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Abstract
Memory disaggregation promises transparent elasticity, high
resource utilization and hardware heterogeneity in data cen-
ters by physically separating memory and compute into
network-attached resource “blades”. However, existing de-
signs achieve performance at the cost of resource elasticity,
restricting memory sharing to a single compute blade to avoid
costly memory coherence traffic over the network.

In this work, we show that emerging programmable net-
work switches can enable an efficient shared memory ab-
straction for disaggregated architectures by placing memory
management logic in the network fabric. We find that central-
izing memory management in the network permits bandwidth
and latency-efficient realization of in-network cache coher-
ence protocols, while programmable switch ASICs support
other memory management logic at line-rate. We realize these
insights into MIND1, an in-network memory management unit
for rack-scale disaggregation. MIND enables transparent re-
source elasticity while matching the performance of prior
memory disaggregation proposals for real-world workloads.

CCS Concepts: • Computer systems organization ! Cloud
computing; • Networks ! Programmable networks.

Keywords: Memory disaggregation, Programmable networks

1 Introduction
Data center network bandwidth is approaching that of intra-
server resource interconnects [1, 2], and is soon poised to
surpass it [3]. This has driven significant academic [4–14] and
industry [15–20] interest in memory disaggregation, where
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compute and memory are physically separated into network-
attached resource blades, drastically improving resource uti-
lization, hardware heterogeneity, resource elasticity and fail-
ure handling compared to traditional data center architectures.

However, memory disaggregation is challenging due to
three requirements. First, access to remote memory must
have low latency and high throughput — prior work [10–13]
have targeted 10 `s latency and 100 Gbps bandwidth per com-
pute blade to minimize application performance degradation.
Second, both memory and compute resources available to ap-
plications must scale elastically, in keeping with the promise
of disaggregation. Finally, wide adoption and immediate de-
ployment requires support for unmodified applications.

Despite years of research towards enabling memory dis-
aggregation, none of the known approaches support all
three requirements simultaneously (§2.2). Most approaches
require application modifications due to changes in hard-
ware [6, 16, 17, 21], programming model [22, 23], or memory
interface [24–26]. Recent approaches that enable transparent
access to disaggregated memory [10–12] limit application
compute elasticity — processes are limited to compute re-
sources on a single compute blade to avoid cache coherence
traffic over the network due to performance concerns.

We present MIND, the first memory management system
for rack-scale memory disaggregation that simultaneously
meets all three requirements for disaggregated memory. Our
key idea is to place the logic and metadata for memory man-
agement in the network fabric. MIND’s design builds on the
observation that the network fabric in the disaggregated mem-
ory architecture is essentially a CPU-memory interconnect.
In MIND, centrally-placed in-network processing devices like
programmable network switches [27–29] therefore assume
the role of the MMU to enable a high-performance shared
memory abstraction. Since MIND realizes the logic and meta-
data for memory management in programmable hardware at
line rate [27], latency and bandwidth overheads are minimal.

Realizing in-network memory management, however, re-
quires working with the unique constraints imposed by pro-
grammable switch ASICs. First, today’s switch ASICs only
have a few megabytes of on-chip memory, making it challeng-
ing to store traditional page tables for potentially terabytes of
disaggregated memory. Second, switch ASICs only permit a
few cycles of limited computations per packet to ensure line-
rate processing, while cache coherence may require complex
state transition logic for each cached block. Finally, these
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ASICs [30] have staged packet processing pipelines where
compute and memory resources are spread across multiple
physically decoupled match-action stages, introducing inter-
esting challenges in partitioning and placing the logic and
metadata for memory management across them.

To meet the three requirements of memory disaggregation,
MIND effectively navigates the above constraints and explores
the capabilities of today’s programmable switches to enable
in-network memory management for disaggregated architec-
tures. It does so through a principled redesign of traditional
memory management:

• MIND employs a global virtual address space shared by
all processes, range partitioned across memory blades to
minimize the number of address translation entries that
need to be stored in the on-chip memory of switch ASIC.
At the same time, it employs a physical memory allocation
mechanism that load balances allocations across memory
blades for high memory throughput (§4.1).

• MIND features domain-based memory protection inspired
by capability-based schemes [31–33] that enables fine-
grained and flexible protection by decoupling the storage
of memory permissions from address translation entries. In-
terestingly, such a decoupling actually reduces the on-chip
memory overheads at the switch ASIC (§4.2).

• MIND adapts directory-based MSI coherence [34] to the
in-network setting. To mitigate the network overheads of
cache coherence, MIND exploits network-centric hardware
primitives such as multicast in the switch ASIC to effi-
ciently realize its coherence protocol (§4.3).

• We find that the limited on-chip memory at the switch
ASIC forces the cache directory to track memory regions at
coarse granularities, which in turn results in performance
degradation due to false invalidations of pages in those
regions (§4.3). We address this through a novel Bounded
Splitting algorithm (§5) that dynamically sizes memory
regions to bound both the switch storage requirements as
well as performance overheads due to false invalidations.

We realize MIND design on a disaggregated cluster emulated
using traditional servers connected by a programmable switch.
Our results show that MIND enables transparent resource elas-
ticity for real-world workloads while matching the perfor-
mance for prior memory disaggregation proposals (§7).

We also find that while MIND is competitive with compared
systems, workloads with high read-write contention experi-
ence sub-linear scaling with more threads due to limitations
of current hardware. Current x86 architectures preclude real-
ization of relaxed consistency models commonly employed
in shared memory systems [35], and the switch TCAM ca-
pacity is close to saturated with cache directory entries for
such workloads. We discuss approaches that could enable
better scaling with future improvements in switch ASIC and
compute blade architectures in §8.

Control Plane

Ingress
Pipeline

Egress
Pipeline

Traffic
Manager

CPU
PCIe PCIe

pkt

… …

Switch ASIC (Data Plane)

DRAM

Pr
og

ra
m

m
ab

le
 P

ar
se

r

Memory ALU Memory ALU

…

Pr
og

ra
m

m
ab

le
 D

ep
ar

se
r

Match+Action 
Stage (Unit) 

Match+Action 
Stage (Unit) 

Fig. 1. Enabling technologies for MIND. (left) Programmable
switch architecture and (right) Switch ingress/egress pipeline.

Table 1. In-network technology tradeoffs. See §2.1 for details.
RMT FPGA Custom ASIC CPU

Line-rate 3 3 3 7

Available 3 3 7 3

Low Power 3 7 3 7

Low Cost 3 7 3 7

2 Background
This section motivates MIND. We discuss key enabling tech-
nologies (§2.1), followed by challenges in realizing memory
disaggregation goals using existing designs (§2.2).

Assumptions. We focus on memory disaggregation at the
rack-scale, where memory and compute blades are connected
by a single programmable switch. Similar to prior work [4–10,
13], we restrict our scope to partial memory disaggregation:
while most of the memory is network-attached, CPU blades
possess a small amount (few GBs) of local DRAM as cache.

2.1 Enabling Technologies

We now briefly describe MIND’s enabling technologies.

Programmable switches. In recent years, programmable
switches have evolved along two well-coordinated direc-
tions: development of P4 [30, 36, 37], a flexible program-
ming language for network switches, and design of switch
hardware that can be programmed with it [28, 29, 38, 39].
These switches host an application-specific integrated circuit
(ASIC), along with a general purpose CPU with DRAM, as
shown in Figure 1 (left). The switch ASIC comprises ingress
pipelines, a traffic manager and egress pipelines, which pro-
cess packets in that order. Programmability via P4 is facili-
tated through a programmable parser and match-action units
in the ingress/egress pipelines, as shown in Figure 1 (right).
Specifically, the program defines how the parser parses packet
headers to extract a set of fields, and multiple stages of match-
action units (each with limited TCAM/SRAM and ALUs)
process them. The general purpose CPU is connected to the
switch ASIC via a PCIe interface, and serves two functions:
(i) performing packet processing that cannot be performed
in the ASIC due to resource constraints, and, (ii) hosting
controller functions that compute network-wide policies and
push them to the switch ASIC.

While the above focuses on switch ASICs with Reconfig-
urable Match Action Tables (RMTs) [38], it is possible to
realize MIND using FPGAs, custom ASICs, or even general
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purpose CPUs. While each of them exposes different tradeoffs
(Table 1), we adopt RMT switches due to their performance,
availability, power and cost efficiency.

DSM Designs. Traditionally, shared memory has been ex-
plored in the context of NUMA [40–44] and distributed
shared memory (DSM) architectures [35, 45–48]. In such
designs, the virtual address space is partitioned across the var-
ious nodes, i.e., each partition has a home node that manages
its metadata, e.g., the page table. Each node also additionally
has a cache to facilitate performance for frequently accessed
memory blocks. We distinguish memory blocks from pages
since caching granularities, i.e., block, can be different from
memory access granularities, i.e., page.

With the copies of blocks potentially residing across mul-
tiple node caches, coherence protocols [34, 49–52] are re-
quired to ensure each node operates on the latest version of a
block. In popular directory-based invalidation protocols like
MSI [34] (used in MIND), each memory block can be in one of
three states: Modified (M), where a single node has exclusive
read and write access to (or, “owns”) the block, Shared (S),
where one or more caches have shared read-only access to the
block, and Invalid (I), where the block is not present in any
cache. A directory tracks the state of each block, along with
the list of nodes (“sharer list”) that currently hold the block in
their cache. The directory is typically partitioned across the
various nodes, with each home node tracking directory entries
for its own address space partition. Memory access for a block
that is not local involves contacting the home node for the
block; it triggers a state transition and potential invalidation
of the block across other nodes, followed by retrieving the
block from the node that owns the block. While it is possible
to realize more sophisticated coherence protocols, we restrict
our focus to MSI in this work due to its simplicity — we defer
a discussion of other protocols to §8.

2.2 Disaggregated Memory Designs and Challenges

As outlined in §1, extending the benefits of resource disag-
gregation to memory and making them widely applicable to
cloud services demands (i) low-latency and high-throughput
access to memory, (ii) a transparent memory abstraction that
supports elastic scaling of memory and compute resources
without requiring modifications to existing applications. Un-
fortunately, prior designs for memory disaggregation expose
a hard tradeoff between the two goals. Specifically, trans-
parent elastic scaling of an application’s compute resources
necessitates a shared memory abstraction over the disaggre-
gated memory pool, which imposes non-trivial performance
overheads due to the cache-coherence required for both ap-
plication data and memory management metadata. We now
discuss why this tradeoff is fundamental to existing designs.
We focus on page-based memory disaggregation designs here,
and defer the discussion of other related work to §9.

Table 2. Parallels between memory & networking primitives.
Virtual Memory () Networking

Memory allocation IP assignment
Address translation IP forwarding
Memory protection Access control
Cache invalidations Multicast

Transparent designs. While transparent DSMs have been
studied for several decades, their adaptation to disaggregated
memory has not been explored. We consider two possible
adaptations for the approach outlined in §2.1 to understand
their performance overheads, and shed light on why they have
remained unexplored thus far. The first is a compute-centric
approach, where each compute blade owns a partition of
the address space and manages the corresponding metadata,
but the memory itself is disaggregated. A compute blade
must now wait for several sequential remote requests to be
completed for every un-cached memory read or write, e.g.,
to the remote home compute blade to trigger state transition
for the block and invalidate relevant blades, and to fetch the
memory block from the blade that currently owns the block.
An alternate memory-centric design that places metadata at
corresponding home memory blades still suffers multiple
sequential remote requests for a memory access as before,
with the only difference being the home node accesses are
now directed to memory blades. While these overheads can
be reduced by caching the metadata at compute blades, it
necessitates coherence for the metadata as well, incurring
additional design complexity and performance overheads.

Non-transparent designs. Due to the anticipated over-
heads of adapting DSM to memory disaggregation, exist-
ing proposals limit processes to a single compute blade [9–
11, 13, 15, 16], i.e., while compute blades cache data locally,
different compute blades do not share memory to avoid send-
ing coherence messages over the network. As such, these pro-
posals achieve memory performance only by limiting trans-
parent compute elasticity for an application to the resources
available on a single compute blade, requiring application
modifications if they wish to scale beyond a compute blade.

3 MIND Overview
To break the tradeoff highlighted above, we place memory
management in the network fabric for three reasons. First,
the network fabric enjoys a central location in the disaggre-
gated architecture. Therefore, placing memory management
in the data access path between compute and memory re-
sources obviates the need for metadata coherence. Second,
modern network switches [27–29] permit the implementa-
tion of such logic in integrated programmable ASICs. We
show that these ASICs are capable of executing it at line rate
even for multi-terabit traffic. In fact, many memory manage-
ment functionalities have similar counterparts in networking
(Table 2), allowing us to leverage decades of innovation in net-
work hardware and protocol design for disaggregated memory
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Fig. 2. (left) High-level MIND architecture, and, (right) data flow for memory accesses in MIND. See §3.2 for details.

management. Finally, placing the cache coherence logic and
directory in the network switch permits the design of special-
ized in-network coherence protocols with reduced network
latency and bandwidth overheads, as we show in §4.

Effective in-network memory management requires: (i)
efficient storage, by minimizing in-network metadata given
the limited memory on the switch data plane; (ii) high memory
throughput, by load-balancing memory traffic across memory
blades; (iii) low access latency to shared memory, via efficient
cache coherence design that hides the network latency.

Next we elicit three design principles followed by MIND to
realize the above goals and provide an overview of its design.

3.1 Design Principles

MIND follows three principles to meet the goals for memory
disaggregation outlined in §1:

P1. Decouple memory management functionalities to ensure
each can be optimized for their specific goals.

P2. Leverage global view of the disaggregated memory sub-
system at a centralized control plane to compute optimal
policies for each memory management functionality.

P3. Exploit network-centric hardware primitives at the pro-
grammable switch ASIC to efficiently realize policies com-
puted using P2.

MIND follows principle P1 to decouple memory alloca-
tion from addressing (§4.1), address translation from memory
protection (§4.2), cache accesses and eviction from coher-
ence protocol execution (§4.3.2), and employs principles P2
and P3 to efficiently realize their goals. Note that traditional
server-based OSes are unable to leverage these principles due
to their reliance on fixed-function hardware modules such as
the MMU and memory controller — most common imple-
mentations of such modules couple many memory manage-
ment functionalities (e.g., address translation and memory
protection in page-table walkers) for a host of complexity,
performance, and power reasons [53–55].

3.2 Design Overview

MIND exposes a transparent virtual memory abstraction to
applications, similar to server-based OSes. Unlike prior disag-
gregated memory designs, MIND places all logic and metadata

for memory management in the network, instead of CPU or
memory blades [11, 12], or a separate global controller [10].

Figure 2 (left) provides an overview of MIND design, while
Figure 2 (right) depicts the data flow for memory accesses
in MIND. The CPU blades run user processes and threads,
and possess a small amount of local DRAM that is used as a
cache. All memory allocations (e.g., via mmap or sbrk) and
deallocations (e.g., via munmap) from the user processes are
intercepted at the CPU blade, and forwarded to the switch
control plane. The control plane possesses a global view of
the system, which it leverages to perform memory allocations,
permission assignments, etc., using principle P2, and respond
to the user process. All memory LOAD/STORE operations from
the user processes are handled by the CPU blade cache (§4.3).
The cache is virtually addressed2, and stores permissions for
cached pages to enforce memory protection. If a page is not lo-
cally cached, the CPU blade triggers a page-fault and fetches
the page from memory blades using RDMA requests, evicting
other cached pages if necessary. Similarly, if the memory
access requires an update to a cached block’s coherence state
(e.g., STORE on a Shared or S block), a page-fault is triggered
to initiate cache coherence logic at the switch. Note that the
page-fault based design requires MIND to perform page-level
remote accesses, although future CPU architectures may en-
able more flexible access granularities (§8).

Since the CPU blade does not store memory management
metadata, the RDMA requests are for virtual addresses and
do not contain endpoint information (e.g., IP address) for the
memory blade that holds the page. Consequently, the switch
data plane intercepts these requests. It then performs nec-
essary cache coherence logic, including lookups/updates to
the cache directory and cache invalidations on other CPU
blades (§4.3, §5). In parallel, the data plane also ensures the
requesting process has permissions to access the requested
page (§4.2). If no CPU blade cache holds the page, the data
plane translates the virtual addresses to physical addresses
(§4.1), forwarding the request to the appropriate memory

2Note that while it is hidden from applications, CPU blades maintain a local
page-based virtual memory abstraction to translate MIND virtual addresses
to physical addresses for cached pages in local DRAM (Figure 2 (right)).
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blade. These memory management functionalities are de-
coupled as separate modules following P1, and efficiently
realized in the switch ASIC following P3.

In MIND’s design, the memory blades simply store the ac-
tual memory pages, and serve RDMA requests for physical
pages. Unlike prior works that employ RPC handlers and
polling threads [10], MIND leverages one-sided RDMA op-
erations [24] to obviate the need for any CPU cycles on the
disaggregated memory blades. This is a step towards true hard-
ware resource disaggregation, where memory blades need no
longer be equipped with any general-purpose CPUs.

4 In-Network Memory Management
Placing memory management logic and metadata in the net-
work provides the opportunity for simultaneously achiev-
ing memory performance and resource elasticity. We now
describe how MIND optimizes for the individual goals of
memory allocation and addressing (§4.1), memory protection
(§4.2), and cache coherence (§4.3), while operating under the
constraints of programmable switches. Finally, we detail how
MIND handles failures (§4.4).

4.1 Memory Allocation & Addressing

Traditional virtual memory uses fixed sized pages as the basic
units for both translation and protection; as a result, it cannot
achieve the goal of storage efficiency without increasing mem-
ory fragmentation: small pages reduce memory fragmentation
but require more translation entries, and vice versa. Following
P1, MIND overcomes this by decoupling address translation
and protection. That is, MIND’s translation is blade-based
while protection is vma based (§4.2).

Storage-efficient address translation. MIND eschews page-
based protection but uses a single global virtual address-
space across all processes, allowing translation entries to be
shared across them. Our approach builds on decades of re-
search on virtual memory designs that also exploit a single
address space [23, 32, 33, 35, 56], but adds techniques to min-
imize storage overheads for in-network address translation.
In particular, MIND range partitions the virtual address space
across different memory blades, such that the entire virtual-
address space maps to a contiguous range of physical address
space. This allows us to use a single translation entry for each
memory blade: any virtual address that falls within its range
can be directly routed to that memory blade, minimizing the
storage required on switch data plane. In MIND, this mapping
only changes when new memory blades join, old ones retire
or if memory is moved between blades.

Balanced memory allocation & reduced fragmentation.
MIND’s control plane, leveraging its global view of allocations
(P2), tracks the total amount of memory allocated on each
memory blade and places a new allocation on the blade with
the least allocation, to achieve near-optimal load-balancing.
We validate this empirically in §7.

Moreover, since there is a one-to-one mapping between vir-
tual and physical addresses within a particular memory blade,
MIND minimizes external fragmentation at each memory
blade by using traditional virtual memory allocation schemes
that have evolved to facilitate the same, e.g., first-fit allocator
in our implementation [57]. The result of memory allocation
is a virtual memory area (vma), identified by the base virtual
address and length of the area, e.g., <0x00007f84b862d33b,
0x400> for a 1KB area. As will be elaborated in §4.2, vma
is the basic unit of protection in MIND. This allows multiple
processes to have non-overlapping vmas on the same blade,
minimizing memory fragmentation.

Isolation. We note that MIND’s global virtual address-space
does not compromise on isolation between processes. First,
since the switch intercepts allocation requests across all com-
pute blades, and possesses a global view of valid allocations at
any time, it can easily ensure allocations are non-overlapping
across different processes. Second, we show in §4.2 that
MIND’s vma-based protection allows flexible access control
between processes in a single global virtual address-space.

Transparency via outlier entries. MIND’s one-to-one map-
ping between virtual and physical addresses does not pre-
clude supporting unmodified applications with static virtual
addresses embedded within their binaries, or OS optimiza-
tions such as page migration [58], i.e., moving pages from
one memory blade to another. MIND maintains separate range-
based address translations [59] for physical memory regions
that correspond to static virtual addresses or migrated mem-
ory. These outlier entries are stored succinctly in the switch
TCAM, where the TCAM’s longest-prefix matching (LPM)
property ensures that only the most specific entry (i.e., one
with the longest prefix) is considered when translating a vir-
tual address, ensuring correctness.

4.2 Memory Protection
As MIND decouples translation and protection, it uses a sep-
arate table to store memory protection entries in the data
plane. Consequently, an application can assign access permis-
sions to a vma of any size. The size of this protection table
is proportional to the number of vmas. We find this number
is reasonably small in our experiments and the protection
table can easily fit in the switch ASIC even for a wide range
of memory-intensive applications (§7). This is because the
first-fit allocator and Linux’s glibc allocation requests [60]
do a good job of ensuring vmas are large and contiguous.

Fine-grained, flexible memory protection. Similar to prior
work on capability-based systems [31, 56], MIND supports
two key abstractions: protection domains and permission
classes. Protection domains identify the entity that may (or
may not) have permissions to access a particular memory
region of arbitrary size, while the permission class identifies
what the entity can do to the memory region. MIND’s con-
trol plane exposes a set of APIs for memory allocation and
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permission changes that allows an application to specify a
protection domain identifier (PDID) for an arbitrary virtual
memory area (vma) and assign a permission class (PC) to the
pair <PDID, vma>. The mapping <PDID, vma>! PC is stored
as an entry in the protection table in the data plane. For ex-
isting applications, MIND simply takes the process identifier
(PID) as the PDID, and uses Linux memory permissions (e.g.,
read-only, read-write, etc.) as permission classes. Note that
MIND can support richer memory protection semantics than
traditional OSes, e.g., user programs that serve multiple client
sessions, such as ssh servers or database services, can assign a
separate protection domain per session to prevent one session
from accessing data from other sessions [56].

Following principle P3, we leverage TCAM-based parallel
range matches in the programmable switch ASIC — typi-
cally used for IP subnet matches — to efficiently support
fine-grained matching for <PDID, vma> entries embedded in
memory access requests and obtain corresponding the per-
mission class (PC). If there is a mismatch between PC and the
memory access type, or the <PDID, vma> entry does not exist,
the request is rejected.

Optimizing for TCAM storage. One limitation of TCAM is
that each of its entries can only match power-of-two ranges.
MIND overcomes this by splitting an arbitrary-sized virtual
address range into multiple power-of-two-sized entries. Note
that the number of entries required for a range of size B is
upper-bounded by dlog2 (B)e. In order to meet our goal of
storage efficiency in the switch data plane, the control plane
(1) only performs virtual address allocations that are aligned
with the power-of-two sizes to ensure each region can be
represented using a single TCAM entry, and (2) coalesces
adjacent entries with if they belong to the same protection
domain and have the same permission class. Interestingly,
memory allocations requested by underlying libraries (e.g.,
glibc) are mostly in power-of-two sizes anyway, enabling
storage-efficiency for TCAM entries.

4.3 Caching & Cache Coherence

In MIND design, while the caches3 reside on compute blades,
the coherence directory and logic reside in the switch. This al-
ready permits access to the cache directory in half a round-trip,
significantly reducing the latency overheads for the coherence
protocol execution. For MSI protocol, even the most expen-
sive and relatively uncommon transitions (i.e., M!S/M) in-
cur two round-trips, while common transitions incur only a
single round-trip, as we show in §7.2. While performance is a
primary objective in MIND’s cache coherence, the coherence
protocol must also be realizable under the compute and mem-
ory constraints of switch ASICs. We now outline challenges
in adapting traditional cache management to our in-network
setting, along with how MIND resolves them.

3Note that we use the term ‘cache’ to refer to the DRAM at the CPU blade
under the partial disaggregation model, and not hardware (L1/L2/L3) caches.

4.3.1 Storage vs. performance tradeoff
Traditional caching and cache coherence mechanisms applied
to MIND expose a tradeoff between cache performance and
the storage efficiency at the switch data plane. Specifically,
reducing the number of directory entries requires larger cache
granularities (i.e., larger memory blocks), which results in
worse performance. For instance, when large (e.g., 2 MB)
memory blocks are used, updating a small (e.g., 4 KB) region
within the block will invalidate the entire block. We refer to
these invalidations as false invalidations — dirty pages invali-
dated along with the requested page because there are in the
same memory block tracked by a directory entry. This leads
to wastage in both memory bandwidth and cache capacity,
i.e., fewer frequently accessed data items in the cache. We
empirically highlight this tradeoff in §7.3.

MIND addresses this challenge using two approaches: it
decouples the cache and directory granularities (following
principle P1), and appropriately sizes the memory region
tracked by each cache directory entry leveraging the global
view of memory traffic at the control plane (following princi-
ple P2), as we describe next.

Decoupling cache access & directory entry granularities.
Our first approach employs principle P1 — decoupling the
granularity of cache (and memory) accesses from the gran-
ularity at which cache coherence is performed. This allows
memory accesses (e.g., evictions or remote memory reads)
to be performed at finer granularities, while directory entries
are tracked at coarser granularities. Specifically, accesses to
the local DRAM cache at CPU blades, and even the move-
ment of data between the CPU caches and memory blades,
occur at the fine page granularity (4 KB in MIND, similar to
prior work [10–12]). However, the coherence protocol tracks
directory entries (stored at the switch data plane) at larger,
variable-sized region granularities — when a 4 KB page is
cached at a CPU blade, MIND creates a directory entry for the
region that contains the page. An invalidation of the region
triggers an invalidation of all dirty pages in the region, as
tracked by the individual CPU blades that cache them.

Storage & performance-efficient sizing of regions. Even
with the decoupling described above, the region sizes still
expose a tension between coherence performance (e.g., larger
false invalidation counts due to larger region sizes) and di-
rectory storage efficiency (e.g., more directory entries due to
smaller region sizes). To appropriately size regions, MIND
leverages global view of memory traffic at the switch control
plane (P2). Briefly, MIND starts each directory entry with a
very large memory region; when the overhead due to false
invalidation is high, it splits the region and creates a new
directory entry. It does so repeatedly, until either the overhead
is below a predetermined threshold, or the region size reaches
4 KB, i.e., the page size. In doing so, MIND dynamically
customizes the region sizes to resolve the tension between
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performance and directory storage efficiency using a novel
Bounded Splitting algorithm — we defer its details to §5.

4.3.2 In-Network Coherence Protocol
Due to the limited computational capability at the switch
ASIC, MIND employs the simple directory-based MSI co-
herence protocol [34]. While we defer the implementation
details of the coherence protocol to §6.3, we highlight here
how MIND employs network-centric hardware primitives to
efficiently realize the coherence protocol in the switch, lever-
aging principle P3. Specifically, several state transitions in
the MSI protocol require generating invalidation requests to
CPU blades that have shared access to a region, to ensure cor-
rectness. To facilitate this in a network-efficient manner, we
leverage multicast functionality supported natively in most
switches — we create a multicast group for all CPU blades in
the rack, and send an invalidation request containing the list
of sharers to the group. However, broadcasting invalidations
to blades not in the sharer list would consume unnecessary
network bandwidth. As such, we embed the sharer list within
the invalidation request, and drop requests in the egress path
of the switch data plane if the output port does not lead to a
blade in the sharer list.

4.4 Handling Failures
We now discuss how MIND handles failures at different com-
ponents in our disaggregated architecture.

CPU, memory blade and switch failures. MIND does not
innovate on fault-tolerance for CPU and memory blade fail-
ures: mechanisms developed in prior work [10, 11, 14] for
fault tolerance can be readily adapted to our design. To handle
switch failures, we consistently replicate the control plane
at a backup switch — on a failure, the data plane state is
reconstructed at the backup switch using the control plane
state. Since the control plane is only updated infrequently
due to metadata operations (e.g., system calls), the overhead
added due to such replication in minimal.

Communication failures. MIND uses ACKs and timeouts to
detect packet losses. When a memory access triggers invalida-
tions, the requesting compute blade waits for ACKs indicating
successful invalidation from all sharers, and resends the re-
quest if timeout occurs. If the compute blade does not receive
an ACK even after a predefined number of retransmissions, it
sends a reset message for the corresponding virtual address
to the switch control plane. This, in turn, forces all compute
blades to flush their data for that address and removes the
corresponding cache directory entry in the data plane. This
reset mechanism prevents deadlocks when compute blades
fail in the middle of a cache coherence state transition.

5 Bounded Splitting: Algorithm & Analysis
We next provide details and a formal analysis of the bounded
splitting algorithm used by MIND to dynamically determine
the memory region size tracked by each cache directory entry.

This algorithm is a key component of MIND’s cache coherence
design outlined in §4.3.

5.1 Algorithm
The bounded splitting algorithm starts by partitioning the
entire virtual address space into # contiguous regions of size
" pages each. It then works in disjoint epochs of equal length.
In each epoch, it tracks the total number of times any page is
falsely invalidated within the epoch — we refer to this as the
false invalidation count — for every region.

Bounded Splitting uses false invalidation count as a mea-
sure of the performance overhead — we characterize the
impact of false invalidations on performance in §7. It there-
fore seeks to keep the count below a threshold, denoted by C .
If any region has a false invalidation count > C in an epoch,
it splits that region into two equal halves and creates a new
directory entry accordingly. It bounds the smallest size of any
memory region to 4KB (the page size), ensuring that any "
sized block is split at most log2" times over as many epochs.
Note that for 4KB regions, the number of falsely invalidated
pages is trivially zero; however, maintaining all regions at
that size would require storing # ·" directory entries at the
switch, which is impractically large.

Stability assumptions. The bounded splitting is based on
two implicit assumptions related to the epoch length:
• the access pattern across the various memory regions re-

mains stable for at least $ (log2") epochs, and
• the set of allocated pages remains unchanged across
$ (log2") epochs.

We show in §7 that appropriate epoch sizing allows us to
ensure both assumptions for our evaluated workloads.

5.2 Performance Bounds
The key challenge in bounded splitting is bounding the num-
ber of directory entries that must be stored, one per memory
region. The total worst-case number of regions depends on
two factors: (i) worst-case number of sub-regions generated
by each "-sized region, and (ii) the value of C . We first an-
alyze the worst-case bound on the number of sub-regions
per "-sized region, and then bound the worst-case for total
number of regions overall (and therefore, the total number of
directory entries) by appropriately setting the value of C .

Bounding the number of sub-regions per "-sized region.
We establish the worst-case bound in the following theorem:

Theorem 5.1. The number of sub-regions for an "-sized
region with false invalidation count 5 is upper-bounded by
( = (d 5C e � 1) · (1 + log2").
Proof. In the bounded splitting algorithm, we dynamically
manage sizes of each memory region, splitting it into two
smaller regions until the false invalidation count for the region
is less than C . As noted above, since we limit the smallest
region size to 4KB, an "-sized region may be split at most
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(a) (b)
Fig. 3. SpOtting process for cache blocks depicted as a binary
tree. Note that L = log, M; see §5.2 for details.

log, M times, across as many epochs. Figure 3 depicts the
splitting process as a binary tree across the various epochs,
where the level of the tree I denotes the epoch index (0 I <
log, M). For the sake of exposition, we set M = 2MB. We
leverage two observations to prove the above bound:
• 01: Splitting a region can only decrease the false invalida-
tion count across the two splits, i.e., if a region with I false
invalidation count is split into two regions with f' and I"
false invalidation count, then i' + I" s I.

• 02: For a 4KB region, the false invalidation count is zero.
The maximum number of regions S generated by splitting an
M-sized region can be categorized into three cases:
Case 1: I t, Since false invalidation count is already below
the threshold, the region does not need to be split, i.e., S = l.

Case 2: t < I 2t. To bring the false invalidation count
below t, the region will be split into two. Due to observation
01, there are two possibilities: (i) both resulting regions have
false invalidation count < t, or (ii) one region rl still has false
invalidation count> t while the other region r, has false in-
validation count < t, For (i), the resulting regions do not need
to be split any further, while for (ii), rl must be split further
in the next epoch. In the worst case, the splits will continue
for at most log, M epochs - when the region size reaches
4KB, no further splits will be required (due to observation
02). Thus, S = 1 + log, M, as shown in Figure 3 (a).

Case 3: 2t < I k- t, where k = rf 1. The worst-case sce-
nario that maximizes the number of generated regions must
maximize the number of ''internal nodes" that can generate
such regions in the binary tree depicting the splitting process.
In patticular, the scenario shonld create as many internal node
regions with false invalidation count between t and 2t as pos-
sible, and then employ Case 2 to maximize the number of
final regions generated by each "internal node" region. Note
that for 2t < I < k . t, the region may be split into at most
k - 1 regions where each region has false invalidation count
between t and 2t (regardless of how many epochs it takes).
With the worst-case number of regions generated by each
such internal node region given in Case2, the upper bound
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on the number of generated regions is given by (Figure 3 (b)):

S = (k -1)' (1 +log,M) = crti l - l ) ' (1 +log,M)
t

As such, across the three cases, the total number of regions is
at most (rfl-l). (1+1og,M). 0

Bounding the total number of regions. We now consider
the worst-case number of regions S""", contributed by allM-
sized regions. Let fi be the number of false invalidation count
for an M-sized region i (1 i N), and S, be the worst-case
number of regions generated by it, then:

N N fi
S""",= LSi= L(r--'-l-I).(1+10g,M)

i=1 i=1 t
Tobound S"""" we must set t appropriately. In order to ensure
fairness across all M-sized regions, we set the threshold t as
a fraction of the average false invalidation across them, i.e.,

1 N
t= -.Lfi (1)

c- N i=l

where c is a constant parameter.
This allows us to bound Smax as follows:

N N
Smax = L(rtil -1) . (1 + log, M) s L ti . (1+ log,M)

i=l t i=l t
= c -N· (1 +log,M) (FromEq.l)

Ifuse up all the available switch data plane capacity to store
Smax entries, we can set c as which will always
ensure the total number of regions is Smax.

Split vs. merge-based approach. The approach we have
described so far starts with M-sized regions, and splits into re-
gions until the false invalidation count for each region reduces
below the threshold t. An alternate but equivalent strategy
would begin with 4KB regions and merge them into larger
regions as long as the false invalidation count per region
remains below t. In fact, it is possible to begin with any in-
termediate region size, and split or merge as necessary. In
MIND, we use a default of 16KB since it provides a favorable
tradeoff between storage and performance overheads for our
evaluated workloads - we defer a detailed analysis to §7.

From theory to practice. At c = I, the dynamic resizing
approach outlioed above reduces the amount of storage re-
quired for directory entries from M . N to a worst-case of
(1 + log, M) .N - an exponential decrease. At the same time,
it ensures that the number of false invalidation count remains
under ¥. However, we note that our theoretical analysis
only reveals the worst-case- in practice, we find both stor-
age and performance overheads are much lower, as we show
in §7. As such, we can set the value c > 1 to increase switch
data plane storage utilization without hitting its capacity in
practice. In fact, we dynamically adjust the value of c such



that the utilization of the switch data plane storage in any
epoch remains below 95%.

6 Implementation Details
We now describe MIND implementation. MIND exposes Linux
memory and process management system call APIs, and
splits its kernel components across CPU blade and the pro-
grammable switch. We now describe these kernel components,
along with the RDMA logic required at the memory blade.

6.1 CPU Blade
MIND assumes a partial disaggregation model, where the CPU
blades possess a small amount of local DRAM as cache (§2.1).
The CPU blades in our prototype use traditional servers with
no hardware modifications. We implemented CPU blade ker-
nel components as a modified Linux kernel 4.15. MIND pro-
vides transparent access to the disaggregated memory, by
modifying how vmas and processes are managed and how
page faults are handled at the CPU blade, as we detail next.

Managing vmas. To handle the creation and removal of vmas
due to process heap allocation/deallocation requests, such as
brk, mmap, and munmap, the kernel module intercepts such
requests from the process and forwards them to the control
plane at the switch over a reliable TCP connection. The switch
subsequently creates new vma entries, and responds with the
same return value (e.g., virtual address of the allocated vma) as
the local version of the system calls — ensuring transparency
for user applications. The switch returns Linux-compatible
error codes (e.g., ENOMEM) if there are any errors.

Managing processes. The kernel module also intercepts and
forwards process creation and termination requests, such as
exec and exit, to the switch control plane, which main-
tains the internal representation of processes (i.e., Linux’s
task_struct) and a mapping between the compute blades
and processes they host. MIND assigns threads running on
different CPU blades the same PID if they belong to the
same process, permitting them to transparently share the same
address-space via memory protection and address translation
rules installed at the switch. Finally, we do not focus on sched-
uling in this work and simply place threads and processes
across compute blades in a round-robin manner.

Page fault-driven access to remote memory. When a user
application tries to access a memory address not present in
the CPU blade cache, a page fault handler is triggered and the
CPU blade kernel sends a one-sided RDMA read request to
the switch with the virtual address and the requested permis-
sion class, i.e., read or write for Linux. At the same time, the
page to be used by the user application is registered to the NIC
as the receiving buffer, obviating the need for additional data
copies. Once the page is received, the local memory structures
such as PTEs are populated and the control is returned to the
user. Our implementation of the CPU blade DRAM cache
is similar to LegoOS [10], but additionally handles cache

invalidations for coherence. Specifically, the cache tracks the
set of writable pages locally, and on receiving an invalidation
request for a region, it flushes all writable pages in the region
and removes all local PTEs.

While the above approach enables transparency for access
to disaggregated memory, it presents a significant limitation
in our implementation — it restricts the memory consistency
model in MIND to stronger Total Store Order (TSO), and
precludes weaker consistency models, e.g., Process Store
Order (PSO) used in DSM approaches [35]. This is because
unlike TSO, PSO enables multiple writes to a cached memory
region to be propagated asynchronously, but blocks if there is
a subsequent read to the same region. Realizing this relaxation
using page faults requires such writes to be buffered at the
compute blade’s local DRAM cache without triggering a page
fault, but triggering one on a subsequent read to the same page.
Unfortunately, this is impossible in traditional x86 or ARM
architectures, since they do not support triggering a trap on
read without also triggering one for a write. Consequently,
MIND’s stricter TSO model results in limited scalability for
workloads with high read/write contention to shared memory
regions, as we show in §7.1. We discuss possible architectural
changes to address this in §8.
6.2 Memory blade
Unlike prior disaggregated memory systems [10, 11] or dis-
tributed shared memory systems [35], MIND does not require
any compute logic or data plane processing logic to run on the
memory blades, obviating the need for general purpose CPUs
on them. However, since the memory blade in our prototype
is realized on traditional Linux servers, we rely on the kernel
module at the memory blade to perform RDMA-specific ini-
tializations. When a memory blade comes online, its kernel
module registers physical memory addresses to the RDMA
NIC and reports the mapped address to the global controller.
However, subsequent one-sided RDMA requests from CPU
blades are handled completely by the memory blade NIC
without involving the CPUs. Ideally, memory blades would
be realized with all logic, including initialization, completely
in hardware, without a CPU. While this would facilitate a
memory blade design that is both simple and cheap, it would
require new hardware design.
6.3 Programmable Switch
The MIND programmable switch module is implemented on a
32-port EdgeCore Wedge switch with a 6.4 Tbps Tofino ASIC
and an Intel Broadwell processor, 8 GB RAM and 128 GB
SSD. The general purpose CPU hosts the MIND control pro-
gram, which performs process, memory and cache directory
management. Meanwhile, the ASIC performs address transla-
tion (§4.1) and memory protection (§4.2), handles directory
state transitions and virtualizes RDMA connections between
compute and memory blades. We here provide implemen-
tation details of the mechanisms not already described in
§4.
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Fig. 4. Performing directory state transitions on switch ASIC.

Process & memory management. The control plane hosts
a TCP server to handle system call intercepts from CPU
blades, and maintains traditional Linux data structures for pro-
cess/thread management (task_struct) as well as memory
management (mm_struct, vm_area_struct). On receiving
a system call, the control plane modifies the data structures
accordingly, and responds with return values consistent with
the system calls to ensure transparency.

Cache directory management. MIND reserves a fixed
amount of SRAM at the data plane for storing directory en-
tries, and partitions it into fixed sized slots, one for each
region entry in MIND. The control plane maintains a free list
for available slots, and a hash table used map which maps
the base virtual address for the dynamically sized cache re-
gion to the SRAM slot storing its directory entry. All slots
are initially added to the free list. MIND creates a directory
entry for a region during its allocation by removing an SRAM
slot from the free list, populating it with the directory entry
with invalid (I) state, creating a match-action rule that maps
the block virtual address to the SRAM slot at the data plane,
and updating its used map. A similar process occurs when a
region is split, while removing a directory entry follows the
reverse procedure.

Directory state transitions. We found that a single match-
action unit (MAU) in today’s switch ASICs is unable to (i)
perform a directory entry lookup, (ii) determine the correct
translation based on the current block state and memory ac-
cess request, and (iii) update the directory entry accordingly
all at once, due to their limited compute capability. As such,
we split the logic for (i-ii) across two MAUs ( 1 in Figure 4):
the first MAU stores the directory entries and performs (i),
while the second MAU stores a materialized state-transition
table containing all possible transitions and corresponding
actions to be performed for (ii). Note that explicitly storing
the state-transition table trades-off data plane memory ca-
pacity to overcome the limited compute cycles in an MAU.
To perform (iii), the second MAU recirculates the memory
access request packet within the switch data plane to send it
back to the first MAU ( 2 ), so that it can update the directory
entry according to actions determined by the second MAU
( 3 ). If the state transition requires cache invalidations, the
data plane creates invalidation requests leveraging multicast,
as described in §4.3.2. Specifically, these requests are only
forwarded to the current sharers for the relevant page ( 4 ).

Virtualizing RDMA connections. When a compute blade
in MIND issues an RDMA request, it does not know the loca-
tion of the blade where the page resides. Consequently, the
switch data plane in MIND virtualizes RDMA connections be-
tween all possible CPU-memory blade pairs by transparently
transforming and redirecting corresponding RDMA requests
and responses between them. Specifically, once an RDMA
request’s destination blade is identified via address transla-
tion or cache coherence, the data plane updates the request’s
packet header fields such as IP/MAC addresses and RDMA-
specific parameters, before forwarding it to the blade.

7 Evaluation
We evaluate MIND to answer the following questions:
• Can MIND enable transparent elasticity over performant

disaggregated memory for real-world workloads (§7.1)?
• What are MIND’s performance/resource bottlenecks (§7.2)?
• How does bounded splitting perform in isolation (§7.3)?

Compared systems. We compare MIND against two extreme
designs in disaggregated memory (§2.2): a transparent DSM-
based approach with cache-coherence that supports compute
elasticity, and a non-transparent approach that limits com-
pute elasticity to a single compute blade. For the former, we
adapt GAM [35], a software-based DSM, to our disaggre-
gated setting where cache directory is implemented at the
compute blades. For the latter, we employ FastSwap [12], a
state-of-the-art swap-based disaggregated memory system.
All systems employ RDMA for efficient remote memory ac-
cesses. Finally, MIND uses an initial region size of 16 kB and
epoch size of 100 ms for its bounded splitting algorithm.

Cluster setup. We used a cluster comprising five servers con-
nected via the programmable switch described in §6.3. We
used a single server equipped with two 18-core Intel Xeon
processors, 384 GB of memory and four Nvidia/Mellanox
CX-5 100 Gbps NICs, to host multiple memory blade VMs.
To highlight the overhead and scalability of in-network cache
coherence protocol, we used the remaining four machines,
each equipped two 12-core Intel Xeon processors and two
Nvidia/Mellanox CX-5 100 Gbps NICs, to host two CPU
blade VMs on each server. Similar to prior work [10], we
emulate the partial disaggregation model by limiting the local
DRAM usage at each compute blade to 512 MB, which is
about 25% of the memory footprint for our evaluated work-
loads. Note that each CPU and memory blade VM in our
setup had dedicated access to a separate 100 Gbps NIC to
ensure they represent separate network attached entities.

Applications and workloads. We use several real-world
workloads in our evaluation: TensorFlow [61] with ResNet-
50 [62] on CIFAR-10 [63] (denoted as TF), GraphChi [64]
with PageRank [65] on Twitter graph [66] (denoted as GC),
and Memcached [67] with YCSB [68] workload A (50% read,
50% write split, denoted as M�) and workload C (100% reads,
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denoted as M⇠ ). Since GAM is a software DSM system, it
requires applications to use a specialized memory API, while
MIND and FastSwap are transparent to applications. To en-
sure consistent comparison under different interfaces, we cap-
tured the memory accesses from our workloads using Intel’s
PIN [69], and used a memory access emulator to generate
the exactly same memory accesses across all three systems.
In addition, we also present results for native execution of a
simple key-value store (denoted as Native-KVS) on MIND and
FastSwap, since they support a transparent memory interface.

7.1 Performance Scaling for Real-World Workloads
We start by evaluating MIND’s performance scalability.

Intra-blade scaling. Figure 5 (left) shows performance scal-
ing across all systems as the number of threads is increased on
a single compute blade. We report performance as the inverse
of runtime, normalized by the performance of MIND for 1
thread. MIND and FastSwap scale almost linearly with more
compute blades because of their efficient page-fault driven
remote memory accesses. In contrast, GAM scales linearly
only up to 4 threads, and sub-linearly after that due to soft-
ware overheads from its user-level library. For instance, GAM
must check access permissions for every memory access by
acquiring a lock, while MIND and FastSwap can leverage
the hardware MMU to facilitate the same. Such overheads
become significant as the compute resources on a single com-
pute blade come under contention at 10 threads running on a
12-core node.

Inter-blade scaling. Next, we evaluate inter-blade scalability
by running 10 execution threads per-blade, for up to 8 com-
pute blades. Figure 5 (center) shows our results; here, while
MIND’s default memory consistency model is strict (TSO,
§6), MIND-PSO denotes the simulated performance of MIND
with the weaker PSO model (same as GAM). MIND-PSO+
additionally simulates the effect of infinite switch capacity for
directory storage. Since we are forced to simulate MIND-PSO
and MIND-PSO+ using traces collected on a real TSO-based
system, the traces retain additional TSO-associated queuing
delays that we cannot elide, i.e., while our simulations can re-
order writes and non-conflicting reads, queuing delays remain;
in other words, our MIND-PSO and MIND-PSO+ results are

underestimates to potential performance of a hardware-based
solution. Finally, we omit FastSwap as it does not transpar-
ently scale beyond a single compute blade, similar to other
disaggregation proposals [10, 11].

For a machine learning workload (TF), MIND’s perfor-
mance scales well despite its stricter memory consistency
model compared to GAM — doubling the number of com-
pute blades improves MIND’s performance by ⇠1.67⇥, with a
59⇥ speeded compared to GAM at 8 compute blades. For
GC, MIND’s performance increases from 1 to 2 compute
blades, but starts to decrease beyond that. This is because
GC’s graph traversals incur random and often contentious
access to shared data compared to machine learning work-
loads in TF. GC writes ⇠2.5⇥ more data in shared pages than
TF, generating significantly more state transitions to mod-
ified (M) state, and incurring frequent invalidations (§7.2).
PSO partly alleviates this overhead by permitting writes to
be performed asynchronously, but still does not permit linear
scaling beyond 2 compute blades. Instead, GAM scales better
because the performance differential between its local and
remote accesses is small — local accesses are 10⇥ slower
than that of MIND (due to software implementation of local
accesses), while remote access latencies are similar for both.
Consequently, performing more remote accesses (during in-
validations) does not impact GAM performance as much as it
does for MIND.

Finally, M� and M⇠ have more sharers with much larger
number of shared writes compared to TF and GC. As a result,
MIND does not scale well beyond 1 compute blade because:
(1) more blades contend for acquiring write permission to
the same region incurring multiple invalidations and signifi-
cantly smaller number of local memory accesses, and (2) the
directory storage at the switch becomes a bottleneck (as we
show in §7.2), frequently resulting in false invalidations for
heavily shared memory regions. We confirm these insights
through MIND-PSO and MIND-PSO+ simulated results, which
show that employing weaker memory consistency models and
infinite directory capacity improves MIND’s performance to
some extent. Note that for M⇠ , MIND’s performance increases
from 4 to 8 blades since the number of invalidations do not
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increase by much. GAM scales better due to its weaker consis-
tency model, and by leveraging its software implementation
to facilitate several memory access reorderings which are not
possible in MIND. Consequently, at 8 compute blades, GAM
and MIND-PSO+ achieve roughly similar performance.

Native KVS. Figure 5 (right) shows the intra- and inter-blade
scaling of Native-KVS on MIND and FastSwap for YCSB-A
and C workloads. On a single blade, both MIND and FastSwap
observe near linear performance scaling for up to 10 threads.
Since FastSwap does not support sharing state across multi-
ple compute blades, we do not report its performance beyond
10 threads. Similar to our results for M�, MIND does not
scale well beyond a single compute blade for the YCSB-
A workload (50% reads, 50% writes) due to high read-write
contentions. For the YCSB-C workload, Native-KVS scales
linearly even beyond a single blade since it is a read-only
workload, incurring no invalidations. Interestingly, YCSB-A
workload on Native-KVS scales better than M� — we at-
tribute this to better partitioning of KVS state across compute
blades in Native-KVS compared to Memcached.

7.2 MIND’s Performance and Resource Bottlenecks
We study MIND bottlenecks in terms of (i) memory access
performance, and (ii) memory resources at the switch.

Latency for cache state transitions. Figure 6 shows the end-
to-end latency due to every possible state transition under
the MSI protocol in MIND, including the time required to
fetch the data. Note that this figure only shows latency for
remote accesses — local accesses only incur DRAM latency
(< 100 ns). On the x-axis, 2 – 8C indicate the number of CPU
blades requesting the same page, and G ! ~ denotes the state
transition, G and ~ being the initial and final states.

When a blade requests read-only (shared, S) mode for a
region, and its initial state was either invalid (I) or shared (S),
it does not require any invalidations. Consequently, the data
fetch can be performed in a single RDMA request (⇠9 `s),
as seen in the first four bars. If the transition for a region is
either from or to the modified (M) state, the requesting blade
must wait until the regions is invalidated at all its previous
owners. When transitioning from S to M, the data can be
fetched directly from the memory blade via one-sided RDMA
operation, while the invalidation at other blades occur in par-
allel, resulting in a total latency of ⇠9 `s. When the region is

initially in M state, the (dirty) data must be fetched from and
the region invalidated at the same blade — its current owner.
Therefore, the invalidation and data fetch occur sequentially,
resulting in ⇠18 `s latency. Note that since the latency for
requests with invalidations is 2⇥ higher than requests with-
out them, a workload’s performance depends on the relative
proportion of the different types of requests, as we show next.

Impact of invalidations on memory throughput. Fig-
ure 6 (right) shows MIND memory throughput across 8 com-
pute blades, running 1 compute thread each, under various
read-write and sharing characteristics. We use read ratio to
denote the fraction of reads in the workload (remaining ac-
cesses are writes), and sharing ratio to denote the portion of
memory accesses that occur to a shared region (shared by all
threads). We used a total working set size of 400 : pages, with
the access pattern across them being uniform random. If most
accesses are reads, then compute blades can share the same
region without triggering invalidations (S!S in Figure 6). As
such, at read-ratio 1, most of the pages are accessed locally
from the cache, resulting in very high memory throughput
(1-2 ⇥ 106 IOPS) for all sharing ratios. Again, at sharing ratio
0, memory throughput remains high, since accessed pages can
remain cached at the compute blade without being invalidated,
i.e., most accesses are local. If both the write proportion and
sharing ratio are increased, memory throughput drops (by
⇠10⇥ at sharing-ratio 1), since they trigger a large number
number of M!S, S!M transitions with invalidations and
permit few pages to be accessed locally.

Cache directory storage. Figure 7 (left) shows the number
of cache directory entries stored in the switch data plane in
MIND over time for the workloads evaluated in §7.1 across 8
compute blades, running 10 threads each. In MIND, we fix the
total amount of storage allocated to directory storage to 30 k
entries. For the TF and GC workloads, MIND’s bounded split-
ting algorithm ensures that the number of directory entries
remains well below the limit over time. However, the MC�

and MC⌫ workloads have a significantly larger number of
shared memory regions, with frequent read and write accesses
to them; as a consequence, the number of directory entries for
the workloads always remains close to the 30 k limit. Recall
from §7.1 that one of the key reasons for poor scalability of
these workloads is the number of false invalidations triggered
due to the relatively coarse granularity of tracking directory
entries — we believe with future switch ASICs likely to be
equipped with more TCAM/SRAM, this bottleneck would no
longer exist, permitting more efficient scaling under MIND.

Address translation & memory protection storage. We
study the switch storage overheads due to address translation
and memory protection on a setup with 8 memory blades,
running the TF, GC, and M�/⇠ workloads; we group "�

and "⇠ since they have the same memory allocations. Fig-
ure 7 (center) shows that the number of match action rules
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due to address translation and memory protection in MIND is
almost constant, even as the workload size increases. This is
due to MIND’s per-memory blade partitioning of the address
space, and vma granularity tracking of memory protection
entries. While we have only shown results for three different
applications, we find that the number of vma entries for typical
datacenter applications falls in similar ranges, and well under
1–2 k [70, 71]. In contrast, the number of match-action rules
increases linearly with the dataset size for page-based ap-
proaches, despite smaller absolute overheads with 1 GB huge
pages. Note that the upper-limit for match-action rules that
the switch can store is about 45 k — higher than the 30 k limit
for directory entries due to a more compact representation.

MIND’s memory allocation also ensures balanced place-
ment of load across memory blades (§4.1), as shown via
Jain’s fairness index metric [72] in Figure 7 (right). While
2 MB pages can achieve similar load-balancing, they do so at
the cost of much larger number of address translation entries.
1 GB pages, on the other hand, observes poor load balancing
for allocation-intensive workloads (M�/⇠ ).
7.3 Evaluating MIND’s Bounded Splitting Algorithm
We now evaluate MIND’s bounded splitting algorithm.

Storage vs. performance tradeoff. Recall from §4.3 that
the granularity at which the directory tracks memory regions
exposes a tradeoff between the false invalidation count and
the size of the directory itself — Figure 8 (left) highlights this
tradeoff for the TF and GC workloads. Specifically, tracking
smaller regions (e.g., 16 kB) permits fewer false invalidations,
but at the cost of larger number of directory entries at the
switch, while tracking larger regions (e.g., 2 MB) exposes
the opposite tradeoff. MIND’s bounded splitting algorithm
employs adaptive region sizing to balance both the number of
directory entries as well false invalidations.

Impact of epoch and initial region sizing. Figure 8 (right)
shows the impact of epoch size on the total number of false
invalidations for TF and GC workloads. Increasing the epoch
size from 1 to 100 ms does not have a significant impact on
the number of false invalidations, but reduces the control
plane overheads. Epoch size smaller than 1ms (not shown)
are unable to capture enough invalidations to enable accurate
estimation of the distribution, resulting spurious merges/splits
and unpredictable false invalidations. We use 100 ms as our
default epoch size since it offers a sweet spot for minimizing
both false invalidations and control plane overheads.

Figure 8 (right) shows that picking smaller initial region
sizes results in fewer false invalidations — intuitively, this
is because larger initial region sizes require several splits
before stabilizing to the appropriate region size, incurring
several false invalidations in the interim. We select 16KB as
our default initial region size, since smaller region sizes result
in too many directory entries during initialization.

Finally, we note that neither parameter has any noticeable
impact on the number of directory entries at stable state.

8 Limitations and Future Research

We now discuss the limitations of current MIND implementa-
tion, and future research directions to resolve them.

Thread management. Even with our optimizations, remote
memory access latency is still at least two orders of mag-
nitude higher than local latency. While our work explores
in-network approaches to minimize overheads of coherence,
an orthogonal approach of co-locating threads with higher
proportion of shared memory accesses could yield signifi-
cant improvements in end-to-end application performance by
reducing the number of invalidations over the network.
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Other coherence protocols. While MIND implements the
simple MSI coherence protocol, more complex protocols like
MOESI may offer better scalability by reducing broadcasts
and write-backs to disaggregated memory. Realizing such
protocols would require storing larger state transition tables
(STT) at the switch and handling more transient states, adding
implementation complexity for ensuring correctness. Still, the
number of TCAM entries required for STT entries would be
quite small (e.g., tens of states for MOESI) relative to switch
ASIC capacities, making them realizable today.

Weaker consistency models. As we noted in §6 and §7, our
page-fault based implementation on x86 architectures cannot
realize weaker consistency models like PSO. To this end, a
redesign of the compute blade architecture — e.g., by en-
abling page-faults on reads (but not writes) to a page — could
enable realization of weaker consistency models in MIND,
facilitating higher throughput to disaggregated memory.

Scaling beyond a rack. While MIND targets a rack-scale
design with a single switch, some workloads may want to
scale transparently beyond a single rack. This requires a
shift similar to the shift from single node CPUs (akin to the
rack in our setting) to multi-node NUMA architectures (akin
to datacenter-scale memory disaggregation). Such a design
would require extension of MIND design from a single switch
to a datacenter-wide network topology.

Virtualization. While MIND enables protection at a virtual
memory level, extensions to virtualization are needed to fa-
cilitate true isolation across users for security, resource man-
agement, legacy OS support, etc. Providing performance iso-
lation, in particular, would require isolating several different
shared resources along the compute-memory interconnect,
including network bandwidth, switch and NIC resources.

9 Related Work
While we discussed prior disaggregated memory approaches
in §2.2, we now discuss other work related to MIND.

In-network computing. There have been several recent ef-
forts that leverage in-network computing for performance
gains [73–90]. Most focus was on offloading application
logic and state to the network, e.g., key-value caches [91, 92]
and metadata [93]. Perhaps the most relevant to MIND are
NOPaxos [81] and Concordia [94]. NOPaxos leverages the
network to order requests for Paxos-based consensus, en-
abling consistent replication without expensive coordination
overheads. While MIND targets a complementary goal of in-
network memory management, it could leverage NOPaxos to
enable consistent replication of disaggregated memory. Con-
cordia, on the other hand, uses the programmable switch as
a cache for directory entries in a DSM; in contrast, MIND
realizes memory management completely in the network.

Application-driven memory disaggregation. Recent work
argues for OSes to expose resource management abstractions

like memory placement and failures to the applications for
high performance and better fault-tolerance [14, 95]. While
MIND argues for a transparent disaggregated shared memory,
it is not incompatible with the above approaches — OS-level
libraries layered atop MIND could still expose memory place-
ment and failure notifications to applications.

Clover [96] explores the design of a key-value store closely
integrated with disaggregated persistent memory. In con-
trast to MIND’s in-network transparent memory management,
Clover focuses on lock-free consistent access to KV pairs
stored in network-attached memory using atomic RDMA
verbs. While a possible design considered in [96] places key-
value coordination and access logic at a centralized coordina-
tor, it does not place the logic in the network fabric and does
not consider memory protection, caching or coherence.

Emerging industry standards. While most industry stan-
dards for high performance compute-memory interconnects
like CCIX [97], CXL [98] and OpenCAPI [99] target in-
tra-server settings, Gen-Z [100] is perhaps the closest to
MIND since it targets inter-server fabrics. The Gen-Z stan-
dard defines operations like ExclusiveRead and Writeback
that may be used as building blocks for software-based co-
herence [100, 101], although we are unaware of any pub-
licly available realization. Moreover, the MMU functional-
ities in all the above industry standards are realized at the
endpoints, e.g., at specialized ZMMUs at CPU and memory
nodes in Gen-Z; the fabric (e.g., the switch) only forwards
memory requests and responses. This is in contrast to MIND’s
approach of in-network memory management, i.e., MIND’s
design is complementary to the industry efforts towards high-
performance interconnects.

10 Conclusion

We have presented MIND, an in-network memory man-
agement unit for rack-scale memory disaggregation. MIND
achieves resource elasticity, performance and transparency
through a principled redesign of traditional memory man-
agement mechanisms to achieve their individual goals in the
disaggregated setting while operating under programmable
switch ASIC resource constraints. Our MIND prototype fa-
cilitates transparent resource elasticity, while matching the
performance of prior memory disaggregation proposals for
real-world workloads.
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