
√
2α log T

√
T +

α log T
2ϵ2

1
,

where M̄ = max(D̄2, n2), ϵ1 = min(∆min
2 ,

βmin
n ), ∆min = min{∆i |

1 ≤ i ≤ n− 1, ∆i > 0} and βmin = min{pi | 1 ≤ i ≤ n, pi > 0}.

Before the proof, we make a few comments below.
Dependence on T . The bound is sublinear in T , i.e. O(

√
T log T ),

indicating that our algorithm learns the users’ response proba-
bilities well enough to yield diminishing average regret in the
time-varying case.

The dependence on T is worse than the static case which
is O(log T ). We briefly discuss the intuition behind this differ-
ence. In the proof of Theorem 2, we show that there exists a
threshold ϵ0 depending on D such that when the estimation
errors of parameters pi for i ∈ St are below ϵ0, our algorithm
selects the optimal subset (Lemma 3). Moreover, we also show
that as t increases, with high probability , the estimation error
will decrease and our algorithm will find the optimal subset and
generate no more regret eventually. However, in the time-varying
case the argument above no longer holds because the threshold ϵ0
will change with Dt , denoted as ϵ0(Dt ), and it is possible that the
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estimation error will always be larger than ϵ0(Dt ), as a result the
algorithm may not find the optimal subset with high probability
even when t is large. This roughly explains why the bound of the
time-varying case is worse than that of the static case.

In addition, we provide some intuitive explanation for the
scaling O(

√
T log T ). It can be shown that the regret at time

t is almost bounded by the estimation error at time t under
some conditions (Lemma 5). Since the estimation error is roughly
captured by our confidence interval in (4), which scales like
O(
√
log T/t), the total regret scales like

∑T
t=1 O(

√
log T/t) =

O(
√
T log T ).

Finally, we note that the regret bound is for the worst-case
scenario and the regret in practice may be smaller.
Dependence on n. The bound is polynomial on the number of
arms n: O(n3) by M̄ ∼ O(n2), demonstrating that our algorithm
can learn a large number of arms effectively in the time-varying
case. Improving the cubic dependence on n is left as future work.
Role of ϵ1. Notice that ϵ1 only depends on p and does not depend
on the target Dt . Roughly speaking, ϵ1 captures how difficult it is
to rank the arms correctly by the value of pi, in the sense that
as long as the estimation error of each pi is smaller than ϵ1, the
rank based on the estimation will be the correct rank based on
the true parameter pi.

5.1. Proof of Theorem 4

Most parts of the proof is similar to the static case. We also
consider Dt ≥ 1/2 without loss of generality due to Corollary 1.
Besides, we also divide the time steps into four parts and com-
plete the proof by summing up the regret bound of each part. The
first three parts can be bounded in the same ways as the static
case. The major difference comes from the Part 4.

(1) Initialization: the regret can be bounded by M̄n because
the initialization at most lasts for n time steps and M̄ is an upper
bound of the single-step regret.

(2) When Et happens: notice that Lemma 1 still holds in the
time-varying case if we replace M with M̄ , so the second part is
bounded by E

∑T
t=1 IEtRt (St ) ≤ 2M̄n

α−2 .
(3) When Ēt and Bt (ϵ1) happen: notice that Lemma 2 still holds

so E
∑T

t=1 Rt (St )I{Ēt ,Bt (ϵ1)} ≤
αM̄n log T

2ϵ21
.

(4) When Ēt and B̄t (ϵ1) happen, we can show that the regret
is O(

√
T log T ) as stated in the lemma below.

Lemma 4. The regret in Part 4 can be bounded by

E
T∑

t=1

Rt (St )I{Ēt ,B̄t (ϵ1)} ≤ 2n2
√
2α log T

√
T +

α log T
2ϵ2

1
.

Proof. Our proof relies on the following lemma which shows that
the regret at time t can roughly be bounded by the estimation
error ϵ at t when ϵ ≤ ϵ1.

Lemma 5. For any time step t, consider any Dt and any 0 < ϵ ≤ ϵ1
such that P(Ēt , B̄t (ϵ)) > 0. Let Ft denote the natural filtration up
to time t. For any Ft−1 such that Ēt and B̄t (ϵ) are true, we have
E[Rt (St ) | Ft−1] ≤ 2nϵ.

Proof sketch. Due to space limits, we defer the proof to Li et al.
(2020) and discuss the proof ideas here. Firstly, we can show that
under Ēt and B̄t (ϵ), the selected subset differs from the optimal
subset for at most one arm. This is mainly due to ϵ ≤ ϵ1. Secondly,
we can bound the regret of the suboptimal selections by O(ϵ),
which utilizes the quadratic structure of the loss function. □

Provided with Lemma 5, we can prove Lemma 4. We introduce
event Hq

t to represent that each selected arm i at time t has been
selected for more than α log T

2ϵ21
+ q times for q = 0, 1, 2, . . . :

Hq
t :=

{
∀ i ∈ St , Ti(t − 1) >

α log T
2ϵ2

1
+ q

}
∩ Ēt ∩ B̄t (ϵ1).

In addition, we define the estimation error ηq by the confi-
dence interval radius when an arm has been explored for α log T

2ϵ21
+

q− 1 times: α log T
2η2q

=
α log T
2ϵ21

+ q− 1, that is,

ηq =

√ α log T
2

q− 1+ α log T
2ϵ21

.

The proof is completed by:

E

[
T∑

t=1

Rt (St )IĒt∩B̄t (ϵ1)

]
=

T∑
q=1

T∑
t=1

E
[
Rt (St )I(Hq−1

t −Hq
t )

]

≤

T∑
q=1

T∑
t=1

2nηqP(H
q−1
t − Hq

t )

≤

T∑
q=1

2n2ηq = 2n2
T∑

q=1

√ α log T
2

q− 1+ α log T
2ϵ21

≤ 2n2

√
α log T

2

∫ T

0

√ 1

q− 1+ α log T
2ϵ21

dq

≤ 4n2

√
α log T

2

√
T +

α log T
2ϵ2

1
,

where the first equality is by Ēt ∩ B̄t (ϵ1) = ∪
T
q=1(H

q−1
t − Hq

t ); the
first inequality is by taking conditional expectation on Hq−1

t −Hq
t

and by (Hq−1
t − Hq

t ) ⊆ Ēt ∩ B̄t (ηq) and ηq ≤ ϵ1 and Lemma 5; the
second inequality is because Hq−1

t −Hq
t ⊆

⋃n
i=1{i ∈ St , Ti(t−1) =

α log T
2ϵ21

+ q} and {i ∈ St , Ti(t − 1) = α log T
2ϵ21

+ q} occurs at most once

in T stages for each i ∈ [n]; the third inequality uses the fact that
T > 2 and thus α log T

2ϵ21
> 1. □

6. Numerical experiments

In this section, we conduct numerical experiments to comple-
ment the theoretical analysis above.
6.1. Algorithms comparison

We will compare our algorithm with CUCB (Chen et al., 2016),
which is briefly explained in Section 3.3, and Thompson sampling
(TS), an algorithm with good empirical performance in classic
MAB problems. In TS, the unknown parameter profile p is viewed
as a random vector with a prior distribution. The algorithm se-
lects a subset St = φ(p̂t ,D) based on a sample p̂t from the prior
distribution of p at t = 1 (or the posterior distribution at t ≥

2), then updates the posterior distribution of p by observations
{Xt,i}i∈St . For more details, we refer the reader to Russo et al.
(2017).

In our experiment, we consider a residential demand response
program with 3000 customers. Each customer can either partici-
pate in the DR event by reducing 200 W or not. The probabilities
of participation are i.i.d. Unif[0, 1]. The demand response events
last for one hour on each day from June to September in 2018,
with a goal of shaving the peak loads in Rhode Island. The hourly
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Fig. 1. The regret of CUCB, CUCB-Avg, and TS.

Fig. 2. 90% confidence intervals of load reduction’s relative errors of CUCB-Avg
(blue) and Thompson sampling (red).

Fig. 3. The regret of TS and CUCB-Avg for different n.

demand profile is from New England ISO.6 We consider two
schemes to determine the peak-load-shaving target Dt :

(i) Average peak: Compute the averaged load profile in a day
by averaging the daily load profiles in the four months. The
constant target D is the 1% of the difference between the
peak load and the load at one hour before the peak hour of
the averaged load profile.

(ii) Daily peak: On each day t , the target Dt is 1% of the
difference between the peak load and the load at one hour
before the peak hour of the daily demand.

In our algorithms, we set α = 2.5. In Thompson sampling, p’s
prior distribution is Unif[0, 1]n. We consider one DR event per
day and plot the daily performance.

Fig. 1 plots the regret of CUCB, CUCB-Avg and TS under the
two schemes of peak shaving. The x-axis is in log scale and the
resolution is by day. Both figures show that CUCB-Avg performs
better than CUCB and TS. In addition, the regret of CUCB-Avg
in Fig. 1(a) is linear with respect to log(T ), consistent with our

6 https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-
/tree/demand-by-zone.

theoretical result in Theorem 2. Moreover, the regret of CUCB-
Avg in Fig. 1(b) is almost linear with log(T ), demonstrating that
in practice the regret can be much better than our worst case
regret bound in Theorem 4.

Fig. 2 plots the 90% confidence interval of the relative reduc-
tion error,

∑
i∈St Xt,i−Dt

Dt
, of CUCB-Avg and TS by 1000 simulations.

It is observed that the relative error of CUCB-Avg roughly stays
within ±5%, much better than Thompson sampling. This again
demonstrates the reliability of CUCB-Avg. Interestingly, the figure
shows that TS tends to reduce less load than the target, which is
possibly because TS overestimates the customers’ load reduction
when selecting customers. Finally, on August 18th both algo-
rithms cannot fulfill the daily peak target because it is very hot
and the target is too high to reach even after selecting all the
users.

Finally, we compare TS and CUCB-Avg for different n by con-
sidering the scheme (i). We consider two cases: (1) when T is very
large so the regret is dominated by the log(T ) term, (2) when T
is a reasonable number in practice. We let T = 105 for case 1
and T = 122 (the total number of days from June to September)
for case 2. We consider a smaller target D = 40 for illustration
and consider n = 500 : 500 : 3500. Fig. 3(a) shows that the
dependence on n of CUCB-Avg’s regret is similar to that of TS
when T is large, and the dependence is not cubic, the theoretical
explanation of which is left for future work. Moreover, Fig. 3(a)
shows that CUCB-Avg can achieve better regrets than TS under a
properly chosen small α. Though not explained by theory yet, the
phenomenon that a small α yields good performance has been
observed in literature (Wang & Chen, 2018). Further, Fig. 3(b)
shows that CUCB-Avg achieves significantly smaller regrets than
TS for a practical T , indicating the effectiveness of our algorithm
in reality.

6.2. More discussion on the effects of α and n

Fig. 3 has shown that the choices of α and n affect the algo-
rithm performance. In this subsection, we will discuss the effects
of α and n in greater details. In particular, we will study the
DR performance by the relative deviation of the load reduction,
which is defined as

√
E [L(St )]/Dt , for each day during the four

months.
Fig. 4 shows the relative deviation of CUCB-Avg for different α

when n = 3000 and when the target is determined by scheme
(i) in Section 6.1. It is observed that when T is small, a large
α provides smaller relative deviation, thus better performance.
This is because the information of customers is limited when T
is small, and larger α encourages exploration of the information,
thus yielding better performance. When T is large, a smaller α
leads to better performance most of the time. This is because
when T is large, the information of customers is sufficient, and
a small α encourages the exploitation of the current information,
thus generating better decisions. The observations above are also
consistent with Fig. 3. Further, Fig. 4 shows that for a wide range
of α’s values, CUCB-Avg reduces the deviation to below 5% after
a few days, indicating that CUCB-Avg is reasonably robust to the
choice of α.

Fig. 5 shows the relative deviation of CUCB-Avg for different
n when α = 2.5 and when the target is determined by scheme
(i) in Section 6.1. It is observed that even with a large number of
customers, CUCB-Avg reduces the relative deviation to below 5%
very quickly, demonstrating that our algorithm can handle large
n effectively. In addition, when T is small, a small n provides
smaller relative deviation, because a small number of customers
are easier to learn in a short time period. When T is large, a
large n provides better performance, because there are more
reliable customers to choose from a larger customer pool. It is

https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/demand-by-zone
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/demand-by-zone
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Fig. 4. Effects of α.

Fig. 5. Effects of n.

worth mentioning that though Fig. 3(a) shows that the regret
increases with n when T is large, there is no conflict because the
regret captures the gap between the deviation generated by the
algorithm and the optimal one, which may increase even when
the algorithm generates less deviation since the optimal deviation
also decreases.

6.3. On the user fatigue effect

It is widely observed that customers tend to be less respon-
sive to demand response signals after participating in DR events
consecutively. This effect is usually called user fatigue. Though our
algorithm and theoretical analysis do not consider this effect for
simplicity, our CUCB-Avg can handle the fatigue effect after small
modifications, which is briefly discussed below.

For illustrational purposes, we consider a simple model of
the user fatigue effect. Each customer i is associated with an
original response probability pi. The response probability at stage
t , denoted as pi(t), decays exponentially with a fatigue ratio fi
if customer i has been selected consecutively, that is, pi(t) =

(fi)χi(t)pi if customer i has been selected from day t − χi(t) to
day t − 1. If the customer is not selected , we consider that the
customer takes a rest at this stage and will respond to the next DR
event with the original probability. Though the fatigue model may
be too pessimistic about the effects of the consecutive selections
by considering exponential decaying fatigue factors, and too opti-
mistic about the effectiveness of rests by assuming full recovery
after one day rest, this model captures the commonly observed
phenomena that the consecutive selection is a key reason for user
fatigue and customers can recover from fatigue if not selected for
some time (Hopkins & Whited, 2017). The model can be revised
to be more complicated and realistic, which is left as future work.

Next, we explain how to modify CUCB-Avg to address the user
fatigue effects. We consider that the aggregator has some initial

Fig. 6. The performance of our CUCB-Avg (after simple modifications) when
considering user fatigue.

estimation of the fatigue ratio of customer i, denoted as f̃i, and will
use the estimated fatigue ratios to rescale the upper confidence
bounds and sample averages in Algorithm 2 to account for the
fatigue effect. In particular, the rescaled upper confidence bound
is (f̃i)χi(t)Ui(t), and the rescaled history sample average is p̄i(t) =
1

Ti(t)

∑
τ∈Ii(t)

Xτ ,i
(f̃i)χi(t)

, where χi(t) denotes the number of consecutive

days up until t − 1 when customer i is selected.
In our numerical experiments, different users may have dif-

ferent user fatigue ratios, which are generated i.i.d. from Unif
[0.75, 0.95]. Other parameters are the same as in Section 6.1.
Fig. 6 plots the relative deviation of our modified CUCB-Avg
in two scenarios: (i) the aggregator has access to the accurate
fatigue ratio, i.e. f̃i = fi; (ii) the aggregator only has a rough
estimation for the entire population: f̃i = 0.85 for all i. It can
be observed that our algorithm is able to reduce the relative
deviation to below 5% after a few days even when the fatigue
ratios are inaccurate. This demonstrates that our algorithm, with
some simple modifications, can work reasonably well even when
considering customer fatigue effects.

7. Conclusion

This paper studies a CMAB problem motivated by residential
demand response with the goal of minimizing the difference
between the total load adjustment and the target value. We
propose CUCB-Avg and show that CUCB-Avg achieves sublinear
regrets in both static and time-varying cases. There are several
interesting directions to explore in the future. First, it is interest-
ing to improve the dependence on n. Second, it is worth studying
the regret lower bounds. Besides, it is worth considering more
realistic behavior models which may include e.g. the effects of
temperatures and humidities, the user fatigue, correlation among
users, time-varying response patterns, general load reduction
distributions, dynamic population, etc.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.automatica.2020.109015 and
https://arxiv.org/pdf/2003.09505.pdf.
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