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Panoptic Feature Fusion Net: A Novel Instance
Segmentation Paradigm for Biomedical
and Biological Images

Dongnan Liu™, Donghao Zhang, Yang Song, Member, IEEE, Heng Huang, and Weidong Cai

Abstract—Instance segmentation is an important task for
biomedical and biological image analysis. Due to the complicated
background components, the high variability of object appear-
ances, numerous overlapping objects, and ambiguous object
boundaries, this task still remains challenging. Recently, deep
learning based methods have been widely employed to solve these
problems and can be categorized into proposal-free and proposal-
based methods. However, both proposal-free and proposal-based
methods suffer from information loss, as they focus on either
global-level semantic or local-level instance features. To tackle
this issue, we present a Panoptic Feature Fusion Net (PFFNet)
that unifies the semantic and instance features in this work.
Specifically, our proposed PFFNet contains a residual attention
feature fusion mechanism to incorporate the instance prediction
with the semantic features, in order to facilitate the semantic
contextual information learning in the instance branch. Then,
a mask quality sub-branch is designed to align the confidence
score of each object with the quality of the mask prediction.
Furthermore, a consistency regularization mechanism is designed
between the semantic segmentation tasks in the semantic and
instance branches, for the robust learning of both tasks. Exten-
sive experiments demonstrate the effectiveness of our proposed
PFFNet, which outperforms several state-of-the-art methods on
various biomedical and biological datasets.

Index Terms— Instance segmentation, panoptic segmentation,
histopathology images, fluorescence microscopy images, plant
phenotype images.

I. INTRODUCTION

NSTANCE segmentation is a prerequisite step for bio-

medical and biological image processing, which not only
assigns a class label for each pixel but also separates each
object within the same class. By assigning a unique ID for
every single object, the morphology, spatial locations, and
distribution of the objects can be further studied to analyze
the biological behaviors from the given images. In the digital
pathology domain, the nuclear pleomorphism (size and shape)
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contributes to the tumor and cancer grading, and the spatial
arrangement of cancer nuclei facilitates the understanding
of cancer prognostic predictions [1]-[4]. In the plant and
agriculture study, analyzing each distinguished leaf in plant
images enables the experts to learn about the plant phe-
notype including the number of leaves, maturity condition,
and its similar cultivars, which serves as the key factor of
understanding plant function and growth condition [5]-[7].
Traditional manual assessment for biomedical and biological
image instance segmentation is not suitable for current prac-
tice, as it is labor-intensive and time-consuming. Additionally,
limitations of objective and reproducibility are unavoidable
due to the intra- and inter-observer variability [8]. To this end,
automatic and accurate methods for instance segmentation in
biology images are necessary and in high demand.

There still remain some challenges in instance segmentation
tasks for biomedical and biological images. First, some back-
ground structures have a similar appearance to the foreground
object, such as cytoplasm or stroma in histopathology images.
Therefore, methods relying on thresholding are ineffective.
Second, within the same dataset, the objects in different
images have large variability in size, shape, texture, and
intensity. It is caused by the various biological structures and
activities when acquiring different images [9], [10]. Third,
there are clusters of objects overlapping with each other. The
boundaries between these touching objects are ambiguous due
to nonuniform staining absorption and similar object intensity.
This might result in segmenting several objects into a single
one. In order to tackle these issues, deep learning based
methods are prevalent and effective by learning from feature
representations.

CNN based instance segmentation methods can be cat-
egorized into two types: proposal-free and proposal-based
methods. For the proposal-free instance segmentation methods,
each pixel is firstly assigned a class label with a semantic seg-
mentation model. The post-processing steps are then employed
to separate each foreground object within the same cate-
gory, according to their morphology characteristic, structures,
and spatial arrangement [11]-[15]. Although post-processing
among these methods is capable of separating the connected
components, they still suffer from artificial boundaries during
overlapping object segmentation. Even though [11], [15], [16]
focus on boundaries learning at the semantic segmentation
stage, the global contextual information is still not enough
to separate the touching objects, especially when their bor-
ders become unclear. On the other hand, the proposal-based
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instance segmentation methods incorporate the detection task
with the segmentation task [17], [18]. First, the spatial loca-
tion for each object is detected as a bounding box. Then,
a mask generator is further employed to segment each object
within the corresponding predicted bounding box. By detecting
and segmenting every single object separately, the proposal-
based methods are capable of separating the touching objects.
However, they are limited as there is a lack of global semantic
information between the foreground and background.

For the instance segmentation tasks, both the global seman-
tic and local instance information is important. The global
semantic information indicates the useful clues in the scene
context, such as the relationship between the foreground and
background and the spatial distribution of all the foreground
objects. On the other hand, local-level instance information
describes the spatial location and detailed contour for every
single object. To integrate the benefits of the global and
local features, panoptic segmentation [19], reconciliation of
the semantic and instance segmentation, has been proposed.
In [19], the predictions from two separately trained seman-
tic and instance segmentation branches are fused together
to analyze the panoptic level segmentation. Without sharing
components between the two branches, training [19] incurs a
large computational cost [20]. In addition, the analysis in [20]
indicates that jointly training a network for the two tasks
achieves better performance than training them independently.
To this end, Panoptic PFEN [20] is proposed to jointly train the
semantic and instance segmentation branches by sharing the
same ResNet backbone, which has achieved state-of-the-art
performance on panoptic segmentation as well as maintained
memory efficiency.

Based on [19] and [20], we previously proposed
[21] and [22] for nuclei instance segmentation in histopathol-
ogy images. Motivated by jointly analyzing the semantic
and instance segmentation tasks in [19], we designed the
Cell R-CNN [21] to simultaneously process the global and
local information in the histopathology images. Different
from the two separately optimized branches in [19], our Cell
R-CNN [21] proposed to jointly train the two branches with
a shared backbone model. In order to further facilitate the
semantic-level contextual learning in the instance segmentation
model, our IJCAI work [22] was proposed to induce the
instance branch to learn directly about the semantic-level
features. As the extension of Cell R-CNN, we refer to [22] as
Cell R-CNN V2 in the following sections. In Cell R-CNN V2,
we firstly introduce a new semantic segmentation prediction
from the instance branch. Then a feature fusion mechanism
to incorporate the feature maps is designed to induce the
semantic feature learning in the decoder of the instance
segmentation branch, by integrating the mask prediction of the
instance branch with that of the semantic branch. In addition,
a dual-model mask generator is proposed for instance mask
segmentation, in order to prevent information loss. Compared
with the Panoptic FPN [20], which only jointly optimized the
semantic and instance segmentation branches with a shared
backbone, our Cell R-CNN V2 directly integrated the features
from the two branches, to further induce the semantic feature
learning in the instance branch.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

In this work, we propose a Panoptic Feature Fusion Net
(PFFNet), which further extends our preliminary Cell R-CNN
V2 [22] by addressing several remaining problems. First,
the feature fusion mechanism in [22] directly replaces the
part of the feature map in the semantic segmentation branch
with those from the output of the mask generator. Although
the mask predictions from the instance branch interpret more
instance-level features than the semantic branch, the global
contextual features from the semantic segmentation prediction
are also important. To this end, we propose a residual attention
feature fusion mechanism (RAFF) in this work, to replace the
previous feature fusion mechanism. In our newly proposed
RAFF, the local features from the instance branch are inte-
grated with the global semantic features, without deprecating
any semantic-level features. Second, two semantic segmenta-
tion tasks with the same ground truth are optimized together
in the overall architecture of [22]. In order to facilitate the
robust learning of two segmentation tasks, we add a semantic
consistency regularization between them to enforce the two
semantic predictions from two different branches as similar
as possible. In addition, there remain some low-quality mask
predictions with an unexpected high classification score in the
traditional Mask R-CNN, as mentioned in [23]. It would be
harmful to the segmentation accuracy if treating these poorly
generated results as the ones with high confidence. To this
end, we propose a new mask quality sub-branch in this work,
by learning an auxiliary quality score of each mask prediction
based on the Dice score and Intersection-over-Union (IoU)
score. During inference, the classification score of each mask
is re-weighted through multiplication by its corresponding
mask quality score.

The PFFNet proposed in this manuscript is an extension
of Cell R-CNN V2, and can therefore also be named Cell
R-CNN V3. In line with our previous Cell R-CNN V2 and Cell
R-CNN, we are the first to employ the panoptic segmentation
idea on biomedical and biological image analysis, to the best
of our knowledge. Overall, the contributions of this work
compared with Cell R-CNN V2 are summarized as follows:

o We design a residual attention feature fusion mechanism
to integrate the features of each detected object in the
semantic and instance levels.

o« We design a semantic task consistency mechanism to
regularize the semantic segmentation tasks training for
robustness.

o We design an extra mask quality sub-branch to ensure the
mask segmentation quality for each object is compatible
with its confidence score.

o Our proposed Panoptic Feature Fusion Net is validated
on the instance segmentation tasks for various biomedical
and biological datasets, including histopathology images,
fluorescence microscopy images, and plant phenotyping
images. Our results for all metrics outperform the state-
of-the-art methods by a large margin.

II. RELATED WORK
Instance segmentation for biomedical and biological images
is widely studied, ranging from the handcrafted feature-based
methods to the learning-based methods. In order to emphasize
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the contributions of our proposed PFFNet, we mainly focus
on the literature of deep learning based instance segmentation
methods, which can be grouped into two classes: the proposal-
free and proposal-based methods.

A. Proposal-Free Instance Segmentation

Proposal-free instance segmentation methods are mainly
based on the morphology and spatial relationship of all
the objects in the images. For example, object boundary
is an important feature for separating the touching object.
In [11], [15], [16], [24], the instances are separated according
to the probability map for the foreground objects and their
boundaries. Similarly, [25] separates each instance according
to the distance between the two connected components. Addi-
tionally, post-processing methods are employed to separate
the touching objects based on the semantic segmentation
predictions, such as conditional region growing algorithm [11],
morphological dynamics algorithms [11], and watershed algo-
rithm [15], [16]. In addition to the traditional classification-
based segmentation methods, regression-based methods are
also widely employed. In [12], a distance transform map
describing the distance between each pixel and its nearest
background pixel is predicted, with a regression CNN archi-
tecture. To obtain the instance segmentation map directly,
[13], [14], [26] employ the clustering algorithm on the high
dimensional embeddings predicted from the deep regression
CNN model. Based on adversarial learning architecture, Zhang
et al [16] proposed an image-to-image translation method
for a more accurate probability map compared with the
classification-based method.

B. Proposal-Based Instance Segmentation

Compared with proposal-free instance segmentation meth-
ods, the proposal-based methods predict the mask segmen-
tation for each object based on the predictions of their
corresponding locations in the whole image [27], [28]. One
fundamental proposal-based instance segmentation method is
Mask R-CNN [17]. Based on the high-dimensional feature
maps from the backbone CNN network, Mask R-CNN firstly
generates regions of interest (ROIs) containing the foreground
objects with a region proposal network (RPN). After aligning
the ROIs to the same size, a box sub-branch and a mask sub-
branch are employed to predict the coordinate, class label,
and mask prediction for each ROI. With the help of the local-
level information from the spatial locations of the instances,
Mask R-CNN achieved state-of-the-art performance compared
with the traditional box-free methods. Following the Mask
R-CNN, other methods were further proposed with a higher
accuracy: [ 18] proposed a path aggregate backbone to preserve
the feature maps at high resolutions, [23] added a branch
for mask IoU score prediction based on the mask prediction
on the original Mask R-CNN, and [29] employed a cascade
connection of several bounding box and mask prediction
sub-branches.

Although the proposal-based instance segmentation methods
achieve higher performance compared with the proposal-free
methods by processing each object separately, their effective-
ness is still limited due to the lack of the semantic-level global
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information on the context of the whole images. To tackle this
issue, panoptic segmentation was recently proposed to jointly
process the foreground things and the background stuff [19],
by incorporating the semantic segmentation with the instance
segmentation. Inspired by this joint segmentation idea, [30]
fuses the instance segmentation result for foreground objects
with the semantic segmentation result for the background for
urban scene semantic segmentation. However, the instance
branch and semantic branch are trained separately in pre-
vious work. In [20], [31], both the instance and semantic
segmentation branches are trained together by sharing the
same backbone module. Then, the losses of the two branches
are summed together for back propagation to optimize the
parameters of the whole framework. Later, more methods for
fusing the results of things and stuff are proposed. In [32],
attention mechanism is employed to fuse the proposals and
masks from the instance branch with the feature map from
the semantic branch. [33] proposed a spatial ranking module
to separate the overlapping objects from different categories by
fusing the semantic segmentation predictions with the instance
segmentation ones.

Similar to the jointly learning paradigm in the panoptic
segmentation, combining the semantic segmentation task of
the proposal-based instance segmentation also enables the
model to achieve higher performance by learning the auxiliary
semantic-level contextual information. In [34], the semantic
segmentation prediction is fused with the proposed hybrid
cascade instance segmentation architecture to make the archi-
tecture manipulate the global semantic features and achieve
state-of-the-art performance compared with previous instance
segmentation methods. In medical analysis tasks, we previ-
ously proposed Cell R-CNN [21] to induce the encoder of
the instance segmentation to learn semantic-level information
by jointly training a semantic segmentation network and a
Mask R-CNN with a shared backbone network. With the
help of the semantic-level contextual information, Cell R-CNN
outperforms Mask R-CNN in the nuclei segmentation tasks
on histopathology images. However, the decoder of the Cell
R-CNN only learns the semantic features indirectly, which still
makes the model lack global information during inference.
In Cell R-CNN V2 [22], we, therefore, designed a feature
fusion module to incorporate the feature maps from the
semantic segmentation branch and the instance segmentation
branch during the training phase. By retaining semantic-
level features in the encoder and decoder of the instance
segmentation model, our previous work [22] achieved state-
of-the-art performance on several nuclei instance segmentation
tasks under both object- and pixel-level metrics.

III. PANOPTIC FEATURE FUSION NET

In this section, we firstly introduce the overall architecture
of the proposed Panoptic Feature Fusion Net (PFFNet). Then,
the three newly proposed modules are described in detail.
Finally, the training and inference details are presented.

A. Overall Architecture

Fig. 1 illustrates our proposed PFFNet. For each input
image, it first passes through a ResNet-101 [35] backbone

Authorized licensed use limited to: University of Sydney. Downloaded on May 11,2021 at 10:43:54 UTC from IEEE Xplore. Restrictions apply.



2048

semantic loss 2

training
\
. ) 1 I
— ‘ Semantic branch
L

Instance loss

R -

inference

Fig. 1.

semantic loss 1

- ‘ Instance branch =~

= ‘Instance branch =

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

semantic feature map1

| | consistency loss

semantic feature map2

Overview of our proposed Panoptic Feature Fusion Net (PFFENet). The input images first passed through a backbone network for multi-resolution

feature maps. The backbone is omitted for brevity. The overall loss function for training is shown in Eq.5.

raw semantic
feature map (Fo

)
—
UPJx [—> G3——> §4> aff —— [cs

ROI Align

:C1:—> @—>|C3 }—D%ﬁ

T

N

RPN | ’ ' dual-stage \
+ ‘ mask generator
= (c

v

C1

@b

boxes

class score

final semantic
feature map (Fn)
masks

e
reshape iou
mask quality
predictor
dice
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the mask quality predictor is the concatenation operation. U P/nx means the upsampling layer for n times with the nearest interpolation. raff represents the
proposed residual attention feature fusion mechanism. The ReLU and group normalization layer after all the convolutional layers are omitted for brevity.

network to obtain the feature maps at different resolutions.
Then, the feature maps are sent to a semantic segmentation
branch to learn the global semantic-level feature and an
instance segmentation branch to learn the object-level local
features.

For the semantic segmentation branch, we employed the
decoder of the global convolutional network (GCN) [36],
as shown in Fig. 3. Specifically, multi-resolution feature maps
after the ResNet101 backbone network are sent to a skip
connected decoder, which contains several large kernel global
convolutional modules. Each large kernel global convolutional
module is simulated by incorporating two 1D convolutional
kernels in different orders. To this end, the model has a large
receptive field as well as memory efficiency, and the semantic
branch is capable of processing more global-level contextual
features compared with the CNN architectures with a normal
size convolutional kernels.

Our instance segmentation branch in Fig. 2 is based on
that of Cell R-CNN V2 [22]. First, multi-resolution feature
maps (P2, P3, P4, P5, and P6 in Fig. 2) are obtained by
the feature pyramid network (FPN) [37] connected after the
backbone encoder. Along with the anchors in different ratios
and sizes, P2, P3, P4, P5, and P6 then pass through a
region proposal network (RPN) [38] to generate ROIs which
represent the features of all possible foreground objects in the
original images. As the ROIs after RPN are in various sizes,
a ROIAlign mechanism [17] is further employed to reshape
all the ROIs to the same size, which is 14 x 14 in this work.
Eventually, all the ROIs are sent to a bounding box sub-branch
to predict the locations and class scores and a dual-model mask
generator [22] for mask instance segmentation prediction.
In order to induce the semantic feature learning in the decoder
of the instance segmentation branch, we further propose an
attention-based feature fusion mechanism to incorporate the
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Fig. 3.  Overview of the semantic branch in our proposed PFFNet.

mask prediction and bounding box prediction for all the ROIs
with the semantic segmentation feature map obtained from the
top layer of FPN (P2). In addition, the mask segmentation
result is fused with the ROI features for a newly proposed
mask quality sub-branch to predict the quality of the mask
segmentation for each ROI according to the corresponding IoU
and Dice score.

B. Residual Attention Feature Fusion Mechanism

In Cell R-CNN V2, we proposed a feature fusion mech-
anism to incorporate the semantic-level contextual features
with the local-level instance features by using the mask
prediction from the instance branch to replace the subset of
the semantic segmentation features according to the location
of the bounding box sub-branch. Although the fused feature
map contains both semantic- and instance-level features, only
the background features at the semantic level are learned by
the instance segmentation branch, as the foreground features
in the original semantic feature map are deprecated. However,
the foreground feature for each object from the global view
in the original semantic feature maps is still important, as it
contains the relationship between each object and the whole
background. In the instance segmentation branch, the mask
prediction of each object is predicted according to the rela-
tionship between the foreground and the background within
the corresponding 28 x 28 ROI, instead of the background of
the whole image. Moreover, part of the background feature
in the semantic feature map is also replaced by that from the
instance predictions after the feature fusion mechanism in the
Cell R-CNN V2, which results in the contextual information
loss in the semantic segmentation prediction. To this end,
directly replacing the subset of the semantic feature map
with the predictions of the instance branch is harmful to the
semantic-level feature learning in the decoder of the instance
branch.

To tackle this issue, we design an attention-based feature
fusion mechanism, as illustrated in Fig. 4. The number of ROIs
in the instance segmentation branch is denoted as K, and the
mask and bounding box predictions for each ROI are defined
as M; and B;, respectively, where i € [1, K]. Specifically,
B; can be written as:

Bi = (xi, yi, wi, hy) (1)

where x; and y; represent the corrdinates of the bottom left
point of the ith rectangle ROI in x and y axes and w; and
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Algorithm 1 Algorithm for the Residual Attention Feature

Fusion Mechanism

Require:
Mask probability predictions in the instance branch P;,
its corresponding bounding box B;, and the raw semantic
feature fy.t1=1,..., K

1: for i € [1,K] do

2 sub(Fy, By) = Fi_1[; : @y +wi, yi : i + hils
3: F;, = SUb(Fo,Bi) * (1—|—R(P“(w“hz))),

4: end for

5: return Fi

h; are its width and height. In addition, the semantic feature
map before the attention-based feature fusion is defined as
Fop, as illustrated in Fig. 2. During the attention-based feature
fusion for each M;, first we obtain its probability map P;:

P, =0(M,;) (2)

where o () is the sigmoid operation. Then, we fuse each P;
with the subset of Fp according to the correpsonding B;.
as shown in Algorithm 1, where R(P;, (w;, h;)) reshapes the
P; to (w;, h;) with bilinear interpolation, and * is the element-
wise multiplication.

The value of each coordinate of P; represents the probability
of this pixel being the foreground. Therefore, the proposed
residual attention feature fusion mechanism highlights the
foreground features on the original semantic feature map.
By fusing the instance-level features on the semantic feature
map while preserving all its contextual features, optimizing
the semantic segmentation task of the instance branch enables
the mask generator to learn accurate and sufficient semantic
features.

C. Mask Quality Sub-Branch

During the inference process of the traditional Mask
R-CNN, the mask predictions are determined by the highest
classification score. However, the classification scores for the
mask predictions are not always correlated with their quality,
such as the IoU between the mask prediction and the ground
truth [23]. In the testing phase of the Cell R-CNN and
Cell R-CNN V2, if there remain two overlapping predictions,
the overlapping part is assigned to the mask with a higher
classification score. Therefore, low-quality mask predictions
with high classification scores affect the performance when
processing the overlapping objects during inference.

Inspired by [23], we propose a new mask quality sub-branch
to predict the quality of the mask predictions in the instance
branch, as shown in Fig. 2. For each mask prediction in size
2 x 28 x 28, we select its foreground 1 x 28 x 28 score
map. Then, each 1 x 28 x 28 score map is reshaped to size
4 x 14 x 14, to concatenate with the 256 x 14 x 14 ROI feature
map. The fused feature map with size 260 x 14 x 14 then passes
through 3 convolutional layers and 3 fully connected layers to
predict the quality of the mask, which is a float value in (0, 1).
Table I indicates the detailed hyperparameters setting in the
mask quality sub-branch. As Dice coefficient is an important
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Fig. 4. The proposed residual attention feature fusion mechanism. S is the sigmoid operation, X is the element-wise multiplication, and + is the element-wise

summation.

TABLE I

THE PARAMETERS FOR EACH BLOCK IN OUR PROPOSED MASK

GENERATOR. k, s, AND p DENOTE THE KERNEL SIZE,

STRIDE, AND PADDING OF THE CONVOLUTION
OPERATION, RESPECTIVELY

Stage Hyperparamaters Output size
Input 260 x 14 x 14
Convl | k=(3,3),s=1,p=1 | 256 x 14 x 14
Conv2 | k=(3,3),s=1,p=1 | 256 x 14 x 14
Conv3 | k=(3,3),s=1,p=1 | 256 x 14 x 14
Convd | k=(3,3),s=2,p=1| 256 x7x7
FC1 1x1x1024
FC2 1x1x1024
FC3 1x1x1
Output Ix1x1

metric in the biomedical and biological images segmentation
task, the mask quality score is determined by the IoU and Dice
score between the predictions and the ground truth. During
training, a mask prediction and its corresponding ground truth
are denoted as M, and M, respectively, the mask quality score
Squa 18 defined as:

IM, N M|

. M, N M|
|Mp| + M|

M), U M|

Squa = (2 ) %0.5 3)
where |.| means the total number of the pixels. Therefore,
Squa is in (0, 1). Eventually, /2 loss is employed between the
Squa and the mask quality prediction.

D. Semantic Task Consistency Regularization

Our motivation for this module is from [39]. When there are
two tasks in a multi-task learning architecture focusing on the
same objective, adding a consistency regularization between
the outputs of these two tasks enables the robust learning
of both. In our proposed architecture, both the semantic
and the instance branches generate semantic segmentation
predictions. In the ideal situation, the semantic segmentation
predictions from both two branches should be equal to each
other and equal to the ground truth. Therefore, we propose
a consistency regularization between these two semantic seg-
mentation predictions to reduce the distance between them.
The softmax semantic segmentation prediction of the semantic

and instance branch are denoted as pjs.,, and p;,s, respectively,
which are both in range (0, 1). The semantic consistency
regularization is:

1
Lsem—cons = N Z(psem(i,j) - pins(i,j))2 “4)
i,J

where N is the total number of activations in the pge.

E. Training and Inference Details

As shown in Fig. 1, the total loss function of the PFFNet
is defined as:

Loverali = Lrpn—obj + Lrpn—reg + Laet—cis
+Ldet—reg + Laet—mask + Ldet—qua
+a (Lsemsegl + Lsemseg2) + a2 Lsem—cons ()

For the instance segmentation task, Lypn—opj and Lyp,_cs are
the smooth L1 regression loss and cross entropy classification
loss for RPN, respectively. Lget—reg and Lger—cis are the
bounding box regression and the classification loss of the box
sub-branch, Lgei—mask 1S the binary cross entropy segmen-
tation loss for the mask sub-branch, and Lge—gua is the [2
regression loss for the mask quality sub-branch. On the other
hand, Lgemsegt and Lgemsegz are the semantic segmentation
losses for the semantic branch and instance branch. Lgem—cons
is the mean square loss for the semantic consistency regular-
ization, as shown in Eq. 4. a1 and a; are trade-off parameters
to balance the importance of each task and are set as 0.1 and 1,
respectively, in our experiments.

During inference, the instance mask predictions from the
mask generator of the instance branch are employed. A con-
fident threshold score £ is firstly employed to depreciate the
masks whose classification scores are smaller than f. Then,
a mask confidence score sc.ns for each object is calculated
based on its classification score s.;; and mask quality predic-
tion Squq:

Sconf = Scls * Squa (6)

For any two touching predictions, the overlapping part belongs
to the prediction with the higher Scony.
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IV. EXPERIMENTS

A. Dataset Description

1) TCGA-KUMAR: This dataset contains 30 histopathology
images in size 1000 x 1000, obtained from the The Cancer
Genome Atlas (TCGA) at 40x magnification [11]. Each image
is from one of the seven organs, including breast, bladder,
colon, kidney, liver, prostate, and stomach. In order to compare
with the state-of-the-art methods, we have the same data split
as in [11], [12], [22]. 12 images total from the breast, kidney,
liver, and prostate are employed for training (3 from each
organ). During training, 20 patches in size 256 x 256 are
randomly cropped from each 1000 x 1000 image. Next, basic
augmentation techniques are applied, including horizontal and
vertical flipping and rotation of 90°, 180°, and 270°. Due to
the noise and variability of color in the histopathology images,
advanced augmentation including Gaussian blur, median blur,
Gaussian noise are then employed to ensure the robustness
of the model. The validation set contains 4 images from the
breast, kidney, liver, and prostate. For the remaining 14 images,
8 images from the same 4 organs in the training set form the
seen testing set, while 6 from the other 3 organs unavailable
to the training are selected as the unseen testing set. During
testing, each 1000 x 1000 image is directly employed for nuclei
instance segmentation.

2) TNBC: This is our second histopathology dataset focus-
ing on the Triple Negative Breast Cancer (TNBC) dataset
from [12]. The TNBC dataset contains 30 512 x 512
histopathology images at 40x magnification, collected from
11 different patients of the Curie Institute. We conduct
3-fold cross validation for all the experiments on this dataset.
During training, 5 256 x 256 patches are cropped from
each 512 x 512 images, following data augmentation includ-
ing including horizontal and vertical flipping, rotation of 90°,
180°, and 270°, Gaussian blur, median blur, and Gaussian
noise. For testing, each 512 x 512 image is directly employed.

3) Fluorescence Microscopy Images: In addition to the
histopathology images, we also validate our PFFNet on
the fluorescence microscopy images analysis. We employ
the BBBCO039V1 dataset from [40], which contains 200
520 x 696 images obtained from fluorescence microscopy.
Each image focuses on the U20S cells with a single field of
view on the DNA channel, with various cell shape and density.
In our experiment, we follow the official data split (https://data.
broadinstitute.org/bbbc/BBBC039/), with 100 images for train-
ing, 50 for validation, and the rest 50 for testing. For training
data preparation, first, 10 256 x 256 patches are randomly
cropped from each image. As the background components
in this dataset are not as complicated as the others, only
basic data augmentation is employed, including horizontal and
vertical flipping and rotation of 90°, 180°, and 270°. During
inference, each 520 x 696 image is directly used.

4) Plant Phenotyping: To demonstrate the effectiveness
of our proposed PFFNet on instance segmentation task for
other biology images, we study the leaf instance segmen-
tation task. We employ the Computer Vision Problems in
Plants Phenotyping (CVPPP) [5] dataset, which contains
top-down view images of leaves with various shapes and
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complicated occlusions. In this work, we focus on the Al sub-
set with a total of 161 530 x 500 images, which has been
broadly studied for instance segmentation in several state-
of-the-art works. Out of the 128 training images provided
by the challenge, we employed 100 images for training
and the remaining 28 for validation. During training, each
image is firstly reshaped to size 512 x 512. Then, data aug-
mentation including horizontal and vertical flipping, rotation
of 90°, 180°, and 270°, Gaussian blur, median blur, and
Gaussian noise are employed to avoid overfitting. During
inference, the predictions are directly obtained from the
530 x 500 images. To evaluate the performance, the pre-
dicted results are submitted to the official evaluation platform
(https://competitions.codalab.org/competitions/18405).

B. Evaluation Metrics

To evaluate the performance on the nuclei segmentation in
the histopathology images and cell segmentation in the fluores-
cence microscopy images, we employed Aggregated Jaccard
Index (AJI), object-level F1 score (F'1), Panoptic Quality
(P Q), and pixel-level Dice score (Dice). AJI is an extended
Jaccard Index for object-level segmentation evaluation [11],
defined as:

le:l |GimP1{/1|
NG UPLI+ Y pey | PFI

where G; is the ith nucleus in a ground truth with a total of
N nuclei. U is the set of false positive predictions without the
corresponding ground truth. For each ground truth object G,
M 1is the index of the prediction with the largest overlapping
with it and each M can only be used once, which is defined as:
L
M = argmaxw (8)
P /ll/[ U Gj

Object-level F1 score is the metric for the detection perfor-
mance [15], defined based on the number of true and false
detections:

ATl = (7)

2T P 9
~ FN+2TP+FP’ ©
where TP, FN, and FP represent the number of true positive
(corrected detected objects), false negative (ignored objects),
and false positive (detected objects without corresponding
ground truth) detections, respectively. Note that a true positive
object for object-level F1 score should intersect with more
than 50% of its corresponding ground truth. Panoptic Quality
(PQ) has been previously employed to evaluate the perfor-
mance of the panoptic segmentation tasks [19], [20], which
is the multiplication between the Detection Quality (DQ) for
object detection, and Segmentation Quality (SQ) for object
segmentation. PQ is defined as:

F1

po— 2|T P 2p.gerp 10U, 2) 10)
2|TP|+ |FP|+ |FN| |T P
DO 50

where |T P|, |FN|, and |FP| represent the number of true
positive, false negative, and false positive detections, respec-
tively. Each (p, g) indicates a pair of mask prediction from the
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TABLE II

THE COMPARISON OF RESULTS FOR TCGA-KUMAR DATASET. AVG AND STD REPRESENT AVERAGE AND STANDARD DEVIATION, RESPECTIVELY.
FOR DIST, THE RESULTS OF OBJECT-LEVEL F'1 AND PQ ARE UNKNOWN. FOR CNN3, THE P Q SCORE IS UNKNOWN

AJI Dice F1 PQ

Methods seen unseen all seen unseen all seen unseen all seen unseen all

CNN3 [11] avg | 0.5154 | 0.4989 | 0.5083 | 0.7301 | 0.8051 | 0.7623 | 0.8226 | 0.8322 | 0.8267 — — —

std | 0.0835 [ 0.0806 | 0.0695 | 0.0590 | 0.1006 | 0.0946 | 0.0853 [ 0.0764 | 0.0934 — — —

DIST [12] avg | 0.5594 | 0.5604 | 0.5598 | 0.7756 | 0.8005 | 0.7863 — — — — — —

std | 0.0598 | 0.0663 | 0.0781 | 0.0489 | 0.0538 | 0.0550 — — — — — —
Mask R-CNN [17] avg | 0.5438 | 0.5340 | 0.5396 | 0.7659 | 0.7658 | 0.7659 | 0.6987 | 0.6434 | 0.6750 | 0.4856 | 0.4715 | 0.4796
) std | 0.0649 | 0.1283 | 0.0929 | 0.0481 | 0.0608 | 0.0517 | 0.1344 | 0.1908 | 0.1566 | 0.0893 | 0.1709 | 0.1248
Cell R-CNN [21] avg | 0.5547 | 0.5606 | 0.5572 | 0.7746 | 0.7752 | 0.7748 | 0.7587 | 0.7481 | 0.7542 | 0.5066 | 0.5098 | 0.5079
std | 0.0567 | 0.1100 | 0.0800 | 0.0446 | 0.0577 | 0.0485 | 0.0969 | 0.1488 | 0.1166 | 0.0816 | 0.1392 | 0.1051
Cell R-CNN V2 [22] avg | 0.5758 | 0.5999 | 0.5861 | 0.7841 | 0.8078 | 0.7943 | 0.8014 | 0.8023 | 0.8017 | 0.5500 | 0.5563 | 0.5527
std | 0.0568 [ 0.1160 | 0.0841 | 0.0439 | 0.0611 | 0.0512 | 0.0757 | 0.1081 | 0.0871 | 0.0748 | 0.1346 | 0.1000
PFENet [ avg [ 0.5975 [ 0.6282 [ 0.6107 [ 0.7967 [ 0.8256 [ 0.8091 [ 0.8317 [ 0.8383 [ 0.8345 [ 0.5824 [ 0.5933 [ 0.5871
| std | 0.0568 | 0.0924 | 0.0726 | 0.0453 | 0.0520 | 0.0487 [ 0.0694 | 0.0598 [ 0.0631 | 0.0767 | 0.1023 [ 0.0850

true positive detections, and its corresponding ground truth.
Note that a mask prediction can only be regarded as the true
positive when IoU(p,q) > 0.5. As illustrated in Eq. 10,
the P Q metric reflects the performance on object detection
and segmentation. To evaluate the foreground and background
segmentation accuracy, pixel-level Dice score is employed
between the binarized prediction and the ground truth:

) 2|P NG|
Dice = ——— (11)

|[P|+ |G|
where P and G represent the binarization prediction and
ground truth, respectively. |.| means the total number of

foreground pixels.
For the evaluation metrics of the leaf segmentation task,
we directly employ the official Symmetric Best Dice (SB D)

score:
SBD(P,T) = min(BD(P, T), BD(T, P)) (12)

where P and T are the predictions and ground truth, respec-
tively. BD(P, T) is the best dice between P;i = 1,..., M)
and Tj(j =1,...,N):

M

1 2|PNT;j
BD(P, T):—Z max 2PN 151 (13)
M = j=l..N | Pi| +|Tj|
where |.| means the total number of foreground pixels.
C. Implementation Details
For the network initialization, the weights of the

ResNetl101 backbone are pretrained on the ImageNet [41]
classification task, while the weights for other layers are
initialized with “Kaiming” initialization [42]. When training
the PFFNet, stochastic gradient descent (SGD) is used to
optimize the network, with a weight decay of 0.0001, and
momentum of 0.9. The mini-batch size is 1, which is rel-
atively a small batch size. We, therefore, employed group
normalization layers [43] with a group number of 32 to
replace the traditional batch normalization layers. The initial
learning rate is set to 0.003, with a linear warm-up for the first
500 iterations. The learning rate is then decreased to 0.0003
when it reaches the 3/4 of the total training iterations. Our
experiments are implemented on two Nvidia GeForce 1080Ti
GPUs with Pytorch [44].

TABLE III

P-VALUE FOR THE METHODS IN TABLE Il COMPARED WITH OUR
PROPOSED PFFNET, ON TCGA KUMAR DATASET
UNDER ALL THE FOUR METRICS

AJT Dice F1 PQ
CNN3 2.69 x 1073 | 1.67 x 10~2 | 0.34 —
DIST 235 x 1078 | 1.27x 107 ° | — —
Mask R-CNN 6.44 x 107° | 1.48 x 1078 | 557 x 107> | 1.14 x 10~°
Cell R-CNN 3.93x107% | 239x107% | 253 x10~% | 6.14 x 10~ "
CellR-CNN V2 | 7.02x 10~% [ 1.03 x 10~° | 1.33 x 103 | 1.07 x 10—

D. Comparison With State-of-the-Art Instance Segmentation
Methods for Biomedical and Biological Images

1) TCGA-KUMAR: Our result is compared with sev-
eral state-of-the-art nuclei instance segmentation methods,
including CNN3 [11], DIST [12], Mask R-CNN [17], Cell
R-CNN [21], and Cell R-CNN V2 [22]. With the same
data split, we directly compare the performance reported in
[11], [12]. For Mask R-CNN, Cell R-CNN, and Cell R-CNN
V2, we re-implement them by adding group normalization
with the same settings as our proposed PFFNet, for a fair
comparison. Therefore their performance is slightly better
than in [22]. Table II and Fig. 5 illustrate our quantitative
and qualitative comparison results, respectively. As shown
in Table II, our proposed PFFNet outperforms all the other
methods in all four metrics on the seen and unseen testing
set. It indicates that our PFFNet has a strong generalization
ability when testing on the cases from the unseen organs.
In order to test the statistical significance between the results
of our PFFNet and other methods, we employed one-tailed-
paired t-test to calculate the p-value. As shown in Table III, our
improvements under all four metrics is statistically significant
(p-value < 0.05) except for the F1 of CNN3. However,
F1 only relies on the number of corrected detected objects,
regardless of the segmentation quality of each detected object.
By outperforming CNN3 by a large margin in the other
two segmentation metrics (over 10% on AJI and 4% on
Dice), our PFFNet still achieves better performance on nuclei
segmentation tasks compared with CNN3. Fig. 6 is the box
plot for all the compared method under the four metrics, which
shows that our proposed PFFNet not only outperforms all the
methods, but is also more stable and robust.
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Fig. 5.

The visual comparison of results for TCGA KUMAR dataset. (a) original images, (b) ground truth annotations, (c) predictions by our proposed

PFFNet, (d) predictions by Cell R-CNN V2 [22], (e) predictions by Cell R-CNN [21], and (f) predictions by Mask R-CNN [17].
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Fig. 6. Box plot for all the compared methods on TCGA KUMAR dataset. The object-level F1 and PQ score and were not available in the original DIST

work. The PQ score was not reported by the original CNN3 work.

TABLE IV

COMPARISON EXPERIMENTS ON TNBC DATASET UNDER AJI, Dice, F1, AND PQ. RESULTS ARE
PRESENTED AS MEAN VALUE WITH STANDARD DEVIATION IN THE PARENTHESES

Methods AJI Dice F1 PQ

Mask R-CNN 0.5350(0.0993) | 0.7393(0.0977) | 0.7542(0.1535) | 0.5146(0.1193)
Cell R-CNN 0.5747(0.1061) | 0.7637(0.1080) | 0.8142(0.1331) | 0.5664(0.1120)
Cell R-CNN V2 | 0.5986(0.0847) | 0.7793(0.0772) | 0.8184(0.1163) | 0.5845(0.0964)
PFFNet 0.6313 (0.0750) | 0.8037 (0.0557) | 0.8600 (0.0849) | 0.6298 (0.0820)

2) TNBC: We conducted comparison experiments on
the second histopathology dataset with 3-fold cross-validation
and the results are shown in Table IV and Fig. 7.
As in Table IV, our PFFNet outperforms its previous ver-
sions under all three metrics. Compared with Mask R-CNN,
the effectiveness of the Cell R-CNN is improved by a
large margin. The background components in the TNBC
dataset are complicated and some background textures have

a similar appearance to the foreground. Therefore, processing
the semantic-level information is beneficial to the segmenta-
tion and detection accuracies. Compared with the Cell R-CNN,
the improvement of Cell R-CNN V2 is not as large as in
the TCGA KUMAR dataset, especially under the object-level
F1 score. Although the feature fusion mechanism in the Cell
R-CNN V2 facilitates the semantic feature learning in the
instance branch, there is a lack of contextual features around
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Fig. 7.

The visual comparison of results for TNBC dataset. (a) original images, (b) ground truth annotations, (c) predictions by our proposed PFFNet, (d)

predictions by Cell R-CNN V2 [22], (e) predictions by Cell R-CNN [21], and (f) predictions by Mask R-CNN [17].

TABLE V

COMPARISON EXPERIMENTS ON BBBC039V 1 DATASET UNDER AJ I, Dice, F1, AND PQ. RESULTS ARE
PRESENTED AS MEAN VALUE WITH STANDARD DEVIATION IN THE PARENTHESES

Methods AJI Dice F1 PQ
Mask R-CNN 0.7983(0.0858) | 0.9277(0.0126) | 0.9180(0.0870) | 0.7773(0.0959)
Cell R-CNN 0.8070(0.0934) | 0.9290(0.0273) | 0.9276(0.0836) | 0.7959(0.0894)

Cell R-CNN V2

0.8260(0.0779)

0.9336(0.0097)

0.9328(0.0728)

0.8010(0.0839)

PFFNet

0.8477 (0.0757)

0.9478 (0.0071)

0.9451 (0.0536)

0.8331 (0.0724)

each object due to the depreciation of part of the semantic
feature map. Therefore, the detection accuracies are affected
when the boundaries of two touching objects become ambigu-
ous. Similar to the results on the TCGA KUMAR dataset,
our proposed PFFNet outperforms the compared methods by
a large margin.

3) BBBCO39VI1: In addition to the nuclei segmentation
tasks in the histopathology images, our proposed PFFNet is
also effective for cell instance segmentation in the fluorescence
microscopy images. As illustrated in Table V, our PFFNet
outperforms all the compared methods. We notice that the
performance of Cell R-CNN is at the same level as Mask
R-CNN, due to the limited improvement. In the fluores-
cence microscopy images, the background components are
not as complicated as in the histopathology images, as shown
in Fig. 8. Therefore, Cell R-CNN is not capable of improving
accuracy as it fails to process the contextual information
about the foreground objects by learning the semantic features
in the backbone encoder. On the other hand, Cell R-CNN
V2 improves Cell R-CNN by designing a dual-modal mask
generator for improving the mask segmentation accuracies in

TABLE VI

COMPARISON EXPERIMENTS ON CVPPP DATASET WITH OUR PREVIOUS
METHODS. RESULTS ARE PRESENTED AS MEAN VALUE WITH
STANDARD DEVIATION IN THE PARENTHESES

Methods SBD Dice PQ

Mask R-CNN 0.8674(0.0362) | 0.8453(0.0799) | 0.6342(0.0860)
Cell R-CNN 0.8771(0.0274) | 0.8772(0.0524) | 0.6804(0.0750)
Cell R-CNN V2 | 0.8861(0.0259) | 0.8931(0.0434) | 0.7161(0.0669)
PFFNet 0.9062 (0.0269) | 0.9338 (0.0268) | 0.7788(0.0552)

the instance branch and inducing the mask generator to learn
global semantic-level features. However, the improvement of
the pixel-level Dice score of Cell R-CNN is still limited.
Based on Cell R-CNN V2, our proposed PFFNet achieves
high improvements in all four metrics.

4) CVPPP Challenge: First, we compare with our previous
work, with the 3-fold cross-validation on the 128 training
images. The results are shown in Table VI and Fig. 9. By out-
performing our previous Cell R-CNN and Cell R-CNN V2 on
the instance segmentation tasks for biology images as well as
the medical images, our proposed PFFNet is demonstrated to
be effective.
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(a) (b) (c)

(d) (e) ®)

Fig. 8. The visual comparison of results for BBBC039 V1 dataset. (a) original images, (b) ground truth annotations, (c) predictions by our proposed PFFNet,
(d) predictions by Cell R-CNN V2 [22], (e) predictions by Cell R-CNN [21], and (f) predictions by Mask R-CNN [17].

(a) (b) (c)

Fig. 9.

(d) (e) ®

The visual comparison of results for CVPPP Al dataset. (a) original images, (b) ground truth annotations, (c) predictions by our proposed PFFNet,

(d) predictions by Cell R-CNN V2 [22], (e) predictions by Cell R-CNN [21], and (f) predictions by Mask R-CNN [17].

To further demonstrate the effectiveness of our PFFNet
on biology image analysis, we also conducted a compari-
son experiment with other previous work, using the 33 leaf
segmentation testing images. Table VII is the performance
between our work and the state-of-the-art methods and our
segmentation accuracy outperforms all the existing published
work on this dataset. Among these methods, RIS [45],
RNN [46], and Recurrent with attention [27] processed one
instance each time, with the help of the temporal chain
from recurrent neural work (RNN) or long-short-term mem-
ory (LSTM). In addition, [27] achieved better performance
compared with the previous [45] and [46] due to the attention
module and proposal-based architecture. As there is actually
no temporal information in the leaf instance segmentation

task, other methods focusing on the spatial relationship are
more suitable for the task with better performance.
[10], [14], [25], and [26] are proposal-free instance segmenta-
tion methods. [25] divides all the objects into several groups
of untouching instances and processes them separately. Instead
of directly learning the instance mask prediction for each
leaf, [10], [14], and [26] learned high-dimensional embedding
maps projected from the original images. Then, clustering
algorithms were employed to separate each instance during
inference. Without focusing on each object, their performance
is still limited due to the lack of local-level information.
Similar to our work, the CNN architecture in [47] and [48] are
proposal-based Mask R-CNN. With the help of the auxiliary
synthesized images, these two methods outperform most of
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TABLE VII

THE QUANTITATIVE LEAF SEGMENTATION RESULTS FOR THE CVPPP
A1 DATASET COMPARED WITH THE STATE-OF-THE-ART METHODS

Method SBD (% )
RIS [45] 66.6
RNN [46] 74.7
Deep coloring [25] 80.4
Embedding-based [13] 84.2
Discriminative loss [14] 84.2
Recurrent with attention [27] | 84.9
Data augmentation [47] 88.7
Harmonic embeddings [26] 89.9
Synthesis data [48] 90.0
PFFNet 91.1

the previous state-of-the-art methods. However, the image
synthesis methods in [47] and [48] are entirely based on
the characteristic of the leaves in the given plant phenotype
images, such as the texture, direction, and spatial relationship
with other leaves. Therefore, the methods are task-specific and
hard to fit to other datasets with different characteristics. With
the help of panoptic-level features in a local and global view,
our proposed-based PFFNet outperforms all the other methods
on the CVPPP Al dataset, without any task-specific design.
In addition, the competitive performance on other instance
segmentation tasks further demonstrates the generalization
ability of our PFFNet.

E. Comparison With State-of-the-Art Panoptic
Segmentation Methods for General Images

In Section IV-D, we compare our PFFNet with state-of-
the-art methods, particularly on biomedical and biological
image instance segmentation tasks. To further demonstrate the
superiority of our proposed PFFNet, we conduct extensive
experiments in comparison with state-of-the-art panoptic seg-
mentation methods, including the original Panoptic Segmen-
tation method (OGPan) [19], Panoptic FPN (PanFPN) [20],
JSIS-Net [31], AUNet [32], UPSNet [49], and OANet [33].
Since these methods were originally proposed for general
image analysis, we reimplement them on our tasks by follow-
ing their original paper and source code. For fair comparisons,
we maintain the same ResNet101 + FPN backbone and the
group normalization strategy for these methods as ours. The
inference processes of all the compared methods are also
similar to ours, which employ the output of the instance branch
as the final predictions. The experiment results are shown
in Table VIII, where our proposed PFFNet outperforms all
the compared methods on four instance segmentation tasks
for biomedical and biological images.

Among the compared methods, only OGPan [19] pro-
poses to train the semantic and instance segmentation
tasks separately, which achieves the same performance as
Mask R-CNN mentioned in Section IV-D. By jointly opti-
mizing semantic and instance segmentation branches with
a shared backbone, our PFFNet is able to induce the instance
branch to process the semantic-level contextual information
and therefore achieves better performance than the OGPan
method. JSIS-Net [31] and Panoptic FPN [20] jointly train
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an instance branch with a semantic segmentation decoder,
without any fusion mechanism between the features from the
two branches. By fusing the features for each instance mask
prediction to a semantic features map based on its correspond-
ing location prediction, the instance branch in our PFFNet
directly involved in the optimization process of the semantic
segmentation tasks, which further facilitates the contextual
feature learning and achieves better performance.

By integrating the information from the semantic and
instance branch, AUNet [32], UPSNet [49], and OANet [33]
achieve better performance than Panoptic FPN, JSIS-Net,
and OGPan. AUNet [32] fuses the features from RPN and
instance segmentation predictions with the different stages of
the semantic branch via attention mechanism. Although the
motivation of the attention feature fusion step in AUNet is
similar to our residual attention feature fusion mechanism,
the effectiveness of the semantic consistency regularization
and the mask quality sub-branch still induce our PFFNet
to achieve higher accuracies. For UPSNet [49], a panoptic
segmentation head has been proposed to learn the panoptic-
level information from the fused semantic- and instance-level
features, which treats each instance as a unique category.
However, the scale variation of the objects in the biomedical
and biological images makes the size of each instance category
vary. This brings the class-imbalance issue for optimizing
the panoptic head of the UPSNet and degrades the overall
performance. To this end, UPSNet achieves less competitive
performance than our PFFNet due to its imperfect design under
the biomedical and biological image instance segmentation
application settings. In OANet [33], a spatial ranking module is
proposed to predict a confidence score for each instance mask
prediction during inference, which aims at tackling the objects
overlapping issue when small instances stay inside larger ones.
However, such a situation might rarely exist in biomedical and
biological images, as shown in Fig. 5, 7, 8, and 9. Subse-
quently, the performance gain of the spatial ranking module
is limited to our tasks. On the other hand, our mask quality
sub-branch is based on the mask segmentation quality for
each instance, which avoids the influence from the overlapping
situations and maintains the competitive performance of our
PFFNet.

F. Ablation Study

In this section, we conduct ablation experiments on the
TNBC, BBBC039V1, and CVPPP dataset, to test the effec-
tiveness of the three newly proposed modules in the PFFNet
on different types of images. For TNBC and BBBC039V1,
we have the same data settings as the previous experi-
ments. For CVPPP, we conduct 3-fold cross-validation on the
128 training images.

1) Residual Attention Feature Fusion Mechanism: In this
section, we first study the selection of the feature fusion mech-
anism. As shown in Fig 10, we present 4 different selections:
(a) replacement: replace the semantic feature map with the
mask predictions, which is employed in Cell R-CNN V2;
(b) summation: sum the semantic feature map with the mask
prediction; (c) attention: we first obtain the mask probability
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TABLE VIII
THE COMPARISON EXPERIMENTS BETWEEN OUR PROPOSED PFFNET AND THE STATE-OF-THE-ART
PANOPTIC SEGMENTATION METHODS FOR GENERAL IMAGES
Kumar TNBC BBBC039V1 CVPPP
AJT Dice F1 PQ AJT Dice F1 PQ AJT Dice F1 PQ SBD Dice PQ
OGPan [19] 0.5396 | 0.7659 | 0.6750 | 0.4796 | 0.5350 | 0.7393 | 0.7542 | 0.5146 | 0.7983 | 0.9277 | 0.9180 | 0.7773 | 0.8674 | 0.8453 | 0.6342
JSISNet [31] | 0.5653 | 0.7664 | 0.7902 | 0.5448 | 0.5673 | 0.7601 | 0.7776 | 0.5432 | 0.8134 | 0.9316 | 0.9282 | 0.7913 | 0.8835 | 0.8799 | 0.6848
PanFPN [20] | 0.5811 | 0.7898 | 0.8194 | 0.5678 | 0.5874 | 0.7715 | 0.8129 | 0.5720 | 0.8193 | 0.9320 | 0.9275 | 0.7960 | 0.8871 | 0.8905 | 0.6999
AUNet [32] 0.5898 | 0.7904 | 0.8056 | 0.5650 | 0.5932 | 0.7761 | 0.8147 | 0.5793 | 0.8252 | 0.9377 | 0.9315 | 0.8090 | 0.8883 | 0.9086 | 0.7153
UPSNet [49] | 0.5797 | 0.7904 | 0.8315 | 0.5667 | 0.5816 | 0.7703 | 0.8125 | 0.5625 | 0.8128 | 0.9274 | 0.9191 | 0.7857 | 0.8902 | 0.8941 | 0.7180
OANet [33] 0.5865 | 0.7908 | 0.8167 | 0.5645 | 0.5933 | 0.7798 | 0.8126 | 0.5744 | 0.8198 | 0.9372 | 0.9330 | 0.8085 | 0.8881 | 0.8994 | 0.7102
PFFNet 0.6107 0.8091 0.8345 0.5871 0.6313 0.8037 0.8600 0.6298 0.8477 0.9478 0.9451 0.8330 0.9062 0.9338 0.7788
TABLE IX

THE COMPARISON OF RESULTS FOR THE DIFFERENT DESIGN SELECTIONS FOR THE FEATURE FUSION BETWEEN THE
SEMANTIC AND INSTANCE FEATURES. THE (A), (B), (C), AND (D) CORRESPOND TO FIG. 10

TNBC BBBC039V1 CVPPP
AJTT Dice F1 PQ ATT Dice F1 PQ SBD Dice PQ
(a) | 0.6133 0.791 0.8321 | 0.5984 | 0.8335 | 0.9410 | 0.9407 | 0.8205 | 0.8947 | 0.9200 | 0.7491
(b) | 0.6216 0.800 0.8541 | 0.6179 | 0.8420 | 0.9443 | 0.9407 | 0.8276 | 0.8983 | 0.9274 | 0.7603
(c) | 0.6220 | 0.7983 | 0.8521 | 0.6139 | 0.8403 | 0.9443 | 0.9427 | 0.8248 | 0.8999 | 0.9267 | 0.7606
(d) | 0.6313 0.8037 0.8600 0.6298 0.8477 0.9478 0.9451 0.8330 0.9062 0.9338 0.7788
TABLE X
THE ABLATION STUDY FOR THE MASK QUALITY SUB-BRANCH. W/O MEANS
PFFNET WITHOUT THE MASK QUALITY SUB-BRANCH
TNBC BBBC039V'1 CVPPP
AJT Dice FI PQ AJT Dice F1 PQ SBD | Dice PQ
w/o | 0.6150 | 0.7960 | 0.8495 | 0.6114 | 0.8387 | 0.9426 | 0.9388 | 0.8206 | 0.8977 | 0.9233 | 0.7593
w 0.6313 | 0.8037 | 0.8600 | 0.6298 | 0.8477 | 0.9478 | 0.9451 0.8330 | 0.9062 | 0.9338 | 0.7788
sub-semantic ) attention (d) fusion mechanism achieve better performance
features sub-semantic .
masks features masks than the replacement fusion (a), as all of them preserve the

[P
'

replace\‘

(a)

(b)
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features

D
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Fig. 10.  Various fusion methods of the proposed residual attention feature
fusion mechanism. S represents the sigmoid operation. + is the element-wise
summation and X is the element-wise multiplication.

masks
masks

(d)

maps with the sigmoid operation, then they are multiplied with
the corresponding semantic features; (d) residual attention: add
a residual connection on (c). For all the experiments, the rest
of the model is the same as our proposed PFFNet in addition
to the feature fusion mechanism. The comparison results are
shown in Table IX.

As discussed above, the previous feature fusion mechanism
in Cell R-CNN V2 directly replaced the subset of the semantic
feature map using the mask predictions for each object,
which results in the semantic-level information loss. Therefore,
the models with summation (b), attention (c), and residual

original semantic features. Among (b), (c), and (d), residual
attention fusion mechanism (d) always achieves the best
performance on all datasets, and it is therefore employed in
our PFFNet.

2) Mask Quality Sub-Branch: To demonstrate the effective-
ness of our proposed mask quality sub-branch, we conducted
an ablation study by removing the mask quality sub-branch
and comparing the performance with PFFNet. As shown
in Table X, the accuracies under all the metrics are decreased
after removing the mask quality sub-branch, especially on
the object-level metrics. Without the mask quality sub-branch,
there exist low-quality mask predictions with a high classifi-
cation score, which affect the segmentation of the touching
object during inferences and are eventually harmful to the
object-level performance.

3) Semantic Task Consistency Regularization: Table XI
illustrates the effectiveness of the semantic consistency reg-
ularization by ablating it from the original PFFNet. Although
the regularization aims to facilitate the semantic information
learning in the instance branch, we notice that the improve-
ments under the object-level metrics are at the same level of
the pixel-level metrics, on all the three datasets. Compared
with Table IX and Table X, we notice that the model without
the semantic consistency regularization outperforms the model
without the residual attention fusion mechanism and mask
quality sub-branch, which indicates the effectiveness of the
semantic consistency regularization is the lowest among all
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TABLE XI

THE ABLATION STUDY FOR THE SEMANTIC TASK CONSISTENCY REGULARIZATION. W/O MEANS
PFFNET WITHOUT THE SEMANTIC CONSISTENCY REGULARIZATION

TNBC BBBC030V1 CVPPP
AJT | Dice 1 PQ AJT | Dice 1 PQ | SBD | Dice | PQ
w70 | 0.6206 | 0.7974 | 0.8370 | 0.6043 | 0.8390 | 0.9430 | 0.9416 | 0.8244 | 0.8995 | 0.9267 | 0.7601
w | 0.6313 | 0.8037 | 0.8600 | 0.6298 | 0.8477 | 0.9478 | 0.9451 | 0.8330 | 0.9062 | 0.9338 | 0.7788
TABLE XII

THE EXPERIMENTAL RESULTS ON THE MODEL GENERALIZATION
ABILITY STUDY FOR OUR PROPOSED PFFNET

Method AJT Dice | SQ DQ PQ

Cell R-CNN V2 [22] | 0.5838 | 0.8006 | 0.7495 | 0.7601 | 0.5713
PFFNet 0.6048 | 0.8146 | 0.7559 | 0.7729 | 0.5856
NuClick [50] 0.7940 | 0.8886 | 0.8001 | 0.9819 | 0.7856

the three proposed modules. However, the semantic task
consistency regularization is still a novel module as it is
implemented by only adding one more loss function, which is
straightforward and easy to adapt to other related tasks.

G. Generalization Ability Study

To demonstrate the generalization ability of our proposed
PFFNet, we conduct a generalization study by training the
model on one seen dataset and validate it on another unseen
one. We follow the experimental setting in [50] by training the
model on the CPM17 training set [51] and validating it on the
TCGA-Kumar testing set. During training, we first randomly
cropped 10 256 x 256 patches from each CPMI17 training
images. Next, the patches are augmented via horizontal and
vertical flipping, 90°, 180°, and 270° rotations, Gaussian
noise, Gaussian blur, and median blur. For testing, the well-
trained model is validated on the 14 testing images from the
TCGA-Kumar testing set. The detailed experimental results
are illustrated in Table XII.

As shown in Table XII, our proposed PFFNet achieves
better performance than our previous Cell R-CNN V2 [22]
under all metrics. By enhancing the generalization ability of
the Cell R-CNN V2, our proposed residual attention fea-
ture fusion mechanism, mask quality branch, and semantic
task consistency regularization module are further demon-
strated to be effective. In addition, we also compare with
Nuclick [50], which employs the point annotations of the
nuclei instance masks during training and inference. Without
accessing the point annotations for the testing images, our
PFFNet achieves less competitive performance than Nuclick.
However, we notice that the performance of our PFFNet
is close to NuClick under Dice score for pixel-level seg-
mentation, and the SQ score for instance-level segmentation.
On the other hand, acquiring the nuclei point annotations
for the unseen datasets still incurs annotation burdens. If a
less competitive accuracy is acceptable, we would prefer not
to employ any annotations from the unseen testing datasets,
in favour of a low manual annotation cost.

V. CONCLUSION

In this work, we propose a novel Panoptic Feature Fusion
Net (PFFNet) for instance segmentation in the biomedical and

biological images, which incorporates semantic- and instance-
level features. By extending our previous Cell R-CNN [21] and
Cell R-CNN V2 [22], our newly proposed PFFNet is improved
with a residual attention feature fusion mechanism, mask
quality sub-branch, and semantic consistency regularization.
With the help of the residual attention feature fusion mecha-
nism, the semantic features of foreground objects are retained
and the mask generators are able to learn more global contex-
tual information from the semantic segmentation task in the
instance branch. To alleviate the misalignment issue between
the quality of each mask prediction and its classification score,
our mask quality sub-branch learns the mask prediction quality
scores during training and employs the quality score to re-
weigh the classification of each instance prediction during
inference. For robust and accurate learning of the semantic
features, the semantic consistency mechanism is proposed
to regularize the two semantic segmentation tasks jointly.
Furthermore, our PFFNet has wide applicability on various
biomedical and biological datasets, including histopathology
images, fluorescence microscopy images, and plant phenotype
images, where we outperform several state-of-the-art methods
by a large margin, including our previous Cell R-CNN and
Cell R-CNN V2.

By fulfilling the future work in Cell R-CNN V2 [22], our
PFFNet has been verified to be effective on various biomedical
and biological datasets. In future work, we would further adapt
our PFFNet to general image processing tasks. As our PFFNet
is effective for 2D image analysis, we can also extend it for
3D microscopy image instance segmentation, which is another
important and interesting problem related to this work.
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