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With coronavirus disease 2019 (COVID-19) cases rising rapidly, deep learning has emerged as a promising
diagnosis technique. However, identifying the most accurate models to characterize COVID-19 patients is
challenging because comparing results obtained with different types of data and acquisition processes is non-

gg:lll)e'irgnin trivial. In this paper we designed, evaluated, and compared the performance of 20 convolutional neutral net-
EfﬁgentNetsg works in classifying patients as COVID-19 positive, healthy, or suffering from other pulmonary lung infections

based on chest computed tomography (CT) scans, serving as the first to consider the EfficientNet family for
COVID-19 diagnosis and employ intermediate activation maps for visualizing model performance. All models are
trained and evaluated in Python using 4173 chest CT images from the dataset entitled “A COVID multiclass
dataset of CT scans,” with 2168, 758, and 1247 images of patients that are COVID-19 positive, healthy, or
suffering from other pulmonary infections, respectively. EfficientNet-B5 was identified as the best model with an
F1 score of 0.9769 + 0.0046, accuracy of 0.9759 + 0.0048, sensitivity of 0.9788 + 0.0055, specificity of 0.9730
+ 0.0057, and precision of 0.9751 + 0.0051. On an alternate 2-class dataset, EfficientNetB5 obtained an ac-
curacy of 0.9845 + 0.0109, F1 score of 0.9599 + 0.0251, sensitivity of 0.9682 + 0.0099, specificity of 0.9883 +
0.0150, and precision of 0.9526 =+ 0.0523. Intermediate activation maps and Gradient-weighted Class Activation
Mappings offered human-interpretable evidence of the model’s perception of ground-class opacities and con-
solidations, hinting towards a promising use-case of artificial intelligence-assisted radiology tools. With a pre-
diction speed of under 0.1 s on GPUs and 0.5 s on CPUs, our proposed model offers a rapid, scalable, and accurate
diagnostic for COVID-19.

1. Introduction

The reverse transcription-polymerase chain reaction, RT-PCR, is
currently considered to be the gold-standard for COVID-19 diagnosis.
However, the rapid increase in COVID-19 cases, delay in obtaining PCR
results, and strict requirements for testing environments make the fast
and effective screening of suspected cases challenging (Islam et al.,
2021). Moreover, PCR’s low sensitivity, or high false-negative rate, re-
sults in many COVID-19 positive patients incorrectly being diagnosed as
negative, further exacerbating the disease spread. In particular, a recent
study by Feng et al. revealed a sensitivity of 0.71 for PCR tests, much
lower than targeted sensitivity for effectively containing the spread of
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the virus (Fang et al., 2020).

Radiological imaging via X-ray radiography and computed tomog-
raphy (CT) has emerged as a promising alternative form of diagnosis due
to its ability to visualize lung structures. Imaging already serves as a
quintessential factor by triaging confirmed COVID-19 cases on the basis
of the severity of lung involvement (Dong et al., 2021). However,
manual readings of scans are prone to error and time-consuming. The
use of machine learning (ML) and artificial intelligence (AI) algorithms
that can learn from data without the need for explicit programming
offers a promising avenue for meeting the high costs and radiologist
shortages surrounding CT imaging. While human readings of CT scans
can take upwards of 15 min, ML-based algorithms can analyze images
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within a few seconds. Moreover, with developments in computer vision
and computational resources, state-of-the-art convolutional neural
network (CNN) architectures may reach specificities, sensitivities, and
accuracies of as high as 0.992, 1.00, and 0.995, respectively in dis-
tinguishing between COVID-19 and non-COVID-19 lung CT images
(Islam et al., 2021).

With the diverse array of available models for diagnosis, identifying
the most optimal has become a valued yet incredibly challenging task.
Although several literature reviews consider the use of ML and Al for
COVID-19 diagnosis and severity assessment, they presented models
trained on different datasets, evaluated with varying metrics, and
focusing on different goals — binary classification vs. multiclass classi-
fication, classification vs. segmentation, etc. (Islam et al., 2021; Lal-
muanawma et al., 2020; Ozturk et al., 2020; Waleed Salehi et al., 2020;
Xiong et al., 2020). In contrast, our paper presents 20 ML models trained
on a fixed dataset, evaluates their performance through metrics such as
specificity, sensitivity, accuracy, F-1 scores, and applies visualization
techniques such as Gradient-weighted Class Activation Mappings
(GradCAMs) and intermediate activation maps to highlight core features
such as ground-glass opacities, consolidations, crazy paving patterns,
and linear opacities in the input CT images that the model used for
making predictions.

Moreover, EfficientNets, with their markedly smaller network sizes
and extremely high accuracies in the ImageNet dataset, (Deng et al.,
2010) have rapidly become a go-to choice for image-recognition tasks
with ML. However, to the best of our knowledge, this paper is the first to
consider the entire EfficientNet family of CNN architectures for diag-
nosis on CT images. Although a limited number of studies have directed
their attention to this nascent CNN architecture, they restrict their
consideration to chest X-ray images (Chowdhury et al., 2021; Marques
et al., 2020; Muftuoglu et al., 2020). While X-ray radiography is cheaper
and more universally accessible, CT imaging is preferred over X-ray for
diagnoses because of its detailed cross-sectional images (Kim et al.,
2020; Ye et al., 2020). Moreover, the yet fewer studies which train
EfficientNets on CT images limit their study to EfficientNetB3 and Effi-
cientNetB4, leaving the remaining models EfficientNetBO, Effi-
cientNetB1, EfficientNetB2, EfficientNetB5, EfficientNetB6, and
EfficientNetB7 unexplored in terms of their COVID-19 diagnosing abil-
ities (Xiong et al., 2020; Yousefzadeh et al., 2020). Given that many of
the larger EfficientNet architectures acquire the highest accuracy on the
ImageNet dataset, this study includes them for comparative purposes
and hopes of attaining higher performance.

Finally, this paper is the first to visualize intermediate activation
maps for COVID-19 diagnosis. Although the conventional visualization
framework—GradCAMs—are useful for localizing abnormalities in
input images, they do not offer insight into the model’s learning process.
In contrast, intermediate activations help understand how successive
CNN filters transform their inputs and get a more thorough under-
standing of individual CNN filters and the model learning behavior
(Francois Chollet, 2017).

In summary, the contributions of our paper are multifaceted. Firstly,
we offer a standardized basis for comparing 20 state-of-the-art neural
network architectures, a feat infeasible to accomplish given the varia-
tion in datasets used, goals, and metrics reported. Secondly, we popu-
larize the use of EfficientNets by including the entire family for
classification purposes and demonstrating the improvements it offers for
COVID-19 diagnosis. Finally, we propose a new visualization mecha-
nism involving both intermediate activation maps and GradCAMs. These
allow users to both observe key infection regions within the lung that the
ML models used for diagnosis and dispel the stigma surrounding the
black-box nature of ML algorithms by offering insight into the model
learning process.

The rest of this paper is organized as follows: Section 2 delves deeper
into recent works regarding using deep learning techniques for COVID-
19, highlighting the volume of research within the field and remaining
gaps of weakness. Section 3 introduces the methodology used for dataset
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accumulation and processing, model training and evaluation, and
visualization. Section 4 presents the testing results from the models
trained. Section 5 presents the visualizations from GradCAMs. Section 6
presents the visualization results from the intermediate activation maps.
Section 7 presents the neural network architecture for the best per-
forming model. Section 8 discusses and analyzes the findings as well as
acknowledging any limitations. Finally, Section 9 concludes the paper,
summarizes its findings, and suggests directions for future work.

2. Related works

Since the introduction of deep learning-based techniques for COVID-
19 in a work by Wu et al., several works have been dedicated to eval-
uating their efficacy (Wu et al., 2020). For example, Butt et al. consid-
ered the use of ResNet18 attaining an accuracy of 0.867, sensitivity of
0.815, precision of 0.808, and F1 score of 0.811 (Butt et al., 2020). In
(Wang et al., 2021) and (Jin et al., 2020), the authors trained and
evaluated ResNet152, DPN-92, Inception-v3, ResNet50, and Attention
ResNet-50 with U-Net++, reaching accuracies and sensitivities as high
as 0.9498 and 0.9406, respectively. Similarly works by Yousefzadeh
et al. and Aradakani et al. extended these efforts further by collectively
training DenseNets, Xception, EfficientNetBO, AlexNet, VGG-16, VGG-
19, Squeeze Net, Google Net, and MobileNet-V2 for COVID-19 diagnosis,
reaching sensitivities as high as 1.00 and accuracies as high as 0.9951 for
diagnosis (Ardakani et al., 2020; Yousefzadeh et al., 2020).

More recently, works have instead focused on developing novel
machine learning pipelines for COVID-19 classification. For instance,
(Foysal & Aowlad Hossain, 2021) developed an ensemble of shallow
CNNs to distinguish between COVID-19 positive and negative images,
attaining accuracies and sensitivities of 0.96 and 0.97 respectively.
(Ibrahim et al., 2021) developed a modified version of VGG16 — Norm-
VGG16 — which attains an accuracy and sensitivity of 0.978 and 0.967,
respectively. (Oyelade et al., 2021) propose a new deep learning
framework — CovFrameNet — that attains a recall of 0.85, F1 score of 0.9,
and specificity of 1.0 in detecting COVID-19. Alrahlal and KP developed
a fusion of ResNet-50 and gradient-boosting methods to classify COVID-
19/healthy with an accuracy of 0.9784 (Alrahhal & K P, 2021). Singh
and Kolekar attempted to address the computational expensiveness of
deep learning with a low-latency MobileNet model with an accuracy of
0.964 (Singh & Kolekar, 2021). Chaudhary and Pachori introduced a
Fourier-Bessel series decomposition method, which when combined
when ResNet50 attained accuracies of 0.976 and sensitivity of 0.97
(Chaudhary & Pachori, 2021). Table 1 summarizes the performance of
recent works involving deep learning for COVID-19 classification. Garg
et al. tackle a 3-class classification problem using ResNet50, attaining a
testing accuracy of 0.8889 (Garg et al., 2021). Li et al. use stacked
generalization ensemble learning with VGG16, attaining an accuracy,
sensitivity, specificity, precision, and F1 score of 0.9357, 0.9421,
0.9393, 0.8940, and 0.9174, respectively (Li et al., 2021). Finally,
Garain et al. used a spiking neural network based approach for classi-
fication, attaining a F1 score of 0.72 and precision of 0.63 (Garain et al.,
2021).

Table 1 provides a summary of recent deep learning methods for
COVID-19 diagnosis. Overall, the table and this section highlight two
core features: (1) the large variation and lack of consensus regarding
which base architecture to use for COVID-19 diagnosis and (2) the
dearth of works that use EfficientNet for diagnosis. By removing con-
founding factors stemming from dataset variations and fully examining
the EfficientNet class, our works establishes a consistent backbone for
future works.

3. Methods
3.1. Dataset

A dataset containing 4173 CT images of 210 different patients was
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Table 1
Summary of Recent Deep Learning Efforts for COVID-19 Classification from Chest Images.
Authors Mode  Methods Classes  Metrics
(Alrahhal and Supreethi, CT ResNet50 + AdaBoost 2 Accuracy: 0.9784
2021)
(Ardakani et al., 2020) CT AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, 2 Accuracy: 0.9951
ResNet-101, Xception Sensitivity: 1.00
Specificity: 0.9902
(Bougourzi et al., 2021) CT ResNet-50, DenseNet161, Inception-V3, Wide-ResNet + XGBoost 3 Accuracy: 0.8775
Covid Sensitivity: 0.9636
Pneumonia sensitivity:
0.5263
Normal Sensitivity: 0.9583
(Chaudhary & Pachori, 2021)  Xray Fourier-Bessel Series Decomposition + ResNet-50, AlexNet, NASNet, EfficientNet, Inception 2 Accuracy: 0.976
ResNet-v2 Sensitivity: 0.97
(Chowdhury et al., 2021) X-ray EfficientNetB1-5 2 Accuracy: 0.9607
Recall: 1.00
(Foysal & Aowlad Hossain, CT Ensemble of 3 Deep CNNs 2 Accuracy: 0.96
2021) Sensitivity: 0.97
(Garain et al., 2021) CT Spiking Neural Network F1 score: 0.74
Precision: 0.63
Recall: 0.92
(Garg et al., 2021) CT Multi-Scale Residual Network -+ Ensemble Classifier 3 Accuracy: 0.8889
(Ibrahim et al., 2021) CT Norm VGG16 + Hand Crafted Features 2 Accuracy: 0.978
Sensitivity: 0.967
(Jin et al., 2020) CT ResNet152 + UNet ++ 3 AUC: 0.9299
(Kamel et al., 2021) CT Global Thresholding + VGG19 2 Accuracy: 9831
Recall: 1.00
Precision: 0.9819
F1 score: 0.9864
(Kaya et al., 2021) CT VGG-16, EfficientNetB3, ResNet50, MobileNetv2 2 Accuracy: 0.979
(Li et al., 2021) CT Stacked Generalization Learning + VGG16 3 Accuracy: 0.9357
Sensitivity: 0.942
Specificity: 0.9393
(Marques et al., 2020) X-ray EfficientNetB4 3 Accuracy: 0.9670
Recall: 0.9669
(Muftuoglu et al., 2020) X-ray  Differential Privacy Practice via EfficientNetBO 2 Accuracy: 0.947
(Oyelade et al., 2021) CT CovFrameNet: Pipeline Image Preprocessing + Deep Neural Network Classification 2 Recall: 0.85
F1 score: 0.90
Specificity: 1.0
(Ozturk et al., 2020) Xray DarkCovidNet Both Multi-Class Accuracy:
0.8702
Binary Accuracy: 0.9808
(Singh & Kolekar, 2021) CT MobileNetv2 2 Accuracy: 0.9640
(Wang et al., 2021) CT ResNet152, DPN-92, Inception-v3 2 Accuracy: 0.9498
Sensitivity: 0.9406
(Wu et al., 2020) CT ResNet50 2 AUC: 0.819
Accuracy: 0.760
Sensitivity: 0.811
Specificity: 0.615
(Wu et al., 2021) CT Joint Classification and Segmentation 2 Sensitivity: 0.950
Specificity: 0.930
(Bai et al., 2020) CT EfficientNetB4 2 Accuracy: 0.87
Sensitivity: 0.89
Specificity: 0.86
(Yousefzadeh et al., 2020) CT EfficientNetB3 2 AUC: 0.954

obtained from a dataset entitled “A COVID multiclass dataset of CT
scans” on Kaggle (Soares, 2020). The dataset may further be triaged into
3 categories, comprised of 2168 images of 80 patients infected with
COVID-19 (~27 images/person), 758 images of 50 healthy patients
(~15 images/person), and 1247 images of 80 patients with other pul-
monary infections (~20 images/person). All images were grayscale in
nature, collected from patients in Sao Paulo, Brazil, and made freely
accessible through Kaggle by Soares (2020).

3.2. Data preprocessing

Data preprocessing is an essential step in ML because a model learns
to recognize patterns based on the data that it receives. To prevent data
leakage from the training dataset to test dataset, we adopted a patient-
wise split rather than an image-wise split. Particularly, we first sepa-
rated all patients into preliminary training and testing sets via 5-fold

cross-validation. Subsequently, all images belonging to the patients in
the preliminary training set were assigned to the training set and all
images corresponding to patients in the preliminary testing set were
assigned to the test set. This ensured that no images belonging to the
same patient were present in both the training and test set, thereby
removing any model confounding that may occur from a CNN learning a
patient’s chest shape or lung structure. Thus, this step ensured CNN
classifications were attributable to pathologies within the lung alone.
Secondly, additional preprocessing steps were introduced to scale the
generalizability of the proposed models (an analysis of performance on
alternate datasets is presented in Section 5). Particularly, all images in
the training dataset were augmented during run-time through the
addition of random rotations, horizontal shifts, vertical shifts, skews,
and sheers through built-in functions in Keras Image Data Generators.
Finally, all images in the training dataset were shuffled to increase
variance as the model advanced from one image to the next. A
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Table 2

Summary of Data Augmentation Techniques Applied.
Transformation Range
Pixel Rescaling Factor 1/255
Horizontal Flips Allowed True
Vertical Flips Allowed True
Zoom Range [0.85, 1.15]
Rotation Range [0°, 360°]

Width Shift Range
Height Shift Range
Shear Range

[-15%, 15%]
[-15%, 15%]
[—15%, 15%]

quantitative summary of the augmentations applied is presented in
Table 2.

3.3. Model development and training

A total of 20 models were trained and evaluated for the purposes of
this study. These models were derived from the following base models:
EfficientNetBO (Tan & Le, 2019), EfficientNetB1 (Tan & Le, 2019),
EfficientNetB2 (Tan & Le, 2019), EfficientNetB3 (Tan & Le, 2019),
EfficientNetB4 (Tan & Le, 2019), EfficientNetB5 (Tan & Le, 2019),
EfficientNetB6 (Tan & Le, 2019), EfficientNetB7 (Tan & Le, 2019),
ResNet50 (He et al.,, 2016b), ResNet50V2 (He et al, 2016a),
ResNet101V2 (He et al., 2016b), ResNet152V2 (He et al., 2016b),
InceptionV3 (Szegedy et al., 2016), InceptionResNetV2 (Szegedy et al.,
2017), Xception (Francois Chollet, 2017), DenseNet121 (Huang et al.,
2016), DenseNet169 (Huang et al., 2016), DenseNet201 (Huang et al.,
2016), VGG16 (Karen Simonyan* & Andrew Zisserman+, 2018), and
VGG19 (Karen Simonyan* & Andrew Zisserman+-, 2018). A summary of
each model family is presented in the Appendix. Many of these models
have obtaining state-of-the-art performance on the benchmark Image-
Net dataset (Deng et al., 2010). Given their exemplary performance, the
general model architecture was retained, and the weights initialized
using their versions from ImageNet. However, the final output SoftMax
layer was changed from a 1000-dimensional to 2-dimesnsional node to
make the models compatible for classification between COVID-19 pos-
itive images, healthy images, and images from other pulmonary in-
fections. Even though the network architecture was kept the same, the
entire model weights were trained from scratch using a Tesla V100-
SXM2-32 GB GPU on TensorFlow 2.3.0. This allowed us to ensure each
memory unit of the proposed model architecture was fine-tuned and
beneficial in classification, rather than a wasteful transmission of in-
formation that may often occur in transfer learning—especially in a sit-
uation like ours where images from ImageNet might not adapt well to CT
images.

A pilot study on a subset of the original dataset’s images was con-
ducted to identify the optimal hyperparameters to use for model
training. First, a custom loss function using label smoothing on top of
categorical cross entropy was used to train the network. By transforming
the otherwise hard class label assignments (0: COVID-19, 1: healthy, 2:
other) into soft label assignments, it reduced model overfitting and
increased its likelihood of generalizing better. To perform gradient
descent on our model, we relied upon the Adam Optimizer with a
learning rate of 0.0001. Next, we introduced a reduce learning rate on
plateau callback, which decreased the optimizer learning rate by a factor
of 0.5 after 3 consecutive epochs where the increases in performance
were 0.0001 or less. This increased our model’s capacity to converge to
the true local minimum as learning stagnated. Finally, we monitored the
performance of the model during each epoch by using a validation split
of [85,15] in the training data. A reference to the best performing model
state across all epochs was maintained and used for calculating the
performance on the testing dataset.

The performance of additional network modifications, including
model layers, dropout, and batch normalization, was experimentally
tested in a series of pilot studies. However, modifications typically
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resulted in performance reductions and consequently, we limited our
focus on core model families.

3.4. Model evaluation

Each model was trained and validated by running 25 rounds of 5-fold
cross-validation. The accuracy, specificity, sensitivity, precision, and F1
scores for each class were subsequently found. The average value of the
metrics over all rounds was then computed and their expected values
presented within a 95% confidence interval. A description of the metrics
is below:

TP + TN

Accuracy = TP+ TN L FP L EN @
Precision = % (2)
Specificity = % 3)
SensitivityorRecall = TPZ% @
—
where,

1) True Positive (TP) represents the model correctly classifying an
image from a particular class as that class.

2) True Negative (TN) represents the model correctly classifying an
image not belonging to a particular class as not being from that class.

3) False Positive (FP) represents the model incorrectly classifying an
image not belonging to a particular class as belonging to that class.

4) False Negative (FN) represents the case when a model incorrectly
classifies a model belonging to a particular class as not belonging to
that class.

Several factors were considered when identifying the more appro-
priate metrics by which to rank the model performance. In the case of
COVID-19 diagnosis, failing to classify a COVID-19 patient as having the
disease allows the disease to spread rapidly, exposing a greater number
of patients at risk. In contrast, if a COVID-19 negative patient is classi-
fied as positive, the error, albeit time and cost-invasive, may easily be
corrected in subsequent testing through PCR. Therefore, while all results
are presented, this paper attributes the greatest emphasis on the sensi-
tivity, i.e., the model’s ability to diagnose a COVID-19 positive patient as
having the disease correctly.

3.5. Visualization

Intermediate activation maps and GradCAMs (Selvaraju et al., 2020)
were used to identify which portions of the images the model is using to
make diagnoses. These visualizations become especially important when
considering the general stigma against ML and CNN’s black-box nature.
By offering human-interpretable insight into the procedures, the model
performs while making diagnoses, they effectively increase the chances
of being received favorably by human evaluators.

3.5.1. GradCAM:s

The GradCAMs were computed using the process outlined in (Sel-
varaju et al., 2020). First, we found the neuron importance weights:

-1 oy«

where A{-‘J— represents the activation map of the k th filter of a convolu-
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tional layer and Y* represents the probability of classifying class c. These
weights were then combined with the forward activation maps in a
weighted manner and then passed through a ReLU filter to obtain the
class discriminative saliency maps for the targeted image c.

L{; = ReLU*> _wiA; @)
k

After generating the GradCAMs, we computed the mean intensities of
the RGB-pixels of the generated heatmaps corresponding to regions
associated with high neuron importance weights that we found by
calculating the mean pixel intensity value for areas in the entire heat-
map image with intensities one standard deviation above the mean as
part of the mask.

The masks were first found using the base model’s heatmap image as
a template. The generated masks were then applied to both the base
model and the modified-network to compare localization and visuali-
zation abilities between the base models and modified-networks.

3.5.2. Feature map and filter visualization (intermediate activation maps)

To visualize intermediate feature maps for the network, we simply
iterated through layers in between the input and output layer of the CNN
and extracted the pixel values from each filter’s outputs. Over time the
model learned more specific features from the images, moving from
output representations like the input image to gradually towards dras-
tically different ones.

Intermediate activation maps operated from the principle that each
filter in a CNN learns different features. For example, the first filter in the
opening layer may be detecting vertical edges, horizontal edges, or color
gradients. As one moves deeper into the network, the results from
applying the filter from the preliminary layer generated a new array of
pixels representing a new “intermediate” image. This is passed to the
filter of the next layer, and over time the model can learn more complex
embeddings. However, the filters themselves were not manually
designed but instead learned by the model through the training process.
Thus, they offered a tremendous amount of insight into how the steps
undertaken by a model from going from an input image to its final
classification.

4. Results
4.1. COVID-19 positive classification

Table 3 summarizes the performance for all trained models in

Table 3

Expert Systems With Applications 195 (2022) 116540

classifying COVID-19 positive images. EfficientNetB5 attained the
highest F1 score, accuracy, and sensitivity, while DenseNet169 obtained
the greatest specificity and precision.

4.2. Healthy image classification

Table 4 summarizes the performance for all trained models in clas-
sifying healthy images. EfficientNetB5 attained the highest F1 score,
accuracy, sensitivity, specificity, and precision.

4.3. Classification of other pulmonary infections

Table 5 summarizes the performance for all trained models in clas-
sifying images of other pulmonary infections. EfficientNetB5 attained
the highest F1 score and accuracy, DenseNet121 obtained the greatest
sensitivity, and EfficientNetB6 got the largest specificity and precision.

4.4. Testing on alternative dataset

To determine the capacity of the model to scale to different datasets,
the top performing model (EfficientNetB5 for most tasks) was addi-
tionally deployed on a secondary dataset from Kaggle: COVID-CTset
(Mohammad et al., 2020), a large dataset containing 63,849 CT im-
ages from 377 patients (96 COVID-19 positive and 283 Covid-19 nega-
tive). To facilitate faster testing, we considered a subset of the data
comprised of 12,058 images from those 377 patients. On this newer
dataset the model obtained an accuracy of 0.9845 + 0.0109, F1 score of
0.9599 + 0.0251, sensitivity of 0.9682 + 0.0099, specificity of 0.9883 +
0.0150, and precision of 0.9526 + 0.0523. Note, the higher performance
on the alternate dataset, although shocking, is expected as it involves a
binary classification task, which is naturally a lot easier than a multi-
class classification task. This is particularly true for COVID-19, where
distinguishing between a lung infected with COVID-19 related pneu-
monia and one with a community acquired pneumonia might be diffi-
cult. This also demonstrates the scalability of our proposed network,
suggesting it may adapt to a wide variety of image types.

4.5. Brief note on algorithm execution time

2 tests were conducted to examine the execution time of the pro-
posed model (EfficientNetB5) for classification. The first test was con-
ducted on a Tesla V100-SXM2-32 GB GPU with 5120 cores and 32 GB of
RAM. This was the system used for model training. The second was done

Summary of model performance for COVID-19 classification. The best performing model in each metric is highlighted in green. EfficientNetB5 attained the greatest F1
score, accuracy, and sensitivity, whereas DenseNet169 obtained the highest specificity and precision.

Sensitivity

Specificity

Precision

# Model F1 Accuracy

1 DenseNet121 0.9709 + 0.0059 0.9699 + 0.0061
2 DenseNet169 0.9729 + 0.0065 0.9719 + 0.0067
3 DenseNet201 0.9733 £ 0.0058 0.9723 £ 0.0061
4 EfficientNetBO 0.9648 + 0.0051 0.9633 + 0.0054
5 EfficientNetB1 0.9300 =+ 0.0250 0.9276 + 0.0244
6 EfficientNetB2 0.9546 + 0.0062 0.9530 £ 0.0066
7 EfficientNetB3 0.9594 £ 0.0065 0.9580 + 0.0066
8 EfficientNetB4 0.9647 + 0.0072 0.9634 + 0.0074
9 EfficientNetB5 0.9769 + 0.0046 0.9759 + 0.0048
10 EfficientNetB6 0.9614 + 0.0053 0.9597 + 0.0056
11 EfficientNetB7 0.9448 + 0.0074 0.9432 + 0.0077
12 InceptionResNetV2 0.9450 + 0.0069 0.9427 + 0.0074
13 InceptionV3 0.9567 + 0.0070 0.9549 + 0.0072
14 ResNet101V2 0.9383 + 0.0107 0.9364 + 0.0116
15 ResNet152V2 0.9407 + 0.0099 0.9380 + 0.0107
16 ResNet50 0.9638 + 0.0061 0.9625 + 0.0062
17 ResNet50V2 0.9335 £ 0.0092 0.9308 =+ 0.0099
18 VGG16 0.8932 + 0.0107 0.8889 + 0.0111
19 VGG19 0.8673 + 0.0189 0.8558 + 0.0304
20 Xception 0.9491 + 0.0062 0.9470 + 0.0064

0.9655 + 0.0103
0.9683 + 0.0101
0.9703 + 0.0090
0.9658 + 0.0083
0.9323 + 0.0298
0.9476 + 0.0090
0.9552 + 0.0106
0.9637 £ 0.0113
0.9788 £ 0.0055
0.9661 + 0.0080
0.9397 £ 0.0131
0.9464 + 0.0124
0.9587 £+ 0.0117
0.9289 + 0.0156
0.9441 + 0.0158
0.9609 + 0.0104
0.9328 + 0.0154
0.8954 + 0.0190
0.8838 + 0.0219
0.9510 £+ 0.0118

0.9747 £ 0.0054
0.9759 £ 0.0072
0.9743 £ 0.0063
0.9608 + 0.0080
0.9226 + 0.0361
0.9590 + 0.0080
0.9613 + 0.0070
0.9635 + 0.0074
0.9730 + 0.0057
0.9532 + 0.0088
0.9475 =+ 0.0087
0.9392 £ 0.0097
0.9509 £ 0.0099
0.9450 + 0.0151
0.9315 £ 0.0185
0.9643 £ 0.0093
0.9292 + 0.0185
0.8828 + 0.0166
0.8247 + 0.0748
0.9432 + 0.0112

0.9767 £ 0.0047
0.9779 £ 0.0063
0.9766 + 0.0054
0.9644 + 0.0069
0.9350 + 0.0260
0.9622 + 0.0070
0.9642 + 0.0064
0.9663 + 0.0068
0.9751 + 0.0051
0.9573 + 0.0078
0.9511 =+ 0.0077
0.9443 + 0.0083
0.9554 £ 0.0087
0.9490 + 0.0128
0.9389 + 0.0139
0.9672 + 0.0084
0.9361 + 0.0143
0.8930 + 0.0136
0.8599 + 0.0337
0.9482 + 0.0096




A. Garg et al.

Table 4
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Summary of model performance for healthy image classification. The best performing model in each metric is highlighted in green. EfficientNetB5 attained the highest
F1 score, accuracy, sensitivity, specificity, and precision.

Sensitivity

Specificity

Precision

0.8043 + 0.0334
0.8045 + 0.0365
0.8055 + 0.0302
0.8259 + 0.0271
0.7875 + 0.0554
0.8481 + 0.0274
0.8332 £ 0.0268
0.8193 £ 0.0335
0.8488 + 0.0185
0.8465 £ 0.0291
0.8169 £ 0.0265
0.7918 £ 0.0370
0.7912 £ 0.0405
0.7677 + 0.0448
0.7931 + 0.0423
0.7961 + 0.0290
0.7824 + 0.0395
0.7984 + 0.0288
0.6499 + 0.0731
0.8013 £ 0.0354

0.9445 + 0.0102
0.9448 + 0.0100
0.9449 + 0.0111
0.9410 £ 0.0095
0.9207 + 0.0183
0.9357 £ 0.0102
0.9387 + 0.0098
0.9448 + 0.0097
0.9504 + 0.0118
0.9337 £ 0.0093
0.9383 £ 0.0096
0.9429 + 0.0104
0.9402 £ 0.0115
0.9333 £ 0.0108
0.9351 £ 0.0115
0.9442 + 0.0099
0.9358 + 0.0112
0.9208 + 0.0102
0.9248 + 0.0136
0.9436 + 0.0109

0.7700 =+ 0.0350
0.7704 £ 0.0330
0.7723 £ 0.0385
0.7651 + 0.0321
0.7041 £ 0.0445
0.7551 £ 0.0315
0.7606 + 0.0321
0.7744 £+ 0.0322
0.8010 + 0.0383
0.7448 + 0.0301
0.7538 £ 0.0315
0.7622 =+ 0.0360
0.7541 £ 0.0382
0.7234 £ 0.0364
0.7367 + 0.0384
0.7670 £ 0.0343
0.7379 £ 0.0346
0.6957 + 0.0280
0.6623 + 0.0341
0.7684 + 0.0377

Model F1 Accuracy
1 DenseNet121 0.7835 + 0.0263 0.9193 + 0.0099
2 DenseNet169 0.7835 + 0.0277 0.9195 + 0.0102
3 DenseNet201 0.7854 + 0.0281 0.9197 £ 0.0110
4 EfficientNetBO 0.7909 =+ 0.0247 0.9201 =+ 0.0099
5 EfficientNetB1 0.7307 + 0.0492 0.8965 + 0.0176
6 EfficientNetB2 0.7949 =+ 0.0241 0.9197 =+ 0.0099
7 EfficientNetB3 0.7912 £ 0.0233 0.9194 £ 0.0095
8 EfficientNetB4 0.7925 + 0.0276 0.9220 + 0.0106
9 EfficientNetB5 0.8217 + 0.0249 0.9322 + 0.0109
10 EfficientNetB6 0.7891 + 0.0242 0.9177 + 0.0099
11 EfficientNetB7 0.7810 £ 0.0243 0.9161 + 0.0100
12 InceptionResNetV2 0.7727 £ 0.0267 0.9154 + 0.0102
13 InceptionV3 0.7673 + 0.0295 0.9130 + 0.0112
14 ResNet101V2 0.7408 + 0.0347 0.9035 £ 0.0116
15 ResNet152V2 0.7596 + 0.0329 0.9093 + 0.0120
16 ResNet50 0.7784 £ 0.0253 0.9174 £ 0.0101
17 ResNet50V2 0.7548 £ 0.0283 0.9081 =+ 0.0106
18 VGG16 0.7414 £ 0.0226 0.8986 =+ 0.0100
19 VGG19 0.6639 =+ 0.0309 0.8749 + 0.0120
20 Xception 0.7806 + 0.0291 0.9179 £ 0.0113
Table 5

Summary of model performance for classification of non-Covid pulmonary infections. The best performing model in each metric is highlighted in green. EfficientNetB5

attained the highest F1 score and accuracy, DenseNet201 the greatest sensitivity, and EfficientNetB6 the highest specificity and precision.

Sensitivity

Specificity

Precision

# Model F1 Accuracy

1 DenseNet121 0.8239 + 0.0242 0.8966 + 0.0131
2 DenseNet169 0.8245 + 0.0244 0.8971 + 0.0128
3 DenseNet201 0.8262 + 0.0256 0.8989 + 0.0133
4 EfficientNetBO 0.8207 + 0.0249 0.8980 + 0.0129
5 EfficientNetB1 0.7482 + 0.0535 0.8623 + 0.0244
6 EfficientNetB2 0.8121 + 0.0246 0.8931 £ 0.0127
7 EfficientNetB3 0.8170 £ 0.0243 0.8952 + 0.0129
8 EfficientNetB4 0.8288 + 0.0247 0.9009 =+ 0.0138
9 EfficientNetB5 0.8385 + 0.0278 0.9077 + 0.0140
10 EfficientNetB6 0.8157 + 0.0200 0.8963 + 0.0103
11 EfficientNetB7 0.8038 + 0.0210 0.8856 + 0.0111
12 InceptionResNetV2 0.7919 + 0.0239 0.8790 + 0.0123
13 InceptionV3 0.7963 + 0.0286 0.8824 + 0.0150
14 ResNet101V2 0.7837 + 0.0279 0.8717 + 0.0163
15 ResNet152V2 0.7835 + 0.0254 0.8766 + 0.0123
16 ResNet50 0.8177 + 0.0241 0.8933 £ 0.0128
17 ResNet50V2 0.7697 £ 0.0275 0.8668 + 0.0138
18 VGG16 0.6865 =+ 0.0299 0.8240 + 0.0136
19 VGG19 0.6346 + 0.0303 0.7840 + 0.0162
20 Xception 0.8017 + 0.0299 0.8854 + 0.0159

0.8188 + 0.0313
0.8188 + 0.0313
0.8178 + 0.0344
0.7976 + 0.0300
0.7210 + 0.0571
0.7901 £ 0.0311
0.7979 £ 0.0310
0.8143 £ 0.0301
0.8172 £ 0.0367
0.7747 £ 0.0273
0.7905 =+ 0.0277
0.7798 + 0.0303
0.7799 £ 0.0367
0.7818 + 0.0311
0.7600 + 0.0381
0.8114 + 0.0323
0.7552 + 0.0355
0.6544 + 0.0392
0.6011 + 0.0692
0.7863 £ 0.0360

0.9293 =+ 0.0100
0.9301 £ 0.0108
0.9325 £ 0.0091
0.9401 + 0.0088
0.9221 + 0.0180
0.9363 + 0.0095
0.9360 + 0.0099
0.9373 £ 0.0131
0.9458 + 0.0084
0.9483 + 0.0064
0.9262 + 0.0106
0.9210 £ 0.0099
0.9254 £ 0.0123
0.9101 £ 0.0163
0.9258 + 0.0115
0.9279 + 0.0096
0.9137 +£ 0.0118
0.8959 + 0.0146
0.8613 + 0.0208
0.9268 + 0.0122

0.8315 £ 0.0234
0.8333 £ 0.0243
0.8374 £+ 0.0213
0.8483 + 0.0233
0.7889 =+ 0.0463
0.8398 + 0.0233
0.8414 + 0.0234
0.8496 + 0.0280
0.8643 + 0.0225
0.8648 + 0.0166
0.8235 £ 0.0235
0.8073 £ 0.0245
0.8177 £ 0.0275
0.7900 £ 0.0340
0.8154 + 0.0244
0.8272 £ 0.0232
0.7888 + 0.0273
0.7304 + 0.0305
0.6535 + 0.0284
0.8210 + 0.0289

on a personal household computer: Dell XPS 13 with 16 GB of RAM and
Intel(R) Core(TM) i7-10710U CPU @ 1.10 GHz processor. For each de-
vice, the model was used to predict 1000 images. The Tesla V100-SXM2-
32 GB GPU took a total of 80.897427 s for prediction with an average of
0.0808974 s/image. The Dell XPS 13 computer took a total of
490.48266 s for prediction with an average of 0.49048266 s/image. The
model scripts were configured to be compatible with both GPU and CPU
based environments with simply a one word change in keyword argu-
ments, providing seamless integrability regardless of computational
resources available.

4.6. Brief note on algorithm training time

All models were trained on a Tesla V100-SXM2-32 GB GPU for a total
of 25 epochs. Each epoch of training took approximately 140 s when
training on 3336 images belonging to 3 different classes. Hence
depending on the number of epochs chosen, the model may take any-
where from 20 min to 3 h to train. Note: although we replicated our
training process for 25 rounds to gain statistical significance and con-
fidence in our predictions, hospitals need not conduct similar analyses.

In cases where a hospital does not have the computational resources
needed to train the models themselves, they may easily outsource
training to computational clusters like Google Cloud, Microsoft Azure,
or Amazon AWS for a marginal cost. Once trained, the model states and
weights can easily be downloaded both in its native format or in a
lightweight TensorFlow Lite format, which may be easily embedded on
edge devices with limited computational resources. Once embedded, the
model does offer high performance speeds as discussed in section 4.5.

5. GradCAM visualization

This section visualizes the GradCAMs, comparing them between
COVID-19 positive patients and COVID-19 negative patients. It is
evident from Fig. 1 that the networks indeed focused upon features
radiologically recognized as being suggestive of lung involvement in
COVID-19 in cases with high pre-test probabilities for making classifi-
cations with high accuracy. These images are generated for Effi-
cientNetB5, DenseNet169, ResNet50, InceptionV3, Xception, and
VGG16, for the best performing models in each family. We note that
while the generated heatmaps were specific and localized when
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COVID-19 Negative COVID-19 Positive

Fig. 1b: EfficientNet-BS

Fig. 1i: VGG16 Fig. 1j: VGG16

Fig. 1k: Xception Fig. 11: Xception

Fig. 1. Comparison of GradCAM Visualizations between COVID-19 Positive and COVID-19 negative images. We see that the saliency maps are much more diffuse and
spread out throughout the image in the case of non-COVID images, which suggests that the model was unable to pinpoint regions that would hint towards the
presence of COVID-19.
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visualizing COVID-19, they tended to become more diffused and spread
out for almost all models when visualizing non-COVID-19 images.

6. Intermediate activation maps

Fig. 2 shows the complexity of these maps that evolve with time. In
the early stages of the network (Fig. 2b, c), the model starts to learn basic
feature maps from the image, such as their edges, color gradients, etc. In
layers near the middle of these models (Fig. 2d-f), these maps get
significantly more complicated, picking up on ground-glass opacities,
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Fig. 2. Intermediate Activation Maps:
From 4 to image sub slices from the
intermediate activation maps, we can
see the progression of the model’s
learning behavior. The model pro-
gresses from maps similar to input
images during its early layers (Fig. 2b)
towards maps of  increasing
complexity as the layer depth in-
creases (Fig. 2f-h). Near the final
layers of the model, the maps hint
towards generative activity as the
model constructs images similar to the
input image from largely simplified
pixelated maps that precede it. Fig. 2.1
represents the final activation map
used before the model prediction. We
can note the model ability to close-in
upon and depict small pixels and
voxels in the input image.

Block2e activation

Fig. 2c. Layer 101

Block 4e_se expand
Fig.2f. Layer 251

Dense (Final Layer)
Fig. 21. Layer 571

consolidations, and crazy paving patterns as noted in the highlighted
sections of greater vibrance. Gradually, these embeddings become more
and more complex, veering from being human interpretable towards
features only understandable by a computer (Fig. 2g, h). In the later
stages of network (Fig. 2i-k), the image complexity appears to stagnate,
and the model starts reconstructing images that resemble the input. This
functionality hints towards generative activity within the model, where
the reconstructed images more dominantly represent characteristics
useful in diagnosing COVID-19. Moreover, the clarity in maps even
farther into the network reaffirms that our model isn’t overfitting
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strongly, for in such a case, final maps would be entirely black (sug-
gesting no activity) or stop evolving at all. Nonetheless, the lower rates
of map evolution post layer 450 does hint towards mild overfitting.
Although additional work is required to fully establish the trends be-
tween activation maps and overfitting, including optimal policies for
stopping training, this study establishes precedent for such work.
Overall, these maps with their invaluable insight show how the model
learns, playing an equally important role as GradCAMs, the current
visualization scheme of choice.

Next, we compare the activation maps between COVID-19 positive
and negative images. In Fig. 3, we note that the activation maps for
COVID-19 positive images tend to focus on more intricate lung patterns
like paving patterns, ground class opacities, and consolidations, whereas
the feature maps for COVID-19 negative cases are less detailed and have
a more uniform pattern. The maps become increasingly localized at later
layers, indicating that the model closely examines each minute pattern
and opacity on the lung before classifying a patient.

7. Proposed network architecture

The entire EfficientNet-B5 architecture is 571 layers long and is
summarized through the use of modules and sub-blocks in Fig. 4. At the
core of EfficientNet-B5 rest the following characteristics: (1) a highly
accurate and efficient architecture found by performing a neural ar-
chitecture search via the AutoML MNAS framework (Tan et al., 2018).
(2) A strategic and low latency use of the mobile inverted bottleneck
convolution similar to that in MobileNet (Howard et al., 2017). (3) A
systematic compound model scaling approach for maximizing perfor-
mance gains within strict resource and computational limitations (Tan &
Le, 2019). Altogether, these features allow ML practitioners to optimize
small networks using neural architecture search, which saves time and
resources, and then scale them accordingly to provide higher perfor-
mance. These characteristics allow for both a computational efficient
network architecture and high accuracy, qualities that are both essential
given the low computation resources available in hospitals and need for
high model performance to reduce false positive/negatives.

Opening Lavyer (Convl):

Intermediate Layer (54)
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Furthermore, the enhancements in the proposed architecture stem
from a systematic use of neural architecture search and compound
scaling, qualities which may be applied for any field like brain tumor
diagnosis and facial recognition, not just COVID-19 diagnosis. This is
reflected in our performance results on alternate datasets as well as in
EfficientNetsB5’s extraordinary performance on the ImageNet datasets.
More information regarding EfficientNets and equations used for
upscaling can be found in the Appendix.

8. Discussion

The CNNs showed a large increase in the sensitivity of COVID-19
diagnosis using CT scans (0.9769 for a 3-class classification test) in
comparison to RT-PCR (0.71 for a simpler binary-classification test)
(Fang et al., 2020). As proposed, the EfficientNet family performed
exceedingly well for diagnosis, attaining 6 out of the top 9 F1 scores
amongst all models for COVID-19 classification, 7 out of the top 8 F1
scores for classifying healthy images, and 7 out of the top 11 F1 scores
for classifying images of other pulmonary infections.

The proposed model of choice, EfficientNetB5 obtained the highest
F1 score, accuracy, and sensitivity for COVID-19 positive images; the
highest F1 score, accuracy, sensitivity, specificity, and precision for
healthy images, and the highest F1 score and accuracy for images of
other pulmonary infections. It was consistently the most balanced
classifier as shown by its consistently highest F1 scores and showed
consistently high levels of performance for all classification categories.
In an environment dominated with COVID-19, mitigating secondary
infections is critical and one must ensure an infected patient isn’t cate-
gorized as healthy, hence sensitivity was considered an extremely
important metric. With a sensitivity of 0.9788 <+ 0.0055,
EfficientNetB5's performance was significantly higher than all other
models considered within a confidence level of 95%. The high-
performance gains from EfficientNetB5 and its computational effec-
tiveness strongly advance our proposal for a more uniform usage of
EfficientNets for COVID-19 classification tasks.

Other notable models from the EfficientNet class are EfficientNetBO

Near-Ending Layer (119)

COVID-19
Positive

COVID-19
Negative

block sepconvy

Block13 sepcovnvl bn

Fig. 3. Comparison of intermediate activate maps for COVID-19 positive versus COVID-19 negative images. We note that while the activation patterns for COVID-19
positive images tend to capture lung opacities, the patterns for non-COVID-19 images are a bit simpler and uniform. Once again, near the later layers of the model, the

feature maps become increasingly uninterpretable.
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Fig. 4. Summary of EfficientNetB5 Architecture.

and EfficientNetB5. The former, EfficientNetBO, although the smallest
model in size (43.24 MB) obtained the 2nd highest F1 scores for COVID-
19 classification amongst the EfficientNet family and 5th highest over-
all; 5th highest F1 score for healthy image classification overall; and 6th
highest F1 score overall for classifying other pulmonary infections.
Given that these machine learning models are to be deployed in hospi-
tals with potentially limited computational resources, EfficientNetBO
thus provides a network simple to deploy on edge devices with limited
computing resources.

Although EfficientNet-B5 was consistently the most balanced clas-
sifier, we would be remiss to not acknowledge the potential of Dense-
Nets, which offered two significant advantages: high model performance
with low network size. DenseNet121, DenseNet169, and DenseNet201
had sizes of 81.8 MB, 146.3 MB, and 211.21 MB, respectively, signifi-
cantly lower the current predominantly used model of choice: ResNet50
(270.54 MB). Moreover, they outperformed ResNet50 in every single
classification metric (F1 score, accuracy, sensitivity, specificity, and
precision) and category (COVID-19 positive, healthy, other pulmonary

infections). Finally, DenseNet201 was model with the highest sensitivity
(0.8188 + 0.0313) in classifying other pulmonary infections and Den-
seNet169 had the highest specificity (0.9759 + 0.0072) and precision
(0.9779 + 0.0063) for COVID-19 positive images. Altogether, DenseNets
are another promising yet underutilized class for COVID-19 diagnosis.

Our use of GradCAMs and intermediate activation maps, we
increased the interpretability of our model. In particular, our use of
GradCAMs allowed us to hone in on and understand which portions of
input images were most essential to model classification. On the other
hand, intermediate activation maps allowed users to “peek” into CNN’s
black-box hood and understand intermediary steps that it was taking, an
invaluable tool for both debugging networks and destigmatizing their
use. Finally, the performance of our model on an alternative dataset and
its computational time (~0.1 s on GPUs and ~ 0.5 s on CPUs) were both
positive indicators of its applications. Particularly, its ability to perform
on different dataset formats and provide rapid, accurate results speaks to
its generalizability and larger avenues for deployment.

Although the models developed in this paper can offer high
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accuracies for COVID-19 diagnosis, several technological, economic, reducing their workloads.

medical, and psychological factors must be considered before deploying

them in real-time environments. First, although our network modifica- 9. Conclusion

tions and visualization schemes allow for greater insight into model

learning, deep learning still holds elements its black-box nature. Thus, it In summary, our project presents a thorough analysis of This study

is hard to pinpoint changes in model performance from changes in successfully presented a thorough analysis of the use of traditional and

network structure and weights. This can make generalization and scal- custom ML techniques, specifically CNN architectures, for COVID-19

ability to machines universally challenging. Secondly, CT scans cost detection based on chest CT. Our results highlighted the potential for

significantly higher than a regular RT-PCR test. This consideration may using EfficientNets and DenseNets for COVID-19 diagnosis purposes,

make it cost-prohibitive and difficult to include in everyday practices. encouraging their use in an environment where they are vastly

Thirdly, CT has an unspoken ionizing radiation cost associated with it. underutilized. With the backlog of PCR tests, causing results to take

Exposure to chest CT greatly increases one’s chances of acquiring ma- anywhere from 6 h to 4 days to reach patients, our work presents an

lignancy in subsequent years and therefore is not always an optimal optimized machine learning framework for streamlining that bottle-

choice of testing. Fourthly, deployment of Al-based systems in hospitals neck, helping control the spread of the disease and bringing the world

is routinely critiqued and stigmatized because of their potential psy- towards normalcy.

chological impacts on individuals. Doctors not only help diagnose pa-

tients, but also offer them emotional support and pragmatic advice on Funding

dealing with the disease. The currently designed machine learning

models, however, only offer a numerical output, which can be demor- This work was supported by the National Science Foundation under

alizing for patients without proper guidance from doctors and clinicians. Award Number 2027456 (COVID-ARC).

Finally, some families may be skeptical of results obtained from a

computer-based system versus a doctor with years of experience. As a CRediT authorship contribution statement

result, while the current model is a useful tool in assisting doctors in
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Given these factors, although the results of this study are useful in an Visualization. Sana Salehi: Validation, Writing — review & editing,

academic setting, a close examination of a location’s health system may Supervision. Marianna La Rocca: Writing — review & editing, Super-
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diagnosis, as the risks of letting COVID-19 spread have been deemed Declaration of Competing Interest
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down the line. For such patients, our proposed system not only helps The authors declare that they have no known competing financial
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Appendix

This section provides a basic overview of the machine learning model families we considered in our paper.
EfficientNets

Proposed by Mingxing Tan and Quoc V. Le (Tan & Le, 2019), EfficientNets have quickly revolutionized the current standing of computer vision,
providing not only high accuracy results, but attaining them with computational complexities orders of magnitude (8.4x smaller and 6.1x faster) lower
than the best ConvNets. They proposed a novel ConvNet scaling framework, adjusting the width (the number of channels in network layers), depth
(number of layers in the CNN), and resolution (the input image size into the model) systematically. Particularly, if

depth,d = a® ,widthw = p*; andresolutionr = y? ,s.t.a***y* ~ 2, (8)

then the model may be scaled by adjusting based on the available computational resources. The base network for EfficientNet is determined by
performing neural architecture search over the AutoML MNAS Framework. This allows EfficientNets to take advantage of a optimized small network,
which is both cost and time efficient to compute and scaling procedures which boost performance. Given the need for rapid diagnosis and limited
computational capacities for obtaining them, we hypothesized EfficientNets would be the most promising form of diagnosis.

ResNets
Proposed by He et al. (2016b), ResNets are arguably the most popular CNN architectures for image recognition tasks today. Their strength, the
residual learning framework capable of transmitting gradients despite great depths by skip connections and batch-normalization, has rapidly been

applied into numerous modern architectures today. This paper considers four types of ResNet architectures: ResNet50, ResNet50V2, ResNet101V2,
and ResNet152V2 (Note: for this paper, InceptionResNetV2 is grouped in the InceptionNet category along with InceptionV3 and Xception).

11
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DenseNets

Proposed by Huang et al. (2016) DenseNets introduce the idea of connecting every layer to every other layer in a feed-forward fashion. This, in
turn, allows them to avoid the vanishing-gradient problem, reduce training parameters, and improve feature transmission (Huang et al., 2016). Given
their clever design, they are yet another popular CNN of choice. This study considers 3 DenseNet models: DenseNet121, DenseNet169, and Dense-
Net201 in order of increasing parameter size.

InceptionNet & Xception

Proposed by Svegedy et al. (Szegedy et al., 2015), InceptionNets advance the concept of building CNNs using blocks instead of just convolutional
layers, a framework most modern networks utilize. Moreover, they decomposed convolutional operations into spatially separable ones for improved
computational resources utilization, increasing both the depth and width of the model while keeping computational costs static. In a subsequent study
by Szegedy et al. (2016), they jointly capitalized on InceptionNet’s module-based architecture and the residual connections from ResNets to propose
InceptionResNetV2, a powerful model combining the best features from ResNet and InceptionNet. Finally, Francois Chollet (2017) expanded upon
InceptionNets in his work Xception: Deep Learning with Depthwise Separable Convolutions, replacing inception modules with depthwise separable
convolutions (a depthwise convolution and then a pointwise convolution). This work examines two models from the InceptionNet class (Incep-
tionNetV2, InceptionResNetV2) and Xception.

VGG

Proposed by Karen Simonyan and Andrew Zisserman (Karen Simonyan* & Andrew Zisserman+, 2018), VGG’s primary contribution was to
experiment with increasing model depth and seeing its impact on model performance. We trained two forms of VGGs: VGG16 and VGG19.
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