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A B S T R A C T   

With coronavirus disease 2019 (COVID-19) cases rising rapidly, deep learning has emerged as a promising 
diagnosis technique. However, identifying the most accurate models to characterize COVID-19 patients is 
challenging because comparing results obtained with different types of data and acquisition processes is non- 
trivial. In this paper we designed, evaluated, and compared the performance of 20 convolutional neutral net
works in classifying patients as COVID-19 positive, healthy, or suffering from other pulmonary lung infections 
based on chest computed tomography (CT) scans, serving as the first to consider the EfficientNet family for 
COVID-19 diagnosis and employ intermediate activation maps for visualizing model performance. All models are 
trained and evaluated in Python using 4173 chest CT images from the dataset entitled “A COVID multiclass 
dataset of CT scans,” with 2168, 758, and 1247 images of patients that are COVID-19 positive, healthy, or 
suffering from other pulmonary infections, respectively. EfficientNet-B5 was identified as the best model with an 
F1 score of 0.9769 ± 0.0046, accuracy of 0.9759 ± 0.0048, sensitivity of 0.9788 ± 0.0055, specificity of 0.9730 
± 0.0057, and precision of 0.9751 ± 0.0051. On an alternate 2-class dataset, EfficientNetB5 obtained an ac
curacy of 0.9845 ± 0.0109, F1 score of 0.9599 ± 0.0251, sensitivity of 0.9682 ± 0.0099, specificity of 0.9883 ±
0.0150, and precision of 0.9526 ± 0.0523. Intermediate activation maps and Gradient-weighted Class Activation 
Mappings offered human-interpretable evidence of the model’s perception of ground-class opacities and con
solidations, hinting towards a promising use-case of artificial intelligence-assisted radiology tools. With a pre
diction speed of under 0.1 s on GPUs and 0.5 s on CPUs, our proposed model offers a rapid, scalable, and accurate 
diagnostic for COVID-19.   

1. Introduction 

The reverse transcription-polymerase chain reaction, RT-PCR, is 
currently considered to be the gold-standard for COVID-19 diagnosis. 
However, the rapid increase in COVID-19 cases, delay in obtaining PCR 
results, and strict requirements for testing environments make the fast 
and effective screening of suspected cases challenging (Islam et al., 
2021). Moreover, PCR’s low sensitivity, or high false-negative rate, re
sults in many COVID-19 positive patients incorrectly being diagnosed as 
negative, further exacerbating the disease spread. In particular, a recent 
study by Feng et al. revealed a sensitivity of 0.71 for PCR tests, much 
lower than targeted sensitivity for effectively containing the spread of 

the virus (Fang et al., 2020). 
Radiological imaging via X-ray radiography and computed tomog

raphy (CT) has emerged as a promising alternative form of diagnosis due 
to its ability to visualize lung structures. Imaging already serves as a 
quintessential factor by triaging confirmed COVID-19 cases on the basis 
of the severity of lung involvement (Dong et al., 2021). However, 
manual readings of scans are prone to error and time-consuming. The 
use of machine learning (ML) and artificial intelligence (AI) algorithms 
that can learn from data without the need for explicit programming 
offers a promising avenue for meeting the high costs and radiologist 
shortages surrounding CT imaging. While human readings of CT scans 
can take upwards of 15 min, ML-based algorithms can analyze images 
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within a few seconds. Moreover, with developments in computer vision 
and computational resources, state-of-the-art convolutional neural 
network (CNN) architectures may reach specificities, sensitivities, and 
accuracies of as high as 0.992, 1.00, and 0.995, respectively in dis
tinguishing between COVID-19 and non-COVID-19 lung CT images 
(Islam et al., 2021). 

With the diverse array of available models for diagnosis, identifying 
the most optimal has become a valued yet incredibly challenging task. 
Although several literature reviews consider the use of ML and AI for 
COVID-19 diagnosis and severity assessment, they presented models 
trained on different datasets, evaluated with varying metrics, and 
focusing on different goals – binary classification vs. multiclass classi
fication, classification vs. segmentation, etc. (Islam et al., 2021; Lal
muanawma et al., 2020; Ozturk et al., 2020; Waleed Salehi et al., 2020; 
Xiong et al., 2020). In contrast, our paper presents 20 ML models trained 
on a fixed dataset, evaluates their performance through metrics such as 
specificity, sensitivity, accuracy, F-1 scores, and applies visualization 
techniques such as Gradient-weighted Class Activation Mappings 
(GradCAMs) and intermediate activation maps to highlight core features 
such as ground-glass opacities, consolidations, crazy paving patterns, 
and linear opacities in the input CT images that the model used for 
making predictions. 

Moreover, EfficientNets, with their markedly smaller network sizes 
and extremely high accuracies in the ImageNet dataset, (Deng et al., 
2010) have rapidly become a go-to choice for image-recognition tasks 
with ML. However, to the best of our knowledge, this paper is the first to 
consider the entire EfficientNet family of CNN architectures for diag
nosis on CT images. Although a limited number of studies have directed 
their attention to this nascent CNN architecture, they restrict their 
consideration to chest X-ray images (Chowdhury et al., 2021; Marques 
et al., 2020; Muftuoglu et al., 2020). While X-ray radiography is cheaper 
and more universally accessible, CT imaging is preferred over X-ray for 
diagnoses because of its detailed cross-sectional images (Kim et al., 
2020; Ye et al., 2020). Moreover, the yet fewer studies which train 
EfficientNets on CT images limit their study to EfficientNetB3 and Effi
cientNetB4, leaving the remaining models EfficientNetB0, Effi
cientNetB1, EfficientNetB2, EfficientNetB5, EfficientNetB6, and 
EfficientNetB7 unexplored in terms of their COVID-19 diagnosing abil
ities (Xiong et al., 2020; Yousefzadeh et al., 2020). Given that many of 
the larger EfficientNet architectures acquire the highest accuracy on the 
ImageNet dataset, this study includes them for comparative purposes 
and hopes of attaining higher performance. 

Finally, this paper is the first to visualize intermediate activation 
maps for COVID-19 diagnosis. Although the conventional visualization 
framework—GradCAMs—are useful for localizing abnormalities in 
input images, they do not offer insight into the model’s learning process. 
In contrast, intermediate activations help understand how successive 
CNN filters transform their inputs and get a more thorough under
standing of individual CNN filters and the model learning behavior 
(Francois Chollet, 2017). 

In summary, the contributions of our paper are multifaceted. Firstly, 
we offer a standardized basis for comparing 20 state-of-the-art neural 
network architectures, a feat infeasible to accomplish given the varia
tion in datasets used, goals, and metrics reported. Secondly, we popu
larize the use of EfficientNets by including the entire family for 
classification purposes and demonstrating the improvements it offers for 
COVID-19 diagnosis. Finally, we propose a new visualization mecha
nism involving both intermediate activation maps and GradCAMs. These 
allow users to both observe key infection regions within the lung that the 
ML models used for diagnosis and dispel the stigma surrounding the 
black-box nature of ML algorithms by offering insight into the model 
learning process. 

The rest of this paper is organized as follows: Section 2 delves deeper 
into recent works regarding using deep learning techniques for COVID- 
19, highlighting the volume of research within the field and remaining 
gaps of weakness. Section 3 introduces the methodology used for dataset 

accumulation and processing, model training and evaluation, and 
visualization. Section 4 presents the testing results from the models 
trained. Section 5 presents the visualizations from GradCAMs. Section 6 
presents the visualization results from the intermediate activation maps. 
Section 7 presents the neural network architecture for the best per
forming model. Section 8 discusses and analyzes the findings as well as 
acknowledging any limitations. Finally, Section 9 concludes the paper, 
summarizes its findings, and suggests directions for future work. 

2. Related works 

Since the introduction of deep learning-based techniques for COVID- 
19 in a work by Wu et al., several works have been dedicated to eval
uating their efficacy (Wu et al., 2020). For example, Butt et al. consid
ered the use of ResNet18 attaining an accuracy of 0.867, sensitivity of 
0.815, precision of 0.808, and F1 score of 0.811 (Butt et al., 2020). In 
(Wang et al., 2021) and (Jin et al., 2020), the authors trained and 
evaluated ResNet152, DPN-92, Inception-v3, ResNet50, and Attention 
ResNet-50 with U-Net++, reaching accuracies and sensitivities as high 
as 0.9498 and 0.9406, respectively. Similarly works by Yousefzadeh 
et al. and Aradakani et al. extended these efforts further by collectively 
training DenseNets, Xception, EfficientNetB0, AlexNet, VGG-16, VGG- 
19, Squeeze Net, Google Net, and MobileNet-V2 for COVID-19 diagnosis, 
reaching sensitivities as high as 1.00 and accuracies as high as 0.9951 for 
diagnosis (Ardakani et al., 2020; Yousefzadeh et al., 2020). 

More recently, works have instead focused on developing novel 
machine learning pipelines for COVID-19 classification. For instance, 
(Foysal & Aowlad Hossain, 2021) developed an ensemble of shallow 
CNNs to distinguish between COVID-19 positive and negative images, 
attaining accuracies and sensitivities of 0.96 and 0.97 respectively. 
(Ibrahim et al., 2021) developed a modified version of VGG16 – Norm- 
VGG16 – which attains an accuracy and sensitivity of 0.978 and 0.967, 
respectively. (Oyelade et al., 2021) propose a new deep learning 
framework – CovFrameNet – that attains a recall of 0.85, F1 score of 0.9, 
and specificity of 1.0 in detecting COVID-19. Alrahlal and KP developed 
a fusion of ResNet-50 and gradient-boosting methods to classify COVID- 
19/healthy with an accuracy of 0.9784 (Alrahhal & K P, 2021). Singh 
and Kolekar attempted to address the computational expensiveness of 
deep learning with a low-latency MobileNet model with an accuracy of 
0.964 (Singh & Kolekar, 2021). Chaudhary and Pachori introduced a 
Fourier-Bessel series decomposition method, which when combined 
when ResNet50 attained accuracies of 0.976 and sensitivity of 0.97 
(Chaudhary & Pachori, 2021). Table 1 summarizes the performance of 
recent works involving deep learning for COVID-19 classification. Garg 
et al. tackle a 3-class classification problem using ResNet50, attaining a 
testing accuracy of 0.8889 (Garg et al., 2021). Li et al. use stacked 
generalization ensemble learning with VGG16, attaining an accuracy, 
sensitivity, specificity, precision, and F1 score of 0.9357, 0.9421, 
0.9393, 0.8940, and 0.9174, respectively (Li et al., 2021). Finally, 
Garain et al. used a spiking neural network based approach for classi
fication, attaining a F1 score of 0.72 and precision of 0.63 (Garain et al., 
2021). 

Table 1 provides a summary of recent deep learning methods for 
COVID-19 diagnosis. Overall, the table and this section highlight two 
core features: (1) the large variation and lack of consensus regarding 
which base architecture to use for COVID-19 diagnosis and (2) the 
dearth of works that use EfficientNet for diagnosis. By removing con
founding factors stemming from dataset variations and fully examining 
the EfficientNet class, our works establishes a consistent backbone for 
future works. 

3. Methods 

3.1. Dataset 

A dataset containing 4173 CT images of 210 different patients was 
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obtained from a dataset entitled “A COVID multiclass dataset of CT 
scans” on Kaggle (Soares, 2020). The dataset may further be triaged into 
3 categories, comprised of 2168 images of 80 patients infected with 
COVID-19 (~27 images/person), 758 images of 50 healthy patients 
(~15 images/person), and 1247 images of 80 patients with other pul
monary infections (~20 images/person). All images were grayscale in 
nature, collected from patients in Sao Paulo, Brazil, and made freely 
accessible through Kaggle by Soares (2020). 

3.2. Data preprocessing 

Data preprocessing is an essential step in ML because a model learns 
to recognize patterns based on the data that it receives. To prevent data 
leakage from the training dataset to test dataset, we adopted a patient- 
wise split rather than an image-wise split. Particularly, we first sepa
rated all patients into preliminary training and testing sets via 5-fold 

cross-validation. Subsequently, all images belonging to the patients in 
the preliminary training set were assigned to the training set and all 
images corresponding to patients in the preliminary testing set were 
assigned to the test set. This ensured that no images belonging to the 
same patient were present in both the training and test set, thereby 
removing any model confounding that may occur from a CNN learning a 
patient’s chest shape or lung structure. Thus, this step ensured CNN 
classifications were attributable to pathologies within the lung alone. 
Secondly, additional preprocessing steps were introduced to scale the 
generalizability of the proposed models (an analysis of performance on 
alternate datasets is presented in Section 5). Particularly, all images in 
the training dataset were augmented during run-time through the 
addition of random rotations, horizontal shifts, vertical shifts, skews, 
and sheers through built-in functions in Keras Image Data Generators. 
Finally, all images in the training dataset were shuffled to increase 
variance as the model advanced from one image to the next. A 

Table 1 
Summary of Recent Deep Learning Efforts for COVID-19 Classification from Chest Images.  

Authors Mode Methods Classes Metrics 

(Alrahhal and Supreethi, 
2021) 

CT ResNet50 + AdaBoost 2 Accuracy: 0.9784 

(Ardakani et al., 2020) CT AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, 
ResNet-101, Xception 

2 Accuracy: 0.9951 
Sensitivity: 1.00 
Specificity: 0.9902 

(Bougourzi et al., 2021) CT ResNet-50, DenseNet161, Inception-V3, Wide-ResNet + XGBoost 3 Accuracy: 0.8775 
Covid Sensitivity: 0.9636 
Pneumonia sensitivity: 
0.5263 
Normal Sensitivity: 0.9583 

(Chaudhary & Pachori, 2021) Xray Fourier-Bessel Series Decomposition + ResNet-50, AlexNet, NASNet, EfficientNet, Inception 
ResNet-v2 

2 Accuracy: 0.976 
Sensitivity: 0.97 

(Chowdhury et al., 2021) X-ray EfficientNetB1-5 2 Accuracy: 0.9607 
Recall: 1.00 

(Foysal & Aowlad Hossain, 
2021) 

CT Ensemble of 3 Deep CNNs 2 Accuracy: 0.96 
Sensitivity: 0.97 

(Garain et al., 2021) CT Spiking Neural Network  F1 score: 0.74 
Precision: 0.63 
Recall: 0.92 

(Garg et al., 2021) CT Multi-Scale Residual Network + Ensemble Classifier 3 Accuracy: 0.8889 
(Ibrahim et al., 2021) CT Norm VGG16 + Hand Crafted Features 2 Accuracy: 0.978  

Sensitivity: 0.967 
(Jin et al., 2020) CT ResNet152 + UNet ++ 3 AUC: 0.9299 
(Kamel et al., 2021) CT Global Thresholding + VGG19 2 Accuracy: 9831 

Recall: 1.00 
Precision: 0.9819 
F1 score: 0.9864 

(Kaya et al., 2021) CT VGG-16, EfficientNetB3, ResNet50, MobileNetv2 2 Accuracy: 0.979 
(Li et al., 2021) CT Stacked Generalization Learning + VGG16 3 Accuracy: 0.9357 

Sensitivity: 0.942 
Specificity: 0.9393 

(Marques et al., 2020) X-ray EfficientNetB4 3 Accuracy: 0.9670 
Recall: 0.9669 

(Muftuoglu et al., 2020) X-ray Differential Privacy Practice via EfficientNetB0 2 Accuracy: 0.947 
(Oyelade et al., 2021) CT CovFrameNet: Pipeline Image Preprocessing + Deep Neural Network Classification 2 Recall: 0.85 

F1 score: 0.90 
Specificity: 1.0 

(Ozturk et al., 2020) Xray DarkCovidNet Both Multi-Class Accuracy: 
0.8702 
Binary Accuracy: 0.9808 

(Singh & Kolekar, 2021) CT MobileNetv2 2 Accuracy: 0.9640 
(Wang et al., 2021) CT ResNet152, DPN-92, Inception-v3 2 Accuracy: 0.9498 

Sensitivity: 0.9406 
(Wu et al., 2020) CT ResNet50 2 AUC: 0.819 

Accuracy: 0.760 
Sensitivity: 0.811 
Specificity: 0.615 

(Wu et al., 2021) CT Joint Classification and Segmentation 2 Sensitivity: 0.950 
Specificity: 0.930 

(Bai et al., 2020) CT EfficientNetB4 2 Accuracy: 0.87  
Sensitivity: 0.89  
Specificity: 0.86 

(Yousefzadeh et al., 2020) CT EfficientNetB3 2 AUC: 0.954  
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quantitative summary of the augmentations applied is presented in 
Table 2. 

3.3. Model development and training 

A total of 20 models were trained and evaluated for the purposes of 
this study. These models were derived from the following base models: 
EfficientNetB0 (Tan & Le, 2019), EfficientNetB1 (Tan & Le, 2019), 
EfficientNetB2 (Tan & Le, 2019), EfficientNetB3 (Tan & Le, 2019), 
EfficientNetB4 (Tan & Le, 2019), EfficientNetB5 (Tan & Le, 2019), 
EfficientNetB6 (Tan & Le, 2019), EfficientNetB7 (Tan & Le, 2019), 
ResNet50 (He et al., 2016b), ResNet50V2 (He et al., 2016a), 
ResNet101V2 (He et al., 2016b), ResNet152V2 (He et al., 2016b), 
InceptionV3 (Szegedy et al., 2016), InceptionResNetV2 (Szegedy et al., 
2017), Xception (François Chollet, 2017), DenseNet121 (Huang et al., 
2016), DenseNet169 (Huang et al., 2016), DenseNet201 (Huang et al., 
2016), VGG16 (Karen Simonyan* & Andrew Zisserman+, 2018), and 
VGG19 (Karen Simonyan* & Andrew Zisserman+, 2018). A summary of 
each model family is presented in the Appendix. Many of these models 
have obtaining state-of-the-art performance on the benchmark Image
Net dataset (Deng et al., 2010). Given their exemplary performance, the 
general model architecture was retained, and the weights initialized 
using their versions from ImageNet. However, the final output SoftMax 
layer was changed from a 1000-dimensional to 2-dimesnsional node to 
make the models compatible for classification between COVID-19 pos
itive images, healthy images, and images from other pulmonary in
fections. Even though the network architecture was kept the same, the 
entire model weights were trained from scratch using a Tesla V100- 
SXM2-32 GB GPU on TensorFlow 2.3.0. This allowed us to ensure each 
memory unit of the proposed model architecture was fine-tuned and 
beneficial in classification, rather than a wasteful transmission of in
formation that may often occur in transfer learning–especially in a sit
uation like ours where images from ImageNet might not adapt well to CT 
images. 

A pilot study on a subset of the original dataset’s images was con
ducted to identify the optimal hyperparameters to use for model 
training. First, a custom loss function using label smoothing on top of 
categorical cross entropy was used to train the network. By transforming 
the otherwise hard class label assignments (0: COVID-19, 1: healthy, 2: 
other) into soft label assignments, it reduced model overfitting and 
increased its likelihood of generalizing better. To perform gradient 
descent on our model, we relied upon the Adam Optimizer with a 
learning rate of 0.0001. Next, we introduced a reduce learning rate on 
plateau callback, which decreased the optimizer learning rate by a factor 
of 0.5 after 3 consecutive epochs where the increases in performance 
were 0.0001 or less. This increased our model’s capacity to converge to 
the true local minimum as learning stagnated. Finally, we monitored the 
performance of the model during each epoch by using a validation split 
of [85,15] in the training data. A reference to the best performing model 
state across all epochs was maintained and used for calculating the 
performance on the testing dataset. 

The performance of additional network modifications, including 
model layers, dropout, and batch normalization, was experimentally 
tested in a series of pilot studies. However, modifications typically 

resulted in performance reductions and consequently, we limited our 
focus on core model families. 

3.4. Model evaluation 

Each model was trained and validated by running 25 rounds of 5-fold 
cross-validation. The accuracy, specificity, sensitivity, precision, and F1 
scores for each class were subsequently found. The average value of the 
metrics over all rounds was then computed and their expected values 
presented within a 95% confidence interval. A description of the metrics 
is below: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision =
TP

TP + FP
(2)  

Specificity =
TN

TN + FP
(3)  

SensitivityorRecall =
TP

TP + FN
(4)  

F1Score = 2*
Precision*Recall

Precision + Recall
(5)  

where,  

1) True Positive (TP) represents the model correctly classifying an 
image from a particular class as that class.  

2) True Negative (TN) represents the model correctly classifying an 
image not belonging to a particular class as not being from that class.  

3) False Positive (FP) represents the model incorrectly classifying an 
image not belonging to a particular class as belonging to that class.  

4) False Negative (FN) represents the case when a model incorrectly 
classifies a model belonging to a particular class as not belonging to 
that class. 

Several factors were considered when identifying the more appro
priate metrics by which to rank the model performance. In the case of 
COVID-19 diagnosis, failing to classify a COVID-19 patient as having the 
disease allows the disease to spread rapidly, exposing a greater number 
of patients at risk. In contrast, if a COVID-19 negative patient is classi
fied as positive, the error, albeit time and cost-invasive, may easily be 
corrected in subsequent testing through PCR. Therefore, while all results 
are presented, this paper attributes the greatest emphasis on the sensi
tivity, i.e., the model’s ability to diagnose a COVID-19 positive patient as 
having the disease correctly. 

3.5. Visualization 

Intermediate activation maps and GradCAMs (Selvaraju et al., 2020) 
were used to identify which portions of the images the model is using to 
make diagnoses. These visualizations become especially important when 
considering the general stigma against ML and CNN’s black-box nature. 
By offering human-interpretable insight into the procedures, the model 
performs while making diagnoses, they effectively increase the chances 
of being received favorably by human evaluators. 

3.5.1. GradCAMs 
The GradCAMs were computed using the process outlined in (Sel

varaju et al., 2020). First, we found the neuron importance weights: 

ωc
k =

1
Z

∑

i

∑

j

∂Yc

∂Ak
i,j

(6)  

where Ak
i,j represents the activation map of the k th filter of a convolu

Table 2 
Summary of Data Augmentation Techniques Applied.  

Transformation Range 

Pixel Rescaling Factor 1/255 
Horizontal Flips Allowed True 
Vertical Flips Allowed True 
Zoom Range [0.85, 1.15] 
Rotation Range [0◦, 360◦] 
Width Shift Range [−15%, 15%] 
Height Shift Range [−15%, 15%] 
Shear Range [−15%, 15%]  

A. Garg et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 195 (2022) 116540

5

tional layer and Yc represents the probability of classifying class c. These 
weights were then combined with the forward activation maps in a 
weighted manner and then passed through a ReLU filter to obtain the 
class discriminative saliency maps for the targeted image c. 

Lc
i.j = ReLU*

∑

k
ωc

kAk
i,j (7) 

After generating the GradCAMs, we computed the mean intensities of 
the RGB-pixels of the generated heatmaps corresponding to regions 
associated with high neuron importance weights that we found by 
calculating the mean pixel intensity value for areas in the entire heat
map image with intensities one standard deviation above the mean as 
part of the mask. 

The masks were first found using the base model’s heatmap image as 
a template. The generated masks were then applied to both the base 
model and the modified-network to compare localization and visuali
zation abilities between the base models and modified-networks. 

3.5.2. Feature map and filter visualization (intermediate activation maps) 
To visualize intermediate feature maps for the network, we simply 

iterated through layers in between the input and output layer of the CNN 
and extracted the pixel values from each filter’s outputs. Over time the 
model learned more specific features from the images, moving from 
output representations like the input image to gradually towards dras
tically different ones. 

Intermediate activation maps operated from the principle that each 
filter in a CNN learns different features. For example, the first filter in the 
opening layer may be detecting vertical edges, horizontal edges, or color 
gradients. As one moves deeper into the network, the results from 
applying the filter from the preliminary layer generated a new array of 
pixels representing a new “intermediate” image. This is passed to the 
filter of the next layer, and over time the model can learn more complex 
embeddings. However, the filters themselves were not manually 
designed but instead learned by the model through the training process. 
Thus, they offered a tremendous amount of insight into how the steps 
undertaken by a model from going from an input image to its final 
classification. 

4. Results 

4.1. COVID-19 positive classification 

Table 3 summarizes the performance for all trained models in 

classifying COVID-19 positive images. EfficientNetB5 attained the 
highest F1 score, accuracy, and sensitivity, while DenseNet169 obtained 
the greatest specificity and precision. 

4.2. Healthy image classification 

Table 4 summarizes the performance for all trained models in clas
sifying healthy images. EfficientNetB5 attained the highest F1 score, 
accuracy, sensitivity, specificity, and precision. 

4.3. Classification of other pulmonary infections 

Table 5 summarizes the performance for all trained models in clas
sifying images of other pulmonary infections. EfficientNetB5 attained 
the highest F1 score and accuracy, DenseNet121 obtained the greatest 
sensitivity, and EfficientNetB6 got the largest specificity and precision. 

4.4. Testing on alternative dataset 

To determine the capacity of the model to scale to different datasets, 
the top performing model (EfficientNetB5 for most tasks) was addi
tionally deployed on a secondary dataset from Kaggle: COVID-CTset 
(Mohammad et al., 2020), a large dataset containing 63,849 CT im
ages from 377 patients (96 COVID-19 positive and 283 Covid-19 nega
tive). To facilitate faster testing, we considered a subset of the data 
comprised of 12,058 images from those 377 patients. On this newer 
dataset the model obtained an accuracy of 0.9845 ± 0.0109, F1 score of 
0.9599 ± 0.0251, sensitivity of 0.9682 ± 0.0099, specificity of 0.9883 ±
0.0150, and precision of 0.9526 ± 0.0523. Note, the higher performance 
on the alternate dataset, although shocking, is expected as it involves a 
binary classification task, which is naturally a lot easier than a multi- 
class classification task. This is particularly true for COVID-19, where 
distinguishing between a lung infected with COVID-19 related pneu
monia and one with a community acquired pneumonia might be diffi
cult. This also demonstrates the scalability of our proposed network, 
suggesting it may adapt to a wide variety of image types. 

4.5. Brief note on algorithm execution time 

2 tests were conducted to examine the execution time of the pro
posed model (EfficientNetB5) for classification. The first test was con
ducted on a Tesla V100-SXM2-32 GB GPU with 5120 cores and 32 GB of 
RAM. This was the system used for model training. The second was done 

Table 3 
Summary of model performance for COVID-19 classification. The best performing model in each metric is highlighted in green. EfficientNetB5 attained the greatest F1 
score, accuracy, and sensitivity, whereas DenseNet169 obtained the highest specificity and precision.  

# Model F1 Accuracy Sensitivity Specificity Precision 

1 DenseNet121 0.9709 ± 0.0059 0.9699 ± 0.0061 0.9655 ± 0.0103 0.9747 ± 0.0054 0.9767 ± 0.0047 
2 DenseNet169 0.9729 ± 0.0065 0.9719 ± 0.0067 0.9683 ± 0.0101 0.9759 ± 0.0072 0.9779 ± 0.0063 
3 DenseNet201 0.9733 ± 0.0058 0.9723 ± 0.0061 0.9703 ± 0.0090 0.9743 ± 0.0063 0.9766 ± 0.0054 
4 EfficientNetB0 0.9648 ± 0.0051 0.9633 ± 0.0054 0.9658 ± 0.0083 0.9608 ± 0.0080 0.9644 ± 0.0069 
5 EfficientNetB1 0.9300 ± 0.0250 0.9276 ± 0.0244 0.9323 ± 0.0298 0.9226 ± 0.0361 0.9350 ± 0.0260 
6 EfficientNetB2 0.9546 ± 0.0062 0.9530 ± 0.0066 0.9476 ± 0.0090 0.9590 ± 0.0080 0.9622 ± 0.0070 
7 EfficientNetB3 0.9594 ± 0.0065 0.9580 ± 0.0066 0.9552 ± 0.0106 0.9613 ± 0.0070 0.9642 ± 0.0064 
8 EfficientNetB4 0.9647 ± 0.0072 0.9634 ± 0.0074 0.9637 ± 0.0113 0.9635 ± 0.0074 0.9663 ± 0.0068 
9 EfficientNetB5 0.9769 ± 0.0046 0.9759 ± 0.0048 0.9788 ± 0.0055 0.9730 ± 0.0057 0.9751 ± 0.0051 
10 EfficientNetB6 0.9614 ± 0.0053 0.9597 ± 0.0056 0.9661 ± 0.0080 0.9532 ± 0.0088 0.9573 ± 0.0078 
11 EfficientNetB7 0.9448 ± 0.0074 0.9432 ± 0.0077 0.9397 ± 0.0131 0.9475 ± 0.0087 0.9511 ± 0.0077 
12 InceptionResNetV2 0.9450 ± 0.0069 0.9427 ± 0.0074 0.9464 ± 0.0124 0.9392 ± 0.0097 0.9443 ± 0.0083 
13 InceptionV3 0.9567 ± 0.0070 0.9549 ± 0.0072 0.9587 ± 0.0117 0.9509 ± 0.0099 0.9554 ± 0.0087 
14 ResNet101V2 0.9383 ± 0.0107 0.9364 ± 0.0116 0.9289 ± 0.0156 0.9450 ± 0.0151 0.9490 ± 0.0128 
15 ResNet152V2 0.9407 ± 0.0099 0.9380 ± 0.0107 0.9441 ± 0.0158 0.9315 ± 0.0185 0.9389 ± 0.0139 
16 ResNet50 0.9638 ± 0.0061 0.9625 ± 0.0062 0.9609 ± 0.0104 0.9643 ± 0.0093 0.9672 ± 0.0084 
17 ResNet50V2 0.9335 ± 0.0092 0.9308 ± 0.0099 0.9328 ± 0.0154 0.9292 ± 0.0185 0.9361 ± 0.0143 
18 VGG16 0.8932 ± 0.0107 0.8889 ± 0.0111 0.8954 ± 0.0190 0.8828 ± 0.0166 0.8930 ± 0.0136 
19 VGG19 0.8673 ± 0.0189 0.8558 ± 0.0304 0.8838 ± 0.0219 0.8247 ± 0.0748 0.8599 ± 0.0337 
20 Xception 0.9491 ± 0.0062 0.9470 ± 0.0064 0.9510 ± 0.0118 0.9432 ± 0.0112 0.9482 ± 0.0096  
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on a personal household computer: Dell XPS 13 with 16 GB of RAM and 
Intel(R) Core(TM) i7-10710U CPU @ 1.10 GHz processor. For each de
vice, the model was used to predict 1000 images. The Tesla V100-SXM2- 
32 GB GPU took a total of 80.897427 s for prediction with an average of 
0.0808974 s/image. The Dell XPS 13 computer took a total of 
490.48266 s for prediction with an average of 0.49048266 s/image. The 
model scripts were configured to be compatible with both GPU and CPU 
based environments with simply a one word change in keyword argu
ments, providing seamless integrability regardless of computational 
resources available. 

4.6. Brief note on algorithm training time 

All models were trained on a Tesla V100-SXM2-32 GB GPU for a total 
of 25 epochs. Each epoch of training took approximately 140 s when 
training on 3336 images belonging to 3 different classes. Hence 
depending on the number of epochs chosen, the model may take any
where from 20 min to 3 h to train. Note: although we replicated our 
training process for 25 rounds to gain statistical significance and con
fidence in our predictions, hospitals need not conduct similar analyses. 

In cases where a hospital does not have the computational resources 
needed to train the models themselves, they may easily outsource 
training to computational clusters like Google Cloud, Microsoft Azure, 
or Amazon AWS for a marginal cost. Once trained, the model states and 
weights can easily be downloaded both in its native format or in a 
lightweight TensorFlow Lite format, which may be easily embedded on 
edge devices with limited computational resources. Once embedded, the 
model does offer high performance speeds as discussed in section 4.5. 

5. GradCAM visualization 

This section visualizes the GradCAMs, comparing them between 
COVID-19 positive patients and COVID-19 negative patients. It is 
evident from Fig. 1 that the networks indeed focused upon features 
radiologically recognized as being suggestive of lung involvement in 
COVID-19 in cases with high pre-test probabilities for making classifi
cations with high accuracy. These images are generated for Effi
cientNetB5, DenseNet169, ResNet50, InceptionV3, Xception, and 
VGG16, for the best performing models in each family. We note that 
while the generated heatmaps were specific and localized when 

Table 4 
Summary of model performance for healthy image classification. The best performing model in each metric is highlighted in green. EfficientNetB5 attained the highest 
F1 score, accuracy, sensitivity, specificity, and precision.   

Model F1 Accuracy Sensitivity Specificity Precision 

1 DenseNet121 0.7835 ± 0.0263 0.9193 ± 0.0099 0.8043 ± 0.0334 0.9445 ± 0.0102 0.7700 ± 0.0350 
2 DenseNet169 0.7835 ± 0.0277 0.9195 ± 0.0102 0.8045 ± 0.0365 0.9448 ± 0.0100 0.7704 ± 0.0330 
3 DenseNet201 0.7854 ± 0.0281 0.9197 ± 0.0110 0.8055 ± 0.0302 0.9449 ± 0.0111 0.7723 ± 0.0385 
4 EfficientNetB0 0.7909 ± 0.0247 0.9201 ± 0.0099 0.8259 ± 0.0271 0.9410 ± 0.0095 0.7651 ± 0.0321 
5 EfficientNetB1 0.7307 ± 0.0492 0.8965 ± 0.0176 0.7875 ± 0.0554 0.9207 ± 0.0183 0.7041 ± 0.0445 
6 EfficientNetB2 0.7949 ± 0.0241 0.9197 ± 0.0099 0.8481 ± 0.0274 0.9357 ± 0.0102 0.7551 ± 0.0315 
7 EfficientNetB3 0.7912 ± 0.0233 0.9194 ± 0.0095 0.8332 ± 0.0268 0.9387 ± 0.0098 0.7606 ± 0.0321 
8 EfficientNetB4 0.7925 ± 0.0276 0.9220 ± 0.0106 0.8193 ± 0.0335 0.9448 ± 0.0097 0.7744 ± 0.0322 
9 EfficientNetB5 0.8217 ± 0.0249 0.9322 ± 0.0109 0.8488 ± 0.0185 0.9504 ± 0.0118 0.8010 ± 0.0383 
10 EfficientNetB6 0.7891 ± 0.0242 0.9177 ± 0.0099 0.8465 ± 0.0291 0.9337 ± 0.0093 0.7448 ± 0.0301 
11 EfficientNetB7 0.7810 ± 0.0243 0.9161 ± 0.0100 0.8169 ± 0.0265 0.9383 ± 0.0096 0.7538 ± 0.0315 
12 InceptionResNetV2 0.7727 ± 0.0267 0.9154 ± 0.0102 0.7918 ± 0.0370 0.9429 ± 0.0104 0.7622 ± 0.0360 
13 InceptionV3 0.7673 ± 0.0295 0.9130 ± 0.0112 0.7912 ± 0.0405 0.9402 ± 0.0115 0.7541 ± 0.0382 
14 ResNet101V2 0.7408 ± 0.0347 0.9035 ± 0.0116 0.7677 ± 0.0448 0.9333 ± 0.0108 0.7234 ± 0.0364 
15 ResNet152V2 0.7596 ± 0.0329 0.9093 ± 0.0120 0.7931 ± 0.0423 0.9351 ± 0.0115 0.7367 ± 0.0384 
16 ResNet50 0.7784 ± 0.0253 0.9174 ± 0.0101 0.7961 ± 0.0290 0.9442 ± 0.0099 0.7670 ± 0.0343 
17 ResNet50V2 0.7548 ± 0.0283 0.9081 ± 0.0106 0.7824 ± 0.0395 0.9358 ± 0.0112 0.7379 ± 0.0346 
18 VGG16 0.7414 ± 0.0226 0.8986 ± 0.0100 0.7984 ± 0.0288 0.9208 ± 0.0102 0.6957 ± 0.0280 
19 VGG19 0.6639 ± 0.0309 0.8749 ± 0.0120 0.6499 ± 0.0731 0.9248 ± 0.0136 0.6623 ± 0.0341 
20 Xception 0.7806 ± 0.0291 0.9179 ± 0.0113 0.8013 ± 0.0354 0.9436 ± 0.0109 0.7684 ± 0.0377  

Table 5 
Summary of model performance for classification of non-Covid pulmonary infections. The best performing model in each metric is highlighted in green. EfficientNetB5 
attained the highest F1 score and accuracy, DenseNet201 the greatest sensitivity, and EfficientNetB6 the highest specificity and precision.  

# Model F1 Accuracy Sensitivity Specificity Precision 

1 DenseNet121 0.8239 ± 0.0242 0.8966 ± 0.0131 0.8188 ± 0.0313 0.9293 ± 0.0100 0.8315 ± 0.0234 
2 DenseNet169 0.8245 ± 0.0244 0.8971 ± 0.0128 0.8188 ± 0.0313 0.9301 ± 0.0108 0.8333 ± 0.0243 
3 DenseNet201 0.8262 ± 0.0256 0.8989 ± 0.0133 0.8178 ± 0.0344 0.9325 ± 0.0091 0.8374 ± 0.0213 
4 EfficientNetB0 0.8207 ± 0.0249 0.8980 ± 0.0129 0.7976 ± 0.0300 0.9401 ± 0.0088 0.8483 ± 0.0233 
5 EfficientNetB1 0.7482 ± 0.0535 0.8623 ± 0.0244 0.7210 ± 0.0571 0.9221 ± 0.0180 0.7889 ± 0.0463 
6 EfficientNetB2 0.8121 ± 0.0246 0.8931 ± 0.0127 0.7901 ± 0.0311 0.9363 ± 0.0095 0.8398 ± 0.0233 
7 EfficientNetB3 0.8170 ± 0.0243 0.8952 ± 0.0129 0.7979 ± 0.0310 0.9360 ± 0.0099 0.8414 ± 0.0234 
8 EfficientNetB4 0.8288 ± 0.0247 0.9009 ± 0.0138 0.8143 ± 0.0301 0.9373 ± 0.0131 0.8496 ± 0.0280 
9 EfficientNetB5 0.8385 ± 0.0278 0.9077 ± 0.0140 0.8172 ± 0.0367 0.9458 ± 0.0084 0.8643 ± 0.0225 
10 EfficientNetB6 0.8157 ± 0.0200 0.8963 ± 0.0103 0.7747 ± 0.0273 0.9483 ± 0.0064 0.8648 ± 0.0166 
11 EfficientNetB7 0.8038 ± 0.0210 0.8856 ± 0.0111 0.7905 ± 0.0277 0.9262 ± 0.0106 0.8235 ± 0.0235 
12 InceptionResNetV2 0.7919 ± 0.0239 0.8790 ± 0.0123 0.7798 ± 0.0303 0.9210 ± 0.0099 0.8073 ± 0.0245 
13 InceptionV3 0.7963 ± 0.0286 0.8824 ± 0.0150 0.7799 ± 0.0367 0.9254 ± 0.0123 0.8177 ± 0.0275 
14 ResNet101V2 0.7837 ± 0.0279 0.8717 ± 0.0163 0.7818 ± 0.0311 0.9101 ± 0.0163 0.7900 ± 0.0340 
15 ResNet152V2 0.7835 ± 0.0254 0.8766 ± 0.0123 0.7600 ± 0.0381 0.9258 ± 0.0115 0.8154 ± 0.0244 
16 ResNet50 0.8177 ± 0.0241 0.8933 ± 0.0128 0.8114 ± 0.0323 0.9279 ± 0.0096 0.8272 ± 0.0232 
17 ResNet50V2 0.7697 ± 0.0275 0.8668 ± 0.0138 0.7552 ± 0.0355 0.9137 ± 0.0118 0.7888 ± 0.0273 
18 VGG16 0.6865 ± 0.0299 0.8240 ± 0.0136 0.6544 ± 0.0392 0.8959 ± 0.0146 0.7304 ± 0.0305 
19 VGG19 0.6346 ± 0.0303 0.7840 ± 0.0162 0.6011 ± 0.0692 0.8613 ± 0.0208 0.6535 ± 0.0284 
20 Xception 0.8017 ± 0.0299 0.8854 ± 0.0159 0.7863 ± 0.0360 0.9268 ± 0.0122 0.8210 ± 0.0289  
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Fig. 1. Comparison of GradCAM Visualizations between COVID-19 Positive and COVID-19 negative images. We see that the saliency maps are much more diffuse and 
spread out throughout the image in the case of non-COVID images, which suggests that the model was unable to pinpoint regions that would hint towards the 
presence of COVID-19. 
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visualizing COVID-19, they tended to become more diffused and spread 
out for almost all models when visualizing non-COVID-19 images. 

6. Intermediate activation maps 

Fig. 2 shows the complexity of these maps that evolve with time. In 
the early stages of the network (Fig. 2b, c), the model starts to learn basic 
feature maps from the image, such as their edges, color gradients, etc. In 
layers near the middle of these models (Fig. 2d–f), these maps get 
significantly more complicated, picking up on ground-glass opacities, 

consolidations, and crazy paving patterns as noted in the highlighted 
sections of greater vibrance. Gradually, these embeddings become more 
and more complex, veering from being human interpretable towards 
features only understandable by a computer (Fig. 2g, h). In the later 
stages of network (Fig. 2i–k), the image complexity appears to stagnate, 
and the model starts reconstructing images that resemble the input. This 
functionality hints towards generative activity within the model, where 
the reconstructed images more dominantly represent characteristics 
useful in diagnosing COVID-19. Moreover, the clarity in maps even 
farther into the network reaffirms that our model isn’t overfitting 

Fig. 2. Intermediate Activation Maps: 
From 4 to image sub slices from the 
intermediate activation maps, we can 
see the progression of the model’s 
learning behavior. The model pro
gresses from maps similar to input 
images during its early layers (Fig. 2b) 
towards maps of increasing 
complexity as the layer depth in
creases (Fig. 2f–h). Near the final 
layers of the model, the maps hint 
towards generative activity as the 
model constructs images similar to the 
input image from largely simplified 
pixelated maps that precede it. Fig. 2.l 
represents the final activation map 
used before the model prediction. We 
can note the model ability to close-in 
upon and depict small pixels and 
voxels in the input image.   
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strongly, for in such a case, final maps would be entirely black (sug
gesting no activity) or stop evolving at all. Nonetheless, the lower rates 
of map evolution post layer 450 does hint towards mild overfitting. 
Although additional work is required to fully establish the trends be
tween activation maps and overfitting, including optimal policies for 
stopping training, this study establishes precedent for such work. 
Overall, these maps with their invaluable insight show how the model 
learns, playing an equally important role as GradCAMs, the current 
visualization scheme of choice. 

Next, we compare the activation maps between COVID-19 positive 
and negative images. In Fig. 3, we note that the activation maps for 
COVID-19 positive images tend to focus on more intricate lung patterns 
like paving patterns, ground class opacities, and consolidations, whereas 
the feature maps for COVID-19 negative cases are less detailed and have 
a more uniform pattern. The maps become increasingly localized at later 
layers, indicating that the model closely examines each minute pattern 
and opacity on the lung before classifying a patient. 

7. Proposed network architecture 

The entire EfficientNet-B5 architecture is 571 layers long and is 
summarized through the use of modules and sub-blocks in Fig. 4. At the 
core of EfficientNet-B5 rest the following characteristics: (1) a highly 
accurate and efficient architecture found by performing a neural ar
chitecture search via the AutoML MNAS framework (Tan et al., 2018). 
(2) A strategic and low latency use of the mobile inverted bottleneck 
convolution similar to that in MobileNet (Howard et al., 2017). (3) A 
systematic compound model scaling approach for maximizing perfor
mance gains within strict resource and computational limitations (Tan & 
Le, 2019). Altogether, these features allow ML practitioners to optimize 
small networks using neural architecture search, which saves time and 
resources, and then scale them accordingly to provide higher perfor
mance. These characteristics allow for both a computational efficient 
network architecture and high accuracy, qualities that are both essential 
given the low computation resources available in hospitals and need for 
high model performance to reduce false positive/negatives. 

Furthermore, the enhancements in the proposed architecture stem 
from a systematic use of neural architecture search and compound 
scaling, qualities which may be applied for any field like brain tumor 
diagnosis and facial recognition, not just COVID-19 diagnosis. This is 
reflected in our performance results on alternate datasets as well as in 
EfficientNetsB5′s extraordinary performance on the ImageNet datasets. 
More information regarding EfficientNets and equations used for 
upscaling can be found in the Appendix. 

8. Discussion 

The CNNs showed a large increase in the sensitivity of COVID-19 
diagnosis using CT scans (0.9769 for a 3-class classification test) in 
comparison to RT-PCR (0.71 for a simpler binary-classification test) 
(Fang et al., 2020). As proposed, the EfficientNet family performed 
exceedingly well for diagnosis, attaining 6 out of the top 9 F1 scores 
amongst all models for COVID-19 classification, 7 out of the top 8 F1 
scores for classifying healthy images, and 7 out of the top 11 F1 scores 
for classifying images of other pulmonary infections. 

The proposed model of choice, EfficientNetB5 obtained the highest 
F1 score, accuracy, and sensitivity for COVID-19 positive images; the 
highest F1 score, accuracy, sensitivity, specificity, and precision for 
healthy images, and the highest F1 score and accuracy for images of 
other pulmonary infections. It was consistently the most balanced 
classifier as shown by its consistently highest F1 scores and showed 
consistently high levels of performance for all classification categories. 
In an environment dominated with COVID-19, mitigating secondary 
infections is critical and one must ensure an infected patient isn’t cate
gorized as healthy, hence sensitivity was considered an extremely 
important metric. With a sensitivity of 0.9788 ± 0.0055, 
EfficientNetB5′s performance was significantly higher than all other 
models considered within a confidence level of 95%. The high- 
performance gains from EfficientNetB5 and its computational effec
tiveness strongly advance our proposal for a more uniform usage of 
EfficientNets for COVID-19 classification tasks. 

Other notable models from the EfficientNet class are EfficientNetB0 

Fig. 3. Comparison of intermediate activate maps for COVID-19 positive versus COVID-19 negative images. We note that while the activation patterns for COVID-19 
positive images tend to capture lung opacities, the patterns for non-COVID-19 images are a bit simpler and uniform. Once again, near the later layers of the model, the 
feature maps become increasingly uninterpretable. 
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and EfficientNetB5. The former, EfficientNetB0, although the smallest 
model in size (43.24 MB) obtained the 2nd highest F1 scores for COVID- 
19 classification amongst the EfficientNet family and 5th highest over
all; 5th highest F1 score for healthy image classification overall; and 6th 
highest F1 score overall for classifying other pulmonary infections. 
Given that these machine learning models are to be deployed in hospi
tals with potentially limited computational resources, EfficientNetB0 
thus provides a network simple to deploy on edge devices with limited 
computing resources. 

Although EfficientNet-B5 was consistently the most balanced clas
sifier, we would be remiss to not acknowledge the potential of Dense
Nets, which offered two significant advantages: high model performance 
with low network size. DenseNet121, DenseNet169, and DenseNet201 
had sizes of 81.8 MB, 146.3 MB, and 211.21 MB, respectively, signifi
cantly lower the current predominantly used model of choice: ResNet50 
(270.54 MB). Moreover, they outperformed ResNet50 in every single 
classification metric (F1 score, accuracy, sensitivity, specificity, and 
precision) and category (COVID-19 positive, healthy, other pulmonary 

infections). Finally, DenseNet201 was model with the highest sensitivity 
(0.8188 ± 0.0313) in classifying other pulmonary infections and Den
seNet169 had the highest specificity (0.9759 ± 0.0072) and precision 
(0.9779 ± 0.0063) for COVID-19 positive images. Altogether, DenseNets 
are another promising yet underutilized class for COVID-19 diagnosis. 

Our use of GradCAMs and intermediate activation maps, we 
increased the interpretability of our model. In particular, our use of 
GradCAMs allowed us to hone in on and understand which portions of 
input images were most essential to model classification. On the other 
hand, intermediate activation maps allowed users to “peek” into CNN’s 
black-box hood and understand intermediary steps that it was taking, an 
invaluable tool for both debugging networks and destigmatizing their 
use. Finally, the performance of our model on an alternative dataset and 
its computational time (~0.1 s on GPUs and ~ 0.5 s on CPUs) were both 
positive indicators of its applications. Particularly, its ability to perform 
on different dataset formats and provide rapid, accurate results speaks to 
its generalizability and larger avenues for deployment. 

Although the models developed in this paper can offer high 

Fig. 4. Summary of EfficientNetB5 Architecture.  
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accuracies for COVID-19 diagnosis, several technological, economic, 
medical, and psychological factors must be considered before deploying 
them in real-time environments. First, although our network modifica
tions and visualization schemes allow for greater insight into model 
learning, deep learning still holds elements its black-box nature. Thus, it 
is hard to pinpoint changes in model performance from changes in 
network structure and weights. This can make generalization and scal
ability to machines universally challenging. Secondly, CT scans cost 
significantly higher than a regular RT-PCR test. This consideration may 
make it cost-prohibitive and difficult to include in everyday practices. 
Thirdly, CT has an unspoken ionizing radiation cost associated with it. 
Exposure to chest CT greatly increases one’s chances of acquiring ma
lignancy in subsequent years and therefore is not always an optimal 
choice of testing. Fourthly, deployment of AI-based systems in hospitals 
is routinely critiqued and stigmatized because of their potential psy
chological impacts on individuals. Doctors not only help diagnose pa
tients, but also offer them emotional support and pragmatic advice on 
dealing with the disease. The currently designed machine learning 
models, however, only offer a numerical output, which can be demor
alizing for patients without proper guidance from doctors and clinicians. 
Finally, some families may be skeptical of results obtained from a 
computer-based system versus a doctor with years of experience. As a 
result, while the current model is a useful tool in assisting doctors in 
diagnosing, it currently only serves as a proof of concept and as an 
enhancement to current approaches. 

Given these factors, although the results of this study are useful in an 
academic setting, a close examination of a location’s health system may 
be required before deploying them in hospitals. Particularly for coun
tries with sufficient PCR-testing kits like the US, diagnosis should be 
deferred to RT-PCR, while ML-based CT imaging can play useful roles in 
assessing the severity of patients’ cases. However, in countries with 
severe PCR testing deficiencies, CT has already become a mode of 
diagnosis, as the risks of letting COVID-19 spread have been deemed 
more pertinent than the risks of potential cancer risks several years 
down the line. For such patients, our proposed system not only helps 
alleviate potential financial burdens on individuals from having to 
sponsor radiologist fees, but also offers radiologists a useful tool for 

reducing their workloads. 

9. Conclusion 

In summary, our project presents a thorough analysis of This study 
successfully presented a thorough analysis of the use of traditional and 
custom ML techniques, specifically CNN architectures, for COVID-19 
detection based on chest CT. Our results highlighted the potential for 
using EfficientNets and DenseNets for COVID-19 diagnosis purposes, 
encouraging their use in an environment where they are vastly 
underutilized. With the backlog of PCR tests, causing results to take 
anywhere from 6 h to 4 days to reach patients, our work presents an 
optimized machine learning framework for streamlining that bottle
neck, helping control the spread of the disease and bringing the world 
towards normalcy. 

Funding 

This work was supported by the National Science Foundation under 
Award Number 2027456 (COVID-ARC). 

CRediT authorship contribution statement 

Aksh Garg: Conceptualization, Methodology, Software, Validation, 
Formal analysis, Investigation, Data curation, Writing – original draft, 
Visualization. Sana Salehi: Validation, Writing – review & editing, 
Supervision. Marianna La Rocca: Writing – review & editing, Super
vision. Rachael Garner: Writing – review & editing, Supervision, 
Funding acquisition. Dominique Duncan: Writing – review & editing, 
Resources, Data curation, Supervision, Project administration, Funding 
acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Appendix 

This section provides a basic overview of the machine learning model families we considered in our paper. 

EfficientNets 

Proposed by Mingxing Tan and Quoc V. Le (Tan & Le, 2019), EfficientNets have quickly revolutionized the current standing of computer vision, 
providing not only high accuracy results, but attaining them with computational complexities orders of magnitude (8.4x smaller and 6.1x faster) lower 
than the best ConvNets. They proposed a novel ConvNet scaling framework, adjusting the width (the number of channels in network layers), depth 
(number of layers in the CNN), and resolution (the input image size into the model) systematically. Particularly, if 

depth, d = αϕ, widthw = βϕ; andresolutionr = γϕ, s.t.α*β2*γ2 ≈ 2, (8)  

then the model may be scaled by adjusting based on the available computational resources. The base network for EfficientNet is determined by 
performing neural architecture search over the AutoML MNAS Framework. This allows EfficientNets to take advantage of a optimized small network, 
which is both cost and time efficient to compute and scaling procedures which boost performance. Given the need for rapid diagnosis and limited 
computational capacities for obtaining them, we hypothesized EfficientNets would be the most promising form of diagnosis. 

ResNets 

Proposed by He et al. (2016b), ResNets are arguably the most popular CNN architectures for image recognition tasks today. Their strength, the 
residual learning framework capable of transmitting gradients despite great depths by skip connections and batch-normalization, has rapidly been 
applied into numerous modern architectures today. This paper considers four types of ResNet architectures: ResNet50, ResNet50V2, ResNet101V2, 
and ResNet152V2 (Note: for this paper, InceptionResNetV2 is grouped in the InceptionNet category along with InceptionV3 and Xception). 
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DenseNets 

Proposed by Huang et al. (2016) DenseNets introduce the idea of connecting every layer to every other layer in a feed-forward fashion. This, in 
turn, allows them to avoid the vanishing-gradient problem, reduce training parameters, and improve feature transmission (Huang et al., 2016). Given 
their clever design, they are yet another popular CNN of choice. This study considers 3 DenseNet models: DenseNet121, DenseNet169, and Dense
Net201 in order of increasing parameter size. 

InceptionNet & Xception 

Proposed by Svegedy et al. (Szegedy et al., 2015), InceptionNets advance the concept of building CNNs using blocks instead of just convolutional 
layers, a framework most modern networks utilize. Moreover, they decomposed convolutional operations into spatially separable ones for improved 
computational resources utilization, increasing both the depth and width of the model while keeping computational costs static. In a subsequent study 
by Szegedy et al. (2016), they jointly capitalized on InceptionNet’s module-based architecture and the residual connections from ResNets to propose 
InceptionResNetV2, a powerful model combining the best features from ResNet and InceptionNet. Finally, François Chollet (2017) expanded upon 
InceptionNets in his work Xception: Deep Learning with Depthwise Separable Convolutions, replacing inception modules with depthwise separable 
convolutions (a depthwise convolution and then a pointwise convolution). This work examines two models from the InceptionNet class (Incep
tionNetV2, InceptionResNetV2) and Xception. 

VGG 

Proposed by Karen Simonyan and Andrew Zisserman (Karen Simonyan* & Andrew Zisserman+, 2018), VGG’s primary contribution was to 
experiment with increasing model depth and seeing its impact on model performance. We trained two forms of VGGs: VGG16 and VGG19. 
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