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ABSTRACT ACM Reference Format:

Accelerators, such as GPU, are a scarce resource in deep learning
(DL). Effectively and efficiently sharing GPU leads to improved
hardware utilization as well as user experiences, who may need to
wait for hours to access GPU before a long training job is done.
Spatial and temporal multitasking on GPU have been studied in the
literature, but popular deep learning frameworks, such as Tensor-
Flow and PyTorch, lack the support of GPU sharing among multiple
DL models, which are typically represented as computation graphs,
heavily optimized by underlying DL libraries, and run on a com-
plex pipeline spanning CPU and GPU. Our study shows that GPU
kernels, spawned from computation graphs, can barely execute si-
multaneously on a single GPU and time slicing may lead to low
GPU utilization.

This paper presents SwitchFlow, a scheduling framework for DL
multitasking. It centers on two designs. First, instead of scheduling a
computation graph as a whole, SwitchFlow schedules its subgraphs
and prevents subgraphs from different models to run simultaneously
on a GPU. This results in less interference and the elimination of
out-of-memory errors. Moreover, subgraphs running on different
devices can overlap with each other, leading to a more efficient
execution pipeline. Second, SwitchFlow maintains multiple versions
of each subgraph. This allows subgraphs to be migrated across
devices at a low cost, thereby enabling low-latency preemption.
Results on representative DL models show that SwitchFlow achieves
up to an order of magnitude lower tail latency for inference requests
collocated with a training job.
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1 INTRODUCTION

Recent advances in deep learning (DL) [24] have led to the wide
adoption of machine learning techniques in image classification [19,
241, speech recognition [18], and natural language processing [15].
The success of deep learning can be partially attributed to the enor-
mous amount of data available for model training and the advent
of fast graphics processing units (GPUs) that allows more sophisti-
cated models (e.g., deep neural networks (DNN5s)) to be trained at
a speed an order of magnitude faster than that on CPUs. The surge
of deep learning has also given rise to deep learning frameworks,
such as TensorFlow [4] and PyTorch [41], which make programming
complex models not only easier but also more efficient on various
accelerators (e.g., GPUs, TPUs [23], and FPGAs).

As deep learning continues to gain popularity and is increasingly
deployed in cloud services [25, 37], there is a growing need for shar-
ing accelerators [7, 8, 31, 34, 38, 48, 50] (e.g., GPUs) among multi-
ple deep learning workloads. Multitasking has been a key feature in
modern computing systems to share a single device. Spatial multi-
tasking partitions resources among multiple tasks and executes them
simultaneously if their combined size can fit in the device. Temporal
multitasking assigns each task a time quantum during which the de-
vice is dedicated to one task at a time. Both mechanisms are proven
effective for improving GPU utilization [5, 8, 21, 38, 52]. However,
multitasking deep learning workloads, which are inherently more
complex than simple GPU kernels, presents unique challenges.

First, DNNs written with DL frameworks contain complex ex-
ecution flows, typically in the form of a computation graph with
thousands of nodes. Each node in the graph is a mathematical op-
eration to be executed on either CPU or GPU. Multitasking deep
learning workloads requires that the scheduling of the CPU and
GPU nodes (kernels) in the same graph be coordinated. The existing
architectural support for GPU multitasking is limited to concurrent
execution of independent kernels on GPU hardware, thereby un-
able to handle the multitasking of complex deep learning models
due to the lack of knowledge of computation graphs from multi-
ple users. There are existing works that control the launching of
GPU kernels in the runtime to enable GPU sharing [11, 50]. How-
ever, switching computation graphs (i.e., DL models) is non-trivial.
DL frameworks support two graph execution modes. 1) Dynamic
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graph mode, the default execution mode in PyTorch and TensorFlow
(also known as eager execution), generates graph nodes on-the-fly
as model execution proceeds. It allows for evaluating the output of
graph nodes immediately after its execution, thereby offering an
intuitive programming interface and facilitating debugging. 2) In
contrast, static graph mode builds the entire graph before model
execution and performs offline graph optimizations. The resulted
graph allows for node merging, reordering, and concurrent node
execution and is significantly faster than dynamic graphs, especially
for large models. Multitasking models with static graphs is much
more challenging because node execution does not follow user’s
code and is asynchronous and interleaved.

Pipeswitch [8] leverages dynamic graphs in PyTorch to enable
fast model switching via pipelined model transmission. It relies
on layer-by-layer model execution in dynamic graphs to overlap
model transmission and execution, which is critical to efficient DL
multitasking. In this paper, we take the challenge to support DL mul-
titasking on static graphs, which are widely adopted in production
systems due to high performance, efficient computation graph opti-
mization, ease of co-design of hardware acceleration and compiler
optimization.

Second, DL frameworks, such as TensorFlow (TF), rely heavily
on machine learning libraries, e.g., NVIDIA cuBLAS and cuDNN [12,
33] to accelerate frequently used routines in DNNSs, such as con-
volution and matrix multiplication. The DL libraries carefully tune
GPU kernels based on GPU resource availability, such as the num-
ber of streaming multiprocessors (SMs), cores per SM, and the size
of device memory. Since there lack mechanisms for dynamically
reconfiguring GPU resources, the tuning must be performed before
model execution. Therefore, users need to explicitly set resource
limits, e.g., memory size, for each DL model. This requires that
either DL models be allocated with statically partitioned resources
to allow concurrent model execution or the entire GPU should be
allocated to one model and models have to be executed one after an-
other. While TF allows for dynamic memory growth, which allocates
GPU memory only when models actually use it, TF does not support
reclaiming GPU memory until model execution is completed. Thus,
it is not suitable for DL multitasking. Recent work AntMan [52]
realizes elastic memory management for DL models based on GPU
unified memory [30] and allows model data to be freely allocated
on both GPU and host memory. However, AntMan does not address
job preemption and can only switch DL jobs at the completion of
mini-batches. In practice, DNN training jobs are usually allocated
dedicated GPUs [1, 16, 22] while multiple inference jobs may be
packed on a single GPU [37]. As a result, training jobs cannot share
a GPU for lack of memory and inference jobs may experience high
latency waiting for training jobs to complete due to the lack of an
effective preemption mechanism.

Third, new challenges and opportunities arise surrounding mul-
titasking DL workloads: 1) Like in conventional workload collo-
cation, DL multitasking should meet different service-level objec-
tives (SLOs) for heterogeneous workloads. While model training is
throughput oriented and requires high resource utilization, model
serving (i.e., inference) has stringent latency requirements. However,
model training is significantly more resource-intensive than infer-
ence, not only requiring an order of magnitude more GPU memory
but also computing power for model parameter updates (i.e., updated
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weights) through iterations. In addition, inference could experience
high latency due to the long preemption latency of training. 2) New
multitasking scenarios emerge as DL continues to evolve [28]. Multi-
task learning [44] trains multiple models from the same training
data set. For example, separate models should be trained to detect
pedestrians and vehicles, respectively, from the same set of sensing
data in autonomous driving. Since these DL models share the input
and possibly some layers of a DNN, running them on the same
GPU opens up new opportunities for exploiting data locality. During
model training, a large set of training samples is usually divided into
mini-batches, each of which can fit in GPU memory. The existing
DL frameworks repeatedly load mini-batches into GPU for training
separate models even though each mini-batch can be shared among
models. This motivates the development of a new GPU multitask-
ing scheme that allows for fine-grained data reuse on GPU across
different models.

In this paper, we present SwitchFlow, a scheduling framework for
multitasking DL jobs. We identify several issues in static computa-
tion graph execution in TensorFlow, the arguably best-performing
DL framework for production systems. First, computation graph
execution typically employs multiple worker threads to exploit con-
currency in executing computation graph nodes. There is a lack of
an effective and efficient preemption mechanism to enforce prior-
ity between different graphs from multiple jobs in static execution
mode. Second, our empirical study revealed that DL operations,
which are optimized and automatically configured by DL libraries,
barely can simultaneously execute on a single GPU, though there is
ample concurrency in the computation graph. Third, graph execu-
tion is a complex pipeline spanning CPU and GPU. DL multitasking
should efficiently utilize the heterogeneous devices. Existing work
such as session-based time slicing [20, 51], which allows models to
exclusively access both CPU and GPU and runs them iteration by
iteration, leads to low GPU utilization because GPU waits for CPU
to feed input data [29] during each iteration.

SwitchFlow addresses these issues through two designs. First,
SwitchFlow maintains multiple versions of a computation graph,
which includes subgraphs that run on different devices. Replicated
subgraphs, each individually optimized for different devices (CPU
or GPU) for the same computation, enable SwitchFlow to freely
migrate the execution of subgraphs between CPU and GPU and vice
versa. Second, unlike in TensorFlow, wherein nodes in a computa-
tion graph are indistinguishably scheduled by workers, SwitchFlow
treats nodes to be executed on different devices, e.g., CPU or GPU,
differently in scheduling, following two principles: 1) GPU nodes
from different models are not scheduled simultaneously on a single
GPU, allowing exclusive access to GPU; 2) all other nodes, includ-
ing CPU nodes and GPU nodes on a different GPU, are allowed to
run without restrictions to improve pipeline efficiency.

The result is a design that allows users to provision GPU re-
sources for their models without concerns about interference from
other models or memory over-commitment. It also enables a low-
latency, low-cost preemption mechanism to deschedule an entire
computation graph without throughput loss. Experimental results
on representative DL. models and three different GPUs show that
1) SwitchFlow achieves a 19.05x tail latency improvement for in-
ference requests when collocated with a heavy-weight training job
compared to an variant of TF. 2) SwitchFlow is more efficient than
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Figure 1: computation graph scheduling in TensorFlow.

the existing time slicing-based approaches in utilizing heterogeneous
devices. 3) With user-provided hints, SwitchFlow is able to merge
multiple computation graphs of similar models to share the data pre-
processing stage and achieves up to 65% performance improvement
compared to time slicing in multi-task learning.

2 BACKGROUND AND MOTIVATION

In machine learning frameworks, such as TensorFlow, learning al-
gorithms are represented as computation graphs wherein nodes
describe operations while edges specify dataflows between those op-
erations. Expressing machine learning models as computation graphs
offers several benefits. First, the execution of a learning algorithm
can be accelerated by optimizing the directed graph, e.g., pruning,
merging, and partitioning. Second, the abstract representation of
computation allows operations to be individually implemented using
different machine learning libraries, making them portable across
heterogeneous devices. For example, a graph can be executed en-
tirely on CPU or on a hybrid CPU/GPU system. Third and most
importantly, computation graphs specify the order of execution and
allow concurrent operations to be scheduled in parallel.

In what follows, we discuss the challenges of sharing a single
GPU among multiple DL models, each with its own computation
graph. Without loss of generality, we focus our discussion on the
graph execution mode in TensorFlow (TF), which is based on static
graphs.

2.1 Executing Computation Graphs in TF

To execute a computation graph, resources need to be provisioned
for graph nodes, i.e., operators (ops), and a schedule plan needs to be
determined to run them on different devices, e.g., CPUs and GPUs,
while enforcing node dependency. TF’s graph execution centers on
three techniques: session, executor, and thread pool.

Session is a runtime instance created by users to execute graph
nodes associated with an output node. The target output can be an
intermediate node or the final node of a graph. In the former case a
subgraph is executed while in the latter the full graph is executed. In
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deep learning, a session. run performs one iteration of training or
inference. For training, the parameters (weights) of the model are
updated after each session run. During session construction, different
devices (e.g., CPU and GPU) are added to a session and a cost
model is used to determine the backend device to execute each node.
TF makes use of external, highly-optimized numerical libraries,
such as MKL [3], cuBLAS [33], and cuDNN [12], to implement
operations (kernels) on CPU or GPU. Session also optimizes graph
execution by partitioning the full graph into subgraphs, which can
be independently executed by executors.

Executor dispatches operations from a subgraph to several task
queues from where they are executed by worker threads in a thread
pool. Figure 1 shows how operations are scheduled to run in an
executor. Note that there could be multiple executors in a session,
each including nodes to be executed on a single device. For example,
in a 2-GPU system, there are typically three executors, one for oper-
ations running on CPU and one for each of the two GPUs. Executor
uses the input size and the type of operation to determine the cost of
each node and classifies them into expensive and inexpensive ops.
There is a single ready queue for each executor wherein nodes in the
subgraph are inserted in a breadth-first manner. Initially, all nodes
(expensive or inexpensive) in the ready queue are concurrent and
dispatched to separate local queues, each of which will be processed
by a worker from the thread pool. Workers launch ops (kernels) from
their local queues in FIFO order. After a node is done, its subsequent
nodes which have a direct edge from the current node are inserted in
the ready queue. Unlike in the initial dispatch, only expensive nodes
require to be placed on a new local queue and inexpensive nodes
are sent to the local queues of their parent node. Each local queue is
assigned to a worker for node processing and a thread is put to sleep
if its queue is empty. Before sleep, a thread performs random work
stealing from other threads to balance the load.

2.2 Challenges in Multitasking DL. Workloads

Executor-based computation graph scheduling exposes ample con-
currency to build an efficient execution pipeline for DL models: 1)
Since executors are associated with different devices, their compu-
tation is independent from each other and can be done in parallel
except for cross-device data transfer. Therefore, stages (subgraphs)
for reading input data and preprocessing, which are typically done
on CPU, can overlap with training or inference on GPU. 2) Con-
current nodes in a subgraph are processed by multiple workers in
parallel. However, expressing and executing DL algorithms using
computation graphs present great challenges in sharing computing
systems among multiple DL workloads.

Task preemption is the mechanism to suspend the currently execut-
ing task, save its states, and switch to another task. It is crucial to
enable differentiation and time sharing among tasks. However, there
is no effective and efficient preemption mechanism for DL work-
loads. Due to the parallelism in computation graphs, there could be
multiple GPU kernels of the same DL model simultaneously running
on GPU or waiting at the launch queue. Additionally, multiple CPU
threads processing the CPU executor can run asynchronously with
their GPU counterparts on multiple CPUs. To preempt a DL work-
load, all the three types of tasks associated with the DL model should
be suspended and their contexts be saved. The existing hardware
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Figure 2: The timeline of training two ResNet50 sharing a single
NVIDIA V100 GPU.

mechanisms for GPU context switching [39] lack the knowledge
of computation graphs and are limited to preempting a single GPU
kernel (node).

Furthermore, DL operations, such as those in DNN training, are
memory intensive. The intermediate data generated during model
training, e.g., gradients, could be an order of magnitude larger than
the input [27, 43]. For a mini-batch of 64-128 images, its input size
ranges from tens to hundreds of megabytes (MBs). Suspending tasks
of a DL model during training requires to save a context of a few to
tens of gigabytes of data, leading to not only high storage cost but
also long context saving time. Alternatively, preemption can happen
until an iteration (a session in TF) is finished so that only the data
that should persist across iterations, such as model weights, is saved.
However, as reported in [51] and verified by our experiments, an
iteration of training can take up to ls and add a sizable delay to
preemption. Long preemption latency is not acceptable for latency-
sensitive DL inference workloads [14, 20, 25, 37].

As DL workloads are executed on complex pipelines across mul-
tiple devices, e.g., CPU and GPU, it is non-trivial to efficiently share
heterogeneous devices among DL workloads. While there have been
extensive studies on spatial [5] and temporal multitasking [38] on
GPUs, we demonstrate that DL operations can hardly execute simul-
taneously on GPU and time slicing GPU can lead to low efficiency.
Ineffective spatial multitasking. Modern GPUs support concurrent
execution of several small kernels to improve device utilization. For
example, with the help of the Hyper-Q technology [9], NVIDIA
multi-process service (MPS) [34] and CUDA streams allow multiple
kernels to be launched to multiple hardware work queues. If the
kernels are truly independent and their aggregate resource demand
fits in the GPU, they can be simultaneously executed. However,
spatial multitasking is not effective for DL workloads.

We executed two 2D convolution (tf.nn.conv2d) operations, a
commonly used routine in DNNSs, from two CUDA streams and
compared their execution with one stream on a single NVIDIA GPU.
We used nvprof [35] to collect statistics of primitive routines, such
as the block size, number of registers, and used shared memory.
Concurrent kernel launch from two streams does not offer much
performance benefit. The completion time of two streams is close
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to executing the two operations sequentially. An analysis of the
limiting factors in the kernels using NVIDIA’s GPU occupancy
calculator [36] revealed that 10 of the 13 kernels were bottlenecked
by GPU register files and cannot run concurrently.

We further train two ResNet50 models concurrently on a single
NVIDIA V100 GPU with a batch size of 16 on the ImageNet dataset.
Figure 2 shows the execution timeline of the two models. The color
areas are kernel execution on GPU and white areas are the time
spent on CPU. We made two observations: 1) while some kernels
of the two model can be simultaneously executed on GPU, their
execution times were significantly prolonged due to contentions on
shared GPU resources. 2) There still exists significant serialization
on GPU between the two models in which kernels from one model
exclusively occupied GPU while those from the other model were
waiting to be issued by CPU. As a result, the training throughput
of individual models dropped from 226 to 116 images per second
due to GPU sharing. It suggests that spatial multiplexing is barely
beneficial.

The reason no two heavy kernels can execute simultaneously

without performance loss even with multi streams in the GPU is
that primitive routines in cuDNN or cuBLAS are optimized to fully
utilize resources on GPU. Although modern GPUs support resource
partitioning and library can adapt kernels to meet the constrains, allo-
cation needs to be done when the computation graph is constructed.
As workloads in shared systems are dynamic, static resource parti-
tioning likely leads to underutilization. Alternatively, it is possible
to control the resource demand of DNNs during runtime without
static resource partitioning. By changing the input size, e.g., batch
size, the size of kernels can be dynamically adjusted to fit in GPU.
However, changing the batch size may lead to longer training time,
negating the benefit of resource sharing. Furthermore, the memory
demand of individual kernels need to be carefully controlled not to
exceed the capacity of GPU memory. Otherwise, DL jobs may crash
due to out-of-memory (OOM) errors.
Inefficient temporal multitasking. Time-slicing GPUs among mul-
tiple DL workloads has been explored to provide early feedback in
training [51] and better quality-of-service (QoS) for inference [20].
For time sharing, computation graphs are switched at the end of a
session. Therefore, during a time slice (consisting of one or more
sessions), only the nodes from one graph are executed and GPU is
dedicated to one DL workload. However, the DL execution pipeline
comprises stages on CPU and GPU. As GPUs continue to improve,
the early stages on CPU for data loading and preprocessing will
increasingly become the bottleneck [13]. Session-based time slic-
ing dedicates the entire pipeline (both GPU and CPU) to one DL
job. If the job cannot efficiently utilize the heterogeneous resources,
devices may be left idle.

To demonstrate the severity of pipeline inefficiency, we measured
GPU idling periods during training and inference on three NVIDIA
GPUs: a cost-effective GPU (GeForce RTX 2080 Ti), a high-end
GPU (V100), and a power-efficient embedded GPU (Jetson TX2).
We used the TF timeline profiler [17] to measure the GPU busy time
in a session and the length of the session. The difference between
the two is the GPU idling period. Figure 3 shows the execution time
breakdown of 9 CNN models. The measurements were the average
of 200 sessions in each model. The white area above GPU time
refers to GPU idling. The input was randomly selected images in
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Figure 3: The percentage of GPU idle periods due to inefficient DL execution pipeline on three different types of GPU.

JPEG format from the ImageNet dataset. Images were grouped into
batches to improve GPU utilization. We chose the commonly used
batch sizes for training (32) and inference (128). tf.data.Dataset
was used for data preprocessing. Input prefetching and parallel data
workers (32 preprocessing threads) were enabled.

As shown in Figure 3 (d) and (e), most models caused long GPU

idle periods when performing inference. For instance, in model
NASNetMobile, for more than 90% of the time, the V100 GPU was
idle waiting for CPU to feed data. In contrast, the computation on
CPU and GPU can be better overlapped in training, as shown in
Figure 3 (a) and (b), because training includes one forward and one
backward pass in each session and requires more GPU computation.
For the embedded GPU (TX2), GPU was the bottleneck in most
models for both training and inference. We also observed two trends.
First, faster GPU results in more GPU idling. Second, increasing
the batch size leads to more GPU compute time but will further
exacerbate GPU underutilization in a session as data preprocessing
becomes even longer.
Summary. We have shown the difficulties in running multiple DL
jobs on a GPU simultaneously and the low efficiency of GPU time
slicing. This motivated us to develop a more flexible and efficient
approach for DL multitasking.

3 SWITCHFLOW: SYSTEM DESIGN
3.1 Overview

Deep learning workloads can be broadly categorized into training
and serving. Training workloads are throughput-oriented, computa-
tionally expensive, and long-term. By contrast, serving workloads
have a tight latency requirement but execute for the short term,
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leading to low utilization in a production environment since online
inference queries often arrive unpredictably and stochastically.

The major problem of session-based computation graph execu-
tion is the coupling of stages (executors) running on heterogeneous
devices. Simultaneously running multiple sessions causes contention
on bottleneck devices, making it hard to guarantee QoS and even
resulting in OOM crashes due to memory overcommitment. On the
other hand, restricting only one session to access computational
resources (time slicing) leads to low utilization. In contrary, Switch-
Flow views computation graphs as a set of executors that can be
flexibly managed and scheduled across sessions.

This design offers several benefits: 1) By replicating executors
for each available device during graph construction, the execution of
graphs can be timely suspended and migrated, enabling low-latency,
low-cost DL job preemption. 2) Executors from similar jobs can be
assembled to exploit data reuse in multi-task learning. 3) Executors
of different types and from different jobs can be interleaved to
efficiently utilize heterogeneous resources.

3.2 Session Management

The central idea in SwitchFlow session management is allowing ses-
sions from any DL jobs to access all available devices on a machine.
Unlike TF, in which sessions are statically configured with a fixed
number of devices and each session has its own thread pool for graph
execution, SwitchFlow shares all devices and a single global thread
pool among sessions, as shown in Figure 4. The temporary thread
pool is used for fast preemption and will be discussed in Section 3.3.
Furthermore, SwitchFlow creates multiple executors, each corre-
sponding to an available device on the machine, for each subgraph
during graph construction. Initially, for a subgraph, the executor and
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Figure 4: Design of SwitchFlow.

its associated backend device are determined by the ML framework
based on a cost model. The additional copies of executors are used
for migrating a subgraph from one device to another.

The session manager determines when to schedule executors from
sessions while preserving the dependency within a session. It allows
executors from different sessions to interleave but ensures that ex-
ecutors from consecutive runs of the same session follow sequential
order. SwitchFlow supports independent DL jobs as well as multi-
job scenarios, where a user runs a set of jobs on the same training
set to tune hyper-parameters, such as the number of layers/weights,
mini-batch size, and learning rate, of a model [51] or to train multi-
ple models. In multi-job scenarios, SwitchFlow merges subgraphs
from different but correlated sessions based on user-provided config-
uration.

3.3 Preemption

SwitchFlow addresses several challenges in task preemption. First,
to preempt a DL job, all its tasks queued in the ready queue, local
thread queues, dispatched onto GPUs, and currently running on
CPUs must be stopped in a coordinated and timely manner. Second,
the context of the suspended job must be saved and the storage cost
should be contained. Third, task resumption should also be fast to
avoid throughput loss.

Recall from previous discussions that worker threads indepen-
dently dispatch tasks and can steal from each other. It is necessary
to isolate high priority jobs (preempters) from those to be preempted
(preemptees). As shown in Figure 4, SwitchFlow maintains a tem-
porary thread pool to handle the preemptees until preemption is
completed. With the help of the executor scheduler (discussed in
Section 3.4), SwitchFlow guarantees low preemption latency.

Task suspension. Upon the arrival of a high priority DL job, the
session manager first aborts the nodes that are currently queued in
the ready queue and thread local queues from the preempted job. The
kernels that have been dispatched onto GPU are allowed to finish as
they may be interleaved with other jobs’ launched kernels and there
is a lack of mechanisms to selectively stop kernels of a particular job.
Second, the session manager reconstructs the computation graph
of the preempted job to replace the executor (subgraph) on the
bottleneck device with an alternative executor on a different device.
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For example, if job! is to preempt job2 on GPUL, job2’s executor
on GPU1 will be replaced with an executor on GPU2 or CPU. As
such, subsequent sessions of job2 will be run on a different device,
isolated from the high priority job. Furthermore, subsequent sessions
of the preempted job will be handled by the temporary thread pool
until preemption is completed. This ensures that the launching of
the new job is not interfered.

After preemption is done, the preempted job can be moved back

to the global thread pool. In the case that there is no GPU available
and the preempted job has to run on CPU, e.g., using an executor
implemented with the Intel MKL library, we keep it in the temporary
pool to prevent a large number of MKL operations from exhausting
the global thread pool. At initialization, SwtichFlow spawns as many
threads as the number of cores in each thread pool and uses wakeup
signals to control the number of active threads. Thread count in
the temporary pool can be configured by configuration and is a
tradeoff between isolation and the performance of preempted jobs.
SwitchFlow ensures that the total number of workers in the two
thread pools matches the number of cores.
Context saving and task resumption. For training jobs, model
weights that persist across iterations (i.e., session runs) need to be
saved to preserve training progress. For inference, no cross-session
state needs to be saved since prediction requests do not update
model weights and are independent. ML frameworks keep model
weights in GPU memory across iterations and copy updated weights
back to host memory after training is completed. At the end of
each iteration, intermediate data, such as calculated gradients, is
discarded but weights remain in GPU memory. To save job context,
SwitchFlow tracks persistent variables in a session through TF’s
resource manager on each device. To reduce the delay caused by state
transfer, SwitchFlow does not initiate the transfer when preemption
is in progress, i.e., the session of a preempted job is being aborted.
Instead, SwitchFlow waits until a new session run of the preempted
job is started.

A preempted job is migrated to a different device and allowed
to resume immediately. The session manager uses the newly con-
structed graph to start a new session run of the preempted job. The
new session is populated with the tasks of the aborted session run
so that no work is lost. Most importantly, before the job is resumed,
SwitchFlow copies the model weights from the GPU where the job
is preempted to the new device using asynchronous memory copy.
Note that the state transfer is off the critical path of preemption and
can be performed concurrently with the high priority job. However,
this requires model weights to be preserved on the source GPU until
state transfer finishes, occupying GPU memory that can be used by
the new job. We think this is a necessary tradeoff for minimizing
preemption latency. As will be shown in Section 5.2.3, intermedi-
ate data dominates model memory usage [27, 43] and weights only
account for less than 10% of the total memory usage.

3.4 Scheduling

Recall the two issues of computation graph execution: 1) primitive
routines (kernels) are highly optimized by DL libraries to improve
hardware efficiency, thereby unable to co-run on a single GPU with-
out performance loss; 2) the execution pipeline of a single model
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Figure 5: Input data reuse in multi-task learning.

cannot efficiently utilize both CPU and GPU. To this end, Switch-
Flow maintains two scheduling invariants:

First, no two GPU executors are scheduled on a single GPU si-
multaneously. It is worth noting that this constraint not only helps
more efficiently utilize GPU through time slicing but also effectively
avoids OOM errors as well as offering flexibility for resource provi-
sioning. Users can assume they have exclusive access to GPUs they
request and configure their models accordingly, e.g., selecting an
appropriate batch size. Since model weights need to be preserved on
GPU, the aggregate size of persistent variables of all models sharing
the same GPU should not exceed GPU memory size. SwitchFlow
allows one GPU executor to finish before switching to another. As
such, intermediate data is discarded and a majority of GPU memory
is freed.

We use preemption to demonstrate how this scheduling constraint
achieves low preemption latency without OOM errors. A high prior-
ity job is allowed to start immediately after submission. The new job
goes through computation graph construction before its executors
are ready to run. If the preempted job is still being aborted, its GPU
executor is running and will prevent the new job’s GPU executor
from starting. Therefore, the abort time and preparation time can be
overlapped.

Second, executors on different devices can be scheduled freely.
SwitchFlow does not impose restrictions on the scheduling of CPU
executors or executors on different GPUs. This is in stark contrast to
session-based time slicing wherein no executors from other sessions
can be scheduled. SwitchFlow allows any CPU executor to run while
a GPU is occupied. It helps to overlap data preprocessing on CPU
in one job with GPU processing in another job. Note that we did
not observe much contention on CPU because when one job’s GPU
executor runs, its CPU executor only prefetches input for the next
session without processing them. Therefore, CPU executors may not
reach their peak demands at the same time.

SwitchFlow supports customized scheduling as directed by user
configuration. In multi-task learning, users use the same input to train
or perform inference on multiple models. During hyperparameter
tuning, the same input data is used to navigate the hyperparameter
space, e.g., learning rate, momentum, and dropout rate, on the same
model. For these use cases, a straightforward approach is to replicate
the input and run multiple jobs separately. Not only will it lead
to redundant data preprosessing but it also results in low pipeline
efficiency. Research in DL showed that multi-task learning can be
achieved by sharing the hidden layers of a neural network among
multiple models while keeping model-specific output layers [10].
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Listing 1: The launch.py program for sharing the data prepro-
cessing stage between two models.

1 # Setup

2 os.environ['TF_SET_REUSE_INPUTS'] = 'True'

3 os.environ['TF_REUSE_INPUT_OP_NAME_MASTER_X'] = 'X00'
4 os.environ['TF_REUSE_INPUT_OP_NAME_MASTER_y'] = 'y0o'
5

6 # For a master and a secondary model(X01,y01)

7 os.environ['TF_REUSE_INPUT_OPS_NAME_SUB_X'] = 'Xo1'
8 os.environ['TF_REUSE_INPUT_OPS_NAME_SUB_y'] = 'yo1'
9

10 def launch():

11 # master graph

12 t0 = threading.Thread(

13 name='tQ"', target=user_00.BuildAndRunGraph,

14 args=('graph_00', 'X00', 'y0o'))

15

16 # secondary graph

17 t1 = threading.Thread(

18 name='t1', target=user_01.BuildAndRunGraph,

19 args=('graph_o1', 'xe1', 'yo1')

However, the internal structure of these models must be similar and
they have to be deployed together.

As shown in Figure 5, SwitchFlow offers an alternative way to
jobs with same input pipeline. It merges multiple computation graphs
to share the data preprocessing stage. Specifically, the recv nodes on
GPU executors are linked together to share the tensors received from
the CPU executor. Note that the input tensor may be modified during
GPU processing and is deallocated after the GPU executor finishes,
SwitchFlow maintains an immutable copy of the tensor in GPU
global memory and makes its address public to all GPU executors
sharing the tensor. Models are executed in lockstep. All models
should finish processing an input tensor before moving onto the next
input batch. To this end, SwitchFlow executes a strict schedule: a
shared CPU executor for data loading and preprocessing followed
by each model’s GPU executor in a round-robin manner.

4 IMPLEMENTATION

In this work, we have implemented a prototype of SwitchFlow in
TensorFlow. We made changes to TF with 3K+ lines of Python
and C++ code. Most changes were made to TF’s session and ex-
ecutor management as well as the provisioning of the temporary
thread pool and implementing preemption. Executor scheduling was
implemented in each session by imposing synchronization among
GPU executors that share the same GPU. As the number of models
sharing a GPU is typically small (2-3), we used atomic instructions
to synchronize on a flag and did not observe noticeable scalability
issues. Sessions that do not share GPU schedule independently.

Since SwitchFlow runs models using one global thread pool, the
models need to run within one TF instance (process) as opposed
to one model per instance in the vanilla TFE. In the prototype, we
employed multiple Python threads to launch models from the same
TF instance. As such, users’ models written in Python need to be
converted into modules and imported to a main launch. py program.
This implementation can be improved to employ the gRPC interface
for model submission, in a way similar to TF serving [37].

It is straightforward to adapt Python TF models to run with
SwitchFlow. It takes 1 line of code (LOC) to configure priority
for model preemption and 4 LOCs to restrict one GPU executor at a
time to run on a shared GPU. Listing 1 shows a more sophisticated
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case to share the input preprocessing stage between two models.
Only 5 LOCs need to be added to a launcher program. The required
changes are to add environment variables to configure input sharing.
Input reuse can be conveniently enabled/disabled (line 1) and models
which share the input with a master model link their recv nodes on
the GPU executor to the recv nodes in the master model (line 2-8).
The two models are then launched from two Python threads with the
shared stage as an argument (line 10-19).

5 EVALUATION

This section evaluates the effectiveness of SwitchFlow for repre-
sentative DNNs on four different GPUs. Since TF does not support
sharing a GPU, we compare SwitchFlow against two variants of TF:
i) multi-threaded TF that uses multiple streams for spatial sharing
and ii) TF with session-based time slicing, similar to Gandiva [51].
iii) NVIDIA MPS [34]. Experimental results show that 1) Switch-
Flow’s preemption mechanism is effective, achieving up to an order
of magnitude improvement on prediction tail latency (Section 5.2.1)
and maintaining high throughput (Section 5.2.2), 2) Input reuse
among correlated models (Section 5.3) and interleaved execution of
independent models (Section 5.4) leads to significant performance
improvements in prediction jobs.

5.1 Experimental Setup

Machine configuration. Experiments were conducted on two servers
and a Jetson TX2 development kit, all running Ubuntu 16.04. One

server was equipped with two different NVIDIA GPUs: GeForce

GTX 1080 Ti (11 GB device memory) and RTX 2080 Ti (11 GB)

and the other server was with 4 NVIDIA Tesla V100 GPUs (32

GB). Both servers had dual 18-core Intel Xeon processors and over

250GB memory. The CPU and memory performance of the servers

is comparable. Jetson TX?2 is an embedded computing board with

a quad-core ARM Cortex-AS57, a 256-core Pascal GPU, and 8GB

memory shared between the CPU and GPU.

Software. We implemented SwitchFlow on TensorFlow and used

variants of TF with the same version for comparison. The CUDA
version was v10.0 and the machine learning library used was cuDNN

v7.6.4.

Benchmarks. Multiple CNN models were selected from Keras appli-
cations: ResNet50, VGG16, VGG19, DenseNet121, DenseNet169,
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InceptionResNetV2, InceptionV3, MobileNet, MobileNetV2, Nas-
NetLarge, NasNetMobile; one recurrent neural network (RNN)
model: NMT.

The dataset for CNN models was ImageNet raw JPEG images
for evaluation. The dataset for NMT was German-English WMT’ 16
dataset [2]. For training, the mini-batch size was 32; for inference, if
not otherwise stated, batch size (BS) was set to the largest that does
not lead to an OOM error.

5.2 Effectiveness of Preemption

5.2.1 Tail Latency. To evaluate the effectiveness of SwitchFlow’s
preemption mechanism, we co-ran an inference job with a back-
ground compute-intensive training job. Inference requests were con-
figured with higher priority and each contained only one image
(BS=1). This ensures that the GPU has sufficient resources to serve
the requests and only scheduling affects latency. We first launched
the background training job, waited for its warmup, and then submit-
ted inference requests as a continuous stream. The baseline was the
multi-threaded TF running training and inference in separate threads,
which allowed the two jobs to freely run on GPU.

Figure 6 shows the 95" tail latency of inference requests due to
TF and SwitchFlow. The results show that SwitchFlow achieved
significant better tail latency compared to TF. The performance gap
varied depending on the resource intensity of the training job. As
shown in Figure 6 (a)-(c), the performance gap enlarges as models
become more computationally expensive. The largest improvement
on tail latency (19.05x) was from the test with NMT inference
and VGG16 training (Figure 6 (d)). RNN inference itself is fairly
expensive on GPU and was significantly slowed down when co-
running with another expensive model VGG16.

We also evaluated two variants of multi-threaded TF and they
incurred even longer delay to inference requests, thereby their results
not shown. The first TF variant enforced task priority in the global
thread pool. However, since worker threads perform work stealing
oblivious of job type, priority inversion occurred and tasks execution
of the training and inference jobs were interleaved. The second TF
variant employed session-based time slicing and assigned inference
a higher priority. Because this approach lacks preemption, in the
worst case, inference had to wait for a full session of training to
finish.
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Figure 7: The throughput of two training jobs sharing a single GPU. The high priority job is shown in data series and the low priority
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the arrows showing the performance degrations compared to running in solo. (a) and (b) are under multi-threaded TF, (c) is under

MPS, and (d)-(f) are under SwitchFlow.

In contrast, SwitchFlow achieved consistently low latency across
all workloads. The absolute tail latencies against different models
were similar, suggesting that SwitchFlow was able to timely preempt
current jobs regardless of their resource intensity. The key advantage
of SwitchFlow is the isolation between training and inference jobs.

Table 1: The overhead of model state transfer.

Model Name Stateful Variables Transfer time (ms)
(MiB) GPU to GPU (PCle 3.0)
ResNet50 198.53 28.838
VGGI16 1055.58 103.747
VGG19 1096.09 109.416
DenseNet121 64.83 39.823
DenseNet169 108.61 45.236
InceptionResNetV2 426.18 82.137
InceptionV3 182.00 31.613
MobileNetV2 27.25 17.505

5.2.2  Throughput. We are also interested in the performance of
a preempted job and evaluated the throughput of two co-running
training jobs. We considered a scenario in which a high priority

training job needs to preempt a low priority job to run on a GPU.

The GPU could be the only one on a machine or the faster one
among multiple GPUs. In the vanilla TF that does not support GPU
sharing, the low priority job has to be killed. Therefore, we used
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the multi-threaded TF as the baseline, under which the two models
can freely share GPU. We also compared SwitchFlow with NVIDIA
MPS on the V100, the most powerful GPU in our testbed. Figure 7
(a) and (b) show that resource contention on GPU led to significant
slowdowns to both models. More seriously, allowing models to
freely access GPU resources resulted in some model crashes due to
OOM errors on both GPUs. Users need to carefully determine which
models cannot be collocated. This is a tedious process since memory
demands also depend on model input. Multi-threaded TF causes
OOM errors when the aggregated, real-time memory demand of the
two models at any point exceeds device memory. Worse, all models
crash under NVIDIA MPS on the 1080 Ti and 2080 Ti GPUs because
the two processes in MPS, each running a separate model, do not
share GPU memory allocation. Thus, when the aggregated peak
memory demand exceeds GPU capacity training crashes. Model
co-training under MPS only can complete on V100 since it has triple
device memory. Similar to multi-threaded TF, MPS also inflicted
significant slowdowns to both models.

In contrast, SwitchFlow does not require user-side tuning and
allows models to access full GPU capacity. Upon the arrival of a
high priority model, the low priority one is preempted and migrated
to a different device, whether be another slower GPU or CPU. We
make the following observations in Figure 7 (d)-(f): 1) there was
no crash. 2) in all cases, the high priority job achieved much higher
throughput than that in multi-threaded TF. 3) The low priority job
achieved acceptable throughput when migrated to a slower GPU
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Figure 9: Performance improvement due to input reuse among
different models.

but suffered drastic throughput drop when migrated to CPU since
the DL operations were not designed to run on CPU. 4) The high
priority job still experienced throughput loss compared to running
in solo. While it ran a dedicate GPU, the low priority job occupied a
few worker threads, which may delay task dispatching in the high
priority job.
5.2.3  Preemption Overhead. Preemption in SwitchFlow involves
aborting the execution of outstanding nodes (kernels), allocating
space on a destination device, transferring model states (weights) to
the destination, and freeing the memory of model states on the source
device. Only waiting for the outstanding nodes of a preempted job to
complete is on the critical path of a new job. Figure 3 shows kernel
time ranging from a few tens of milliseconds. Therefore, the worst
case preemption latency is approximately a few tens of milliseconds.
The aborted operations are stochastic when preemption occurs, so the
preemption latency is implicitly subject to the worst case operation.
Another source of overhead is the memory space needed to retain
the model states of the preempted job until they are transferred to
the destination device. Since the state transfer is asynchronous, the
retained states occupy the GPU memory that could otherwise be
used by a new job. Table 1 shows the amount of data need to be
transferred as model states and the time required for GPU-to-GPU
transfer via x16 PCle 3.0. The largest model (VGG19) occupied
about 10% of the GPU memory, e.g., 1 1GB device memory on GTX
1080 Ti and RTX 2080 Ti, and it takes at most 110ms before the
states are transferred and memory is released.

5.3 Sharing Inputs among Similar Models

Allowing models to simultaneously share GPU may cause OOM
errors while dedicating heterogeneous devices to one model leads
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200 iterations (training or inference) from each model after warmup.

In cases where multiple models have same preprocessing pipelines,
to mitigate the upstream data preprocessing [13, 32] time, batched
input data are reused between different models. As downstream GPU
keep consuming input data without involving repeated data prepro-
cessing, training or inference workloads which are bottlenecks at
CPU side can achieve speedup. Initially, the master model carries
out data preprocessing and data augmentation. Next, the processed
input are cached for the subsidiary models to exploit again in the
following session runs.

Figure 8 shows normalized performance improvement due to
SwitchFlow against the baseline on three GPUs. In this evaluation,
we co-ran two identical models as their sessions are guaranteed to
have the same length so that the maximum gain of input reuse can be
determined for each specific model. Figure 8 (a) and (b) suggest that
there was marginal performance gain due to input reuse for training
jobs. Since each iteration of training lasts hundreds of milliseconds
on GPU, the existing mechanisms in TF, such as input prefetching
and parallel data preprocessing, can effectively overlap GPU and
CPU time, leaving little room for further improvements. In contrast,
Figure 8 (c) and (d) show significant improvements when two in-
ference jobs were collocated. Input reuse saved as much as 65%
compared to session-based time slicing. An interesting observation
is that faster GPU (V100) led to higher gain in complex models (e.g.,
ResNet50, VGG16, and InceptionResNetV2) but lower gain in light-
weight models (e.g., MobileNet and NASNetMobile). Jetson TX2
has limited shared memory between CPU and GPU and thus is not
intended for training. Figure 8 (e) shows lower gain for inference on
TX2 as the embedded GPU is much slower. Again, the higher gains
were from lightweight models, which require less GPU computation.

Next, we evaluate input sharing among different models. Al-
though models have different internal structures, they are CNN
models for image classification. Thus, they can share the preprocess-
ing stage. Figure 9 shows the results with different batch sizes and
a varying number of collocated models. The findings are 1) larger
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Figure 10: Performance improvement due to interleaving executors of independent models against session-based time slicing.

batch sizes led to higher improvements, indicating CPU increas-
ingly became the bottleneck as more images included in a batch. 2)
Co-running more models had diminishing gains, especially among
complex models. According to the results, it is recommended that
no more than three models should co-run on a single GPU.

5.4 Interleaving Independent Models

In this section, we relax the requirement of sharing the input and eval-
uate how much SwitchFlow improves executor scheduling among
independent models. SwitchFlow alternates GPU executors from
different models but allows CPU executors to freely run. Figure 10
shows performance improvements in three scenarios: (a) inference
jobs sharing with inference of a heavy-weight model (VGG16), (b)
sharing with inference of a lightweight model (NASNetLarge), and
(c) sharing with training of a heavy-weight model (VGG16). The
GPU used was V100. The figure shows that SwitchFlow’s perfor-
mance gain compared to the baseline was much lower than that in the
input reuse tests. This is expected since scheduling may not perfectly
overlap GPU and CPU processing while sharing inputs entirely by-
passes the CPU stage. Still, SwitchFlow was able to consistently
achieve 30% among inference jobs, regardless of the model type.
When co-ran with training, the gain diminished but for lightweight
models (e.g., MobileNetV2) the gain was up to 20%.

6 RELATED WORK

Various approaches to share GPUs in a multitasking environment
are proposed to meet a number of objectives, such as responsiveness,
throughput, resource utilization, isolation.

Temporal and spatial GPU multitasking. Existing studies in GPU
multitasking include: (1) time-sliced scheduling [38]; (2) spatial par-
titioning scheduling [5, 40]; (3) space-time scheduling [21, 26, 34].
The proposed strategies can be categorized into different scheduling
granularity: context level [47], kernel level [21, 46], thread block
level [11], SM level [49, 53], and graph nodes level for DL work-
loads [20]. Time-sliced scheduling controls the state transitions, pri-
ority to ensure responsiveness and fairness. Interrupt request triggers
context switch between a serial of applications. Spatial partitioning
scheduling relies on data slicing, kernel slicing and fusion to split
data and kernel into a number of smaller chunks so that they can
co-schedule sub-kernels to different CUDA streams or SMs.
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These work focus on low-level management of GPU kernels and
memory copy. SwitchFlow takes both low-level kernel launching
constrains and DL. DAG computation graph characteristics into con-
sideration to enforce time-slicing a GPU exclusively. Thus, high
GPU utilization can be achieved without interference.

DL workloads scheduling, preemption and migration. ByteSched-
uler [42] is a generic priority-based scheduler for DNN distributed
training. Gandiva [51] is a cluster scheduling framework to improve
latency and efficiency of training DNN models by time-slicing GPUs.
Olympian [20] proposes a scheduling policy to enable fair sharing
multiple DNNs in TF-Serving [37]. Pretzel [25] applies multi-model
optimizations for ML.Net [6] prediction serving systems. Previous
work consider either training or inference phases, SwitchFlow in-
stead focuses on both workloads to maximize GPU utilization and
throughput, and to minimize latency. While PipeSwitch [8] enables
fast model switching to allow multiple DL models to share a single
GPU, it relies on dynamic graph execution for layer-to-layer model
transmission and execution. In contrast, SwitchFlow focuses on DL
multitasking on static graphs, which are more efficient but challeng-
ing to switch. AntMan [52] proposes elastic memory management,
which can potentially help in DL multitasking and is orthogonal to
SwitchFlow. However, it requires unified GPU memory and may
incur high overhead.

Olympian [20] interleaves with graph nodes but do not preempt
ongoing graph. In Gandiva [51], preemption and migration is ex-
tended by the Tensorflow already supported checkpoint APIs, which
may incur considerable overhead compared with SwitchFlow by
saving and restoring several hundreds of MiB or few Gib check-
point [51] that cannot be tolerated for inference jobs. Our design
does not preempt an issued GPU kernel since it can be expen-
sive [39, 45, 50]. We transfer stateful variables to another device
without involving checkpoint. Also, DL systems consists of data
preprocessing pipelines for both training and inference [13]. Switch-
Flow leverages overlapping data preprocessing and kernel execution
to maximize throughput.

7 CONCLUSION

This paper presents SwitchFlow, a scheduling framework for DL
multitasking. Spatial and temporal multitasking are either ineffective
or inefficient in DL frameworks that employ computation graphs. We



Middleware’21, December 6-10, 2021, Québec, Canada

demonstrated that by carefully controlling the scheduling of GPU ex-
ecutors, one can simultaneously achieve high pipeline efficiency and
OOM-free execution. We evaluated SwitchFlow with representative
DNN models. The results show that SwitchFlow achieved significant
performance improvements on both inference latency and training
throughput compared to TensorFlow.
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