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PDAM: A Panoptic-Level Feature Alignment
Framework for Unsupervised Domain Adaptive
Instance Segmentation in Microscopy Images

Dongnan Liu , Member, IEEE, Donghao Zhang, Yang Song, Member, IEEE, Fan Zhang ,
Lauren O’Donnell, Heng Huang , Member, IEEE, Mei Chen, Senior Member, IEEE,

and Weidong Cai , Member, IEEE

Abstract— In this work, we present an unsupervised
domain adaptation (UDA) method, named Panoptic Domain
Adaptive Mask R-CNN (PDAM), for unsupervised instance
segmentation in microscopy images. Since there currently
lack methods particularly for UDA instance segmentation,
we first design a Domain Adaptive Mask R-CNN (DAM)
as the baseline, with cross-domain feature alignment at
the image and instance levels. In addition to the image-
and instance-level domain discrepancy, there also exists
domain bias at the semantic level in the contextual informa-
tion. Next, we, therefore, design a semantic segmentation
branch with a domain discriminator to bridge the domain
gap at the contextual level. By integrating the semantic-
and instance-level feature adaptation, our method aligns the
cross-domain features at the panoptic level. Third, we pro-
pose a task re-weighting mechanism to assign trade-off
weights for the detection and segmentation loss functions.
The task re-weighting mechanism solves the domain bias
issue by alleviating the task learning for some iterations
when the features contain source-specific factors. Further-
more, we design a feature similarity maximization mecha-
nism to facilitate instance-level feature adaptation from the
perspective of representational learning. Different from the
typical feature alignment methods, our feature similarity
maximization mechanism separates the domain-invariant
and domain-specific features by enlarging their feature dis-
tribution dependency. Experimental results on three UDA
instance segmentation scenarios with five datasets demon-
strate the effectiveness of our proposed PDAM method,
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which outperforms state-of-the-art UDA methods by a large
margin.

Index Terms— Unsupervised domain adaptation,
instance segmentation, microscopy images.

I. INTRODUCTION

INSTANCE segmentation is necessary and important for
microscopy image analysis, assigning a category label

for each pixel and a unique instance label for each object
of the same class. In the digital pathology study, nuclei
instance segmentation enables pathologists to learn about the
single nucleus structure, nuclei group spatial distribution, and
mitosis counts, which serve as key factors for cancer diag-
nosis and prognosis [1]–[4]. For Electron Microscopy (EM)
image analysis, mitochondria instance segmentation facilitates
the pleomorphism learning of intracellular components and
neural functions, which are important for cancer cell detec-
tion, Parkinson’s disease gene recognition, and cell segmenta-
tion [5]–[7].

With the success of deep learning, recent deep neural
network based methods are now prevalent in microscopy
images instance segmentation [8]–[14]. Although these
fully-supervised methods achieve state-of-the-art performance,
their high accuracy heavily relies on massive annotated train-
ing images from the specific domains. When tested these off-
the-shelf models on the images from new unseen domains,
the performance suffers from a significant drop (as shown
in Fig. 1) due to the domain bias towards the training
domains [15], [16]. On the other hand, it is impractical to
acquire sufficient annotations for each new domain, since the
annotation process for microscopy images is time-consuming,
labor-intensive, and error-prone [8], [17], [18].

Recently, unsupervised domain adaptation (UDA) methods
have been proposed to tackle this dilemma, which trans-
fer the knowledge learned from the labelled source domain
to the unlabelled target domain [19]–[21]. UDA methods
often work by reducing the cross-domain discrepancy at
the content and appearance levels [18], [22]–[24]. With
the content-level UDA methods, the feature extractors are
forced to generate domain-invariant features by adversarial
learning [20], [25], [26]. The appearance-level UDA methods,
also known as image-to-image translation methods, align the
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Fig. 1. Example images of our proposed framework. The images in
the first two rows are the samples for adapting from the fluorescence
microscopy dataset to the histopathology dataset. The third row contains
the samples for adapting from two different EM datasets. In each row:
(a) source images; (b) target images; (c) predictions from the models
without domain adaptation; (d) predictions from our proposed PDAM
method; (e) ground truth.

appearances of the cross-domain images by synthesizing the
target-like images based on the source images [27]–[29].
However, these appearance-level UDA methods still suffer
from domain bias between the synthesized and target images
due to the imperfect translations [22], [24], [30], [31].

To reduce the cross-domain discrepancy in the content and
appearance level, several methods have been proposed to align
the features between the target and the synthesized target-like
images [22], [30], [31]. These methods achieve state-of-the-art
performance on various UDA tasks of classification, object
detection, and semantic segmentation. However, none of these
methods can be directly employed on the UDA instance
segmentation tasks. Furthermore, although it is intuitive to
consider directly replacing the Faster R-CNN in UDA object
detection methods [26], [31], [32] with Mask R-CNN [33],
we find such an approach only brings limited performance gain
due to several challenges. First, existing UDA object detection
methods can generate domain-invariant features at the image
level (image contrast, brightness, etc.) and the object level
(object scale, style, etc.) [26], [31], [32]. However, they cannot
remove the domain-specific factors at the semantic level, such
as the relationship between the foreground and background,
and the spatial distribution of the objects. Second, the loss
functions of the detection tasks are optimized according to the
labeled source images. Therefore, the model biases towards
the source domain if the feature extractors fail to generate
domain-invariant features in some training iterations.

To solve the aforementioned challenges, we propose a
Panoptic Domain Adaptive Mask R-CNN (PDAM) method,
for UDA instance segmentation in microscopy images. Cur-
rently there is a lack of methods particularly designed for
UDA instance segmentation. Therefore, we first design a
Domain Adaptive Mask R-CNN (DAM) as the baseline, based
on Mask R-CNN and domain adaptive Faster R-CNN [26].
Inspired by panoptic segmentation architectures [34], [35],
the reconciliation of the semantic and instance segmentation,
we then design a panoptic-level feature alignment module
to learn domain-invariant features at both the instance and

semantic levels. Specifically, we add an auxiliary semantic
segmentation branch and a semantic-level feature adaptation
module, to alleviate the domain shift in the semantic contextual
features. In addition, we also design a task re-weighting
mechanism to reset the importance of the loss functions
for detection and segmentation according to whether the
extracted features from the current training iteration being
domain-invariant or not. During training, we down-weight
the detection and segmentation losses if the extracted fea-
tures are biased towards the source domain and up-weight
the losses if the features are domain-invariant. Furthermore,
we propose a feature similarity maximization mechanism to
reduce the domain gap from the perspective of representation
learning. Specifically, the similarity maximization is based
on mutual information (MI), an entropy-based metric for
dependency measurement between two distributions. Previous
work enables unsupervised classification and facilitates the
GAN training by maximizing MI between the latent layers and
input (or output) layers in the CNN architectures [36], [37].
In this work, we propose to induce domain-invariant feature
learning by enlarging the MI on the features between the
source and target domains.

The preliminary version of this work was published as a
conference paper in CVPR 2020 [24]. In this manuscript,
we extend our previous work as follows:

• We propose a feature similarity maximization mechanism
for UDA instance segmentation. This is a significant
improvement since the feature distribution similarity is
typically employed in the representation learning. In this
work, we are making an early attempt to demonstrate
its effectiveness in the UDA instance segmentation tasks,
with experimental results and in-depth analysis.

• In addition to the UDA instance segmentation from the
fluorescence microscopy to the histopathology images,
we further apply our proposed method to UDA mitochon-
dria instance segmentation in EM images. Compared with
the state-of-the-art methods, our proposed PDAM method
achieves better performance on various UDA instance
segmentation tasks, which further indicates the strong
generalization ability of the PDAM method.

• Compared to the previous conference version, we include
more details about the motivations and insight into our
method. Additionally, the presentation and writing of
the overall paper are improved significantly for more
precisely description.

In line with our previous work, our novel PDAM method is
the first paradigm for UDA instance segmentation in medical
images, to our best knowledge.

II. RELATED WORK

Domain adaptation aims at transferring the knowledge
learned from one source domain to another target domain
via either supervised or unsupervised learning. For the super-
vised domain adaptation, the source domain is fully labeled
while the target domain contains a small amount of anno-
tations [38]–[40]. Typically, supervised domain adaptation
methods are implemented via feature sharing [38], and
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fine-tuning [39]. In [40], domain-specific batch normalization
layers are employed to adapt an off-the-shelf model to a new
domain with few annotations. However, the supervised domain
adaptation methods still rely on the labeled target images.
On the other hand, unsupervised domain adaptation requires
no annotations from the target domain and is, therefore,
more efficient. In this section, we review the literature of the
unsupervised domain adaptation in detail since our proposed
method is based on it.

A. Unsupervised Domain Adaptation for Natural Images

Under unsupervised domain adaptation setting, the source
domain is fully labelled and the target domain is unla-
belled [19]. Recently, UDA methods have reduced the
cross-domain discrepancies based on the content in the feature
level and the appearance in the pixel level. For feature-level
adaptation, adversarial learning for domain-invariant fea-
tures [20], [21], Maximum Mean Discrepancy minimization
(MMD) [41], and cross-domain covariance alignment [42]
are widely employed for classification tasks. In addition,
UDA is further employed for other tasks such as semantic
segmentation [25], [43] and object detection [26], [31], [44].
In the semantic segmentation tasks, the segmentation results
are forced to be domain-invariant, together with interme-
diate feature maps [25], [45]. Additionally, ADVENT [25]
further minimized the Shannon entropy for the semantic
segmentation predictions in source and target domains to
alleviating the cross-domain discrepancy. For object detec-
tion, a domain adaptive Faster R-CNN [46], consisting of
the image- and instance-level adaptions, is usually pro-
posed for domain-invariant features of the whole image
and each object [26], [31], [32]. On the other hand,
image-to-image translation addresses the domain adapta-
tion problems in the pixel level by generating target-like
images and training task-specific fully supervised models
on them [27]–[29], [47], [48]. However, domain bias still
exists because of imperfect translation [22], [30], [31].
To integrate the benefits of the feature-level and pixel-level
adaptations, several methods have been proposed to learn
domain-invariant features between the synthesized and real
images [22], [30], [31].

B. Unsupervised Domain Adaptation for Medical Images

In addition to the general images, there are a wide range
of UDA applications in medical image analysis [17], [18],
[22], [24], [49]–[52]. For example, studies [49], [51] address
the UDA histopathology images classification problems with
GAN based architectures. PnP-AdaNet [23] is proposed
for UDA semantic segmentation in CT images, generating
domain-invariant features at the intermediate level and the
output of the model using plug-and-play feature adaptation
modules. TD-GAN [50] and SIFA [22] then incorporate the
pixel- and feature-level alignment for more competitive UDA
semantic segmentation performance. In addition to the UDA
methods based on feature and appearance alignment, visual
correspondence is exploited in [52] and [18] for UDA semantic
segmentation in EM images via multiple instance learning.

Currently, there is a lack of methods for UDA instance
segmentation. For unsupervised nuclei instance segmentation,
Hou et al. [17] firstly proposed a histopathology image synthe-
sis pipeline. Then, they train a GAN based model to refine the
synthesized images and, meanwhile, generate nuclei segmen-
tation predictions. However, this method’s performance was
limited by the domain shift between the synthesized and real
histopathology images, due to the lack of feature-level adapta-
tion. Additionally, this image synthesis pipeline was designed
based on the characteristics of the histopathology images,
which is domain-specific and cannot be directly adapted to
other kinds of images. For a better performance on UDA
instance nuclei segmentation for the histopathology images,
our previous work [24] focused on aligning the cross-domain
features at the panoptic level and alleviating the source-biased
features learning. In this work, we further improve our pre-
vious method by facilitating instance-level feature adaptation
from the view of representation learning. Additionally, our
PDAM method is demonstrated to be effective on the UDA
instance segmentation for other kind of microscopy images.

III. METHOD

Our PDAM method is trained on the real and synthesized
images. Given images from the source and target domain,
we firstly employ a CycleGAN [28] to synthesize target-like
images from the source domain. Then we train the PDAM
method using the synthesized images as the source domain,
and the real target images as the target domain. In this
section, we first introduce a pre-processing method to refine
the synthesized images, named the auxiliary objects inpainting
mechanism. Second, we present the detailed design of the
PDAM method, including the baseline DAM, panoptic-level
feature alignment, task re-weighting mechanism, and feature
similarity maximization mechanism. Third, we show the defi-
nition of the overall objective function for the PDAM method.

A. Auxiliary Objects Inpainting Mechanism

In our previous work [24], we noticed that there occur unex-
pected nuclei objects on the synthesized histopathology images
translated from the fluorescence microscopy images. As shown
in Fig. 2, the synthesized histopathology images contain nuclei
objects without corresponding annotations. In other words,
these auxiliary generated nuclei are labeled as background
in the ground truth. Subsequently, the model is forced to
regard the redundant nuclei as background components when
training the PDAM with these synthesized images. However,
these auxiliary nuclei always have a similar appearance to
other nuclei with annotations, as shown in Fig. 2 (c). To this
end, the model is likely to predict some true nuclei as the
background and results in false-negative predictions during
inference. To avoid this problem, we designed an auxiliary
objects inpainting mechanism to remove these undesired nuclei
in the synthesized histopathology images. Denoting a raw syn-
thesized histopathology image as Sraw and its corresponding
mask as M , we first obtain the mask predictions Maux of all
the auxiliary generated nuclei, formulated as:

Maux = (otsu(Sraw) ∪ M) − M (1)
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Fig. 2. Visual results for the effectiveness of the object inpainting
mechanism on synthesizing the histopathology images. (a) original
fluorescence microscopy patches; (b) corresponding nuclei annotations;
(c) initial synthesized histopathology images from CycleGAN; (d) synthe-
sized histopathology images after object inpainting mechanism.

Fig. 3. Visual examples of the synthesized EM images in our experi-
ments. (a) original source EM images; (b) corresponding mitochondria
annotations; (c) synthesized target-like EM images; (d) real target EM
images.

where ostu(Sraw) represents the binary segmentation output
of Sraw based on Otsu threshold [53]. Given an image, Otsu
threshold algorithm automatically generates a threshold value
for the background and foreground segmentation. In Maux ,
only auxiliary nuclei without annotation are retained. Then,
we use a fast marching based method [54] to remove the
unexpected nuclei, by replacing the pixel values of the labeled
contents in Maux with those of the unlabeled content. As a
pre-processing step, the auxiliary objects inpainting mecha-
nism in Equation 1 does not involve a learning process for
optimization.

Due to the large domain gap between the fluorescence
microscopy and histopathology images, the CycleGAN gen-
erates imperfect synthesized images. In this work, we further
notice that the synthesized images from the CycleGAN are
indeed of high quality when translating the images between
two different EM datasets. As shown in Fig. 3, there are no
auxiliary mitochondria object in the target-like synthesized
images and the auxiliary objects inpainting mechanism is
therefore not necessary under such a setting. This is because
the domain gap between the two datasets in the same modality
is smaller than that between datasets in different modalities.

B. Domain Adaptive Mask R-CNN

Currently, there is a lack of a UDA architecture special-
ized for instance segmentation. On the other hand, object
detection methods can be extended to instance segmentation

TABLE I
THE PARAMETERS FOR EACH BLOCK IN THE IMAGE-LEVEL

DISCRIMINATOR FOR PDAM. k, s, AND p DENOTE THE

KERNEL SIZE, STRIDE, AND PADDING OF THE

CONVOLUTION OPERATION, RESPECTIVELY

by including an auxiliary segmentation branch for each
object [33]. Therefore, we firstly propose a Domain Adaptive
Mask R-CNN (DAM) following the domain adaptive Faster
R-CNN in [26], [32]. Specifically, the domain adaptive Faster
R-CNN bridges the domain gap at the image and instance
levels, by incorporating a Faster R-CNN with adversarial
domain discriminators. During training, the domain discrim-
inators predict the domain label for the features from the
feature extractors, while the feature extractors aim at confusing
the domain discriminators. In the domain adaptive Faster R-
CNN, the input for the image-level domain discriminator
are the features from the backbone. For the instance-level
discriminator, the input are the instance features for object
category and location prediction.

In this work, the DAM model regards the synthesized and
target images as the source and target domains, respectively.
For both the source and target input images, they share
the same DAM architecture. The backbone of the DAM
model is ResNet101 [55] and Feature Pyramid Network
(FPN) [56], which obtains image-level features from multiple
resolutions. In terms of the image-level feature alignment,
the multi-resolution features from the backbone are first
downsampled to the size of 8 × 8 with average pooling,
and then summed together for the domain discriminator at
the image level. Here we use patch-based predictions for
the image-level domain discriminator to increase the training
samples and avoid overfitting due to the small mini-batch size.
For the instance-level feature alignment, the mask predictions
are firstly flattened along the batch axis. Next, the flattened
mask vectors pass through a fully connected layer, of which
the output is the same size as the feature vectors from the
bounding box branch. Third, the instance-level features are
obtained by fusing the feature vectors from the box and
mask branches via summation. The instance-level features
of the source and target domains are then sent to another
domain discriminator to generate domain-invariant features in
each foreground instance. In addition, the adversarial training
strategy for each domain discriminator is implemented by
embedding a gradient reversal layer (GRL) before the first
CNN (or FC) layer. The detailed network architecture and
configuration of the image-level and instance-level domain
discriminators are shown in Fig. 4 and Table I.

C. Panoptic Level Feature Alignment

Mask R-CNN is a proposal-based architecture for instance
segmentation that processes each individual object, so it

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 16,2022 at 04:43:22 UTC from IEEE Xplore.  Restrictions apply. 



158 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 1, JANUARY 2021

Fig. 4. Detailed illustration of Panoptic Domain Adaptive Mask R-CNN (PDAM). Ci and FC represent a convolution layer and a fully connected layer,
respectively. Ri1 and Ri2 mean the first and second convolutional layers in the ith residual block, respectively. In the MI Estimator, cat represents
the concatenation. ReLU and normalization layers after each convolutional block are omitted for brevity.

lacks a global understanding of the whole image [34].
Therefore, the DAM still suffers from domain shift due to
the cross-domain discrepancy in the contextual information,
such as the relationship between the foreground and back-
ground and the spatial arrangement of foreground objects.
By incorporating the benefits from both semantic and instance
segmentation, panoptic segmentation architecture [35] was
previously proposed to process both semantic contextual and
local instance features on the whole images. Inspired by
this, we propose to learn domain-invariant features at the
panoptic-level to alleviate the domain bias at the semantic
level, by integrating the instance-level feature alignment mod-
ule in DAM with a newly proposed semantic-level feature
alignment module.

To align the cross-domain semantic-level features, we first
design a semantic branch after the FPN for semantic segmen-
tation predictions. The detailed architecture of the semantic
branch in this work is similar to the Panoptic FPN [35].
Instead of the semantic segmentation predictions, the semantic
entropy map passes through an adversarial domain discrim-
inator to learn the domain-invariant features at the seman-
tic level. Aligning the cross-domain entropy distributions
helps minimize the entropy prediction in the target domain,
which makes the model suitable for the target images [25].
Denoting the softmax semantic prediction as P ∈ (0, 1), its
entropy map is calculated using the Shannon entropy, defined
as: −plog(p).

TABLE II
THE PARAMETERS FOR EACH BLOCK IN THE SEMANTIC-LEVEL

DISCRIMINATOR FOR PDAM. k, s, AND p FOLLOW THE

SAME CONVENTION AS IN TABLE I

The detailed structure of the semantic-level feature dis-
criminator is illustrated in Fig. 4 and Table II. Similar to
the image-level discriminator, our semantic-level discriminator
produces patch-based predictions for a stable training process.

D. Task Re-Weighting Mechanism

In the PDAM, the detection and segmentation learning is
based on the synthesized images. During some training itera-
tions, the unstable learning process of the adversarial domain
discriminators could result in predicted features that are far
from the decision boundaries and contain domain-specific
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factors. Therefore, the model still suffers from some domain
shift towards the source images.

To solve this problem, we propose a task re-weighting
mechanism, by adding trade-off weights for detection and
segmentation loss functions. To evaluate whether the extracted
features are domain-invariant, we employ the predictions of
the domain discriminator to calculate the trade-off weights.
Denoting the probability of the feature map before the final
task prediction belonging to the source and target domains as
ps and pt , respectively, and the task-specific loss function as
L, the re-weighted task-specific loss Lrw is:

Lrw = min(
pt

ps
, β)L = min(

1 − ps

ps
, β)L (2)

where β is a threshold value to avoid the 1−ps
ps

becoming large
and making the model collapse, when ps → 0. According
to Eq. 2, if the feature map before the task prediction is
source-biased ( ps → 1), this task loss function is then
down-weighted, to prevent the model biasing toward the
source domain. As illustrated in Fig. 4, the loss function
for the region proposal network (RPN), semantic branch, and
the instance branch are re-weighted by the prediction of the
image-, semantic-, and instance-level domain discriminators,
respectively.

E. Feature Similarity Maximization Mechanism

First, we define the features before the instance-level feature
alignment module of the source and target domains as Fis

and Fit , respectively. Instance-level feature adaptation is based
on an assumption that the distributions of the label space
for the source and target domains are the same. Therefore,
the domain-invariant Fis and Fit should be similar to each
other under the ideal domain adaptation circumstance. To mea-
sure the similarity, we employ the mutual information (MI),
which is in proportion to the level of dependency between
two distributions [36]. By maximizing the MI between Fis

and Fit , our PDAM method further reduces the cross-domain
discrepancy.

To incorporate the MI maximization into our CNN-based
PDAM method, we employ the MI represented by the
Jensen-Shannon formulation defined in [57], which is demon-
strated to be effective for learning feature representations [37].
The MI between Fis and Fit is defined as:

I (J S D)(Fis , Fit ) = −sp(−T (Fis , Fit ; ω)

− sp(T (F �
is , Fit ; ω)) (3)

where F �
is is a marginal feature sampling of Fis by shuffling

the Fis across the batch axis and sp( f ) = log(1 + e f ) is the
softplus operation. T (a, b; ω) is a CNN-based MI estimator
with weights of ω and inputs a and b. The detailed architecture
of the T (a, b; ω) is shown in Fig. 4. We define the objective
function of the feature similarity maximization as:

L F S M = −I (J S D)(Fis , Fit ) (4)

By minimizing the L F S M with gradient descent opti-
mization during training, our PDAM learns to maximize
the instance-level mutual information I (J S D)(Fis , Fit ). This

increases the amount of similar content between Fis and
Fit , and further induces them to be domain-invariant. Note
that we only employ the feature similarity mechanism for
cross-domain feature alignment at the instance level, instead
of the semantic and image level. For the semantic- and
image-level features, the batch size is set to 1. Therefore,
it is impossible to obtain the marginal feature sampling in
Equation 3, of which the feature shuffling across the batch
axis is an essential step. On the other hand, the batch size
of the instance-level features is equal to the number of ROIs.
To this end, the feature similarity maximization mechanism
based on MI is only suitable for the instance-level features.

F. Objective Function

The PDAM is trained in an end-to-end fashion with the
overall objective function defined as:

L pdam = αimg Lrpn + αins Ldet + αsem L(sem−seg)

+ αda(L(img−da) + L(sem−da) + L(ins−da))

+ α f s L F S M (5)

Lrpn is the loss function for the RPN, including a smooth
L1 regression loss for regression and a cross entropy loss for
classification. Ldet is the instance segmentation and detec-
tion loss for Mask R-CNN, which contains loss functions
for instance classification, coordinates regression, and mask
segmentation. L(sem−seg) is the cross entropy loss for semantic
segmentation defined in Section III-C. L(img−da), L(sem−da),
and L(ins−da) are cross entropy losses for domain classification
at image, semantic, and instance levels. αimg , αins , and αsem

are calculated according to Eq. 2 for task re-weighting. αda

is updated as: αda = 2
1+exp(−10t) − 1, where t is the training

progress and t ∈ [0, 1]. L F S M defined in Eq. 4 is for feature
similarity maximization at the instance-level, and its trade-off
weight α f s is set as 0.1.

IV. EXPERIMENT

A. Dataset Description and Preparation

1) Adaptation Between Fluorescence Microscopy and
Histopathology Images: Under this setting, we employ the
fluorescence microscopy dataset BBBC039V1 [58] as the
source domain and the histopathology datasets Kumar [8] and
TNBC [9] as the target domain. BBBC039V1 contains 200
520 × 696 images for U2OS cells under a high-throughput
chemical screen [58]. These images are grayscale, as they
were acquired with the DNA channel staining of a single
field of view. Kumar was obtained from The Cancer Genome
Atlas (TCGA), containing 30 annotated 1000 × 1000 patches
from 30 whole slide images of different patients at 40×
magnification. These images are from 18 different hospitals
and 7 different organs (breast, liver, kidney, prostate,
bladder, colon, and stomach). In contrast to the disease
diversity in Kumar, the TNBC dataset especially focuses on
Triple-Negative Breast Cancer [9]. In the TNBC dataset,
there are 50 annotated 512 × 512 patches from 11 different
patients from the Curie Institute at 40× magnification.
Example images of the three datasets are shown in Fig. 5.
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With the BBBC039V1 dataset, we use the 100 training
images and 50 validation images following the official data
split. Before training, there are 4 steps for preprecessing.
First, all images are normalized into range [0, 255]. Second,
patches in size 256 × 256 are randomly cropped from the 100
training images, with data augmentation including rotation,
scaling, and flipping. Third, the patches with fewer than 3
objects are removed. Fourth, all the patches are subtracted
by 255 for the inverse. For validation, 50 images in the
BBBC039V1 validation set are transferred to the synthesized
histopathology images by CycleGAN and the auxiliary object
inpainting mechanism. In the Kumar dataset, we have the same
data split as the previous work in [8], [9], with 16 images for
training and 14 for testing. As for the TNBC dataset, we use
8 cases with 40 images for training, and the remaining 3
cases with 10 images for testing. To preprocess the Kumar and
TNBC datasets, 256×256 patches are randomly cropped from
the training images, with basic data augmentation including
flipping and rotation.

2) Adaptation Between Electron Microscopy Images From
Different Sources: In addition to the UDA settings mentioned
in our previous work [24], we further validate our PDAM
method on the UDA instance mitochondria segmentation
between different electron microscopy (EM) datasets. Specifi-
cally, we employ the EPFL dataset [59] as the source domain,
which is obtained from the mouse brain hippocampus using
Focused Ion Beam Scanning EM (FIB-SEM). EPFL is a 3D
volume of 1024 × 728 × 165 voxels at an isotropic resolution.
To fit our 2D CNN architecture, we further split the volume
into 165 2D patches of size 1024 × 728. The VNC [60]
dataset for the target domain is obtained from the Drosophila
melanogaster third instar larva Ventral Nerve Cord, utilizing
serial section Transmission EM (ssTEM). Similar to the EPFL
dataset, we split the VNC dataset of 1024 × 1024 × 20 voxels
into 20 2D 1024 × 1024 patches. Among the 20 2D images,
we randomly split 2/3 with 13 images for training and the
remaining 1/3 with 7 images for testing. Samples images of
the EPFL and VNC datasets are shown in Fig. 6.

Among the 165 images in the EPFL dataset, we randomly
select 132 images for training and use the remaining 33 for
validation. Due to the large mitochondria size, we randomly
crop 512×512 patches from the source EPFL and target VNC
images, with basic data augmentation including horizontal and
vertical flipping and rotation of 90◦, 180◦, and 270◦. Then,
we remove the patches containing fewer than 3 mitochondria
objects. For validation, we transform the 33 EPFL validation
images to the target-like synthesized images only using Cycle-
GAN, as described in Section III-A.

B. Evaluation Metrics

To evaluate our method, we employ three commonly-used
metrics at the pixel and object levels. For the object-level met-
rics, we use Aggregated Jaccard Index (AJI) [8] and Panoptic
Quality (PQ) [34]. AJI extends the Jaccard Index for each
object by considering the false-positive predictions (unclaimed
detection). PQ was originally designed for panoptic segmenta-
tion, which multiplies the F1 score for object detection and the

IoU score for instance segmentation. Therefore, PQ reflects
the performance of the detection and segmentation and is
widely employed for nuclei instance segmentation [61]. For
the pixel-level evaluation, we employ the F1 score, which is
the average harmonic mean between the precision and recall
of the binary segmentation predictions.

C. Implementation Details

To initialize the PDAM method, the weights of the
ResNet101 backbone are pretrained on the ImageNet classifi-
cation task, while the weights for other layers are initialized
with “Kaiming" initialization [62]. During training, the batch
size is 1 and each batch contains 2 images, one from the
source and the other from the target domain. Instead of
the traditional batch normalization layers, we employ group
normalization [63] layers due to the small batch size. The
group number of the group normalization is set as 32 in our
PDAM method, following the default setting in [63].

We employ Stochastic Gradient Descent (SGD) for PDAM
optimization, with a weight decay of 0.001 and a momentum
of 0.9. The initial learning rate of PDAM is 0.001, with linear
warming up in the first 500 iterations. The learning rate is then
decreased to 0.0001 when it reaches 3/4 of the total training
iteration. During inference, only the original Mask R-CNN
architecture is used with the adapted weight and all of the
hyperparameters for testing are fine-tuned on the validation set.
All of our experiments were implemented with Pytorch [64]
on two NVIDIA GeForce 1080Ti GPUs.

D. Adaptation Between Fluorescence Microscopy and
Histopathology Images

1) In Comparison With Unsupervised Methods: To demon-
strate the effectiveness of our proposed PDAM method on alle-
viating the large domain bias between the microscopy images
from different modalities, we conduct UDA instance segmen-
tation experiment by adapting from BBBC039V1 to Kumar
and from BBBC039V1 to TNBC. We compare our PDAM
method with several state-of-the-art UDA detection and seg-
mentation methods, including CyCADA [30], Chen et al. [26],
DDMRL [31], SIFA [22], and Liu et al. [24].

As CyCADA, Chen et al., DDMR, and SIFA are originally
designed for either object detection or semantic segmentation,
we extend them to the instance segmentation scenario. For
CyCADA, we extend it by integrating the CycleGAN with
the DAM in Section III-B and it is employed as the UDA
baseline of our PDAM method. Chen et al. was originally
for UDA object detection based on Faster R-CNN, with
feature alignment at the image and instance levels and a
consistency regularization mechanism. To adapt it to UDA
instance segmentation, we extend it by incorporating their con-
sistency regularization into our DAM. DDMRL learns multi-
domain-invariant features from various generated domains for
UDA object detection. In this work, we use the source, syn-
thesized, and the target images for the multi-domain setting.
As the original DDMRL only aligned the cross-domain fea-
tures at the image-level, we extend it using our DAM without
the instance-level feature adaptations. SIFA is a UDA semantic
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TABLE III
IN COMPARISON WITH OTHER UNSUPERVISED METHODS ON BOTH TWO HISTOPATHOLOGY DATASETS.

RESULTS ARE PRESENTED AS MEAN VALUE WITH STANDARD DEVIATION IN THE PARENTHESES

Fig. 5. Visual comparison on the experiments by adapting from the fluorescence microscopy to the histopathology datasets. The images of the first
row are from Kumar dataset, and the second are from TNBC. The mask predictions are overlapped on the target testing images.

segmentation architecture for CT and MR images, with pixel-
and feature-level adaptation. In our experiment, we firstly
obtain semantic nuclei segmentation predictions from SIFA.
For the instance segmentation predictions, we then use the
watershed algorithm to separate the touching objects in these
binary predictions. Additionally, we also compare with our
preliminary work for UDA nuclei instance segmentation [24],
referred to as Liu et al..

In addition to the UDA methods, we also compare with
Hou et al. [17], which was particularly proposed for unsu-
pervised nuclei segmentation in the histopathology images.
In Hou et al., a data generator is firstly employed for the syn-
thesized histopathology images from the randomly generated
nuclei masks. Then, they employed the real and synthesized
histopathology for nuclei segmentation by learning multiple
tasks including image refinement, segmentation, and detection.

The quantitative and qualitative comparison results are
shown in Table III and Fig. 5, respectively. As illustrated in
Table III, our proposed PDAM method outperforms all the
comparison methods in terms of AJI, F1, and PQ. Furthermore,
we employ the one-tailed paired t-test to calculate the p-value
between our PDAM method and each comparison method.
Given all the p-values are under 0.01, our improvement is
statistically significant. In Table III, w/o DA means directly
training the fully supervised Mask R-CNN on the source
BBBC039V1 dataset and testing it on the target histopathology
dataset.

With the pixel-level adaptation and feature adaptation at the
image and instance levels, the baseline CyCADA improves
the Mask R-CNN without adaptation by 2% ∼ 22% under all
three metrics. Due to the effectiveness of the auxiliary objects
inpainting mechanism, panoptic-level feature alignment, and
task re-weighting mechanism, our previous work [24] then
improves the baseline CyCADA significantly. In this work,

we propose a feature similarity maximization mechanism to
narrow the domain gap by enlarging the mutual contextual
information between the source and target domain. Our current
PDAM method outperforms the previous version under all
three metrics and further improves the baseline CyCADA by
7% ∼ 17%.

Chen et al. learns the domain-invariant features at the image
and instance levels. However, due to the large differences
between the fluorescence microscopy and real histopathol-
ogy images, feature-level adaptation is not enough to reduce
the domain gap and may even downgrade the object-level
performance, such as PQ. With the appearance-level adap-
tation, all the other UDA methods avoid the influence of
the large appearance dissimilarity and achieve better perfor-
mance. Although DDMRL only adapts the features at the
image level, its performance is still at the same level as
CyCADA, by adapting knowledge across various domains.
SIFA is a UDA semantic segmentation structure that alleviates
the domain-bias at the image and semantic levels. In the UDA
instance nuclei segmentation scenario, there exists a large
number of nuclei objects in the histopathology images with
complicated distributions and overlapping issues. The effec-
tiveness of SIFA is therefore limited without any instance-level
feature learning or adaptation. In the B B BC039 → K umar
experiment, Hou et al. outperforms other comparison meth-
ods due to their task-specific data generator for the synthe-
sized histopathology images. However, we notice that their
performance on the B B BC039 → T N BC experiment is
not that competitive. As TNBC and Kumar are obtained
from different sources, there still remains a domain gap
between them, which makes the data generator in Hou et al.
synthesize imperfect histopathology images. Although the
pipeline in Hou et al. is effective for unsupervised nuclei
segmentation in the histopathology images from the TCGA
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TABLE IV
COMPARISON EXPERIMENTS BETWEEN OUR UDA METHOD AND FULLY SUPERVISED METHODS, FOR BBBC039V1

TO KUMAR EXPERIMENT. FOR CNN3 AND DIST, THE RESULTS OF PQ ARE UNKNOWN

database, their performance might be limited when validated
on other histopathology images, such as TNBC. By contrast,
our proposed PDAM method is effective for UDA instance
segmentation for different histopathology datasets.

2) In Comparison With Fully Supervised Methods: In addition
to the unsupervised methods, we compare our PDAM method
with several fully supervised methods for nuclei instance
segmentation on the Kumar dataset. With the same data
split as CNN3 [8] and DIST [9], we directly compare our
results with theirs. CNN3 is a contour-based architecture
with three segmentation classes, including the foreground
nuclei, background and the nuclei boundaries. DIST is a
regression model based on the distance map. For the fully
supervised upper bound, we select the Panoptic FPN [35],
which incorporates a semantic segmentation branch with the
Mask R-CNN. The Panoptic FPN is trained directly on the
Kumar dataset with the same split and under the same setting
as our PDAM method. We split the 16 testing images into
two subsets: seen and unseen set. The seen set contains 8
images from 4 organs known to the training set and the unseen
contains the remaining 6 images from 3 organs unknown to the
training set.

As shown in Table IV, the performance of our proposed
UDA architecture is superior to the fully supervised CNN3 and
DIST. It is because our proposed method is able to process
each ROI at the local level, while CNN3 and DIST only
process the image at a global semantic level. Even though
our AJI is slightly lower than the fully supervised Panoptic
FPN, we notice that our method works better when tested
on the unseen testing set. Since our proposed PDAM method
focuses on learning the domain-invariant features and avoids
being influenced by the domain bias of testing images from
unseen organs. These results show that, although there remain
large differences between the fluorescence microscopy images
and histopathology images, our proposed UDA architecture
still successfully narrows the domain gap between them and
achieves even better performance compared with the fully
supervised methods. Additionally, the PDAM method outper-
forms its previous version [24] on both seen and unseen testing
set, which further indicates the promotion and robustness of
our proposed feature similarity maximization mechanism.

E. Adaptation Between Electron Microscopy Images
From Different Sources

To further demonstrate the generalization ability of our
PDAM method, we validate it on UDA mitochondria instance
segmentation for EM images. Specifically, we employ the

TABLE V
COMPARISON EXPERIMENTS FOR THE UDA INSTANCE MITOCHONDRIA

SEGMENTATION FROM THE EPFL TO VNC DATASET. RESULTS ARE

PRESENTED AS MEAN VALUE WITH STANDARD DEVIATION

IN THE PARENTHESES

EPFL and VNC datasets as the source and target domains,
respectively. As introduced in Section IV-A, these two datasets
are acquired from different species and by different insti-
tutions, and hence there exists a large domain discrepancy.
As discussed in Section III-A, the synthesized images from
CycleGAN do not contain unexpected objects without corre-
sponding annotations. Therefore we exclude the nuclei inpaint-
ing mechanism from our PDAM method in the experiment
under this scenario.

As shown in Table V and Fig. 6, we compare our PDAM
method with the Mask R-CNN without domain adaptation
(w/o DA), CyCADA [30] as the UDA instance segmentation
baseline, and our previous work [24](Liu et al.). All the
comparison methods have the same settings as Section IV-D.
Due to the domain shift, the Mask R-CNN without domain
adaptation performs poorly on the target testing set. With the
feature-level and appearance-level adaptation, the CyCADA
lifts the performance significantly. By removing the domain
shift from the semantic-level features and avoiding the influ-
ence from the source-biased features, our previous work
outperforms the CyCADA (UDA baseline) by 5% ∼ 8%.
In addition, our newly proposed feature similarity maximiza-
tion mechanism further improves our previous work by enlarg-
ing the mutual contextual information in the domain-invariant
feature between the source and target domains. The overall
performance of our PDAM method in this scenario is con-
sistent with Section IV-D, which indicates that our PDAM
method is effective and robust for the UDA instance segmen-
tation in various kinds of microscopy datasets under different
settings.

V. DISCUSSION

A. Analysis of the Feature Similarity Maximization
Mechanism

Based on our previous work [24], we further propose
to alleviate the domain bias from the perspective of repre-
sentation learning. The key insight of the feature similarity
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Fig. 6. Visual comparison on the experiments by adapting from the EPFL to the VNC dataset. The predictions are on the target testing images.

TABLE VI
EXPERIMENTAL RESULTS ON THE EFFECTIVENESS OF DIFFERENT DISTRIBUTION SIMILARITY

MEASUREMENT METHODS FOR THE FEATURE SIMILARITY MAXIMIZATION MECHANISM

TABLE VII
THE ABLATION STUDY FOR THE TASK RE-WEIGHTING MECHANISM

maximization mechanism is to induce the dependency of
the domain-invariant features between the source and target
domains. Previously, feature similarity maximization has been
applied for feature disentanglement [65], [66], GAN training
stabilization [36], and unsupervised learning [37]. In addition
to the mutual information, cosine similarity is also effec-
tive for feature similarity measurement in recommendation
system [67], and image instance segmentation [68]. In this
section, we present our extensive experimental results on the
effectiveness of different metrics for feature similarity in our
PDAM method.

First, we incorporate the cosine similarity to the Feature
Similarity Maximization Mechanism in the PDAM method.
For the instance-level features maps Fis and Fit defined in
Section III-E, we first flatten them along the batch axis,
since the cosine similarity is employed between two vectors
not tensors. The flattened instance-level feature vectors for
the source and target domains are defined as Fis f and Fit f ,
respectively. Next, the cosine similarity between Fis f and Fit f

is defined as:
Cosine(Fis f , Fit f ) = Fis f · Fit f

� Fis f �2 · � Fit f �2
(6)

The Cosine(Fis f , Fit f ) is in range [−1, 1], while −1 indicates
that Fis and Fit are at the opposite direction, and hence
linearly dependent. To this end, we define the cosine similarity
based feature similarity maximization mechanism as:

L F S M−cosine = Cosine(Fis f , Fit f ) (7)

By minimizing the L F S M−cosine via SGD optimization,
the Cosine(Fis f , Fit f ) is pushed to −1, which induces Fis

and Fit to be dependent on each other. Due to the necessity
of having features flattened across the batch axis, the cosine

similarity Feature Similarity Maximization Mechanism is not
suitable for the semantic- and image-level features, given the
batch size as 1.

The experimental results are presented in Table VI, where
the w/o FSM method represents our previous work [24]
without the feature similarity maximization mechanism,
PDAM-Cosine and PDAM-MI are the PDAM method with the
feature similarity maximization based on the cosine similarity
and mutual information, respectively.

Compare with the PDAM-Cosine method, the PDAM-MI
method achieves better performance except for the PQ in the
B B BC039V1 → K umar and E P F L → V NC experiments.
However, the PDAM-MI method outperforms the w/o FSM
method under all three metrics in different settings, while
the PDAM-Cosine method sometimes even leads to a per-
formance drop. As an essential step to calculate the cosine
similarity, the tensor feature maps are flattened to vectors.
Therefore, the spatial information in each ROI is deprecated
and the PDAM-Cosine method is only capable to induce
partial cross-domain instance-level features to be dependent.
For other cross-domain instance-level features, there still exist
domain-specific factors, which are harmful for the target
learning and results in unstable improvement. On the other
hand, the MI can be directly obtained from the tensor feature
maps, which maintains sufficient spatial information for each
ROI. Therefore, the PDAM-MI method is more stable and
robust than the PDAM-Cosine method.

B. The Effectiveness of the Task Re-Weighting
Mechanism

In order to present the Task Re-weighting Mechanism
effects experimentally, we conduct an ablation study and the
results are shown in Table VII. The w/o TR method is the

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 16,2022 at 04:43:22 UTC from IEEE Xplore.  Restrictions apply. 



164 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 1, JANUARY 2021

PDAM paradigm without the task re-weighting mechanism,
which is implemented by setting the αimg , αins , and αsem in
Equation 5 to 1.0. The task re-weighting mechanism removes
the source-specific factors for the detection and segmentation
task learning, by down-weighting the task loss functions when
the features are easy to be distinguished by the domain
discriminators. To this end, removing the task re-weighting
mechanism incurs source-biased predictions and results in the
performance drop by when tested on the target images.

C. Computational Complexity Analysis

We conducted a computational complexity analysis between
the PDAM method and our previous work [24]. To calculate
the MI between a pair of cross-domain ROI in the fea-
ture similarity maximization mechanism, the FLOPs is about
2.36M, while the mask segmentation branch for each ROI
has 1330M FLOPs. On the other hand, the MI estimator
in the PDAM contains 0.59M parameters, while the overall
amount of parameters of the PDAM model is about 82M.
To this end, the computational cost of the MI-based feature
similarity maximization mechanism is negligible. Furthermore,
the PDAM method outperforms our previous work [24] under
different metrics in various UDA settings, which demonstrates
our proposed feature similarity maximization mechanism is
effective and efficient.

VI. CONCLUSION

In this work, we propose a PDAM method for UDA instance
segmentation in microscopy images by alleviating the domain
bias at the appearance and panoptic feature level. To further
improve our previous work [24], we propose a feature simi-
larity maximization mechanism, which maximize the mutual
information between the instance-level features of the source
and target domains. In addition to adapting from fluorescence
microscopy to the histopathology images in our previous work,
we validate our method on the UDA instance segmentation
between two EM datasets from different sources. Extensive
experiments under the three UDA scenarios indicate that our
method successfully transfers the domain-invariant informa-
tion from the source to the target domain, by outperforming
the state-of-the-art comparison methods significantly. As our
PDAM method is the first architecture specifically designed
for UDA instance segmentation and achieves promising per-
formance on microscopy images, we will extend and validate
our method for UDA instance segmentation for general images
in the future.
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