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The most troubling sentence in Doak et al. (2021, hereafter, D21)) is this: “Finally, some of us (Doak,1

Morris, Garcia pers. obs.) have seen an increasing tendency of reviewers and editors to dichotomize these2

two approaches, considering matrix models as out of fashion”. We fully agree that there should not be3

a “cult of IPM”. Population ecologists use matrix projection models (MPM), integral projection models4

(IPM), differential equations, stage- and physiologically-structured models, agent-based models, and more.5

All have a place. If your model is a poor choice for your species, data, and questions, or it has been poorly6

parameterized, that is a legitimate criticism. “Out of fashion” is not.7

However, we are not aware of any papers actually “calling into question the usefulness of the many8

studies based on matrix models” as D21 assert, claiming that IPMs are universally superior to MPMs,9

or asserting that a “fundamental re-tooling” is needed. The many recent comparative studies using the10

COMPADRE/COMADRE matrix model databases (Salguero-Gómez et al., 2016, 2015), including work11

by some of us (Adler et al., 2014), suggest that few ecologists actually question the usefulness of MPMs.12

So in the published literature, we see no real threat to continued use of MPMs. How editors and reviewers13

interpret that literature is, of course, a separate matter.14

We further agree with D21 that MPMs and IPMs should not be dichotomized; modeling any structured15

population should involve a common set of considerations and rules of thumb. Despite advocating a more16

unified modeling framework, D21 perpetuate the idea that these are distinct, competing approaches in their17

Figure 1, a modeling workflow that forks at an initial choice between MPM and IPM. As a counterpoint18

we suggest a workflow emphasizing a single stream of considerations from data collection through model19

analysis (Fig. 1). Depending on the species, data set, and question, our workflow could produce an IPM,20

MPM, or another structured population model. We use this diagram to frame two central recommendations21

that represent our primary disagreements with the guidance given by D21:22
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1. Use the best available statistical modeling approaches to estimate state-dependent individual23

survival, growth, and fecundity, and offspring size distributions. The most important contrast, we24

believe, is not MPM vs. IPM but statistical demographic modeling versus discretizing continuous states25

into a set of continguous discrete classes, and using observed class-transition frequencies as projection26

matrix entries. We refer to the latter as “binning”. Indeed, past statements about advantages of IPMs27

over MPMs are largely about benefits of statistical modeling over binning for continuous state variables28

– benefits which are often substantial for the questions ecologists are now asking. We do not dispute that29

statistical modeling and binning usually generated similar results in D21’s analyses. Rather, we argue that30

D21 conducted their analyses under restrictive conditions that do not represent most current applications31

of these tools. We emphasize key advantages of statistical modeling in more diverse and realistic settings.32

2. Construct the population model that is implied by the vital rate models, and implement it33

numerically using accurate methods. In particular, if you use continuous functions to model smooth34

responses to a continuous trait – which we argue should be default (Fig. 1) – you should increase the35

number of size classes until all model outputs of interest stop changing in value. We also disagree with36

D21’s advice for discretizing IPM kernels, because (as we show below) no approach is universally “best”.37

Our main goals are to elaborate on these recommendations, based on D21’s case studies and other evidence,38

and to provide an alternative vision for data-driven modeling of structured populations. With few exceptions,39

we agree with D21 on the factual content of their paper; our disagreements center on interpretations of40

that material and the consequent recommendations for “best practices”.41

Use the best available statistical approaches to estimate state-dependent survival, growth, and fe-42

cundity, and offspring size distributions.43

At the heart of any structured population model is the relationship between an individual’s state and its44
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demographic fate. Whether the state variable is continuous or discrete, we recommend that the state-fate45

relationship should be modeled statistically (D21’s “CVR”, for “continuous vital rate” estimation). This is46

standard for IPMs, in which regression modeling of state-fate relationships forms the backbone of the projec-47

tion kernel, but it is also possible for classical MPMs based on discrete state variables, as D21 point out (in fact,48

two authors of D21 were among the first to advocate for parameterizing MPMs through statistical modeling of49

state-fate relationships (Morris and Doak, 2002)). The alternative, advocated by D21 for some situations, is to50

estimate transition rates directly from raw data by binning (D21’s “DVR”, for “discrete vital rate” estimation).51

DVR is not inherently wrong, but statistical modeling has at least two advantages. First, as D21 point out,52

it provides a principled way to account for multiple sources of variation in the data, ranging from nuisance53

variables that could bias parameter estimates to covariates or experimental treatments that address the primary54

questions of the study. Statistical modeling makes it possible to identify relevant sources of demographic55

variation by applying established model selection criteria to compare and choose among competing56

descriptions of the system. The risks of parameterization via statistical modeling, according to D21, are57

that simple functions may miss complexities in the data and complex functions may be hard to fit. But these58

challenges have broadly accessible solutions. Fitting nonlinear smooth functions is a great strength of R, for59

example, and mixed effects models can be used to obtain unbiased estimates of the main effects of interest in60

the face of nuisance variables. Suggesting that complexity acts as a barrier underestimates the statistical savvy61

of demographers, and under-exploits the modern revolution in statistical computing. Fitted regression models62

require scrutiny, and strongly non-Gaussian growth patterns require thoughtful choice of a better distribution.63

But there are standard model selection tools and diagnostics for regression models, and work by D21’s authors64

provide nice examples of how to construct more complex growth models and vet them to ensure that they65

describe the data well (Peterson et al., 2019; Shriver et al., 2012). While CVR requires some foundations in66

statistics, we do not view DVR approaches as inherently simpler or less error-prone. In fact, a CVR workflow67
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encourages model builders and model users to focus on evaluating the assumptions and adequacy of the model,68

rather than on the formal mathematics (see Appendix S1: Section S1). Studies have found chronic errors in69

the assembly of DVR-based matrix models (Kendall et al., 2019; Stott et al., 2010), and the tedious problem of70

size class boundaries – how many and where – has troubled our field for decades without resolution (Moloney,71

1986; Picard et al., 2010; Ramula and Lehtilä, 2005; Salguero-Gomez and Plotkin, 2010; Vandermeer, 1978).72

The second advantage is that statistical models can help fill in gaps where few or no values of a73

state variable or covariate exist. This can be critical when a matrix is estimated from a small number of74

observations per class. For example, Ramula et al. (2020) used statistical modeling to parameterize 10-class75

stochastic matrix models for four populations of the long-lived herb Astragalus scaphoides, even though76

population×year-specific sample sizes were as low as seven. In any size-structured population, some sizes77

are common and others are very rare, but we need to estimate state-fate relations for all of them. If a gap in78

observed values is too wide, an entire class might be empty, demanding fewer, wider classes or else risking the79

construction of a matrix that is reducible and/or non-ergodic because the model omits some real transitions.80

A reducible matrix can have biologically implausible dead-ends in the life cycle. A non-ergodic matrix has81

multiple stable state distributions, typically with different long-term growth rates, which pose problems for82

analysis and interpretation. Stott et al. (2010) showed that ca. 25% of published DVR-based matrix models83

include biologically implausible discontinuities in the life cycle (i.e., are reducible and possibly non-ergodic),84

a consequence of some life-history transitions that actually occur going undetected in a finite sample.85

In their analyses to compare CVR versus DVR for small samples, D21 avoid this problem with fully86

stratified sub-sampling that ensured proportional representation in every size class regardless of sample size87

– the best possible case for DVR to match the accuracy of CVR. They justify this approach by stating that88

ecologists often intentionally seek out individuals of different sizes. This is sometimes true, but field scientists89

cannot ensure that every size class is well-represented if class boundaries are not defined until the data are90
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in hand, as D21 recommend. At best, they may seek out roughly even size representation, but most natural91

populations look something like D21’s Fig. 6: some sizes will always be hard to find, even with targeted92

effort. We replicated D21’s sample size analyses for their Polygonum viviparum (bistort) data, but with93

realistically small samples based on two recent studies (Fig. 2). To be generous, we used only 10 size classes,94

the minimum recommended by D21, but stratified sampling based on 5 classes; this simulates the process of95

seeking even size-representation in the field without knowing in advance what the model will be. We found96

the DVR method often generated reducible matrices when sample size decreased below 300, many having a97

dominant eigenvalue λ =1, which results from an estimated survival rate of 100% for some isolated portion98

of the life cycle with no chance of reproduction. In contrast, CVR virtually never generated such matrices99

even at the smallest sample sizes. Contra D21, CVR clearly outperforms DVR at small sample sizes.100

These two advantages – accounting for sources of variation and bridging data gaps – are related. With101

DVR, accounting for relevant covariates (e.g., year and site) is done by cross-classified binning, meaning102

that classes are defined by the values of two or more state variables. This is equivalent to independently103

constructing many projection matrices (e.g., one for each year×site combination, using only data for that104

year and site), which reduces sample size per projection matrix and amplifies the problems of parameter105

uncertainty and matrix reducibility. A CVR approach to the same data could use mixed models in which106

year- and site-specific random effects “borrow strength” from the full data set.107

To highlight these potential advantages of regression approaches and their relevance for contemporary108

ecological research, one needs to look no further than the papers that generated D21’s data sets. The109

previously published analyses of three of the five case studies in D21 (Doak and Morris, 2010; Fitzpatrick110

et al., 2016; Shriver et al., 2012) used statistical modeling (CVR) to test driver variables, account for111

imperfect detection, and accommodate sources of variation (across time, location, or ancestry) that would112

make DVR with more than a few size classes problematic (see Appendix S1: Section S2 for details). The113
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other two (Garcı́a, 2003; Linares et al., 2007) did use DVR, but because of cross-classified states, had to114

use far fewer size classes than D21 recommend. Thus, none of the analyses in D21 correspond to the deeper,115

more complex questions that really were asked about the featured populations. Those questions demanded116

cross-classifications that greatly increase the data requirements for binning with the minimum 10 even-sized117

classes that D21 advise. The domain that D21’s case studies represent has limited relevance to the analyses118

of most interest today, where binning quickly encounters the “curse of dimensionality”. In contrast, CVR can119

use multivariate regression models whose parameter count grows far more slowly as covariates are added.120

These observations and the evidence in Fig. 2 lead us to conclude that the equivalence of DVR and121

CVR emphasized by D21 is a special case that applies only when it is possible to ensure that the data set122

will include good representation for all size classes (before knowing what those will be): either very large123

sample size, or a simple model with no cross-classification by multiple state variables and no environmental124

covariates. The case studies that D21 use to compare DVR with statistical modeling all satisfy these125

conditions, but most modern demographic analyses and questions do not.126

Construct the population model that is implied by the vital rate models, and implement it127

numerically using accurate methods.128

Demographic data analyses aim to identify and quantify the factors governing the fates of individuals,129

and how they vary over space and time, leading to statistical models that summarize our understanding130

of state-fate relationships. A structured population model should embody that understanding. In particular,131

the mathematical model should align with the conceptual model of the population. If all state variables132

are continuous, aim to build an IPM; if they are all discrete, use an MPM. If they are a mixture, incorporate133

discrete stages and continuous state variables into a hybrid model. This advice is not controversial. Indeed,134

D21 adopt a continuous conceptual model whenever they use CVR, even if they call the result a “matrix135

model” (in fact, they call those models “IPMs” in their supplementary R scripts.)136
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When only continuous size has been measured, the conceptual model is a simple IPM:137

n(z′,t+1)=
∫

K(z′,z)n(z,t)dz=
∫ [

P(z′,z)+F(z′,z)
]
n(z,t)dz (1)138

where P and F are the survival/growth and fecundity components of the kernel K, z is the size measure,139

and n(z,t) is the size-distribution function for the population at time t. The difference between MPMs and140

IPMs is that, in the latter, the trait remains continuous in the underlying conceptual model. What D21 say141

about equivalence of MPMs and IPMs (D21, p. 6) fails to distinguish the model itself from the numerical142

solution methods: an integral that has been evaluated numerically is still an integral. Midpoint rule (which143

D21 call the “mesh point method”) and what D21 call the “CDF difference” method (see Appendix S1:144

Section S3)) both use evenly spaced kernel values, and allow us to think of the IPM as a matrix model145

with narrow size classes and re-use R or MATLAB code for matrix model calculations.146

In their Abstract D21 call it a “surprising result” that “the most commonly used method to discretize147

growth rates”[midpoint rule]... “can introduce substantial error into model outputs” (their Fig. 7b), calling148

into question the entire IPM literature. But as they later acknowledge (D21 p. 16), it has long been149

recognized that midpoint rule becomes inaccurate with too few size classes (Zuidema et al., 2010, Fig. 2).150

Solutions are available (Ellner et al., 2016, Ch. 6). In many cases the solution is simple: use more size classes151

(Fig. 3B) until the quantity of interest stops changing. At minimum, the number of classes should be large152

enough that the column-sums of the growth kernel sum to the size-specific survival probability. Other cases153

– extremely “spiky” kernels (i.e., very small σg), or cross-classification by multiple continuous attributes154

– may require more efficient methods (reviewed in Appendix S1: Section S3 with some recommendations).155

D21 advise that CDF difference generally out-performs midpoint rule, but that is not always true. CDF156

difference is designed to be very accurate for projecting how many individuals fall in each size class next157

year (conditional on survival). But that is only one of many things we do with structured population models.158
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We also use discretized IPM kernels to compute generation time, selection gradients, reproductive skew159

(the variance among individuals in lifetime reproductive success), and so on. Perhaps surprisingly, CDF160

difference may not be best for every purpose. For example, a key calculation for analyzing among-individual161

variation in lifetime reproductive success (Snyder et al., 2021) is the variance of expected future reproduction162

as a function of size at time t+1, conditional on size at t. For the growth distribution in D21 Fig. 7, suppose163

for illustration that expected total future reproduction is proportional to exp(z/50), where z is current size164

(the actual formula is more complicated and must be calculated numerically). Midpoint rule is very accurate165

with 200 size classes, but 300 classes is nowhere near enough for CDF difference (Fig. 3C). These results166

also illustrate the crucial point that different calculations require different numbers of classes: midpoint167

rule with 150 classes is fine for total survival, but not for variance in expected future reproduction. Appendix168

S1: Fig.S2 illustrates in a real, data-driven model that the relationship between class number and accuracy169

varies enormously depending on the model and on what quantity is being computed.170

So the essential points here are not about midpoint rule vs. CDF difference. They are that first, no171

discretization method is best for everything, and second, there is no generally reliable “rule of thumb” that 10,172

30, 200, or any other number of size categories is usually sufficient for numerical accuracy. The Royal Society173

motto “Nullius in verba” (take nobody’s word for it) is a better rule of thumb. Practitioners should be aware of174

the options and their relative merits. We like midpoint rule because it is simple, robust, and often does the trick;175

when it fails we try something more sophisticated. But whatever method or methods you use, it is essential176

to verify that answers don’t change meaningfully when more size classes are used. This is straightforward177

with a CVR-parameterized model – varying class number should be a trivial code edit. With DVR it is178

problematic, because sampling variability will cause answers to continually change, rather than converge,179

as the number of size classes is increased. Deciding when “enough is enough” remains seat-of-the-pants.180

Conclusions181
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We fully agree with D21 that differences between MPM and IPM have sometimes been overstated. We have182

argued (and the authors of D21 may well agree) that the more important dichotomy is traditional binning183

versus statistical modeling for model parameterization – for continuous traits, what D21 call DVR vs. CVR.184

D21 have shown, and we do not dispute, that a binning-based matrix model can be as effective as an IPM185

for size-structured populations if it becomes a whole lot more like an IPM by using narrow, evenly-spaced186

size classes instead of the historically predominant wide, uneven classes. However, actually constructing187

such a model from empirical data is possible only in restricted circumstances where it is feasible to ensure188

that all of those many classes are well-represented in the data set, as is true in D21’s simulations. This189

is hard to achieve even in simple models with current size as the only predictor of future size, and much190

harder with continuous covariates or cross-classification. It was conceptually useful for D21 to distinguish191

three different modeling decisions (DVR vs. CVR, number of classes, even vs. uneven classes), but by192

focusing on the “main effect” of each decision, D21 under-emphasized an important interaction among193

them: even in ideal circumstances for DVR, created by pooling data across important heterogeneities, CVR194

with many even classes is sometimes matched but never bettered. Moreover, CVR is often essential for195

the multivariate analyses that ecologists now want to do, such as relating demographic rates to habitat196

or environment variables to allow projections about no-analog future conditions. For continuous traits,197

CVR also solves the longstanding problem of choosing the number of size classes and their boundaries198

– just increase the number of classes until answers stop changing. Then you can call it what you want,199

or whatever your audience is most comfortable with, but what you’ve built is an IPM.200
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Ramula, S. and K. Lehtilä. 2005. Matrix dimensionality in demographic analyses of plants: when to use231

smaller matrices? Oikos, 111:563–573.232
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Figure legends

Figure 1. Recommended workflow for construction and analysis of structured population models. Dashed249

arrows represent iterative feedbacks: fitting, vetting, and re-fitting vital rate models until they describe250

the data adequately and increasing class number in model construction until outputs stop changing.251

Figure 2. Proportion of matrices that A) are irreducible and B) have population growth rate λ =1 exactly,252

constructed from stratified subsamples of the bistort (Polygonum viviparum) data of D21. Vital rates were253

estimated using either binning (DVR) or continuous regression-based parameterization (CVR). We used 10254

classes to construct the models and subsampled using 5 classes, which guaranteed that all samples included255

data from all 5 classes. The shaded area indicates the distribution of sample sizes used by Ramula et al. (2020)256

and Louthan et al. (2018) to estimate projection matrices (81 total). This demonstrates that many field studies257

are in the danger zone where DVR-parameterized models are at risk of being reducible, with dominant eigen-258

value describing an isolated part of the life cycle with 100% survival and no reproduction. Figure made by259

scripts DataS1: bistorts STRAT-RARIFY-bins.R and DataS1: Stott MEE.R using R version 4.0.2.260

Figure 3 Comparisons of numerical integration accuracy. A) and B) correspond to D21 Fig. 7, a Gaussian261

growth distribution with size range [0,100] where size next year is Gaussian with σ =0.5 and a sequence262

of means ranging from 49 to 51. A) The sum of growth probabilities (with true value 1) calculated by263

midpoint rule, exactly as in D21 Fig. 7b, showing large errors when size classes are too wide. B) As in264

A) but with more size classes, showing that the error becomes trivially small. C) Calculation by midpoint265

rule (dashed black) and CDF difference (solid red) of the variance of expected future reproduction (with266

expected future reproduction assumed to have functional form 25exp(z′/50)) as a function of size z′ next267

year, for initial sizes 48 and 52. Dashed black horizontal lines are the values using 1000 size classes with268

midpoint rule. Figure made by script DataS1: Convergence comparison.R using R version 4.1.1.269
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Figure 3:
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