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Abstract

Recently there has been significant theoretical progress on understanding the convergence and
generalization of gradient-based methods on nonconvex losses with overparameterized models.
Nevertheless, many aspects of optimization and generalization and in particular the critical
role of small random initialization are not fully understood. In this paper, we take a step
towards demystifying this role by proving that small random initialization followed by a few
iterations of gradient descent behaves akin to popular spectral methods. We also show that this
implicit spectral bias from small random initialization, which is provably more prominent for
overparameterized models, also puts the gradient descent iterations on a particular trajectory
towards solutions that are not only globally optimal but also generalize well. Concretely, we
focus on the problem of reconstructing a low-rank matrix from a few measurements via a natural
nonconvex formulation. In this setting, we show that the trajectory of the gradient descent
iterations from small random initialization can be approximately decomposed into three phases:
(I) a spectral or alignment phase where we show that that the iterates have an implicit spectral
bias akin to spectral initialization allowing us to show that at the end of this phase the column
space of the iterates and the underlying low-rank matrix are sufficiently aligned, (II) a saddle
avoidance/refinement phase where we show that the trajectory of the gradient iterates moves
away from certain degenerate saddle points, and (III) a local refinement phase where we show
that after avoiding the saddles the iterates converge quickly to the underlying low-rank matrix.
Underlying our analysis are insights for the analysis of overparameterized nonconvex optimization
schemes that may have implications for computational problems beyond low-rank reconstruction.

1 Introduction

Many contemporary problems in machine learning and signal estimation spanning deep learning to
low-rank matrix reconstruction involve fitting nonlinear models to training data. Despite tremendous
empirical progress, theoretical understanding of these problems poses two fundamental challenges.
First, from an optimization perspective, fitting these models often requires solving highly nonconvex
optimization problems and except for a few special cases, it is not known how to provably find globally
or approximately optimal solutions. Yet simple heuristics such as running (stochastic) gradient
descent from (typically) small random initialization is surprisingly effective at finding globally optimal
solutions. A second generalization challenge is that many modern learning models including neural



network architectures are trained in an overparameterized regime where the parameters of the model
exceed the size of the training dataset. It is well understood that in this overparameterized regime,
these large models are highly expressive and have the capacity to (over)fit arbitrary training datasets
including pure noise. Mysteriously however overparameterized models trained via simple algorithms
such as (stochastic) gradient descent when initialized at random continue to predict well or generalize
on yet unseen test data. In particular, it has been noted in a number of works that for many modern
machine learning architectures, the scale of initialization is important for the generalization/test
behavior [1, 2]. It has been noted that stronger generalization performance is typically observed for
a smaller scale initialization. Indeed, small random initialization followed by (stochastic) gradient
descent iterative updates is arguably the most widely used learning algorithm in modern machine
learning and signal estimation.

There has been a large number of exciting results aimed at demystifying both the optimization
and generalization aspects over the past few years. We will elaborate on these results in detail in the
supplementary, however, we would like to briefly mention the common techniques and their existing
limitations. On the optimization front a large body of work has emerged on providing guarantees for
nonconvex optimization which can roughly be put into two categories: (I) smart initialization+local
convergence and (II) landscape analysis+saddle escaping algorithms. Approaches in (I) focus on
showing local convergence of local search techniques from carefully designed spectral initializations
[3, 4, 5,6, 7, 8,9, 10]. Approaches in (II) focus on showing that in some cases the optimization
landscape is benign in the sense that all local minima are global (no spurious local minima) and
the saddle points have a direction of strict negative curvature (strict saddle) [11]. Then specialized
truncation or saddle escaping algorithms such as trust region, cubic regularization [12, 13|, or noisy
(stochastic) gradient-based methods [14, 15, 16, 17] are deployed to provably find a global optimum.
Both approaches fail to fully explain the typical behavior of local search techniques in practice.
Indeed, for many nonconvex problems local search techniques or simple variants, when initialized at
random, quickly converge to globally optimal solutions without getting stuck in local optima/saddles
without the need for sophisticated initialization or saddle escaping heuristics. We note that while for
differentiable losses eventual convergence to local minimizers is known from a random initialization
[18] on problems of the form (II), these results cannot rule out exponentially slow cases in the
worst-case [19]. Indeed, it has been argued that in general a more granular analysis of the trajectory
of gradient descent beyond the landscape may be necessary [20]|. For example, some recent advances
has been made by analysing the trajectory of gradient descent using a leave-one-out analysis for the
phase retrieval problem [21].

Similarly, there has been a lot of exciting progress on the generalization front, especially for neural
networks. Specific to generalization capabilities of gradient-based approaches these results broadly
fall into two categories: (a) the first category is based on a linearization principle which characterizes
the performance of nonlinear models such as neural networks by comparing it to a linearized kernel
problem around the initialization (a.k.a. Neural Tangent Kernels) [22, 23, 24, 25, 26, 27, 28]. This
has often been referred to as "lazy training". (b) the second category is based on a continuous
limit analysis in the limit of width going to infinity and learning rate going to zero (mean-field
analysis) 29, 30, 31, 32, 33]. However, these existing analyses contain many idealized and non-
realistic assumptions (e.g. requiring large, random initialization in (a), which typically leads to
worse generalization than what is observed in practice, or unrealistically large widths in (b)) and
therefore cannot fully explain the success of overparameterized models or serve as a guiding principle
for practitioners [34].
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Figure 1: Gradient descent from small random initialization is akin to spectral initial-
ization. The left figure depicts the empirical landscape of a low-rank matrix reconstruction problem
with the two green circles depicting the two global minima and the white circle the saddle point at
the origin. In this figure, we also depict the trajectory of the gradient descent iterations (magenta)
together with the power method based on a popular spectral initialization technique (blue). Both
gradient descent and power method use the same small initialization near the origin. We see that
in the early stage, the two trajectories are almost the same. The figure on the right depicts the
angle between the gradient descent (magenta)/power method (blue) iterates and a popular spectral
initialization technique, denoted by 6gp and 6p respectively. This figure clearly demonstrates
that for the first iterations these angles are practically the same further confirming that the initial
trajectory of gradient descent and power methods are similar. See Section 6 for further detail on the
experimental setup. (In this figure we have used r =r, = 1.)

Despite the aforementioned exciting recent theoretical progress many aspects of optimization
and generalization and in particular the role of random initialization remains mysterious. This leads
us to the main challenge of this paper

Why is small random initialization combined with gradient descent updates so effective
at finding globally optimal models that generalize well despite the nonconvex nature of the
optimization landscape or model overparameterization?

In this paper we wish to take a step towards addressing the above challenge by demystifying the
critical role of small random initialization in gradient-based approaches. Specifically we show that

Small random initialization followed by a few iterations of gradient descent behaves
akin to spectral initialization.

By that, we mean more precisely, that if the initialization is chosen small enough, then in the
initial stage of the training, gradient descent implicitly behaves like spectral initialization techniques
such as those commonly used in techniques based on the method of moments. This implicit
spectral bias of gradient descent from random initialization puts the gradient descent iterations on a
particular trajectory towards solutions that are not only globally optimal but also generalize well
for overparameterized models. We also show that with small random initialization this implicit



spectral bias phenomenon is more prominent for more overparameterized models in the sense that it
materializes after fewer iterations. This intriguing phenomenon is depicted in Figure 1 in the context
of a low-rank reconstruction problem. This figure clearly demonstrates that the first few iterations of
gradient descent starting from a small random initialization are virtually identical to that of running
power iterations (a popular algorithm to find the spectral initialization, see, e.g. [35]).

Concretely we focus on the problem of low-rank matrix recovery, which appears in many different
application areas such as recommendation systems, phase retrieval, and quantum tomography [36].
Here, our goal is to recover a low-rank matrix of the form X X7 from a few linear measurements.
We consider a natural, non-convex approach based on matrix factorization, where we minimize
the loss function via gradient descent. In this paper, we show that, regardless of the amount
of overparameterization used, for small random initialization vanilla gradient descent will always
converge towards the low-rank solution. This holds as long as the measurement operator obeys a
popular restricted isometry property [37].

Our analysis consists of three phases. The first phase is the aforementioned spectral or alignment
phase where we show gradient descent from small random initialization behaves akin to spectral
initialization, which is a key insight of this paper. Indeed, we show that the first few gradient descent
iterates can be accurately approximated by power method iterates. Next, we show that after this
first spectral or alignment phase, gradient descent enters a second phase, which we refer to as saddle
avoidance phase. In this phase, we show that the trajectory of the gradient iterates moves away
from degenerate saddle points, while the iterates maintain almost the same effective rank as X X7
In the third phase, the local refinement phase, we show that the iterates approximately converge
towards the underlying low-rank matrix X X7 with a geometric rate up to a certain error floor which
depends on the initialization scale. In particular, by decreasing the scale of initialization this error
threshold can be made arbitrarily small. While in this paper our main focus is on low-rank matrix
reconstruction, we believe that our analysis holds more generally for a variety of contemporary
machine learning and signal estimation tasks including neural networks.

Finally we note that while a similar setting has already been studied in [38], our analysis goes
beyond it in many important ways. For example, our result holds for any amount of overparameteri-
zation and allows for arbitrarily small initialization. Maybe most importantly, we study the spectral
phase phenomenon at initialization. For a detailed comparison we refer to Section 3.

2 Low-rank matrix recovery via non-convex optimization

As mentioned earlier in this paper we focus on reconstructing a (possibly overparameterized) Positive
Semidefinite (PSD) low rank matrix from a few measurements. In this problem, given m observations
of the form

yi = (A, XXT) = Tr (4, XXT) i=1,...,m, (1)

we wish to reconstruct the unknown matrix X X7. Here, X € R™" with 1 <r, <n is a factor of the
unknown matrix and {A4;};"; are known symmetric measurement matrices. A common approach to
solving this problem is via minimizing the loss function

_ 1 _ 2
in f(U):= min — > (y;— (4, 007))",
min f(U):= min 4m;(y { )



with r > r.. More compactly one can rewrite the optimization problem above in the form

i 7Y = i 1 Tl T\ |2
Fefnxr 1) = apsr 4 |A(OT" - xX )Hz27 (2)

where A : R™"™ — R™ is the measurement operator defined by [A(Z)]; := ﬁ(Ai, Z).

In order to solve the minimization problem (2) we run gradient descent iterations starting from
(often small) random initialization. More specifically,

Uts1 = U= puvV f (Up) = Up + pA* [y_A(UtUtT)] Ui
=Up+p[(A*A) (XX -0 U,

where we have set Uy = aU is the initialization matrix, A* denotes the adjoint operator of A and
y = (vi)i2; € R™ denotes the measurement vector. Here, U € R™" is a typically random matrix which
represents the form of the initialization and a > 0 is a scaling parameter.

There are two challenges associated with analyzing such randomly initialized gradient descent
updates. The first is an optimization challenge. Since f is non-convex it is a priori not clear whether
gradient descent converges to a global optimum or whether it gets stuck in a local minima and/or
saddle. The second challenge is that of generalization. This is particularly pronounced in the
overparameterized scenario where the number of parameters are larger than the number of data
points i.e. rn > m. In this case, there are infinitely many U such that f(U) =0, but |[UUT - X XT||p
is arbitrarily large (see, e.g., [39, Proposition 1|). That is, even if gradient descent converges to a
global optimum, i.e. f (U ) =0, it is a priori not clear whether it has found the low-rank solution
XXT (see also Figure 7).

3 Main results

In this section, we present our main results. Stating these results requires a couple of simple
definitions. The first definition concerns the measurement operator A.

Definition 3.1 (Restricted Isometry Property (RIP)). The measurement operator A:R™"™ — R™
satisfies RIP of rank r with constant 6 >0, if it holds for all matrices Z of rank at most r

1-0)1Z1% < I A7, < (1+8) | Z]F. (3)

We note that for a Gaussian measurement operator A ', RIP of rank r and constant § > 0 holds
with high probability, if the number of observations satisfies m > nr/d? [37, 40].
The second definition concerns the condition number of the factor X.

Definition 3.2 (condition number). We denote the condition number of X € R™" by

_Ix)
Or, (X) ’

where o, (X) denotes r.-th largest singular value of X .

With these definitions in place we are now ready to state our main results.

'By that, we mean that all the entries of the (symmetric) measurement matrices {4;}]", are drawn i.i.d. with
distribution A7 (0,1) on the off-diagonal and distribution A" (0,1/v/2) on the diagonal.



3.1 General case: r>r,

We begin by stating our first main result.

Theorem 3.3. Let X e R™™ and assume we have m measurements of the low rank matriz X XT
of the form y = A(XXT) with A the measurement operator. We assume A satisfies the restricted
isometry property for all matrices of rank at most 2r, +1 with constant é < ek~ 2. To reconstruct
XXT from the measurements we fit a model of the form U A(UUT) with U € RV and r > ry
via running gradient descent iterations of the form Ui = Uy — uV f (Uy) on the objective (2) with a
step size obeying p < ck™*| X |72, Here, the initialization is given by Uy = aU, where U € R™" has
1.1.d. entries with distribution ./\/(O, 1/\/7_“) With this setting and assumptions the following two
statements hold.

1. Under the assumption that r > 2r. and that the scale of initialization fulfills

i i D! () T\ 1 IX| (4)
@ K1/2p3/4 *\/ min {rin} "k'n ’

f< 1 1( Cink -max{l; KT }||X) (5)

(4O min (X)2 . min {r;n} min {r;n} —r, a

after

iterations we have that

HUiUgT - XXT|p g n21/16581/167&/8 o 21/16

| X2 " (min {T;n})15/16 | X [[21/16°

holds with probability at least 1 — Ce .

2. Assume that r <1 <27, and that the scale of initialization fulfills

1/2 2 ~6r7
€ 2Kk%\/Tn €
< mi )
alen{n3/4H1/2( . ) ’n/{7}HX’ (7)

with 0 <e < 1. Then, after

ts >
Homin (X)

1 Cykn? | X||
In .
e2(r-r.) «

iterations we have that

|00 - XX r
RYk

/ 0o \26
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s (r=r)"k (—' ) (8)
e Xl

holds with probability at least 1 — (éa)r—r*H +exp (—¢ér).

Here, Cy,Co,C,C,c>0 are fized numerical constants.



Note that the test error |U;U. tT —~ XXT|2 can be made arbitrarily small by choosing the scale of
initialization « small enough. In particular, the dependence of the test error on « is polynomial and
the dependence of the number of iterations on « is logarithmic, which means that reducing the test
error by scaling down « introduces only modest additional computational cost. Hence, as long as
the rank at most 2r, + 1 RIP with constant § < cx 47, 71/2 holds, gradient descent converges to a
point in the proximity of the low-rank solution, whenever the initialization is chosen small enough
regardless of the choice of r. This holds even when the model is overparameterized i.e. rn > m and
the optimization problem has many global optima many of which do not obey UUT ~ XX This
result thus further demonstrates that when initialized with a small random initialization gradient
descent has an implicit bias towards solutions of low-rank or small nuclear norm. This is in sharp
contrast to Neural Tangent Kernel (NTK)-based theory for low-rank matrix recovery (see |23, Section
4.2]) which will not approximately recover the ground truth matrix X X7 due to the larger scale of
initialization required when using that technique.

As discussed in Section 2, the restricted isometry property holds with high probability for a
sample complexity m > nr2x® for Gaussian measurement matrices. Up to constants, this sample
complexity is optimal in n, while it is sub-optimal in r, and xk compared to approaches based on
nuclear-norm minimization (see, e.g., [37]). While there is numerical evidence that the true scaling
of m in 7, should also be linear in the non-convex case [41], we note that the optimal dependence of
the sample complexity on r, is a major open problem in the field, as the sample complexities in all

theoretical results for non-convex approaches in the literature scale at least quadratically in r,.

Interpretation: Recall from Section 1 that our convergence analysis can be divided into three
phases: the spectral phase, the saddle avoidance phase, and the local refinement phase. As it will
become clear from the proofs in the supplementary when r > 27, the bound on the needed number
of iterations (see inequality (5)) can be decomposed as follows

Ltslwminl(Xf[ 1H(2/<52v mln?{lﬁ”}) ’ ln(Jmma(X)) +ln(max{1;min{:;;}_r*} |§|)l

Phase I: spectral/alignment phase Phase II: saddle avoidance phase Phase III: local refinement phase
9)

First, we note that the duration of all three phases scales inversely with oy, (X )2. This is due
to the fact that in all three phases the dynamics associated the smallest singular value of X is the
slowest one and hence needs the most time to complete.

In the spectral phase, the eigenvectors corresponding to the leading r, eigenvalues of U;U[
become aligned with the eigenvectors corresponding to the leading r, eigenvalues of A*A (X X T).
We observe in (9) that in the spectral phase increasing 7, i.e. the amount of parameters, decreases
the number of iterations in this phase. As we will explain in the supplementary, the reason is that
increasing r decreases the angle between the column space of the initialization Uy and the span
of the eigenvectors corresponding to the leading r, eigenvalues of .A*.A(X X T) used in spectral
initialization. As a consequence, gradient descent needs fewer iterations to align these two subspaces.

In the saddle avoidance phase (Phase II), o,, (Uy) , the r,th largest singular value of Uy, grows
geometrically until it is on the order of oy, (X). Hence, this duration depends on the ratio between
the omin (X) and the the scale of initialization «. This is clearly reflected in the upper bound on
the number of needed iterations in equation (9).

In Phase III, the local refinement phase, the matrix UtUtT converges towards X X7 In particular,
at iteration £ the test error obeys (6). We observe that a smaller o allows for a smaller test error in
(6) but per (9) this higher accuracy is achieved with a modest increase in the required iterations.




3.2 Special case: r=r,

The following result deals with the scenario r = r., that is, the iterates U; have as many parameters
as the ground truth matrix X.

Theorem 3.4. Let X € R™™ and assume we have m measurements of the low rank matriz X X T
of the form y = A(XXT) with A the measurement operator. We assume A satisfies the restricted
isometry property for all matrices of rank at most 2r, +1 with constant & < ck~4r, Y2, To reconstruct
XXT from the measurements we fit a model of the form U — A(UUT) with U € R¥™ wia running
gradient descent iterations of the form Uy = U — uV f (Up) on the objective (2) with a step size
obeying u < ek~ X |72, Here, the initialization is given by Uy = aU, where U € R™"™ has i.i.d.
entries with distribution N(O, 1/\/E) Assume that the scale of initialization fulfills

gl/2 262/t a g2
o < min s ————+ | X,
n3/4/<,1/2 g NA\/Tx H7

for some 0 < e < 1. Then with probability at least 1 — Ce + exp (—cry) after

s 1 8k3n3 | X|
ts 3 In 5
HOmin (X) € (0%

iterations we have that

T T 21/16

S r —
Pek ’ e |X]
Here C,c> 0 are fixed numerical constants.

Note that by choosing a small enough we can make the test error in (10) arbitrarily small. In

particular, this means that then well-known local convergence results can be applied showing that
UUL converges linearly to X X7 (see, e.g., [6]) .
Thus, this result implies that if the measurement operator fulfills the restricted isometry property,
gradient descent with small, random initialization will converge to the ground truth matrix X in
polynomial time. It is known that under the RIP assumption the loss landscape is benign [42] in the
sense that there are no local optima that are not global and all saddles have a direction of negative
curvature. However, such results do not imply that vanilla gradient descent converges quickly (i.e.
in polynomial time) to a global optimum, as gradient descent may take exponential time to escape
from saddle points.

To the best of our knowledge, this is the first in the non-overparameterized setting r = r,
result which shows the convergence of vanilla gradient descent to the ground truth from a random
initialization using only the restricted isometry property in polynomial time. The only other paperin
the low-rank matrix recovery literature, which shows fast convergence of vanilla gradient descent to
the ground truth from a random initialization, is [21]. In this work, the problem of phase retrieval has
been studied, which can be formulated as a low-rank matrix recovery problem with r =7, = 1. The
paper shows that gradient descent converges from a random initialization to the ground truth with a
near-optimal number of iterations. However, the proof in this paper leverages the rotation-invariance
of the Gaussian measurements vectors via carefully constructed auxiliary sequences. In contrast,
Theorem 3.4 above relies only on the restricted isometry property and no further assumptions on A
are needed.



3.3 Special case: r =n with orthonormal initialization

In the following result, we study the scenario r = n, where the initialization matrix U € R**" is an

orthonormal matrix, i.e. ULU =1d, instead of a Gaussian matrix as in the previous results in this
paper. This is the same setting as in [38, Theorem 1.1|, and we include this special case so as to
explain how our results improves upon prior work in this special case.

Theorem 3.5. Let X € R™"™ and assume we have m measurements of the low rank matriz X X T
of the form y = A(XXT) with A the measurement operator. We assume A satisfies the restricted
isometry property for all matrices of rank at most 2r, +1 with constant § < ck~*r,"Y2. To reconstruct
XXT from the measurements we fit a model of the form U ~ A(UUT) with U € RY™ via running
gradient descent iterations of the form Uy = Uy — uV f (Up) on the objective (2) with a step size
obeying p < ck| X |72, Here, the initialization is given by Uy = aU, where U € R™™ can be any

orthonormal matriz. Assume that the scale of initialization satisfies o < cgmi"—;x). Then, after

HZ
R 1 N X
t< —21n (max{l; L} u)
O min (X) n—"Ts o

UL = XX | _rlfondis g1
1 X2 ST 36 | X||21/16°

iterations we have that

Here ¢ >0 is a fized numerical constant.

Note that this result improves over [38, Theorem 4.1] in several aspects. First of all, in [38] it
is assumed that the measurement operator A has the rank-4r restricted isometry property with
constant ¢ < n_67‘:1/ 2 log™2 2. In particular, this suggests that this result cannot handle the scenario
that the scale of initialization a becomes arbitrarily small, as this would also require that the
restricted isometry constant ¢ becomes arbitrarily small as well. This in turn would require an
arbitarily large sample size. Moreover, [38] requires a step size of at most p < H’6r:1/ 2 log® n| X |72,
whereas the above theorem only needs the weaker assumption p S £72| X |2, These improvements
aside the main difference between our result and this prior work is that we can handle any r by
formalizing an intriguing connection between small random initialization and spectral learning.

4 Related work

Global convergence guarantees for nonconvex low-rank matrix recovery: As mentioned
earlier in Section 1, there is a large body of work on developing global convergence guarantees for
nonconvex problems. In the context of low-rank matrix recovery, several papers have demonstrated
that low-rank reconstruction problems in a variety of domains can be solved via nonconvex gradient
descent starting from spectral initialization. More precisely, this has been shown for phase retrieval
[3, 4, 5], matrix sensing [43], blind deconvolution |7, 8], and matrix completion [44]. However, in
practice often random initialization is used in lieu of specialized spectral initialization techniques.
To remedy this issue, more recent literature [45, 46, 47|, focusses on studying the loss landscape
of such problems. These papers show that despite their non-convexity under certain assumptions
these loss landscapes are benign in the sense that there are no spurious local minima, (i.e. all
minimizers are global minima) and saddles points have a strict direction of negative curvature



(a.k.a. strict saddle) [11]. Then specialized truncation or saddle escaping algorithms such as trust
region, cubic regularization [12, 13] or noisy (stochastic) gradient-based methods [14, 15, 16, 17| are
deployed to provably find a global optimum. These papers however do not directly develop global
convergence for gradient descent (without any additional modification) from a random initialization.
For differentiable losses eventual convergence to local minimizers is known from random initialization
[18] but these results do not provide convergence rates and only guarantee eventual convergence.
Indeed, gradient descent may converge exponentially slowly in the worst-case [19]. In contrast to the
above literature our result in Theorem 3.4 (in the case of r = r,) shows that gradient descent from a
small random initialization converges rather quickly to the global optima. As mentioned earlier, we
are able to establish this result by demonstrating that in the initial phase gradient descent iterates
are intimately connected to the spectral initialization techniques discussed above. Furthermore, the
above spectral initialization followed by local convergence or landscape analysis techniques cannot
be directly applied in in the overparameterized case (r > r,) whereas our analysis works regardless of
model overparameterization.

We would like to mention that even more recently the paper [21] proves the convergence of gradi-
ent descent starting from a random initialization for low-rank recovery problems via an interesting
leave-one-out analysis. To the best of our knowledge, this is the only existing result, which provides
convergence guarantees for vanilla gradient descent from random initialization for low-rank matrix
recovery problems in the non-overparameterized setting r = r.. However, the leave-one-out analysis
heavily relies on the independence and the rotation invariance of the measurements. Also similar
to the above this analysis does not seem to easily lend to generalization in the overparameterized
regime. In contrast, our proof techniques rely on standard restricted isometry assumptions without
requiring the independence of the measurements and does provide generalization guarantees with
model overparameterization (r > r,). Moreover, in [48] it has been shown that Riemannian gradient
descent converges with nearly linear rate to the true solution from a random initialization in the
population loss scenario.

Overparameterization in low-rank matrix recovery: In the influential work [49] it has been
conjectured and in the special case that the measurement matrices commute proven that gradient
descent on overparameterized matrix factorization converges to the solution with the minimal nuclear
norm. This phenomenon is now often referred to as implicit reqularization. In [20], evidence is
provided that adding depth even increases the tendency of gradient descent to converge to low-rank
solution. In [50] it has been shown that there are certain scenarios where the conjecture in [49]
does not hold. In [51] theoretical and empirical evidence has been provided that gradient flow with
infinitesimal initialization is equivalent to a certain rank-minimization heuristic.

In this paper, we shed further light on the implicit regularization of gradient descent. In particular,
we provide a precise analysis of the initial stage and relate it to the power method and our analysis
explains how overparameterization is beneficial in the initial stages. Closest to our work is the paper
[38], which studies a special case of the problem analysed in this paper. More precisely, this paper
considers the special case r = n with orthonormal initialization. We also applied our theory to this
exact same setting, see Section 3.3, where we include a detailed comparison for this special scenario.
Most importantly our theory is able to handel the case az - 0, which the result in [38] seems not to
be able to. Moreover, analysing the full range of possible choise of r requires a careful analysis of
the spectral phase, which is one key novely of this paper compared to [38].

In [52, 53] it has been shown that in certain scenarios, where the measurement matrices A; are
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positive semidefinite (PSD), the equation y = .4 (UUT) has a unique low-rank solution. This means
that in these scenarios the PSD constraint by itself might lead to a low-rank matrix recovery, which
makes implicit regularization by gradient descent meaningless in this setting. However, note that
these results not apply to the scenario studied in this paper, as we assume the measurement matrices
A; to be Gaussian, which, in particular, means that they are not positive semidefinite. In particular,
in our setting it can be shown that there are infinitely many solutions to the equation y = A (U U T)
with arbitrarily large test error [39].

Gradient-based generalization guarantees for overparameterized tensors and neural
networks: A recent line of work is concerned with connecting the analysis of neural network
training with the so-called neural tangent kernel (NTK) [22, 23, 24, 25, 26]. The key idea is that
for a large enough initialization, it suffices to consider a linearization of the neural network around
the origin. This allows connecting the analysis of neural networks with the well-studied theory of
kernel methods. This is also sometimes referred to as lazy training, as with such an initialization the
parameters of the neural networks stay close to the parameters at initialization. However, there is a
line of work, which suggests that NTK-analysis might not be sufficient to completely explain the
success of neural networks in practice. The paper [34] provides empirical evidence that by choosing
a smaller initialization the test error of the neural network decreases. A similar performance gap
between the performance of the NTK and neural networks has been observed in |2], where it has
been shown that the performance gap is larger if the covariance matrix is isotropic.

There is also a line of work |29, 30, 31, 32, 33|, which is concerned with the mean-field analysis of
neural networks. The insight is that for sufficiently large width the training dynamics of the neural
network can be coupled with the evolution of a probability distribution described by a PDE. These
papers use a smaller initialization than in the NTK-regime and, hence, the parameters can move
away from the initialization. However, these results do not provide explicit convergence rates and
require an unrealistically large width of the neural network.

For the problem of tensor decomposition it has also been shown that gradient descent with small
initialization is able to leverage low-rank structure [54|. This is relevant to neural network analysis,
since in [55] a relationship between tensor decomposition and training neural networks has been
established. In [56] it has been shown that neural networks with ReLU function and trained by SGD
can outperform any kernel method. One crucial element in their analysis is that the early stage of
the training is connected with learning the first and second moment of the data.

While in this paper we do not study overparameterized tensor or neural network models we note
that the NTK-theory can also be applied to low-rank matrix recovery (see [23, Section 4.2]). This
means that if the scale of initialization is chosen large enough and the number of parameters is larger
than the number of measurements, i.e. nr 2 m, then gradient descent will converge linearly to a
global minimizer with zero loss. However, since for this approach the parameters will stay close to
the initialization, this approach will not recover the ground truth matrix X X7. Hence, an NTK
analysis will not yield good generalization. In contrast in this paper we have seen that choosing
a small initialization is a remedy for low-rank matrix recovery. So in this sense our result can be
viewed as going beyond the lazy training in NTK theory. In fact we believe that similar analysis to
the one developed in this paper for low-rank recovery can be used to analyze a much broader class
of overparameterized models including the analysis of neural networks. We defer this to a future paper.

Linear neural networks: In [57, 58, 59, 60, 61] the convergence of gradient flow and gradient
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descent is studied for (deep) linear neural networks of the form

m
2
min Wy ... WoWiz; -y -
W Wa,o W ; H N 2VV1dy yzH
However, note that this model is different from the one studied in this paper. In [62] it is shown
that gradient descent for convolutional linear neural networks has a bias towards the £,-norm, where
p depends on the depth of the network.

5 Overview and key ideas of the proof

In this section, we briefly discuss the key ideas and techniques in our proof. We begin by discussing
a simple decomposition, which is utilized throughout our proofs. Next, in Sections 5.2 and 5.3 we
show that the trajectory of the gradient descent iterations can be approximately decomposed into
three phases: (I) a spectral or alignment phase where we show that gradient descent from random
initialization behaves akin to spectral initialization allowing us to show that at the end of this phase
the column spaces of the iterates U; and the ground truth matrix X are sufficiently aligned, (II) a
saddle avoidance phase, where we show that the trajectory of the gradient iterates move away from
certain degenerate saddle points , and (III) a refinement phase, where the product of the gradient
descent iterates U;Ul converges quickly to the underlying low-rank matrix X X7, The latter result
holds up to a small error that is commensurate with the scale of the initialization and tends to zero
as the scale of the initialization goes to zero. Figure 2 depicts these three phases.

Let us remark that the proof in the related work [38] decomposes the convergence analysis into
two phases, which roughly correspond to Phase II and Phase III in our proof. However, the proof
details are quite different since we use a different decomposition into signal and noise term, see
Section 5.1.

5.1 Decomposition of U; into “signal” and ‘“noise” matrices

A key idea in our proof is to decompose the matrix Uy into the sum of two matrices. The first
matrix, which is of rank r,, can be thought of as the “signal”’ term. We will show that the product
of this matrix with its transpose converges towards the ground truth low-rank matrix X X7. The
second matrix, will have rank at most r —r, and will have column span orthogonal to the column
span of the ground truth matrix X. We will show that the spectral norm of this matrix will remain
relatively small depending on the scale of initialization «. Hence, this term can be interpreted as the
“noise” term.

We now formally introduce our decomposition. To this aim, consider the matrix V):(F Uy e R™*" and
denote its singular value decomposition by V;; U; = VtEtWtT with W; e R™". Similarly, we shall use
Wi, € R™ (=) to denote the orthogonal matrix, whose column space is orthogonal to the column
space of W (i.e. the basis of the subspace orthogonal to the span of W;). We then can decompose
Ut into

Uy = UW W+ UW, W

signal term noise term

This decomposition has the following two simple properties, which will be useful throughout our
proofs.
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Figure 2: Depiction of the three phases of convergence. Let L denote the subspace spanned
by the eigenvectors corresponding to the r. largest eigenvalues of the matrix A*A(X X T) and
L, denote the subspace spanned by the eigenvectors corresponding to the r, largest eigenvalues
of the matrix U,UJ. This figure demonstrates that the convergence analysis can be divided into
three phases: (I) spectral/alignment phase; (II) saddle avoidance phase and (III) the refinement
phase. We see that in the first phase the first r, eigenvectors of UtUtT rapidly learn the subspace
corresponding to the first r, eigenvectors of A*A(XX"), i.e. the angle |V Vz,| becomes small.
The r.th largest singular value of Uy is still small in this phase and the (normalized) test error
|U:U; = XXT|2/| X XT|? has not decreased yet. In Phase (II), however, we see that o, (U;) is
growing, whereas the loss begins to decrease in this phase and the subspaces stay aligned. In Phase
(ITT) we see that the test error is converging towards 0 rapidly, meaning that UtUtT converges to
XXT. Consequently, o, (Uy) Jo,, (X) converges to 1 (red curve). We also see that in this phase
the angle |V V,| grows again, until it reaches a certain threshold. This is because in this phase
the top r, eigenvalues of U;U! become aligned with the eigenvectors of X X7
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Lemma 5.1 (Properties of signal-noise decomposition).
1. The column space of the noise term is orthogonal to the column span of X, i.e. V;UtWtyl =0.

2. When V};Ut is full rank, then the signal term has rank r. and the noise term has rank at most
=T

Proof. The first statement follows directly from the observation Vil U,W; | WtT L= VI, (Id Al ) =
0. The second statement is a direct consequence of the definition of W;. O

We would like to note that decomposing U; into two terms has appeared in prior work such as
[38] as well as in earlier work in the compressive sensing literature. However, [38| uses a different
decomposition. A key advantage of our decomposition is that it only depends on U; and X, whereas
the decomposition in [38] depends on all previous iterates Uy, Uy, ..., Us_1.

5.2 The spectral/alignment phase

In this section we turn our attention to giving an overview of the key ideas and proofs of the
spectral /alignment phase. More specifically, we will argue that in the first few iterations gradient
descent implicitly performs a form of spectral initialization. By that, we mean that after the first few
iterations the column span of the signal term U;W;W/[ is aligned with the column span of X and
that |UW; || is relatively small compared to omin (U;W;), meaning that the signal term dominates
the noise term.

We now provide the main intuition behind the analysis in our spectral /alignment phase. Our
starting point is the observation that for the gradient at the initialization Uy = aU it holds that

Vf(U) =-[A"A(XXT -UUS )] Uy
=—a[AA(XXT) U+’ [A*A(UUT)]U.

In particular, we observe that for a > 0 sufficiently small the second term is negligible. Hence, we
have that

Uy = Uy - puV f(Uy)
= (Id+p[AA(XXT)])Up - [A*A(UUT)] Uy
= (Id+pA* A(XXT)) Uy + O (o?|Us])

In the first few iterations (i.e. small t) we expect the matrix U; to be small and continue to scale
commensurately with o and we expect that a similar approximation holds for the first iterations.
Hence, for a sufficiently small we can approximate Uy by

U, ~ (Id+ pA* A (X XT))' Ty = T (11)

=7

Figure 3 clearly illustrates that the first few iterations of gradient descent behave essentially identical
to (11) confirming our intuition and proofs.

We indeed formally prove that such an approximation holds in Section 8. We note that the
matrix Z; = Id + pA* A (X X T) is the basis for the commonly used spectral initialization, where
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Figure 3: Depiction of the spectral alignment phase: in the first few iterations, gradient
descent with small initialization behaves like a power method. Here, L denotes the subspace
spanned by the eigenvectors corresponding to the r, largest eigenvalues of the matrix A*A (X X T).
L; denotes the subspace spanned by the eigenvectors corresponding to the r, largest eigenvalues of
the matrix U;U . Moreover, L; denotes the subspace spanned by the eigenvectors corresponding to
the r, largest eigenvalues of the matrix UtUtT, where U, = (Id + MA*A(XXT))t Up. In Figure 3a
we see that in the first iterations U; and Ut learn the subspace L at the same rate. In Figure 3b
we observe that also the angle between Vx and Ly, respectively L, decreases monotonically in the
spectral phase and then both angles stay constant in the saddle-avoidance phase. We see that in the
local convergence phase the angle between Vx and L; converges to 0 as expected since U; converges
to X up to a rotation.

typically a factorization of the rank 7, approximation of this matrix is used as the initialization
[6, 5, 44]. Therefore, the approximation (11) suggests that gradient descent iterates modulo the
normalization are akin to running power method on Z;. Therefore, we expect the column space of
the signal term at the end of the spectral phase to be closely aligned with those of the commonly
used spectral initialization techniques and in turn the column space of X as we formalize below.

To be more precise about the aforementioned alignment with X, let the singular value decompo-
sition of A*A(XXT) be given by A*A (XXT) =y )\iviv;f. It follows that

Uy ~ I:i(l-f-[t)\i)t’l}ﬂ);r] Up. (12)
i=1
It is well-known that when the operator A obeys the restricted isometry property we have
ATA(XXT)~ xXT.
In particular, we have that
Aroat (ATA(XXT)) < A, (AT A(XXT)).
Hence, it follows from

n
Zt = Z (1 + ,u)\i)t viviT
i=1
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that A, (Z¢) [Ar,+1 (Z1) grows exponentially. In particular, this means that
Tx
AR Z (1+ u)\i)t viviT
i=1

and, by (11),
Ut N I:Z (1 + N)\i)t UiUiT:| U().
i=1

Since Uy is a random Gaussian matrix, for an appropriate choice of ¢, we will be able to show that
the matrix U; has the following two properties with high probability, where L = span {vy;...;v,, }
and L; is the projection of U; onto its best rank-r, approximation:

O'T* (Ut)

>
e 2 A > 1, where

e There is a sufficiently large gap between o, (Uy) and oy, +1 (Uy), i.e.
A is an appropriately chosen constant.

e We have that |V/.V,| is small. Since the column space of A*A(XX7) is aligned with the
column space of X, this also implies that |V, V7, | is small.

This confirms that in the first few iterations, gradient descent indeed implicitly performs akin to
spectral initialization with the column space of U; aligned with the column space of X. However,
this does not yet fully complete our analysis for the spectral/alignment phase, since critical to the
analysis of second phase we need certain properties to hold for the signal and noise terms U;W; and
UiWy,, (see Section 5.1) rather than the singular value decomposition of U;. However, using the
properties of the SVD of U, which are listed above, we will establish the following properties of
UtWt and UtWt,L .

e The column space of U;W; is aligned with the column space of X: |V Viw, | < ex™2.
e The spectral norm of the noise term is not too large compared to the minimum singular value
of the signal term, i.e., 20umin (U;W3) > |[UsWy |-

e The spectral norm of the noise term is bounded from above in the sense that i.e., |[UW; | «
Omin (X).

e The spectral norm of U, is bounded, i.e., U] < 3| X]|.

5.3 The saddle avoidance phase and the refinement phase

In the next two phases, we will show that the signal term UtWtWtTUtT converges towards X X7,
whereas the spectral norm of the noise term, i.e. |[U;W; |, stays small. For that, we show that
throughout this process the columns of the matrices X and U;W; stay approximately aligned, i.e.,
the angle |Vif, Vi, w, | stays small. This latter property also ensures that after the spectral phase
the iterates are not too close to well known saddle points of the optimization landscape (it is known
that this problem may have degenerate saddle points at a point U obeying rank(U) < r, [41]). See
Figure 4 for a depiction of the gradient flows of the landscape when r, = 1.

Next we sketch the proofs of Phase II and Phase III in more detail.
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Figure 4: Depiction of saddle avoidance and local refinement phases. In this figure we depict
the gradient field of the loss function f withn =2, r, =r=1, m =15, and X = (1 0). The green
circles depict the two generalizable global minima of f, namely (1 0) and (-1 0). The red circle
depicts the saddle point (0 0). As this figure demonstrates starting from small random initialization
after a while the trajectory moves away from the saddle (i.e. avoids it) and then converges to one of
the two generalizable global optima (i.e. the local refinement phase).

Phase II: In this phase, we will show that the minimal singular value of the signal term, o, (U;Wy)
grows exponentially, until it holds that o, (UW;) > Umi“TI(OX). To this aim, we show that

1
Omin (U1 Wis1) 2 Omin (V};Uﬂ—l) > Omin (V)?Ut) (1 + ZMUIZnin (X) = o (V)?Ut))

holds under suitable assumptions (see Lemma 9.1). In order to show that the spectral norm of the
noise term |UW; ;| grows much slower than oyin (Uir1Wes1), we establish the inequality

||Ut+1Wt+l,J_”
(13)

(1= BIUWL 2+ 90 VE Vi 1 + 20] (A" A= 1) (XXT = GUT ) |} 10

(see Lemma 9.2). The next inequality (see Lemma 9.3) shows that |V Vi,w,| stays sufficiently
small
” V)%l VUt+1 Wi H
< (1 - %Ufmn (X)) IV Vo, | + 100 (Id = A*A) (XX T = UU]1) || + 50007 | X X T - DU/ |2

As mentioned above, this implies in particular, that U, stays sufficiently far away from saddle points
U, which are rank-deficient, e.g., rank (U) < Ty

Phase III: After we have shown that oy, (U:W) > % holds for some ¢, we enter the local

refinement phase. We start by observing that the error | X X7 - U;Ul'| r can be decomposed into
two summands, i.e.

00 - XX |p <4V (XXT-UU) |p+ |UW, W U] | p. (14)
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Figure 5: Impact of different levels of overparameterization on (a) the angle |V Vy, | and (b) the 7, th
largest singular value, (c) the trajectory of the (normalized) test error |U;UL - X XT||p/| X XT | £.

(see Lemma B.4). We will bound the second summand by using inequality (13), which is also valid
for the third phase. We will show that the first summand decreases at a linear rate. For that, we

establish the inequality
IV (XXT - UraU) |

1 2 T T T O—Enin (X) T 17T
< (1= st omin (0 ) [VE (XX 00T [+ w70 S 00 WU | v

Hence, by using inequality (14) we will be able to show that |U;U} = X X7 | is decreasing, as long
as the spectral norm of the noise term stays sufficiently small.

6 Numerical experiments

In this section, we perform several numerical experiments to corroborate our theoretical results.

18



Experimental setup. For the experiments we set the ground truth matrix X € R™"™ to be a
random orthogonal matrix with n = 200 and r, = 5. Moreover, we use m = 10nr, = 50n random
Gaussian measurements. The initialization U is chosen as in Theorem 3.3 and we use a step size of
i =1/4 which is consistent with these theorems. We note that while all experimental depictions are
based on a single trial, in line with the NeurIPS guidelines we have drawn these curves multiple
times (not depicted) and the behavior of the plots do not change.

Depiction of the three phases and the role of overparameterization. In our first experiment,
we want to examine how increasing the number of parameters via increasing the number of the
columns r of the matrix Uy € R™", affects the spectral phase. To this aim we set the scale of
initialization to o =1/ (7On2). Recall from Section 5 that L denotes the subspace spanned by the
eigenvectors corresponding to the leading r, singular values of A* A(XX7T) and L; denotes the
subspace spanned by the left-singular vectors corresponding to the largest r, singular values of Us.

Spectral phase and alignment under different levels of overparameterization. First, we examine

how the angle between these two subspaces (i.e. |V Vz,|) changes in the first few iterations. We
depict the results for different r in Figure 5a. We see that in the first few iterations, i.e. in the
spectral phase, this angle converges towards zero. This confirms the main conclusion of this paper
that the first few iterations of gradient descent from small random initialization indeed behaves akin
to running power method for spectral initialization. This experiment also shows that changing the
number of columns r of U; has an interesting effect on the spectral phase. In particular, increasing r
allows the gradient descent algorithm to learn the subspace L with fewer iterations, i.e. |V VL, |
becomes small with fewer iterations. This is in accordance with our theory for r, < r < n (see,
for example, the first summand on the right-hand side of equation (9)), where we show that more
overparameterization allows gradient descent to leave the spectral phase earlier. Interestingly, this
improvement continues to hold even when increasing r beyond n allowing for even faster convergence
of [V Vy,||. This holds even though in this case the rank of Up is still not larger than n. One
potential explanation for this phenomenon might be that for such a choice of r the matrix Uy is
better conditioned.

Growth of o,, (Uy) and saddle avoidance. In Figure 5b we depict how o, (U;) grows during the
training for different choices of r. We see that the curves look similar, although for smaller r the
growth phase sets in at a slightly later time. This is due to the fact that for smaller r, as we have
seen in Figure ba, Phase I, the spectral phase takes longer to complete.

Evolution of the test error and the refinement phase. Similarly, in Figure 5¢ we depict how the

(normalized) test error |U,UL - X XT| /| X XT| r evolves during the training for different choices
of r. We observe that for smaller r the third phase sets in slightly later. Again, this is due to the
fact that for smaller r the spectral phase takes slightly longer to complete (see inequality (9)).

Test error under different scales of initialization. In the next experiment, we focus on un-
derstanding how the scale of initialization « affects the generalization error |U;Ul — X X |%. For
that, we set r = 180 and run gradient descent with for different choices of . We stop as soon as
the training error becomes small (f (Uy) < 0.5-107%). We depict the results in Figure 6. We see
that the test error decreases as a decreases. In particular, this figure indicates that the test error
depends polynomially on the scale of initialization «. This is in line with our theory, where we
also show that the test error decreases at least with the rate a?'/16 (see inequality (6) in Theorem 3.3).

19



| [ : 1 T

10 o = 180 train error

—e— r =180 test error

107 1
5
5] -3 |
; 10
3
= -5 | B
-g 10

1077 |- b

1079 b L .

1072 107!
«

10U -XXT|p

XXTIr for different scales of initialization « .

Figure 6: Relative test error

Change of test and train error during training. In the next experiment, we set r = 180 and
examine how the test error |U;Ul — X X%, and the train error f(U;) changes throughout training
and, in particular, how this depends on the scale of initialization. To this aim, we run gradient
descent with 4-10° iterations. We see that for a small scale of initialization, o = 1072, which is the
scenario studied in this paper, both test error and train error decrease throughout training.

We observe that in the beginning, as described our theory, both test and train error decrease
rapidly. After that the decrease of both test and train error slows down significantly. Moreover, the
train error converges towards zero, in contrast to the test error. One reason for the slow convergence
in this phase might be that U, is ill-conditioned in the sense that o,, (U;W;) is much larger than
[UsWe o |. It is an interesting future research direction to extend our theory to this part of the
training.

For large scale of initialization o = 0.5, we observe a very different behaviour. We see that the

train error converges with linear rate until machine precision is reached. However, the test error
barely changes throughout the training. This scale of initialization corresponds to the lazy training
regime [34], where the parameters stay close to the initialization during the training. We depict the
results in Figure 7.
Number of iterations until convergence: In the last experiment, we set a = 107 and examine
how many iterations are needed until the test error |U;UJ — X XT'||2 falls below a certain threshold
of 107 for different values of r obeying 5 < r < 30. For each choice of r we run the experiment ten
times and then average the number of iterations for each choice of r. The results are depicted in
Figure 8. We observe that increasing the number of columns r from 5 to 10, i.e., a small amount of
overparameterization, decreases the number of iterations needed. After that the number of iterations
needed stays roughly constant. This observation is in line with Figure 5, where we have seen that
overparameterization leads to fast decrease of the test error in the spectral phase (with diminishing
speedup as r becomes larger and larger) without affecting the other two phases.

7 Preliminaries

Before we are going into the details of the proof, we are collecting some useful definitions.
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Figure 7: Change of test error |U,UL — X XT'|2. and train error f (U;) for (a) small and (b) large o
during training.

7.1 Notation

For any matrix A € R"*"2 we denote its spectral norm by | A| and the Frobenius norm by |A|F =
VTr (AAT). By ||A|. we denote its nuclear norm, i.e. the sum of the singular values. Moreover, for
two symmetric matrices A, B € S% we define the Hilbert-Schmidt inner product by (A, B) = Tr (AB).
For a positive semidefinite matrix A we denote its square root by AY 2 i.e., the unique positive
semidefinite matrix B for which it holds that B% = A. We also set A™1/2 = (Al/ 2)_1.

For any matrix A € R?*% we will denote its singular value decomposition by A = V4% AWE with
Vy e RXT W4 e R%2X7 %4 € R™7, where 7 denotes the rank of A. Moreover, by V4. € R(4-7)%d1 e
denote an orthogonal matrix, whose column span is orthogonal to the column span of the matrix
V4. Similarly, if U c R” is a subspace of dimension 7, we will denote by Vi; € R™" a matrix, whose
column span is the subspace U. Similarly as before, we will denote by V. € R™("=7) 4 matrix whose
column span is orthogonal to the column span of U.

We will measure the angle between two subspaces Uy, Us ¢ R™ by ||VUT1L Vi, |. Moreover, we will

also several times rely on the well-known identity (see, e.g., [63, Section 2|)

IV Vil = 1V Vi, = Vo Vi |-

7.2 Restricted isometry property and related properties

As discussed in Section 2, we are going to assume that the measurement operator A satisfies the
restricted isometry property. However, as it turns out, the following two slightly weaker properties
will suffice for our proof.

Definition 7.1. The measurement operator A: S™ — R™ satisfies the spectral-to-spectral restricted
isometry property of rank r with constant § >0, if it holds for all symmetric matrices Z of rank at
most r that

| (1d=A"A) (Z) | < 6] Z].
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Definition 7.2. The measurement operator A: S™ — R™ satisfies the spectral-to-nuclear restricted
isometry property with constant § > 0, if it holds for all symmetric matrices Z hat

| (1d=A"A) (2) | < 6] Z].

The following lemma shows that these two properties are induced by the standard restricted
isometry property (Definition 3.1).

Lemma 7.3. Let A:S™ — R™ be a linear measurement operator. Then the following two statements
hold.

1. Suppose that A has the restricted isometry property as in (3) for all matrices of rank r +1 with
constant 61 < 1. Then A has the spectral-to-spectral restricted isometry property of rank r with
constant /17

2. Suppose that A has the restricted isometry property as in (3) for all matrices of rank 2 with
constant do < 1. Then A has the spectral-to-nuclear restricted isometry property with constant

2.

Proof. From [37] it follows that if .4 has the restricted isometry property of rank r + 7" with constant
0 <0, then it holds for all matrices Z with rank at most r and all matrices Y with rank at most r’
that

((1d - A7) (2),Y)| = (A" A(2), Y) ~(2,Y)] < 81| 2L |V 1. (15)

In order to prove the first statement it suffices to note that there is a vector v € R" with |Jv[,, =1
such that
| (1d-A*4) (2) ] = ((1d - A" A) (Z) ,00").

The claim follows from (15), [v],, = 1, and from | Z|r < /7| Z].
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In order to show the second claim consider the eigenvalue decomposition Z = 7" ; /\iviv;f. We
compute that

| (1d-A"A) (2) | < i il (1d = A*A) (vi] ) |

n

<8 Y il vy |
=1

=[Z],

where in the second inequality we used the spectral-to-spectral restricted isometry property, which
holds due to the first part of this proof. This finishes the proof of the second statement. O

8 Analysis of the spectral phase

In the following we will provide an analysis of the spectral phase, where the proofs of the technical
lemmas are deferred to Appendix A. Our first goal is to show that in the first few iterations U; can

be approximated by
t

U= |1d+ pA*A(XXT) | Uy = Z,Up,
———
=M

where we have set

Zy = (Id + uM)*.

Next, we define B _
t* := min {Z eN: ”Uifl - UFl” > HszlH} .

The next lemma shows how well U; can be approximated by U, for t < ¢*. To formulate it, we set
E,=U;-U,.

Lemma 8.1. Suppose that A satisfies the rank-1 RIP with constant 1. For all integers t such that
1<t <t* it holds that

|Eell = |U: = T < o’ min {rin} (1+81) (1+pAt (M) U],

4
A1 (M)

The next lemma gives a lower bound for ¢*. In particular, this shows how long the approximation
in Lemma 8.1 is valid.

Lemma 8.2. Let U, be as defined before and consider the eigenvalue decomposition A*A(XXT) =
i )\iviviT. Then we have that

1 A1 (M) |G v ],
N\ a2 (1+61)|U|3 \ amin{r;n}
th > .

2In (1 + pA; (M))
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Next, recall the relation
Ut = Ut+Et =ZtU0+Et

and denote by L the subspace spanned by the eigenvectors, which correspond to the largest r,
eigenvalues of the matrix M = A*A (X X T). Note that L is also the subspace spanned by the
eigenvectors corresponding to the largest r, eigenvalues of the matrix Z;. Denote by L; the subspace
spanned by the left-singular vectors of U; = Z;Uy + E}, which corresponds to the largest r, singular
values.

Since Z; is computed via a power method we expect for ¢ large enough that A, (Z;) > Ay, 41 (Z).
Moreover, if, in addition, |E;| is sufficiently small, we expect in this case that the subspace L is
aligned with the subspace L;. This is made precise by the following lemma.

Lemma 8.3. Let Z; € R™™ be a symmetric matriz. Let U € R™" be a matriz and let Ey € R™". Set
Up = aU for some a>0. Moreover, assume that

E
oros1 (Z0) U] + % <0r, (Zt) omin (VLU). (16)
Then the following three inequalities hold.
0r. (ZiUo + Et) 2 00y, (Z) omin (VL U) = | B2 (17)
or.+1 (2100 + Ey) < aor 1 (Z0) U] + [ B, (18)

aor,+1 (Z) |U| + [ Bt

IVEVL < '
LA acy, (Zy) omin (VIU) = aor, 1 (Z) |U| - | Bt

(19)

Recall that we are interested in bounds for the quantities o,., (U:Wy), |V Viw, [, and |U:W; |,
i.e., properties of the signal and noise term. However, in the lemma above, we have obtained
instead bounds for o, (Ut), |[VE. Vi, ||, and 0,41 (Uy), i.e. for the singular value decomposition of
U;. However, if |V Vy,| is small, these quantities are closely related to each other, as the next
lemma shows.

Lemma 8.4. Assume that |[VE.Vy,| < § for some t > 1. Then it holds that

1
or, (UW) 2 207 (Ur), (20)
“VgivUtWt ” < 7HV),€lVLt ”7 (21)
H UtWt’J_” < 20—r*+1 (Ut) . (22)

By combining Lemma 8.3 and Lemma 8.4, we obtain the following technical result.
Lemma 8.5. Let XX be a low-rank matriz of rank r.. Assume that
M:=A"A(XXT)=XX"+E,
with |E| < 6y, (XXT), where § <& where @ >0 is a sufficiently small absolute constant. Further-
more, set By = Uy — U, Moreover, assume that

e IV .
oy, (Zt) Omin (VLTU) -

, (23)
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where 3 > 0 is a sufficiently small, absolute constant. Then it holds that

Omin (UtWt) 2 %Un (Zt) Omin (V[:,TU) 5 (24>
-2
K
|U:Wy ]| < ?Oﬂr* (Zt) Omin (VEU), (25)
IV Vi, | <56 (5 +7) . (26)

In order to utilize Lemma 8.5, we need to insert bounds for the approximation error |E|, which
we have derived in the Lemmas 8.1 and 8.2. This yields the following lemma.

Lemma 8.6. Fiz a sufficiently small constant ¢ > 0. Let U € R™". Assume that A has the
spectral-to-nuclear restricted isometry property for some constant 61 < 1. Moreover, assume that

M:=A"A(XXT)=XX"+E,

with |E| < 6\, (XXT), where § < c1k2. Denote by L the subspace spanned by the eigenvectors
corresponding to the r. largest eigenvalues of the matrix A*A(XXT). Let Ug = U, where

) e X |2 ( 2:2|U |

12k
a’ < cormm (VIT) ) min (Umjn (VIU); HUTmHZQ) , (27)

~ 32min{r;n}s|U|3

where v1 denotes the eigenvector corresponding to a leading eigenvalue of the matrix A*A(XXT),
Assume that the step size satisfies u < cor™2| X |72, Then after

‘s 1 N 2:2|U||
t Oy, (X)2 C30min (VLTU)

iterations it holds that

U, || < 3]X1, (28)

Omin (Ut* Wt*) 2 %7 (29)
K)_2

|U:, W, .| < ?aﬁ, (30)

”V)?iVUt*Wt* ” < 65_27 (31)

where 5> 0 satisfies

2
R ) w2 (32

min VTU ~ ~ Omin VTU B .
e (70 5350 (10 ) < 250

Here cq,co,c3 >0 are absolute constants only depending on the choice of c.

Note that the result above holds for any initlialization U. To complete the proof we are going to
utilize the fact that U is a random matrix with Gaussian entries. This yields the following lemma,
which is the main result of this section.
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Lemma 8.7. Fix a sufficiently small constant ¢ > 0. Let U € R™" be a random matriz with i.i.d.
entries with distribution N(O, 1/\/1_") and let 0 < e < 1. Assume that A has the spectral-to-nuclear
restricted isometry property for some constant §1 < 1. Moreover, assume that

M:=AAXX")=XX"+E,

with |E| < 6\, (XXT), where § < eyx™2. Let Uy = aU, where

1 12 —12x2
Vmin{rin}| X7 (2&2 u ) if r>2r,

xkn3/2 min{r;n}

o’ s 1252 (33)
2 2 —1l2K
—lﬁﬁ (—2” . m) € if r<2r,
Assume that the step size satisfies p < car 2| X 2. Then with probability at least 1 - p, where
| O (exp(-¢r)) if T >2r,
(C’E)T_Ml +exp (—cr) if < 2r,
the following statement holds. After
b < m -In (2:‘12 min?r;n}) Zf r> 27’*
= 1(X)2 '1H(2R2ﬁ) if 7 < 2r,
iterations it holds that
[Tz [ < 3]X1, (34)
«
Omin (U, Wi, ) 2 IB, (35)
(o2
U, We, 1| < ?0@3’ (36)
”V)?i VUt*Wt* “ < CK'_27 (37)
where 8> 0 satisfies
4 ‘
g Fmin{rpy U220
~ o if r<2r,
3

as well as
1 if r>2r,

2 .
BN{% if T <2r,

Here c1,c9,c3 >0 are absolute constants only depending on the choice of c. Moreover, C,¢ >0 are
absolute numerical constants.

The proof of Lemma 8.7 requires the following theorem, which gives a non-asymptotic lower
bound for the smallest singular value of a Gaussian matrix.



Theorem 8.8. [6/] Let G € R™ " with r. < r and i.i.d. Gaussian entries with distribution
N(0,1/3/r). Then for every e > 0 we have with probability at least 1 - (Ce)"™™* ~exp (=cr)

that
V-1
= .

min (G) > e YLV 72

NG

The constants C,c >0 are universal.
With this theorem in place we can prove Lemma 8.7.

Proof of Lemma 8.7. We will deduce this statement from Lemma 8.6. For that we need to estimate
1U|, omin (VLTU), and HUTvl Hb. It is well-known (see, e.g. |40, Section 4|) that with probability at
least 1 — O (exp (—cmax {r;n})) it holds that

U1 Vmax{rintfr = [ (38)

Next, note that again due to rotation invariance of the Gaussian measure the vector U7 v; € R” has
i.i.d. entries with distribution A" (0,1//r). Hence, with probability at least 1 - O (exp (—cr)) it
holds that
T o
Ut v, = 1. (39)

Next, we note that due to rotation invariance of the Gaussian distribution the matrix VLT U eR™ "
has i.i.d. entries with distribution N (0, 1/ \/7_“) Moreover, note that using the elementary inequality

Vi-x<1- % we obtain that

\/F_mzf—ﬁ(l—gi*)z{l ifr>2r, w0)

Vr Jr

In order to proceed we are going to distinguish the following two cases.

else

S =

Case 1: r > 2r,
Note that by choosing € > 0 appropriately, we obtain from Theorem 8.8 combined with inequality
(40) that with probability at least 1 — O (exp (—cr)) it holds that

omin (VI U) 2 1. (41)

By combining the inequalities (38), (39), and (41) with Lemma 8.6 the claim follows in the case that
2> 27,

Case 2: r, <r<2r,

Similar to the first case, we note that by choosing € > 0 appropriately, we obtain by applying Theorem
8.8 combined with inequality (40) that with probability at least 1 — (Ce)""*! = exp (—er) it holds
that

Omin (VLTU) 2 ; (42)

By combining the inequalities (38), (39), and (42) with Lemma 8.6 the claim follows. O
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9 Analysis of the saddle avoidance and refinement phases

Before stating and proving the main result of this section, Theorem 9.6, we will first collect some
useful lemmas. Their proofs are deferred to Appendix B.

In Phase II we will show that oy, (U W) grows until it reaches o, (UiWy) > %. For that,
we note

Omin (UtWt) (g) Omin (UtWtWtT)
> omin (Vi U W W)
(2) Omin (V)?Ut) )

where (a) and (b) follow from the definition of W;. Hence, in order to show that o, (UW;) > %in—\/l(_oX)
it suffices to show that omin (V}g Ut) > Umi“TI(OX). For that, we will use the next lemma, which shows

that omin (V; Ut) grows exponentially.

Lemma 9.1. Assume that p < c|X|2s72, |U| < 3|X|, and that |VEVi,w,| < ck™t. Moreover,

suppose that
| (A" A= 1d) (XXT - UUF) | < co2n (X). (43)

Furthermore, assume that V; U; has full rank. Then it holds that

1
Omin (V3 Us1) 2 Omin (Vi U1 Wi) > omin (Vi U (1 + Zuafmn (X) - pos, (V}Ut)) .

Here ¢ > 0 is constant, which is chosen small enough.

The next lemma will allow us to show that the noise term ||U;W; | is growing slower than
Omin (V)?Uﬂl)-

Lemma 9.2. Assume that p < cmin {| X |72 | (A* A - Id) (XXT - UUL) |71} and that |Uy|| < 3| X .
Moreover, suppose that ViE U1 Wy has full rank and that |ViE, Vi,w, | < ck™'. Then it holds that

HUt+1Wt+1,J_
< (1 BI04 9uIVE Vi X+ 20) (A° A~ 1) (XXT = GUT) ) |UWe .

Here, ¢ >0 is an absolute constant chosen small enough.

The next lemma shows that the angle between the column space of the signal term U;W; and
column space of X stays sufficiently small.

Lemma 9.3. Assume that [UsWs ||| < 20min (UsWy) and |Ui| < 3| X || holds. Moreover, assume that
| (1~ A*A) (XX - U ) | < copyin (X)), (44)

H VgiVUtWt ” <6 ( )

w<en?|X| 2, (46)

|UsWe o] < en”?|X]). (47)
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where ¢ >0 ts a small enough constant. Then it holds that
T
HVXLVUHIWHI ”

(1 -7 mm(X)) Ve Viw || +100p] (Id- A*A) (X XT - UUF) | + 50062 | X X T - DU |2

The next lemma will show that we have |U;| <3| X for all ¢, a technical assumption which is
needed in the above lemmas.

Lemma 9.4. Assume that |U|| <3| X|, p < and

- 27\|XH2’
| (A" A-1d) (XX - UU) | <[ X2
Then it also holds that | U | < 3| X]|.

With these lemmas in place, we will be able to show that oy, (UW;) > 0"“"—\/1(_0)() holds after
sufficiently many iterations. Hence, we can enter Phase III, the local refinement phase.

The next lemma is concerned with this third phase. It shows that U;W, W Ul converges towards
X X7, when projected onto the column space of X. We are going to provide a somewhat more
general version of the lemma than what is needed in the proofs of our main results, since it may be
of independent interest. For that, let ||-|| be a matrix norm, which satisfies ||[ABC|| < || A||B|||C| for
all matrices A, B, C. Furthermore, we assume that || A[| = ||A”]| for all matrices A. For example, this

property is fulfilled by all Schatten-p norms.
Lemma 9.5. Assume that |U|| < 3| X | and that omin (U:Wy) > \/_amm (X). Moreover, assume

that u < ek 2| X |72, |VEVu,w,| < ex™

max {||(Zd- A*A) (x X7 - U,U] ).

, and

A) (XXT -0 08 |} < w72 X XT - U UF

| (48)
where the constant ¢ > 0 is chosen small enough. Then it holds that

Tonin (X)
200 100
When applying this lemma in our proof, we are going to set ||| = | - | 7. However, we believe
that this lemma might be of independent interest, as it shows that U;UI converges linearly towards
X XT with respect to several different norms.
Having collected all the necessary ingredients, we can state and prove the main theorem of this
section.

[V (XX = U UE)] < (1 gpomin (02 [VE (XXT = GUT )|+ v, WU,

Theorem 9.6. Let {U;} c RYT be the sequence created by the gradient descent algorithm. Assume
that p < c1x™ | X |72 for a sufficiently small constant c¢i. Moreover, assume that A satisfies the
restricted isometry property for rank-(2r. + 1) matrices with constant § < 61H_4/\/E. Let v>0 and
choose the iteration count t. such that oy (U, Wy, ) > . Furthermore, assume that the following
conditions hold:

1T W, 1| € 27, (49)
U, || < 3] X1, (50)
Omin (X)
< g Tmini %) 51
7 in {r;n} k2 (51)
”V)?i VUt*Wt* ” < 62572' (52>
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Then after

. 1 N X
t—t*S—21n(maX{1; — } H ) (53)
HOmin (X) min {T; Tl} T Y
iterations it holds that

|UUT - X X" g . P8 (min {rn} )38 42116
| X2 " K316 | X216

Remark 9.7. The proof of Theorem 9.6 shows that the number of iterations needed to complete
Phase II is smaller than
Omin (X) )

In
UU?nin (X) ( Y

and that the number of iterations needed to complete Phase III is smaller than

—tlséln max-< 1; T X1 .
uaglin (X) min{r;n}-r.) ~

Proof of Theorem 9.6. Phase II: In this phase, we will prove that opin (V)? Ut) is growing ex-

tl_t*s

S 0

ponentially until it is at larger than Umi“—\/l(_OX), while |U;W;
set

min X
t1 := min {t >ty Omin (V;{Ut) > a—()} .

stays grows much slower. For that,

V10

We will prove by induction that for ¢, <t <t; the following inequalities hold:

1 1 t—ts
Omin (VgUt) 2 5 (1 + g/’LUIZIlin (X)) 7> (54)
t—t«
|UWe L] < 2(1+80pcaoi, (X)) 7, (55)
[Tl < 3] X1, (56)
”V}éVUtWt H < C2f€72. (57)

Note that when the inequalities above hold, then from the definition of ¢; above and inequality (54)

we can derive that
1 min X
SR LN e o

For ¢ = t., we first note that inequalities (55), (56), and (57) follow directly from our assumptions.
In order to prove inequality (54) we note that

(a) 1 )
Omin (V)?Ut*) 2 Omin (V;VUt*Wt* ) Omin (Ut* Wt*) 2 igmin (Ut* Wt*) 2 %7

where inequality (a) is a consequence of assumption (52) and inequality (b) follows from the definition
of 7. Assume now that we have shown these four inequalities for t. In order to prove them for ¢ + 1
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we note first that
| (A A-1d) (XX - U,U) |
(a) * *
(A A-T1d) (XX -UW W UL | + | (A A-1d) (U, WU |

(b)
<o | XXT - uw WUl | + oUW W U
< S/ (IXI2 + U ) + 3|0 WEUF

(c
£)105\/EHXH2 +0 (min{r;n} -ry) HUtWt,lHZ

(d)

d 2(t—t«)
< ) +?

10¢1 £ 20min (X)? + 48 (min {r;n} - r,) (1 +80pc20min (X)?

(e)
<

(f)
< 40c1 K 20 min (X)2 .

10¢1 £ 20 min (X)? + 85 (min {r;n} - r.) omin (X) /4474

In inequality (a) we applied the triangle inequality and for inequality (b) we used the restricted
isometry property as well as Lemma 7.3. Inequality (c) is due to the induction assumption (56).
In inequality (d) we used the assumption § < c;x~# as well as the induction assumption (55). For
inequality (e) we used t < t; as well as (58) and for inequality (f) we used (51).

Next, we observe that by Lemma 9.1 we have that

Omin (V3 Urs1Wis1) = 0min (V Upr1)
> Omin (Vi Uit Wi)

2 Omin (V)?Ut) (1 + }lﬂffim (X) - NUIQnin (V):(FU))
(a)

a 1
S amm(v)%’Ut)(qu;m (X)).
In (a) we have used that o, (V;Ut) < a’"i“—\/%X), which follows from ¢ < ¢1. Using the induction

assumption, this implies inequality (54). Moreover, the inequality chain above shows that V;‘(F Ui Wi
has full rank. This allows us to apply Lemma 9.2, which implies that

HUt+1Wt+1,J_

< (1= L1012 + 9 VE Vo 11X 12 + 23] (A" A=10) (XXT - 00T ) 1) [T

(@)
< (1+80pcaotin (X)) [UWe i |
<2(1+80pca0?,, (X)) 7"

)

where in inequality (a) we used (57) as well as (59) and that the constant ¢; is chosen sufficiently
small. This shows inequality (55). Next, due to inequality (59), our induction assumptions, and
Lemma 9.4 we obtain that |U1| < 3| X, which shows inequality (56).
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Next, we note that by Lemma 9.3 we have that

T
” VXi VUt+1Wt+1 H

s( 7min (X)) IV Virawe |+ 100u] (1d = A% A) (XXT = U,U]) | + 5000 | X X - U] |?

in (X) ”VXJ-VUtWt H + 200061#/{ Jmln (X) + 5000061/,“{_2 2 (X)

mlH

ol (X)) IV Vi,w, | +2000¢1 jurs 2 0min (X)* + 5000002 X |4

INS
AN N N
H
I‘: uxlt uxl
Em

n (X)) ok ™2 +2000¢1 k2 omin (X)? +50000¢; pk 2025, (X)),

B
gm

where in inequality (a) we used the induction hypothesis (56) as well as (59). Inequality (b)
follows from inequality (59) and our assumption on the step size u. In inequality (¢) we used the
induction assumption |V, Vi,w,|| < c2x™2 By choosing the constant ¢; > 0 small enough, this
implies inequality (57) and, hence, finishes the induction step.

Note that from the definition of ¢; and from inequality (54) the inequality (58) follows. Hence,
we obtain that

(a)
”Ut1Wt1,J.” < 2 (1 -+ 80,[1,020'

(®)
< 2(Omin (X) /’7)8062 Y

. 1/8
(2) 5 (amm (X) )
v

X))y

min

v

= 20min (X)l/g ’77/8a

where inequality (a) follows from inequality (55) and inequality (b) follows from (58). Inequality
(¢) follows from choosing ¢y > 0 small enough. This finishes the proof of the second phase.

Phase III: In the third phase, we analyse the refinement of the signal U;. For that, we set

7/4
f= t1+[&21n(§,§1/4 T | x| )J (61)
PO min (X) 8 min {r;n} -r, ~7/4

Similar as in Phase II, we are going to show inductively that the following inequalities are fulfilled
for t; <t <t

Omin (X
Omin (UtWt) 2 Omin (V;Ut) 2 %a (62)

t-t
[0, < (1+ 80ucz00 (X)) |Un W (63)
U4 < 31X]. (64)
”‘/)7;l Vu,w, ” < 62’%_27 (65)

—t1

WV (X 00 e <10y (1- o2, (00) 1 (66)
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For ¢ = t; we note the inequalities (62), (64), and (65) follow from the results in Phase 1. The
inequality (63) follows directly from setting t = t;. For t = t1, inequality (66) follows from the
observation that

Ve (XXT - UL UL ) |F = Ve (XXT - U W, WU ) e
<|XXT| 5+ | U Wy, WEUL |
< (I XXT) + U Wy, WEUE])
<10/r. | X2,

where we have used that |Uy, Wy, | < |Ug | < 3||X | by induction assumption (64).
For the induction step from ¢ to ¢ + 1, we note first that with similar arguments as in Phase 1 we
can show that

| (A*A-1d) (XXT -0l |
SlO(S\/KHXH2 +0 (min{r;n} -ry) HUtWt,lHZ

(a) .
£10014 2 01n (X)? + 46 (min {r;n} = 7.) (1 + 80pc20min (X)7) " gynin (X) /4474

b 7/4 O(e2)
(S)l()cln_Qamin (X)?+46 (min {r;n} - ) §/<al/4 - I IX] Omin (X)l/4 AT/
8 min {r;n} -r, ~7/4

©
< 40c1 K 2omin (X)2,

where in inequality (a) follows from (63). Inequality (b) follows from (61) as well as the elementary

inequality In (1 + z) < z. Inequality (¢) follows from the assumption v < CQ%. This puts us in

a position to apply our technical lemmas. We note that by Lemma 9.1 we have that
Omin (U1 Wia1) 2 min (Vi Upi1) 2 Omin (VX Ure1 We)

> omin (Vi Ut) (1 + iuamm (X)? = pomin (V§Ut)2).

=(+)

Note that for omin (Vg Ut) < %amin (X) it holds that (*) > 1 and thus it follows that (62) holds for
t+1 in this case. In the case of %amm (X) < omin (V;Ut) we obtain that
2 () (b)
(*) 21— pomn (VA UL)™ > 1-9u|X|? > 4/5,

where in inequality (a) we used the induction hypothesis (56) and in inequality (b) we used the
assumption p < ¢~ 2| X |72 Hence, we have shown that also in this case the inequality (62) holds
for t + 1.

Note that the previous inequality chain also implies that V):(F U; 1 Wy is invertible. Hence, in a
similar way as in Phase II for inequality (55) we can verify that (63) holds for ¢ + 1.

Note that from Lemma 9.4, induction assumption (56), and the assumption on the step size p
it follows that |U1| < 3| X|. Moreover, inequality (65) can be shown analogously as in Phase 1.
Next, we note that due to the restricted isometry property we have that

| (1d - A*A) (XXT - 0U) | < s | XXT = UU] | F,
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which shows that inequality (48) is fulfilled (with [|-]| being the Frobenius norm || - |r). Hence, we
obtain from Lemma 9.5 that

IV (XXT - Ui ULY) | F

Omin (X)2

0010 Wes Wi U e

< (1 - 5o Omin <X>2) IVE(XXT -UUT) |p + 1

! Omin (X
i (0 (1= L (00) 02 2 O

<10/re (1 - =——=
\/r_( 400 100

200

where in the last inequality we used the induction assumption (66). We note that this shows (66)
holds for ¢ + 1, if we can show that

5 1
U WALUT [ < 57 (1= 0w (X)) 1X2 (67)

For that, we note that

[UWe WU | e < /min {rsn} —r, |UW, L |2

< 4y/min {r;n} —r. (1 +80uc20min (X)Q)Q(t_tl) Tmin (X) 44T,

where in the last inequality we used (60) and (63). Hence, for ¢ > 0 small enough, inequality (67) is
implied by

8 [min{rin}-r, 1/4 _7/4 ( ) - 2
= min X < 1—— min X X|“.
e e (1 B (07) )

By rearranging terms and using the elementary inequality In (1 +z) > 1%, we see that this in turn
is implied by

g o300 5 Ty 1X)?
< ———=In| ¢ . : :
[0 min (X)? 8V min{rin}—r. 7/4q . (X)1/4

Hence, (61) shows (67), which shows inequality (66) for ¢ + 1. This finishes the induction step.
Conclusion: In order to finish the proof we note that

(a)
10U - XX |p < 4|Vx (XXT—UAUT)||F+HUW Wi UL I

11
(b -

<¢—(1— amm(X>) X2

o L/4 T HXH7 X2
¢ f( Ve Er)

< ’I"*/ IQ_3/16 (HllIl {T; TL} _ r*)3/8 ’}/21/16”X”11/16,

where inequality (a) follows from the triangle inequality and the definition of W;. Inequality (b)
follows from (66) and inequality (67). In (c) we used the definition of ¢.

34



In order to finish the proof we need to show (53). For that we note that

300 5 Ty 12X 2
t-t1 < ————ln|=\/— : i
pomin (X)° \8V min{rin} —r. A7g 00 (X)
300 5 N X774
L0 min (X) 8 min{r;n} -r. 7y
300 _ KT | X774
< ———=In|min{l; — 7/
[0 min (X) min {r;n} -r. ] 7
1 N X
< —21n min{l; - o } H H)
(10 min (X) min {r;n}-r.) =

Combining this with inequality (58) shows (53). O

10 Proof of the main results

10.1 Proof of Theorem 3.3

Proof of Theorem 3.5. Set E = A* A (XXT) — X X7 From the spectral-to-spectral restricted isom-
etry property, which follows from Lemma 7.3 as well as from our assumption on the restricted
isometry property, it follows that

1E] = (1d-A*A) (XXT) | < et X[ = ek 2 omin (X)*. (68)
In order to finish the proof we will distinguish two cases:

Case r > 2r,: Due to (4) and (68) we can apply Lemma 8.7. Hence, with probability at least

1-0 (exp(-cr)) after
et -1n(2/-@2 L)
[0 min (X) min {r;n}

iterations we have that

[T [ < 3]X1, (69)
o

Omin (Ut* Wt*) 2 Iﬁ)’ (70)

o2
U, We, .| < ?045’ (71)
IV Vo i, | < en” (72)
with 1 $8 S migf:m}. Our goal is to apply Theorem 9.6 with v = %. For that we need to check that

C20min (X) CYB

- ~ Z = — 73
min {r;n} K2 77 (73)
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holds. Note that since
deo XX

~

min{r;n} k38~ k'n

condition (73) is fulfilled, when the constant in (4) is chosen sufficiently small. Hence, by Theorem
9.6 after

. 1 KT 4| X
t—te § ———= In{max{1; —
KO min (X) min {T; n} T O‘ﬁ

iterations it holds that

HUiUgT - XX"|F < 7“1/8 (min {r;n} - r*)3/8 ‘ ~A21/16
1 X2 ~ 13/16 | X[21/16
< 7’1/8 (min {r;n} - T*)3/8 (cyﬁ)21/16
~ 13/16 | X |21/16
. H81/16n21/16r1/8 (min {r;n} - 7,*)3/8 ‘ o21/16
" (min {r; n})21/16 | X [|21/16

1/8
n21/16/{81/16r*/ o21/16

< : .
(min {r; n})l5/16 | X |[22/16

Note that for the total amount of iterations we have that

t< —1 (ln (252 S )+ln (max{l' ik }4”X))
~ 2 . b) .
[ min (X) min {r;n} min{r;n}-r.| af
=;21n(8/13 _L-max{l; - s } X”)
(1 min (X) min {r;n} min {r;n} —r. af
b
(S) ;QIn(Cl;{3 ,L'max{l; - R } ’XH)
1O min (X) min {r;n} min {r;n} —r, @

! Curn x|
3 5 In| — -max 1; — . ’
10 min (X) min {r;n} min {r;n} —r. «

where in inequality (b) we have used 5 2 1 and chosen the constant Cy > 0 large enough. This
finishes the proof of the first part.

Case r, <r<2r,: Asin the first case, we can apply Lemma 8.7. Hence, with probability at least
1-(Ce)"™™* + O (exp (~cr)) after

2
‘< 1 2‘111(2/@' \/rn)
MO min (X) =

iterations the inequalities (34), (35), (36), and (37) hold with £ < 8 %. Again, we want to apply
Theorem 9.6 with v = 021—5. For that we need to check that

C20min (X) CKB
_ermm A s = 2 74
min {r;n} K2 77 (74)
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holds. Note that since
deoX| o erlX|_elX]

~

min {r;n} x38 ~ min {r;n}nk’  nk7

condition (74) holds true, when the constant in (7) is chosen sufficiently small. Hence, by Theorem

9.6 after
R 1 « ) 4llX
i-t.s —21n(max{1;L}”—)
HOmin (X) =Ty of

iterations it holds that

HUiUtT—XXTHF<T1/8(T—r*)3/8 ~21/16

”XHQ ~ KS/IG ”X”21/16
g T1/8 (T’ _ T*)3/8 . (a/B)21/16
I€3/16 HX”21/16

21/16
< 7,1/8 (r- T*):s/s ,81/16 (ﬁ o« ) '

e X

Note that for the total amount of iterations we have that

. 1 262\/rn kre | 4] X
ts 5 In +1n max{l;—}—
[0 min (X) € r-r.) af

(a) 1 I (8/-{37“*\/7‘11 x| )

KO min (X)2 8(7"—7"*) O‘ﬁ
(b) 1 CorBrory/rn | X|
< 5 In 5 :

HOmin (X) € (T - T*) o

< 1 ln( Corn? X||)
" HOmin (X)2 g2 (T_T*) « ’

where in equality (a) we have used ;== > 1, which follows from r. <7 <2r.. Inequality (b) follows

from = 5 3 as well as from choosing C > 0 large enough. This finishes the proof.

O

10.2 Proof of Theorem 3.4

Proof of Theorem 3.4. As in the proof of the second part of Theorem 3.3 we can show that with
probability at least 1 — Ce + O (exp (—cr.)) after

2
L < 1 1n(2/€ ﬁ)

i MO min (X)2 €

iterations the inequalities (34), (35), (36), and (37) hold with ;= <8< @. Now define the matrix

U,. by adding a zero column to Uy, , i.e.,

ﬁt* _ (Ut* 0) c Rnx(rﬁ—l).
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Clearly, we can run gradient descent on U, instead of U, with the same step size, which gives

us a sequence Ut*,ﬁt*+1, Ut*+2, ... to which we can apply Theorem 9.6 with v = an? and r=r, + 1.

However, note that the last column always stays zero, which means that the results of this theorem
also apply to Uy, , U, +1,Ut, +2, . ... Hence, after

R 1 X 1 X
f-t.s ———n (4/£r* ” |) < ~In (4mfu)
HOmin (X) U min (X) ae

iterations it holds that
U7 - XXTp e ()
| X2 ¥ .3/16 HX||21/16
741/8 (KD4TL o )21/16
<

Tde\ e X

n o \216
_ T1/8I€81/16 (_ ) ) '
e |X]

Note that for the total amount of iterations we have that

. 1 2

tS————= (ln (M) +1In (4/{7“3&))
[0 min (X) 5 QE

L ( 8k*riv/n| X | )

B [0 min (X)? ae?
1 8k3n3 | X
< 5 In 5 .
HOmin (X) € «

This finishes the proof.

10.3 Proof of Theorem 3.5

We start by noting that in the special case r = n, the required assumptions for Theorem 9.6 are
already fulfilled at the initialization ¢y = 0. This means that in this special case we do not need to
analyze the spectral phase. This is shown by the following lemma.

Lemma 10.1. Assume that r =n and let Uy = aU, where U € R™™ is an orthonormal matriz. Then
it holds that

IV Vigwoll =0,
Omin (UOWO) =,
1Uo]l = .

Proof. Note that V; U € R™*" is an isometric embedding. Hence, a feasible choice for Wy is given
by Wy = UTVy, which implies that

UsWo = aUUTVy = aVy.
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It follows that |V, Viiw, | = 0, which verifies the first equality. In order to see that the second
equality holds we note that
Omin (UOWO) = Omin (aVX) = 0.

The third equality follows directly from the definition of Uy. This finishes the proof. 0l
Now we are in a position to give a proof of Theorem 3.5.

Proof of Theorem 3.5. By Lemma 10.1 we have that | V£, Viigw, | = 0, omin (UoWo) = a, and || Up| = .
This allows us to apply Theorem 9.6 with tg =0 and + = «, which yields that after

. 1 kre ) X
ts———=n max{l;—}—
O min (X) n-ry) «

UU" - XX e Y8 (n—r,)¥® 2116
< .

1 X2 ~ 13/16 | X |[21/16
T1/8n3/8 o 21/16

iterations we have that

T OR316 | X|21/16°

This finishes the proof. O

11 Conclusion

In this paper we focused on demystifying the role of initialization when training overparameterized
models by showing that small random initialization followed by a few iterations of gradient descent
behaves akin to popular spectral methods. We also show that this implicit spectral bias from small
random initialization, which is provably more prominent for overparameterized models, also puts the
gradient descent iterations on a particular trajectory towards solutions that are not only globally
optimal but also generalize well.

We think that our results give rise to a number of interesting future research directions. For
example, one could extend our results to scenarios where the measurement matrices are more
structured such as in matrix completion [65] or in blind deconvolution [66]. Moreover, while our
main results, e.g. Theorem 3.3 do require early stopping, our simulations (e.g. Figure 7a) indicate
that early stopping is not needed. It would be interesting to examine whether we can remove the
early stopping requirement. It is also an interesting future avenue to examine whether the quadratic
dependence of the sample complexity m on 7, in our results is really needed.

Moreover, while in this paper our main focus was on low-rank matrix reconstruction, we believe
that our analysis holds more generally for a variety of contemporary overparameterized machine
learning and signal estimation tasks including neural network training. This is a tantalizing future
research direction.
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A Proofs for the spectral phase

A.1 Proof of Lemma 8.1

Proof of Lemma 8.1. We are first going to derive a formula for U; — Uy.

Claim: Set Ej : MA*A( i 1U )Ui_l. Then, for ¢ > 1 it holds that
b-Ur= 3 (1d+ pd A (XXT)) " B, (75)
i=1
Proof of the claim: We will prove the claim by induction. For ¢t = 1 we note that
Up = (Id+pA*A(XXT - UoUy ) Uo
= (Id+ pA*A(XXT)) Uy - pA* A(UpUg ) Ug
which proves the claim for ¢ = 1. Now suppose that the claim holds for some t. We obtain that
Uper = (Id + p A" A(XXT - U,UT)) U,
= (Id + pA* A(XXT)) Uy - pA* A(UUF) U,
= (Id+ pA*A(XXT)) Uy - By,

where the last line follows from the definition of Ey,1. By using the induction hypthesis we obtain
that

t .
Upsr = (Id + pA* A (X XT)) ( =S (Id+pA*A (XXT))H E) .
=1

t .

= Uy = (1d + p A A(XXT)) T B - B
=1

~ el t+1-i A

=Upa -y, (Id+pA*A(XXT))" T E;,

i=1

which shows the claimed equation (75).
In order to estimate |U; — U;| we note first that

1E:] = wl A" A (Ui U)L)) Ui |
< p| A*A (T UE) [|Uia |
< (1460) p| U UL |4 | Ui |
= (1+61) p|Uica |3 Uia -

Moreover, we observe that
| (1d+ pA* A(XXT)) ™ By < [1d + pA* A (XXT) |

<(1+p|AA(XXT) )| B
< (L+ph (M) B4,

45



where in the first line we used the submultiplicativity of the operator norm and in the second line
we used the triangle inequality. In the third line we used that | A*A(XXT) | = A; (M). Hence, we

have shown that .

[0 = Tel < 3 (1+ pha (M) (1+60) p| Ui | F Ui | (76)
i=1

Note that for all 1 <4 <t* we have that|U;_y — U;_1| < |U;_1 |, which implies that
|Ui1 |71 Ui || < min {r; n} U1 |
<min {r;n} (10;1 |+ |05t - Uia )
<8min {r;n} |Ui_1 |
< 8min {r;n} |Id + pA*A(XXT) 2D |2
<8min {r;n} (1+ i (M))* 2 ?|U|°.

In order to proceed assume now ¢ < t*. Then by inequality (76) and the previous inequality we
obtain that
13 )
U= 00 € Y (% pha) ™ (14 81) | Uiy 21 Ui 1|
1

1=

t . .
<8 Y (L4 pA (M) (1461) pr (14 pAa) > U
i=1

t .
= 8’ pmin {r;n} (1+61) (1+pA (M))7TES (14 pA)20V U (77)
i=1
: (T4 pd (M) -1
=83 pumin {r;n} (1 +61) (1 + pA (M 1 (L s Ul?
pmin {r;n} (1+61) (1+ pAr (M)) (1+uA1(M))2—1” I
< Smin {r;n} (1+61) (1+ pA (M))* U3
“Nan® min {r;n} (1+61) (1+pd (M))™ U]
This shows the claim. O

A.2 Proof of Lemma 8.2

Proof of Lemma 8.2. First, we note that |T;] > HﬁtTUng . Then, we observe that
2
0, vy = UL (1d + pA* A (X XT)) 0y

(
n t
= UOT (Z (1+pA;) UiUZ-T) 1
i=1

= g Z (1 +u)\i)tviv;‘ﬁv1
i=1

= (1+pA) UL v
This proves that [T > (1 + pA (M))t HUépvl sz‘ From this observation together with Lemma 8.1 it
follows for all ¢t < ¢* that
V-G 4, (amm{r;n}
[Tel - 2 M)\ [T o]

) (1+31) (1+ph (M) U,

£
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In order to finsh the proof, we are going to derive a lower bound for ¢t*. First we note that by the
definition of ¢t* followed by elementary algebraic manipulations for ¢ < t* we have

4 o [ a@min{r;n} 2% 1713
a (1+8) (1+ i (M) U] < 1
A (M) ( [U5nll, )

402 (1+61) \ amin {r;n}

1 A1 (M) |Ug v,
n 402(1+61)|U|3 \ amin{r;n}

2In (1 + pA; (M))

A1 (M) HU(?Ul Hz
rl (4a2(11+51>U3 (amin{r;nz}
t* > .

TU
= (1 uh (DY U] < D ( U5l )

<t <

Therefore, we must have

2In (1 + pA; (M))

A.3 Proof of Lemma 8.3
Proof of Lemma 8.3. Proof of inequality (17): Due to Weyl’s inequality we have that
or, (ZUg + Ey) > 0, (Z:Uy) — | Et| > oy, (VLTZtUO) = 1B

where the second inequality follows from the Courant-Fisher minimax theorem (see, e.g., [67,
Appendix A]). Now we note that

or. (VI Z:Up) = owmin (VI Z VLV Up)
> omin (VZ ZeVL) omin (VZ Up)
= 0r, (Zt) omin (VI Up)
= oy, (Zt) Omin (VLT ) .

This shows the second statement.

Proof of inequality (18): From Weyl’s inequality it follows that
Opr, +1 (ZtU0+Et) <Op, 41 (ZtU()) + HEtH (78)
Denote by U = VUZUW(:JF the singular value decomposition of U. Then we can compute that

or,+1 (ZUp) = . max min || Z,Uz||
V. dimV=r,+1 zeV ||z|=1

=a  max min | Z, VgVl Uz|
V,dimV=r,+1 zeV,|z|=1

min | Z;Vyz||U]

max
V,dimV=r.+1 zeV |z|=1

max min || Zz||U]||
V,dimV=r,+1 zeV,|z|=1

= aop,1(Z) |U]-

=

<«

47



The first line is due to the Courant-Fisher minimax theorem and Uy = aU. The last line follows again
from the Courant-Fisher minimax theorem. Together with inequality (78) this implies the third claim.

Proof of inequality (19): First, we note that

ZiUg + By = ZiViVE Uy + Z Vi V8 Uy + E.

=H

Note that since VLT Vu has rank r,, the matrix ZtVLVI:‘F U must have rank r, as well. In particular,
since ZtVLVLT U= VLVLT ZtVLVLT U this means that L is the subspace spanned by the left-singular
vectors of ZtVLVLT U corresponding to the largest r, singular values. Due to Wedin’s sin 6 theorem
[68] we obtain that

|H |
IVAVL | < -
or, (ZeVLVEUY) = 0v, 1 (ZUo + Ey)
< | H |
" aor, (Zt) omin (VEUY) = 01,11 (Z:Uo + Ey)

| ]|
< )
aoy, (Zt) omin (VAU ) = a0y, 1 (Z) |U| - | E|

where in the last line we also used (18). (Note that the assumption (16) guarantees that the
denominator is positive, which is a necessary condition for an application of Wedin’s sin 6 theorem.)
Now we observe that

|2 <12V VLU + [ Eell < @ ZeVie U + [ Eell = aor, 1 (Ze) U] + [ Eel.

Together with the previous inequality chain, this shows inequality (19). O

A.4 Proof of Lemma 8.4

Before proving Lemma 8.4, we are going to introduce some notation. Let Uy = >;_; aiuiviT be the
singular value decomposition of U;. Define L; := Z:;l Uiuiv;f and Ny = Y . . O'Z"LLl"UiT. Denote by
L=V5,%2r, WLTt and Ny = Vn, 2, Wﬁt the singular value decomposition of those two matrices.

We start by proving the following technical lemma. It says that if the subpace spanned by the
columns of X and L; are aligned, then also the subspaces given by W; and WLé will be closely
aligned.

Lemma A.1. Assume that |V, Vy,| <1/2. Then it holds that

20,41 (Uy) |[VE VL,
Or, (Ut) .

IWE W] <
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Proof. We note that

WEW =\ IWE waw Wy,

\/ IWEUTVx (VEUUT V) CVIUWL|

1
\/” UTVX (VIvUlvy) VEIUWL|

\/|| LNV (VEUGUF V) CVINWL

-1
- \/||W5WNtENtV]€VX (VEUUF V) VIVNSNWE Wi

-1
= \/ ISnVE Ve (VEUUTVX) ™ VEVN, SN
|28 Ve, Vx|
" Omin (V;Ut) '

In order to control the denominator we note that

Owmin (VEUL) = \/owin (VEUUT Vi)
= \/owin (VE (LLT + N.NT) V)
> \/owin (VI L LT Vi)
= omin (Vi Lt)

> Omin (V;VLt) Omin (Lt)

> Omin (Lt) .
2

In the last line we have used the assumption |V, V7, | < 1/2. Hence, we have shown that

2|Sn IV Vx|
Wi <« ——=
¢ Omin (L)
207,41 (U) | VN, Vx|
O‘T’* (Ut)
20r,+1 (Ur) ||VL€VXH
Or, (Ut)
_ 20’r*+1 (Ut) ||V§lVLz H
O’T’* (Ut) ’

which finishes the proof.

Now we are in a position to prove Lemma 8.4.
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Proof of Lemma 8.4. Proof of inequality (20): First, we observe that due to Lemma A.1 and the
assumption |V, V|| < % we have that

207,41 (Ut) HV; VLt ”

WLW,| < <1/4. 79
” Lt tH o, (Ut) / ( )
Then, we note that
or, (UW)? = o, (WU UW)
=or, (W] (LT Ly + NFN) W)

= (1= IWEW?) o (U)°.
Using inequality (79) we obtain inequality (20).
Proof of inequality (21): Note that

-1
Vi Vo, = Vi Vouw, Vi,w, UitWe (Vi,w, U:We)
-1
=Vl UW, (Vi,w, UiW)

By the triangle inequality it follows that
-1 -1
IV Vo | < IV LW (Viw, UiWe) ||+ [V NaWs (Vi UsWe) |

The second term can be bounded as follows.
IVE N (VEw, UWa) ™ < %

o INw [ [WR Wi
or, (U:Wt)
o (U) IWE Wi

- or, (UWr)
07 (U) [WE W
or, (UWr)

or.o1 (U)W, Wi

<2
O-T‘* (Ut)
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In order to bound the first term, we note that
-1 -1
IV LeWe (Viw, UeWe) | < IV VLI LeWe (Vi UeWe) |

(a) -1 -1
< NV ([0We (Vi UWe) ™ |+ INaWs (Vi UiW:) ™ )
= [V VLN (L4 [N (Vo UWV) ™)

() N W,
<V VL (1 + a”(tTﬂin))

or,+1 (Ut) HWE;Wt” )

UT* (UtWt)
0r. o (U) [WE Wi
)

©)
< HV;J'VLt || (1 +

< VTLV 1+2
v Ltn( .l

(d)
< 3|VELLy.

In (a) we have used the triangle inequality and inequality (b) follows from inspecting the inequality
chain (80). In (c¢) we used inequality (20) and (d) follows from (79). Combining our results we
obtain that

or+1 (Ur) ||W£Wt I
or, (Ut)

op 1 (U) IV VL
7 (Ur)

IV Viw, ] <3|V Vi, | +2

<3|VE v, | +4

2 7||V)7(1VLt H7
where in the second line we used Lemma A.1. This shows (21).

Proof of inequality (22): We note that

NUW 1| < | LeWy || +
SINLeWe || + | Ve (81)
= LW || + 01 (Ur) -

Observe that | L¢Ws,, | = | LWy, W/, |. Then we compute that

LWy, W, = L (1d - UV (V¥ UtUtT Vx) VXU)
= Ly (1d - Lf Vx (VEULU; ViU)
= L (Wi, W, - LTVX(VXUtUt VX) viu).
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Next, we note that

VEivuTvy = VEL LTV + VENNTVy
=Vi LW, WL LI Vx + VE NN Vy

-1 -1
=V LW, | 1d+ (VY LWy,) Vi NN/ Vx (W], L{Vy) ™ | W[, L V.

=:A
Now observe that
|VEN NS Vx|
min (VEL WL,
[V Vi, |2 Ve ]2
" Ounin (VIVL)? 0in (L4)?
V¥V Por. e (U)
" Omin (V):(FVLt)2 or, (Up)?
IVE VL Por 1 (U
Omin (V;VLt)z or, (U2)°
IV Ve Pora (U)°
(L= IVEVLI2) o, (U1)?
<1/2.

|All <

<

In the last line we have used the assumption |V, Vy, | < 1. To continue note that we have

LIvy (VEULUT V) VE,
LTV (WE LT V)™ (1d+ A) (VELWL,) " VEU,
W, (1d+ A (VELwL,) T VET,
W, (Id+ A WE + Wy, (1d + A (VELWL) T VEN,
W, W =W, A(Id+ A7 WE Wy, (1d+ A (VELWL,) ™ VEN,.

Note that in the last line we used that |A| < 1/2, which we have shown above. It follows that
LW, W = LW, A(ld+ A) WL - LWy, (1d+ AL (VELWL,) ™ VEN,.
In particular, by the triangle inequality it follows that

_ _ -1
| LW, || < | LW, A(Qd + AT W | + LWy, (Id+ A (VELWL,) ™ VEN. (82)

(1) =(IT)
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Bounding (I): In order to bound the first term, we note that

LW, A(ld+ A wi
-1 -1 _
=L Wi, (VELWz,) VENNI VY (WELT V) (1d+ A W]
-1 -1 -1 _
LW, (VELWL,) (VEVL)  VENNIVx (WE LT V) (1d+ A) ' W,
-1 -1 -1 _
=Vi, (VEve,) VENNEVY (VEVK) T (WELTv,) ™ (1d+ A) ' Wi,
It follows that
VNN Vx|
2
min (VIVL,) 0min (1d + A) 0min (WthTVLt)
[V Vv, |2 Ve ]2
2
Tmin (VE VL) (1= Al oy, (Ur)
IVEVE 2o, i1 (U1)?
2
omin (VEVL,)” (1= A]) or, (Ur)
‘|V§iVLt H20'r*+1 (Ut)2
2
omin (VEVL,) (1= [Al) or, (U)

Or, +1 (Ut)
B 2

| LW, A(Id+ A) Wi | <

IN

IN

In the last line we have used the assumption |V, V|| < % as well as |A| < 1/2.
Bounding (II): We observe that

LWy, (1d + A (VELwL, ) VEN,
=L Wy, (V)?Lm/i)‘1 VEN, - LW, A(Id + A) ™ (V)?LtWLt)_l VEN,
Vi, (VEVL,)  VEN,
— LW, (VELWL)  VENNT V. (WE LTV )™ (1d+ A) " (VELWL,) T VEN,
v, (VEVL) VEN,
Vi, (VEVL) " VEN NIV (WELTVY) ™ (1d+ A) " (VELWL,) " VEN,
Vi, (VEVL) " VEN (1= NIV (WE LT Vi)™ (1d+ A) 7 (VELWL,) ™ VENG).
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It follows that

_ -1
| LW, (1d+ A) ™ (VELW,) VN

AVEVlor.1 (Un) (1 L o (U |V Vi )
" owin (VL) (1= A o, (U2)? Oin (VI Vi)
[V Vi lor. o (U) (1+ o (UD)* [VEVA |2 )

omin (VEVL,) (1= [A]) or. (U2)? omin (VEVL,)?
(Ot (Ur)

2

In the last line we have used the assumption |V, V,| < % as well as |A| < 1/2. Hence, from
inequality (82) it follows that |L;W; | < 0,41 (Uy). Inserting this result into inequality (81) we
obtain inequality (22), which finishes the proof. O]

A.5 Proof of Lemma 8.5

Before we can prove Lemma 8.5 we will need a technical lemma. In order to state it, recall that
L denotes the subspace spanned by the eigenvectors corresponding to the r, largest eigenvalues
of the matrix M := A*A(X X T) and that V, € R™"™ is an orthogonal matrix, whose column span
is the subpace L. The following lemma, which follows from standard matrix perturbation theory
arguments, shows that for if A*A(X X T) is sufficiently close to X X7 in spectral norm, then L is

aligned with the column space of X. Moreover, it says that the eigenvalues of X X7 are close to the
ones of M.

Lemma A.2. Suppose that M := A*A(XXT) = XX + E with |E| < 6\, (XXT) and 6 < 1/2.
Then it holds that
(1= (XXT) < M (M) <(1+8) M (XXT),
Aroat (M) <N, (XXT),
A (M) 2 (1=8) A, (XXT),
|V Vi| < 26.
Proof. The first three inequalities are a direct consequence of Weyl’s inequality. In order to prove
the fourth inequality, we denote by L the subspace spanned by the eigenvectors corresponding to
the r, largest eigenvalues of M. From the Davis-Kahan sin © theorem [69] it follows that
IE| (@ & ®
— < <
. (XXT)—|B| ~ 1-3

ViVl <
Inequality (a) follows from the assumption |E| < 6\, (XXT). In (b) we used that 6 < %

This allows us to prove Lemma 8.5.
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Proof of Lemma 8.5. Due to the assumption (23) we have that v < 1/2, if @ is chosen small enough,
and hence we can apply Lemma 8.3. Hence, we obtain that

(a)
0 (Ur) > a0y, (Z1) Omin (VEU) = | E| %an (Z0) owmin (VEU) (83)
or.+1 (U1) < yaoy, (Zy) owmin (VI U), (84)

where in (a) we used that v < 1/2. Moreover, we also have that

aor,+1 (Ze) [U] + | Bt <

VAV, | < < .
B o, (Z1) omin (VEU) = aop, 1 (Ze) |U| - |Ee| ~ 1=

Now note that

IV Vi | = [VE Vi = VL, VL
< VEVE -V + v VE - v, VE|
= [V VL] + VA VL
Y

<20+ ,
-y

where in the last inequality we applied Lemma 8.3 and Lemma A.2. Hence, by our assumptions on §
and v we can apply Lemma 8.4. Together with the inequality (83) we obtain

1 «
Omin (UtWt) 2 50'7“* (Ut) 2 ZUT* (Zt) Omin (VEU)
as well as
||V§lVUtWt“ < 7”V§lVLt H
s7(85+ 7 )
1-v
<56(6+7).

Moreover, it also follows from Lemma 8.4, inequality (84) and our assumption on v that

“UtWt,LH <207, 41 (Ut)
< 2’)/060'1~* (Zt) Omin (VEU)

-2
< %O&Uh (Zt) Omin (VEU) :
This finishes the proof. O

A.6 Proof of Lemma 8.6

Proof of Lemma 8.6. In order to apply Lemma 8.5, we need to show that v < @x~2 for an appropri-
ately chosen t, =t. We are going to show the stronger statement ~ < c3x~2, where c3 is a sufficiently
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small constant depending only on ¢, which will be specified later. Note that by the definition of -y it
suffices to check the following two conditions.

C —
oront (Z) U] € < or. (Z0) omin (VEU) 572, (85)

C —

By using the identity Z; = (Id + uM )t and by rearranging terms we see that the first inequality is
equivalent to the inequality

262U ( L+ iy, (M) )
C30min (VEU) S \1+ :U’)‘T*'Fl (M) .

t*_PH(C:),Umin(VLTU))(ln(1+ﬂ)\m+1(M))) ]’

=0
we see that condition (85) is satisfied. Let us check that this choice is feasible, i.e. t. <t*. By
Lemma 8.2 and the definition of ¢, it suffices to show that

Hence, if we set

n A1 (M) |Ug v ],
262||U | 1+ phe, (M) -1 ToZ(1+0) [UTP or
2L (GO0 |

c30min (V/U) L+ php, 1 (M) 8In (1 + oA (M)
Next, we note that

In (1+pA (M)) _ In (1 + pAy (M))
h’l( L+pAr, (M) ) B ln(1+ H()‘T*(M)_AT*H(M)))

T+pAr, +1(M) T+pAr, 41 (M)

1+pArr, (M)
< AL(M) 1&;;—”(1\4) (87)
- )\r* (M)f)‘r*w‘l(M)
T+pAr, +1(M)
(M) (14 o, (M)

>\r* (M) - /\r*+1 (M)

< 2K2,

where in the first inequality we have used the elementary inequality 17— <In(1+z) < z. in the last
inequality we used our assumption on the step size pu, Lemma A.2 as well as our assumption on § >0
with a sufficiently small constant ¢;. Hence, t, <t* is implied by

262U | 1 A (M) |0 v,
In| ———F——=|<—In - .
c30min (VEU) |~ 952 402 (1+61) |U|? \ emin {r;n}

By rearranging terms we see that this inequality is equivalent to

_92
2 A(M) (H%Tleb)( 22| )9

a®<
4(1+61) U3\ amin{r;n} |\ csomin (VFU)
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Since by assumption d; < 1 and since by Lemma A.2 we have A; (M) > 3| X |2, we observe that this
inequality is implied by

2 UT 2 -9K? 9 UT 9 —9K2
x5, 2:2|U]| xR (1T, V(2w
- 16||U”3 amin {T; n} C30min (VEU) 16HU”3 min {T; n} C30min (VEU) 7

which follows from assumption (27), which shows t, <t*.
In order to show condition (86), we recall that by Lemma 8.1 (which we can apply since we just
showed ¢, <t*)

4 :
|Be.| < Sy’ min {rin} (L+61) (L+ puhy QD)™ U

Hence, inequality (86) is implied by the inequality

8

" (M)a2 min {r;n} (1+01) (1+ pA; (M))>

Ul? < e3(1+ phe, (M) omin (VLTU) K2

This, in turn, is equivalent to

e SO0 O20) (oo
~ 8min {r;n} (1+61) k2|U[3 [ (1 + pr (M))?

In order to proceed, we note that

[ 1+ pr, (M)

1+ ph <M)>3] e (-t (1 ()

61n (1 + pur (M))
> exp (0 : o, (M) .
. (—Hmml an )

Hence, using (87), we have shown that

[ 1+ p, (M)

’ 2
1+ 1 (M))S] > exp(—lQm—; ) .

Inserting this into (88) and using the definition of ¢,, we have shown that inequality (86) holds, if

9 T 9 -12x2
o 2l X Powin (VEU) [ 262U
<
32rk||U|3 €30 min (VLTU)
holds, which is precisely our assumption on «. In particular, we have shown that v < e3x72, which
allows us to apply Lemma 8.5. We obtain that
Q@
Omin (Ut*Wt*) 2 ZO'T* (Zt*) Omin (VEU) )

/i_2 T
< ?C)&O'h (Zt*)o'min (VL U) )

|U:Ws, o

(a)
VX Vo, we, | €56 (5+7) < er™,
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where inequality (a) follows from setting ¢; and c3 small enough. Setting 5 := o, (Z¢,) Omin (VLT U )
shows inequalities (29), (30), and (31). It remains to verify that ||Uy, |, t., and 5 have the desired
properties. We start with ¢.. Note that

1+ ph,. (M
ln( + pi\y, (M)

T+ ph (M)) <In(1+pA, (M) <pX,, (M) <u(l+9)o,, (X)2

as well as

ln( 1+ pAr, (M) )> pAr, (M)

1 2
> — A1 (M) > oy, (X)2.
T+ i M) ) S T4 pn, ) W +1 (M) 2 Sy, (X)

Here we have used the inequalities 7= <In (1 +z) <z, A, (M) < domin (X)2, and (1 -9) omin (X)2 <
Ar, (M) < (1+6) 0y, (X)? from Lemma A.2. Hence, these estimates show that ¢, has the desired
property.

Next, we are going to prove the desired bound for ||Uy, |. We obtain that

U,

<alZ. |[U] + | E.
= a(1+ pA (M)

Ul + [ Ex|
(a)
< 2a0(1+ p (M))t* U]

ID,(l +'ALA],(]V[)) ) ”l]”
1+)u‘)"'“* (M)
( 1+ﬂ>\'r*+1(M) )

< 2aexp (40%2) U1,

< 2aexp (20

where (a) follows from (85) and in the last line we used inequality (87). Hence, by inserting the
definition of ¢ we have shown that

4rk2
2 2
U] <20 —2TL_} )
Cg(THﬁn,(‘(t lf)

-2k2
%bd@wﬁmd%ﬁw 2mww)

= 32min {r;n} s|U| \ csomin (VEU)

<3[X]

where in inequality (a) we have used the assumption on «. This shows inequality (28). Now let us
check that 8 has the desired property. For that, note that

B=(1+pr, (M) Omin (VL U) = omin (VI U) exp (£ In (1 + pd,, (M))).
By inserting the definition of ¢, and using inequality (87) we can show the upper bound for § in

inequality (32). The lower bound follows immediately from the definition of 5. This finishes the
proof. O
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B Proofs for the saddle avoidance phase and the refinement phase

B.1 Proof of Lemma 9.1
Proof of Lemma 9.1. Let W; and Wy, be defined as before. We note that
ViU W, =Vy (Id+ pA*A(XXT -U,U])) U,
=Vy (Id+p(XXT -0U]) + p[(A*A-1d) (XXT -T,U])]) U,
=V UW, + pE5 Vi UW, - uVx G U UW, + pVyi [(ATA-1d) (X XT - 0,0 o,
=(Id + uX% ) Vx UWy = pVy UW, W US UWy + pVy [(AA-1d) (XX - U008 | U,y
=(Id + X% ) Vy UWs - pVi UW W UV VR UW, = pVE U W, W U Vi Vi U Wy
+uVy [(A*A-1d) (X XT - 0,U8) | UW,
=(Id + uX% ) Vy UWi (1d - uW/ UV VR UWL) = wVE UW W U Vil VE U W,
+uVy [(AA-1d) (XX - U | UW; + 12 S5 Vi UW, W U Ve VEU W,
=(Id + uE% ) Vx UW, (Id - pW{ U Vi VR UW,) = wVi U Ve VU,
=A;
+uVy [(AA-1d) (XX - U | UW, + 1S5 VR DU Vi VR U W

=:Ag =:Ag
First, we want to bring all A; into the form P,V{UW, (I1d - uW U Vx VEUW,) for i € {1;2;3}.

Rewriting A;: Now let the singular value decomposition of U1 Wy € R"*"™* be given by Vy,., w, Xv,,,w, W{‘Z W
with Vy,,,w, € R"*"*. This allows us to compute

VEUW, = VEUW, (VEUW,) " VEUW,
= Ve Vo Viow, UWe (Vi Voow, Viw, Umft)‘1 viuw,
= VEVuw, (VEViw, ) VEUW,.
We compute that

VEU UV VE U W,
VEUUI Ve VEVw, (VEViw,) ™ VEUW,
VEUUT Ve VE Vo, (VEViw,) ™ VEUW, (1d - pWT UF Ve VEUW,) ™ (1d - pW UT Ve VEU W)
VEUUT Ve VE Vo, (VEVw,) ' (1d = pVEUW, WU V)™ VEU,W, (1d - s UV VEU W)
VEUUI Ve VE Vo, (VEViw,) ™ (1d - pVEU UV ) VEUW, (1d - pW T UT Vi VEUW,).

=P
(89)

Rewriting As: We observe that
-1
UW, = Vow, Vow, UWe (V¥ Voo, Viw, UiWi)~ VEUW,
-1
=Vow, (VaVuw,) Vi UiW.
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Hence, we can write

Vi [(A*A-1d) (XX -0, Ul | uw,

VI [(A*A-1d) (X XT = 0U7) ] Viow, (VEVow, )~ VEUW,

VI [(A* A-1d) (XXT = 00D Vo, (VEVow, )™ VEUW, (1d - pW ] UT Ve viETw,) ™
(Id - pW U Ve VEUWY)

VE[(A*A=-1d) (XXT =007 Viow, (VEVew,) ™ (1d = pVEU, W, WU vy ) ™ VEDW,

::PQ

(1d - wW/ UL Ve VEUW)
Rewriting As: Note that
2 vivul vy viuw,
=2 vivowwlrurvyviv,w,
=SX Ve UW WUV VEUW, (1d - pW U Vi Vi Um/t)’1 (Id - wW ULV VEUW)
=SX Vi UW, (1d - pW/ U Ve Vi UtWt)’1 WU VxVEUW, (Id - uW UV VL UW) -

=P
Hence, we have computed that

ViU Wy = (Id + uS% — pPy + pPs + (° Ps) Vi UW, (1d -y W/ UV VEUWE) . (90)
It follows that

Omin (VX Uit Wi)
Id + pS% — pPr + pPs + (2 P3) oin (Vi UWe (1d - pW U Ve VEUWL))

(
Zamin(
(g)Umin (Id + pX% = pPr + uPy + 2 P3) omin (Vi UsWy) (1 = poty, (Ve UWE))
=0min (Id + pS% — Py + pPs + 1° P3) oo (VX Up) (1= pots, (VX UL))

(®)
> (omin (10 + u5%) = pul PrL = ul Pl = 12| Ps])) 0w (VEUL) (1 - oy (VEUL))

= (14 1024 () = | 2o = al Pl = 12| Pl ) 0 (VEUR) (1= oy (VETR))

Equality (a) can be obtained by using the singular value decomposition of V):(F UWy and the fact that
1 <1/ (V3| VU |?), which follows from our assumption on p. For inequality (b) we used Weyl’s
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inequality. In order to proceed, we are going to estimate |Pi||, | P, and |Ps|. First, we note that

1B VI W UV VE Vi | (VEViaw )™ 1 (1 - w0 V) |
<UWAIVETW N IVEVow I (VEViw,) ™ 1 (1d - pVETUT V) |

[UW 2 IVE Vo |21 (VE Ve, )™ 1 (1d = pVEUUE V) ™|
i VW2 IVE Vi, |

Omin (VEVUW, ) Omin (Id = pVEQUTI V)

|UW 2 VE Vo, |12

i (VEViaws) (1= ] VEU[2)

(

b)
< 4|\ UW? |V Vo, |2

IA

(©
< 36] X[V Vo |

d
(S) iamin (X)2 .

For inequality (a) we used the submultiplicativity of the spectral norm and the fact that V)? U, =
VEIUW,WE. In (b) we used the assumption |V, Vi,w, | < ex™! and p < 1| X[ 72672 < | VEU|2/9.
In inequality (c) we used the assumption |U|| < 3||X|. Inequality (d) follows from the assumption
||V):(FL Viuw, | < ex™t, where the constant ¢ is chosen sufficiently small.

In order to estimate | P,|| we note that

(a) . -
1Py < | [(A*A-1d) (XXT = U (VEViw) " 1]

_ A A1) (XX - G0 )] |
omin (VEVow,) (1= p|VEU|?)

? 4| [(A*A-1d) (xXT - 0, U]

(1d - wVE ool v )|

In (a) we used the submultiplicativity of the spectral norm. In inequality (b) we used the assumption
IV Vuw, | < e and p < ¢ X[ 72672 < ¢|VE U 72/9. Next, we are going to estimate | P3| by

1P3] < |S%NIVEUW | (1d - pW] UV VEUW:) ™ WU V|
XV Use?
- p|VEUW |2
<2 X|?|VEUW; |
<2| X2 |UWy|?
< 18] X%

In the last line we used the assumption |Uy| < 3| X|. Inserting our estimates for || P;||, | P2, and
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| P3| into (91) we obtain that
ain (VEUa W) 2 (14 S o (02 - ap] [(A°A-10) (XX - 0T)] | - 187 )
omin (VEUL) (1= poy, (VEUL))
@ (1 - Lo (X)) Oin (VEUr) (1= podsn (VETL))

1
=0min (Vi Ut) (1 + S HOmin (X)? (1= poli, (VEUL)) = ol (V}Ut))

@amm (Vi Ut) (1 + %Wiﬁn (X) - pop (Vi Ut)) .

Inequality (a) follows from assumption (43) and the assumption p < ck™2| X |~2. Inequality (b) is a
consequence of our assumption on the step size p and the assumption |Uz| < 3| X|. The final claim
follows from the observation that opmin (V):(F Ut+1) > Omin (V):(F Ut+1Wt). O

B.2 Proof of Lemma 9.2
Before we can prove Lemma 9.2, we first need the following technical lemma.

Lemma B.1. Suppose that the assumptions of Lemma 9.2 are fulfilled with a small enough constant
c>0. Then we have that

IV Vorawa | <20V Vi | + 2] (A" A(XXT - 00])) |- (92)
In particular, it holds that |VE Vi, w, || < 1/50.
Proof. We note that
Ui Wy = (Id + pA* A(XXT - UU])) U,
Let VUtWtEUtWtW(%;W = U W} be the singular value decomposition of U;W;. Set
Z = (1d+ pA* A(XXT -UU)) Vo,

Since Xy, w, Wgt w has full rank by assumption, the matrix Z = V7 X ZWZT has the same column space
as the matrix U1 W5, In particular, it follows that

IVE Vi ml = IVE V2|
< VEVZEWEN (S2WE) 7
VL zl|z7
izl
Omin (Z)

By Weyl’s inequality it holds that
Omin (Z) 2 Omin (VUtWt) - MH (A*A (XXT - UtUtT)) Vu,w, H
=1-p| (A A(XXT -0 ) Vo |
=1-p| (A A(XXT -0,U])) |
>1/2,
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where in the last inequality we used the assumption on the step size u. Moreover, note that
VX Z| < IV Vo |+l (A" A(XXT - 00))) .

This implies inequality (92). Using the assumptions on |V:f, Vi, w,| and p, where the constant c is
chosen small enough, it follows that |V, Vi, w, || € 1/50, which finishes the proof. O

With all ingredients in place, we can give a proof of Lemma 9.2.

Proof of Lemma 9.2. As a first step we are going to establish a formula for WtT Wis1,1. Recall that
V;gUtHWHM =0 due to the definition of W;,q ;. Since WtWtT + I/[/157LI/I/I‘TL = Id we obtain that

T T T T
VX Ut+1WtWt Wt+l,l = _VX Ut+1Wt,th,LWt+1,m

or, equivalently,
-1
W Wi, == (VX U Wy) VE Upa Wi . W, Wi (93)

Now recall that we want to bound U1 Wi, | from above. Note that using V)?Ut+1Wt+1,¢ =0 we
have

T T T
UpsitWis1,1 = Vx Vi Ui Wi L + Vi Vi i Uit Wi = Vit Vet Uit Wi,

which implies that |Up1 Wi, || = |V U1 Wi

|. Due to W;W + Wy , W, =1d we have that

VUi W1 = ViUt WeW Wagr s + Vi Upa W W, Wi (94)

=(a) =(b)

We are going to consider the two summands individually.
Summand (a): We note that from (93) it follows that
-1
ViUt WeW/ Wi, = -V U Wi (VR UpaWe) VR Upa We W/ Wi

Let the singular value decomposition of U1 W; € R™™ be given by Vi, ,.w, Xv,,,w, Wgt w, with

Vu,..w, € R""™. By assumption we have that V)? U1 Wy is invertible, which also implies that U1 W,
has full-rank. Hence, we can compute that

-1 -1
VU We (VU Wa) = Ve Vi, w, Vi wa Ut We (VY Vi wa Vi, w, Uea We)

-1
= V):?L VUt+1Wth;+1Wt U Wy (Vg;ﬂWt Ut+1Wt) (V):?VUHth)

_ T T -1
= VXi VUt+1Wt (VX VUt+1Wt) )

-1

which shows that

T T T T -1o7 T
ViU WW! Wiy = -V Vuow, (Vi Viaw,) Vi Ut Wi )W Wi
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Moreover, we note that

Vi Ui Wy, = VY UWy, + Vi [ATA(XXT - U0 U,
=VeUWi, +uVy (XXT - UUS) UW, + pVE [(AA-1d) (XXT - UU) | UWy,

@ _HV;UtUEUtWt,l + NV)Z(C [(*A*'A - 1d) (XXT B UtUtT)] Ui,

= uVy [-OUF + [(AA-1d) (XX - .U ]| U,
In equality (a) we used that V; UWi, =0and X TUW, . =0, which follows from the definition of
Wi,.. Hence, we have shown that
VU WiW Wi,
=1V Vipaws (Vi Viaw,) tyr [0U] - [(A*A-1d) (XXT - TU") || UWe W W,

OV, (VEVow)  VE[UUT Vi - [(A*A=1d) (XXT = UUT) | Vi [VEUW, WE Wi,

=M

-1
=1V Viaw, (VA Vigaw,) MiVEUW W Wi,

In equality (b) above we used that VXV)? UW;,, =0, which is a consequence of V; UW;, =0. It
follows that

-1
IV Ud WoW W1 | < plVE Vol (VX Voeaws) — HIM VL Uy
-1
< 1|V Vowill (VE Voraws) 1ML VL Ty
\\Vx%ﬁlwt\\HM1H||VXLUt
Omin (V VUtHWt)

In order to proceed we note that by Lemma B.1 it holds that | VI, Vi, w| < 1/50. This implies that

Omin (V;VUt+1Wt) = \/Jmin (V(};+1Wt VXV;VUtHWt)
_ \/gmin (Vw1 =V VE) Vo,ow, )
V1= IVE WV VE Vil

=1 IVE Vw2
> 1/2.

Hence, we have shown that

|V U WeW M| [V U W i |-
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We can estimate | M| by

(a) .
|| < VR UU V| + | [(A*A-1d) (XXT - UU]) ] Vx|

b *
O WEowwI UL vy, | + | [(A*A-1d) (XXT - U,UF)] V. |

< VUMW IV UWe| + | [(A*A=-1d) (X XT = UU]) ] Ve |
< VEUWIVUW| + [ (A" A-1d) (XXT -UUF) |
< [VXUW [V Vo [[UWa] + | (A" A= Td) (X XT - U,U]) |
< [V Vow U + | (A" A-1d) (XX - U] |
In inequality (a) we used the triangle inequality and in equality (b) we used that V3L U; = VIU,W, WL
Hence, we have shown that
VXUt WaWi W |
<2 (Vi Vouw [UW ] + | (A*A-1d) (X XT - GO
<2 (Vi Vouw [[UW ] + [ (A*A-1d) (X XT - U0
<2p (IVEVuw [|1X P + | (A" A-1d) (XXT -1,U]) |
|

YD IVEVw [V UWe
YD) VR Vo w | [T WL |
Y IV VU w, U W |

Qap (IVE Vi [1X )2 + | (A A-1d) (XXT - 007 )|
IV Vow, | + ol (A" A) (XXT = UUS) 1) U A
<4yt (OIVE Vo, [1X 12 + | (A" A-1d) (XXT - 0T [)

(IVE Vo |+l (A" A=Td) (XXT - UUT) | + | XXT - UUT ) [0 W |

(%) *
<Ap (OIVEVow X2+ (A A-1d) (XX - U0 ) )

IV Vowe |+ ul (A" A=1a) (XXT = U0 ) | + 104 X |?) [U: Wi

© .
<u(OIVEVuw [1X[7 + | (A" A-1a) (XXT =TT ) [|) [U:We. .
where in inequality (a) we used Lemma B.1. For inequality (b) we used the assumption |U| < 3||X |

and for inequality (¢) we used assumption |Vif, Vi,w,| < ex™! and the assumption on the step size p
with a small enough constant ¢ > 0.
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Summand (b): First, we compute that

ViU Wi
=V UWey + Vi (XXT - U U UW, + pVi [(ATA-1d) (XXT - 008 | U,
=V UWy, = Vi G UT U Wy, + pVis [(AA-1d) (XXT - UU1) | UWy
=V UWyi - pVi i DU Vil VELUW |+ pVis [(ATA-1d) (XXT - DU | UWe
=(Id - Vi DU Vs = pVia [(A*A-1d) (XX - UU1) | Vs ) VL UW
Vi UWe,, - Vi UWo W U Vil VEUW, - pV UW W U Vi VL UiW
+ Vs [(A*A-1d) (XX - UU) | Ve VL U W
= (1d - VL UW WU Vs + pVs [(AA-1d) (XX T - UU]) Ve ) Vil UWe L (T1d = pW/L U U )
— 12 (VR UW WU Vs - VL [(ATA-1) (XX - UU)) Vi ]) Ve UW WL U O
Set for brevity of notation My := Vit U W, W Ul Vx. and My = Vi, (A*A-1d) (XXT - UUL) Ve,
Hence, we have computed that
Vi Upa Wi,
= (Id - pMa + pM3) Vi, U Wy, (1d = pW[ L US UW L) = i (Mo = M) Vi Uy W JW UF U,
= (Id = pMy + puM3) Vi U Wy, (Id - pW US Vel VELUW, L) = 5 (Ma = M) Vi UW WL U UW .

Hence, we obtain that

IV Upa We . W, Wi |

<| (Ad = pMy + pM3) Vi UWy , (1d = pW U Ve VLU W L)
— 1® (Ma = M3) V. UW W U U [W W |

<| (Ad = pMs + pM3) Vi U W, (Id - pW U Ve VLU WL )
- p? (M = Ms) Vi . UWy WL US UW, |

<|| (Id = pMy + pM3) Vi U Wy, (1d = pW L U Vil VU WL ) |
+ 12| (Ms - M3) V. U W WL U UW, L.
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In order to proceed, we compute that
| (1d = My + pM3) Vi, UWe, (Id - pW U Ve VU L) |
Q1 = s + by || VEUW,, (1 - iWEUT Ve VE DLW, ) |
Ol1d - b + My | [VE T WL | (1 - p VEU W)

< (1= 0l + My ) IVE Ui | (1= I VE W)
C (e M) VUL (1 - pVEUW )
= (L+ M ]) | W] (1= U P)

UMW (1=l UWe s |2+ ] (A" A1) (XX = GUT) Vi | - 2 M U Wi

<UL (1= | UW )P+l (AT A=1d) (XX - 0,U]) Ve

AU (1= plTWi |2 + ] (A" A - 1) (XXT - G ).
The inequality (a) follows from the submultiplicativity of the spectral norm. Equality (b) can be
seen be using the singular value decomposition of ViI,U;W; , and the assumption u < ¢1]| X||72 <
1/(V3|VEUW, 1 ||?). Inequality (c) follows from the triangle inequality. For inequality (d) we used

that 0 <1Id - MV)? LUWWIUTI V. < 1d, which again is a consequence of our assumptions on g and
|U:|l <3| X|. For the O (p?)-term we note that

)

| (My = Ms) V. UW W UT U, |

= (Ms - M3) VL UW, WUV VO W, |
<[ My - M|V UW L |
<(|1Ma] + | Ms]) |VEUW,
(V- UWe? + | Ms)) [V UWr
(IVEVow, IPNUW | + [ Ms]) [V U WL )P
(IVENVw 21U + | Ms])) [UW L))
(
(

3

3

IA

IN

3

VSV PN UW? + | (A*A-1d) (XXT - U8 Ve ) UL
IVE Vw2 UW|? + | (A A-1d) (XXT - UU5) ) UL |

IN

It follows that
12| (M = M3) V. UW U UW, |

<1® (Vi Vo, P10 + | (A" A-1d) (XX - U0 ) [UW )P

(a) .
<P (X2 + | (AT A-1d) (XXT - TUD) ) 1UW L P

b
(S)H
2
In (a) we used that |U]| < 3||X|. In (b) we used our assumption on the step size u. This implies
that

3

)

|UW

IO <10 (1= S0+ ] (A7 A-10) (XXT 00T ).
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Conclusion: Putting things together it follows
VUi Wi |
<[(a)]+ (@)
< (1 - g”UtWt,L

29V Vo |1 X% + 20 (A" A= 1) (XXT - U,UY) II) [UW |-
This finishes the proof. O

B.3 Proof of Lemma 9.3

We define the inverse of the square root of a symmetric, positiv definite matrix A = V32 AVAT by
A2 = VAZAI/ZVE, where (2;11/2)“ = \/114_“ We will need the following technical lemma, which
gives a bound on the first order Taylor-approximation of the matrix inverse square root.

Lemma B.2. Let A be a symmetric, positiv definite matriz such that |Al| < 1/2. Then there holds

_ 1
| (Id+A) 2 - 1d+ Al < 3] A|2.

Proof. Since A is symmetric, this can be readily deduced from the (one-dimensional) Taylor’s
theorem. Indeed, we have that for |z| <1/2 that

1 x 3 -5/2 2
1+ = 2.1 .
= +2\S|j§32\8 (1+2)7% 27|

< 322

O

The next technical lemma shows that the orthogonal matrices W; and Wy, span approximately
the same column space.

Lemma B.3. Assume that the assumptions of Lemma 9.3 are fulfilled. Then it holds that

L .
[Wes e | <p (mamm (X)*+ U] HUtWt,ln) [V Vouwa | + 4p] [(1d - A7 A) (XX - 0,0 ]|
(95)

and

Tumin (W Wiat) > 1/2.
Proof. Due to V;Ut_;_l = V)?UHlWHle;l we observe that

-1/2
IWE Wil = W ULV (VEUUE V) 2.

We note that
Vs Ui Wi
=Vx (Id+p (XXT - OUD))UWy, - pVy [(1d - A*A) (XX - 008 | UWe,
= - uWVy DU UWy ) - pVy [(1d - A*A) (XXT - 0,00 U,
= — yVYUW WU UW, - pVy [(1d - A7 A) (XXT = UU]) | UW
= - WV UW W/ U Vo VEUW, - pVy [(1d - A*A) (XXT - .U | U,
= — Wy UW WU Vi, w Vi, Vi Ve UWe = uVi [(Id = A*A) (XXT - U] [UW .
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It follows that

-1/2
W Weet | <l (Vi U UL V)

+u [d - A*A) (XXT - U U] |UWe || (Vi Ui Uy V)
-1/2
=u| (Vi Ups1Ul 1 Vx) / Ve UW W U Vi,w, Viow, Vs Vi U |
|| [(1d - A*A) (XXT - U] || UL |
Omin (V Ut+1)
1/2
<l (VEU UL Vi) P VEU WU W |0y
. [ [1d-A*A) (XXT - GUD] || UW,L |
Omin (VgUt+l)

Vi UW W U Vi,w, Vi w, Ve Vi U |
-1/2

T
Vuaw |

We note that

(VEU UL Vi) P

-1/2
VIUW, =(VIUUE V) VIO W,

-1/2 )
~p (VEU UL V) PVEA A(XXT - 00T ) U, W,
It follows that

-1/2
| (VEU UL Vi)

VEu,wy|
-1/2 "
Vi U Wy | + pl| (Vi U U V) PyTa AXXT -0Un) UWy|
-1/2 "
Vi Up | + pl| (Vi Upn Uy Vi) PyTg AXXT -0Ul) UWy|

1+ | (VEU UL Vi) P VE A A (X XT - Ul ) Ui
|A*A(XXT -UUT) [ |UW]
Omin (V;Uﬂl) .

Hence, we obtain that

-1/2
< (VEU UL, V)™

-1/2
< (VEU UL, V)

<1+ p

JA*A(XXT - UUT) [ U W5
W W] <p| 1+ p ( - ) (eaza e Vo
Omin (VXUt+1) (96)
A (XX -G U,
Omin (V;Ut+1) ‘

Next, we are going to show oy (V):(F Ut+1) > M We note that

omin (V¥ Ut+1) > Omin (V3 Ut We)
= omin (V¥ (Id+ p[(A*A) (XXT - 0,U01)]) UW)

omin (Vi (Id + p[(A*A) (XX - UU)]) Vo, Vil w, U:We )

Omin (Vi (Id+ p[(A*A) (XXT - UU1)]) Viw, ) omin (Vilw, UsWe)
Omin (VX Viaw, + 1Vx [(A*A) (XXT - UtUtT)] Vo, ) Omin (Ui Wy)
(omin (VA Viuw,) = pl|Va [(A*A) (XXT = UUD) ] Viwa ) omin (UiW) -

1l v 1l

\Y%
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We observe that due to our assumption on |V, Vis,w, | we have that

min (VEViaw) = /1= IV Vo 22 .
Next, we note that due to assumptions (44), (46) and |U;| < 3| X | we have that
WIVE [(A"A) (XXT U0 Vi | <l (A A) (XXT ~0,07) |
<104IX P + ] (1d - A" 4) (XXT - GUT) | <

g,

Hence, we have shown that omin (V; Ut+1) > M This implies due to inequality (96) that
A A(XXT - UUT) || U]
Omin (UtWt)

|| (Id - A*A) (XXT - UUE) [ |U WL |
Umln(UtWt)

W Wi | Sﬂ(l + 24 )HUtWtII |UWe NV Vew

(a)
ncanrallaaies (xxT-uul)|
+ 41| (AT A) (XXT - TUD) [|UWV P VY- Vo -

In inequality (a) we have used the assumption that |UW; | | < 20min (UW:). In order to proceed,
we note that

| (A A) (XX -00]) | < | XXT -UU] | + ] (1d - A A) (XXT - 0,U]) |
<11 X7,

where we used the assumption |U;W;|| < 3|X| and | [(Id - A*A) (XXT - UUS)]|| < comin (X)2.
Hence, we obtain that

W Wil <t (s mn GO + [0 UMW) [VE Vo] + 4] (1= A°A) (XXT = GUT) .

( 1
6400

where we also used p < cx™2| X2, Hence, we have shown inequality (95).

In order to finish the proof we note that

(a) 1
IWe,Weal < M(GZLOOUmln (X) + [T Wi Uy ) VTV, |+ dpicomin (X)°
(2) : X))+ 9| X2 |VEV; 4 X
64000m1n( ) + H H ” X1t UtWtH+ C,uo—mln( )
Qe

In inequality (a) we used the assumption | (Id - A*A) (XXT - U,U) | < comin (X)?. In inequality
(b) we used |U; and |UWy|| < 3||X|. To obtain inequality (¢) we used the assumption
p < ¢| X[ 2. By choosing ¢ > 0 small enough we obtain that |W,", Wi,1| < 1/2. Note that this implies
that

Omin (Wi Wia) = /1= [WE W |2 2 1/2,
which finishes the proof. O
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Now we have provided all the technical preliminaries to prove Lemma 9.3.

Proof of Lemma 9.3. In order to simplify notation, we define M := A*A(XXT - UtUtT). Hence, we
may write

Upe1 = (Id + uM) Uy.
Now we note that
Ut+1Wt+1 = (Id + /LM) UtWt+1
= (Id + puM) UWe W Wit + (Id + pM) Uy Wy , W Wi (97)
= (Id + uM) Vi,w Vi, w UWW! Wiy + (Id + uM) UW, W Wi,
Note that Vg; W, UWWIW;,1 is invertible, since Vgt w, UtWy is invertible by assumption (45) and
WIW;,1 is invertible by Lemma B.3. Hence, we see that
(Id + pM) UWy W Wi
-1
= (Id + uM) UsWi , W Wt (Vi UWeW Wit ) Vi, UWi W Wi
-1
= (Id + M) Ui Wi W Wit (Vi UWiW W) Vi, Voow, Vitw, U Wi W Wi

=P
= (Id + M) PVi,w, Vi w, UsWe W Wi

Hence, by inserting the last equation into equation (97) we obtain that
Upsi Wis1 = (Id + pM) (Id + P) Vi, Vi, U W W Wi

Recall that V{}C W, UtWtWtT Wit is an invertible matrix. This implies that the span of the left-singular
vectors of

Z = (Id + uM) (Id + P) Vi,w,

is the same as the span of the left-singular vectors of Uz 1 Wyyq. Let Vz X ZW; be the singular value
decomposition of Z. From these considerations it follows that

IV Vi Wi | = VRV = [V VaW 5 .
Next, we note that
VWE = 2(272)
= (1d+ uM) (1d + P) Vi, (ViEw, (1d + PT) (1d + pM)> (Id + P) Vi, )7
We note that
(Id+uM)(Id + P) =Id+ uM + P+ uM P
=B
=ld+p(XXT-UU) + p(A*A-1d) (XXT - U,U))

=B =:Bo
-1
+U Wi W Wit (Vidw, UWW! Wii) Vi, + pMP.
N——
=:Bj3 =By
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Hence, we have that
z(27z)?

=(I1d + B) Vi,w, (Viw, (Id+ B+ B" + B"B) Viy,w,

=(Id + B) Vu,w, (1d + Vi w, BVi,w, + Vihw, B Vo, + Vibw, BT BVu,w,

-1/2
) 1
)—1/2

It follows from Lemma B.2 that
-1/2
(1d + Vi w, BVu,w, + Vihw, B  Viw, + View, BT BViy,w,) /

1
=Id - 3 (Viw, BVu,w, + Viow, B Vuuw, + Vi w, BT BViw, ) + C,

where C' is matrix, which satisfies

IC <31V, w, BVu,w, + Vit,w, B Vuow, + Viow, BT BVu,w, | (98)
It follows that

z(27z)?
1

= (Id + B) Vi, w, (Id -5 (VE . BVu,w, + Vi, B Viw, + Viiw, B BVu,w,) + C)

1 T T
=Vu,w, + BVu,w, - 5 (Id + B) Vy,w, Vig,w, (B + B") Vuw, - D,

where we have set )
D = (Id + B) Vi, w, (ivl};thTBVUtWt - C’) . (99)
Hence,

vEz(Z7z)
1 1
=V (Id +B- §vUtthg;Wt (B+ BT)) Vi, w, — iv;BVUtWt Viw, (B +B") Vuw, - Vy.D

1
=V (Id + By - §VUth Vi w, (Br + Bf)) Vo, w,

=:(I)
1
+ Vv)j(1 (B2 - §VUtWth:Wt (32 + Bg)) VUth

=(II)

1
+ Vi (33 - 5vUtWt Viw, (Bs + BY )) Vi, w,

=(I1I)
1 1
+ Vi (34 -5V, Vi w, (B + BZ)) Vo,w, - §V;BVUtWtV£Wt (B +B")Vi,w, - Vi D.
N——
=(IV) —(V) =(VI)
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Estimating (I): We observe that

Vi (Id +B - %VUtWth;Wt (Bi+ BlT)) Vo, w,
=Veu (Id + p (1d - Vow, Vibw, ) (XX T - U,UT)) Vo,
=V Vo, + Vs (Id = Vo, Viow, ) (XXT = U008 Vi,
=V Vo, + 1V (Id = Vow, Vikw, ) X X Vo, - uVi, (Id = Vo, Vb w, ) UUE Vi,
Ve Vi, — WV Vo Vi, X X Vo, — 1V (1d - Viow, Viow, ) UsUE Vi,
=V Vow, = BV Vow Vo, w, X X Vow, - nVs (1d = Vo,w, Viw, ) UWe, . WL U Vo,
=V Vow, (Id = 1V, w, XX Vo, ) = nVir (Id = Vo,w, Viw, ) UWe WL U Vo,
=VxViw, (Id = 1V, w, XX Vo, ) = uVs (Id = Vo,w, Viw, ) UWe . WL U Vel VE Vi, -

It follows that

IO <IVEVoraw, | (1= pommin (Vi XXTViws)) + il VE Vi 10 |
IVEVB (1= Lo (CO?) + alVE Vw10

_”VXLVUtWtH 1- /;O-mll’l X) +:U’HUtWtL” )

IV ] (1= S (X)?).

3
Bounding (II): We observe that

1

V}é (BQ - §VUthV(};Wt (BQ + Bg)) VUtWt

= uVyu ((1d = Vow, Vi w, ) (A" A -1d) (X XT - U,U)) Viw,-
It follows that

1 .
Vi (32 - 5VUtWtV£Wt (By + BzT)) Voo, <l (Id - A" A) (X XT - U,UT) |.
Estimating (/I1): First, we recall that
-1
By = UWe Wi Wear (Vig,w, UWeW Weat) ™ Vi,
-1 -1
= U Wi W W (W Wii) ™ (Vi UWL) ™ Vi,

Before we proceed further, we need to understand WtﬂWtH and WtTWHl. By Lemma B.3 it holds
that

IWE Wil <im0 + UMW) IV Vo] +4pl (1 = A° ) (XXT - GOT) |

( 800 7 ™in

and
Omin (WtTWt+1) > 1/2.
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It follows that

1Bs| < [WE, Wert lNUWe [ (W W)™ 1 (Vi UeWe) ™ |
B IWE W [|UWe L |
* Omin (W Wear) Omin (VL 1y, Ui W)
W W | |UWs,
Omin (WEWii1) omin (UW)
<4 W, W |-

Hence, we can conclude that

1
VX (Bz - EVUtWtVz};Wt (B3 + Bg)) Vu,w, |
<2| B3|
<8 Wtq,l Wi |

@ (1 )
<p (—800 Tinin (X) + 8| U W7 HUthII) IV Viw, | +32p) (1d - A*A) (X XT - 0,U]) |
® 1
<

< JogH - Omin (X) VA Vi | + 3240 (1d = A" A) (X XT - 0,0 ) .

Inequality (a) follows from Lemma B.3. In (b) we used the assumption |[U;W; | < ¢k 20mim (X)
and UV, < 3| X].
Bounding (IV'): We start by noticing that

plAAXXT -0 US) | < p(IXXT -0U] )+ (1d - A*A) (XXT - U,U]) [)
<p|X|?

< 110&72,

where we have used the assumption ||U| < 3| X, (44) and (46). Hence, we obtain that

1
Vi (34 - §VUtWt Viw, (Ba+ BZ)) Vo, |
<2| By
=24 M P||
<Qu| A A(XXT -TU]) || Bs|

<22¢k 72| Bs|
(a) _ *
< B 262 (X) [VE Vi, | +352cu] [(1d - A*A) (X XT - 0UT)] |-

50 min

Inequality (a) follows from similar arguments as when we were bounding (/1) and by choosing the
constant ¢ > 0 small enough.
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Bounding (V'): First, we want to estimate |B|. We note that

(a)
IBIl < pllM[ + | P+ plMP|

(®)
< p M+ Bs| + u| M| Bs]

© A AXXT - UT) [+ (14 p| A A(XXT - 00T ) 1) | Bs|
(d)
< A AXXT U7 |+ zuBgu

(e) .
< WA AXXT = UUT) |+ s 0 (O [VE Vi, | + 322 [(1d - A7) (XXT - U] |

1 *
<u|XXT-UU | + 100" T (X) VS Vi, | +33u) [(1d - A*A) (XXT - U] )]
In (a) we used the triangle inequality and in (b) we used B3 = P and the submultiplicativity of
the spectral norm. To obtain equality (¢) we inserted the definition of M. For (d) we used that
plA*A(XXT - U,Ul") | <2, which follows from assumption (44) and (46). For inequality (e) we
used our bound for |Bs|, which we have derived when bounding (/II). Hence, we have shown that

1 .
|B]l < ulx X" - 00 I+ 200# Tmin (X) [V Vo | + 33u] (1d - A A) (XX - U,U;) | (100)

We obtain that

1
S IV BVuw Vi, (B + BY) Vi |

< IBl1B + BT
S||B||2
3 (1X X7 = U]+ 30 () IV Vi |2+ 387 (10 - A°) (XXT - 007 ) ?)
®), o T 3 pst T 2 3 T
<3| XX - U +204OO20mm(X) Vi Vow, | +—M Omin (X) | (1d = A" A) (XXT - UU]) |

(X) [V Vi |* + C/M“‘H (Id- A" A) (XX -U,U]) |,
(101)

(© T 2
<3:u ”XX UUt ” +3C 4002 Omin

where in (a) we used inequality (100) combined with Jensen’s inequality. For inequality (b) we used
(44) and (46). Inequality (c) follows again from (46).

Bounding (VI): We are first going to show that |B| < 1. Indeed, we have that

1
|B] e 10u||XH2+—M Omin (X) IV Vow, | +33u] (1d - A" A) (XX - U,U7) |

400
®) , 1
< 10““‘){“ + mﬂ Urnln (X) + 330H0mm (X)
91
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where in (a) we used inequality (100) and the assumption |U| < 3| X||. For inequality (b) we used
(44) and for inequality (¢) we used assumption (46). We note that from inequality (99) it follows
that

D1 < L+ 1B1) (31B1% + 1C1) <2 (1B + 1) (102

In the first inequality we used the triangle inequality and in the second inequality we used |B| < 1.
Note that from (98) and again || B| <1 it follows that

2
ICl <3(2[B] +1B[?)" <27 B|* (103)
Hence, we obtain that
| D]

V561 B2

()

4
356( 12| XXT - UUT |2 + 3¢ H

240027

GO IV Vi [+ S 1 0 - 4°4) (X7 -G 1)
Inequality (a) is due to the inequalities (102) and (103) and inequality (b) follows from (101).

Combining the estimates: By combining our results we obtain that for small enough ¢ > 0 we
have that

||V)?iVUt+1Wt+1 H
IO+ 1D+ LD+ [V + V)] + (V)]

(1——0 (X))yvalVUtWtH+1ooMH (Id- A" A) (X XT - 0,01 | + 50007 | X XT - UUF |2

4 min

This finishes the proof. O

B.4 Proof of Lemma 9.4
Proof of Lemma 9.4. We observe that
U1 = U + p(XXT - DU Uy + p[(A*A-1d) (X XT - U,UD) | Uy
= (1d - U Uy + p X XTU + p[(A*A-1d) (XX T - DU Uy

Note that || (Id - pUU) Ul = (1= | Us]?) [Uz]| due to p < 5=|X |72 < |U:|*>. Hence, by the
triangle inequality and submultiplicativity of the spectral norm we obtain that

Ul < (1= U2 + ] X2+l (A" A~ 1) (XXT - GUT) ) U,
Hence, by our assumption on || (Id - A*A) (XX - U;U]") | we obtain that
[0l < (1= Ul + 20| X |?) [ U] (104)

Now assume that 2| X | < |U|| < 3| X|. Then it follows from the last inequality that |Up1] < ||Ut],
which due to the assumption |Uz| < 3||X | implies the claim |Ug| < 3[|X|. However, if |Uy] < 2| X

holds, then by combining inequality (104) with the assumption p < ”g—iﬁ we obtain that |Ugi| <
3| X| as well, which finishes the proof. O

76



B.5 Proof of Lemma 9.5
Lemma B.4. Under the assumptions of Lemma 9.5 it holds that
[vx.o0f | < 3|v (xx7 - v + [lowe, v, U |

as well as

[xx* - 00 || < 4fvx (XX - G0 + |ewe Wi, O
Proof. We notice that by the triangle inequality and submultiplicativity it holds that
VECOF] < VAUVl VE v
= Vi (XX -0 UF) Vx| + [VE. U V|
= [V (XX = 00| + [V U0 Vi |

In order to bound the second term we compute that

IV U Vs || < |V UWe WU Vi || + [V U W U V|
= [VEUW WU V|| + Ui, WE UE)-

In order to bound the first term we note that

V. UW WU V|| = [V Vouw, Vi, w, UWe W U Vi |
= VE Vs, (VEVw) ™ VEVow Vi, DWW UF Vs

< ”V)?l VUtWt ” ” (V;VUtWt)_l ” |”V),€VUtWt V(}:Wt UtWtWtTUtTm
[V Vo | Trr 0T

= ViU U Vi
||V§lVUtWt H T T T

= Vi (XX -UU; ) Vxe

Omin (V):(FVUtWt)m X( o ) . m

”V)zjl VUth H

 Omin (V;VUth)

<AV (xXT -0,

v (xx* - o]

Hence we can conclude that

[Vx.oU | < 3vie (XX = 00| + loawe, WL U

)

which shows the first inequality in the lemma. In order to prove the second inequality, we note that
by the triangle inequality and submultiplicativity it holds that

Jxx” - w07 | < IV (XX7 007 )|+ IVEUUT
<d|vg (XX - u)||+ v, Wl ot

||7

where in the last line we used the previous inequality. This finishes the proof. O
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After having provided the necessary ingredients, we are in a position to prove Lemma 9.5.

Proof of Lemma 9.5. Recall that
Uper = Uy + p[(A*A) (XX - 0,U]) ] UL
Next, we compute that

XXT - UnUly =XX" -0U] - p[(A*A) (xXT -0,U)) U] - wo, U [(A*A) (XXT - 00))]
- [(AA) (XXT - U 0 UF [(AA) (X XT - 0,U01)]
=XxT-vul - p(xXT -0, U0 UL - pU UL (XXT - UU)
+p[(Id-A*A) (XX - U | uU] + pu U [1d - A A) (XX - U0} )]
- [(AA) (XXT 000U [(A°A) (XXT - 0,U])]
=(1d - pU]) (X X7 -UU)) (1d - wUUF) + p[(1d - A" A) (X XT - U0y | 0O

=(I) =(II)
+pU U [(Id - A A) (XXT - U,U)) ] - 120U (X XT - U0 U

=(III) =(IV)
- ?[(AA) (xXT - o o) oo [(AA) (xXT -0 0]

=(V)

We are going to deal with each summand individually.

Estimation of (I): We note that

Vi (Id - pU U8 (XXT - U,U]) (1d - pU,Uy)
=Vy (1d - pUUN) Vi Ve (X XT -0l (1d - pU,U))
+Vy (Id - p0 U Vi Vi (XXT - 0,0 (1d - w0 UF)
=Vy (1d - pUUN) Vx Vi (XXT - U0y (1d - pU U + pVE UU Ve VGO (1 - pUyUy)
=(Id - pVy UUVx ) Ve (XXT =008 (1d - pU U ) + pVE U U Va VEGUE (1d - pU U
Hence, we obtain that
(1 - pVEUUT Vi) VE (XXT 00 ) (1 - w7
<1 (- uVEUUT V) IVE (XXT 001 (- w0 |
<| (1d - wVx U V) ||V (XXT - 0,00)||
= (1 porwan (VEUUT V) IVE (XXT - 007
<(1-pots, (VEUW)) Ve (XXT - 0,08
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Next, we note that

o2 (VEUW,) =0

2

(V)?VUtWtVU,I;WtUtWt)
in (VX VUtWt) Omin (UtWt)
r2n1n (UtWt)

S
B‘\’B“

,_\L\')IP—‘

2 Q_OUmln (X)

- (UW,;) > =02, (X). Hence, we have shown that

where in the last line we used the assumption o> 2 5% min

(1 - iV ETUT Vi) VE (XXT = 007 (1 - w0 ) (1= Lo, 000 IVE (X7 =007
Next, we note that

VU0 Vi VU (1d - w0 0|
VX U Ve VDU 1d - pU U |
v G U Ve VDU
Vi UwWW U v VE DU
VXU [VEUW |V UU] ||
<NOUW P IVE Vo VS U] |
<O|X |2V Vo IV OO |
<OIX IV Voaw | BIVE (XXT = GUE )|+ [0, WL U

).

where in the last line we used Lemma B.4. Then, using the assumption ||V£, Vi, | < ex™2 it follows
that

Iviuuf vxviou! (1d-uul)|

e (O [V (XX - o)+ 222 s, wi )

P
100 400

Hence, we have shown that
mV;Ud—uUﬁf)QKXT—wUf)Ud-MUU?m
(X)

<(1- Kook CO) IVE (XXT =007 )]+ i (X)

40 400 |” Utththa_ Utm-

Estimation of (/7): We note that

vy [(1d-A*A) (xXT -0l | uUf | < ||(1d - A*A) (XX - 0,00 |10
s[l@d-aa) (xx* -uu!)|x|?
S mln(X)mXXT UtUtTm
S comin (X) (Vi (XX - U0 + U w2, )
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In the second inequality we used the assumption |U| < 3| X|| and in the third inequality we used
assumption (48). In the fourth inequality we applied Lemma B.4. Hence, by choosing the constant
¢ > 0 small enough, we obtain that

Vs [Gd-Am4) (x X7 -vU) 00 < X (Vs (xx* -vv ) + [owe,wi v )

1000 7min

Estimation of (I11): In the analogous way as in the estimation of (I7) we derive that

Vst [(1d - AamA) (x X7 - 0,0 )] < mamm X) (Ivx (xx = o)+ owe Wi Ui])

Estimation of (IV): We note that it follows from submultiplicativity of the spectral norm that
WAGUT (XX - 007 ) 0T < 0| XT - 0
sIXIlxx” - ol
SIXIVE (XXT -0+ 1X 10w )P,

where in the second line we used the assumption |[U;| < 3| X||. In the third line we used Lemma B.4.
Then using the assumption p < ck™2| X |2 it follows that

X)

RIVEVE (XXT 00T UUT] ot (O IVE (XXT 007 ) o Tt

1000 ”'UtWt J-Wt J-UtTm

Estimation of (V'): We first note that

llcas) (xx™ - o] < [l x® - o] + [ (d - A4) (x X7 - U ]
<(1+er?)|XXT - U

<2 xx"-,Ul |,

where we have used Assumption (48). In a similar manner, again using Assumption (48), we can
show that

| (A A) (XXT -0 | <2 XX - U Ul <2 (1 X7 + |U)?) -

Hence, it follows that
Vi (A4 (XXT - 00 ] 00 [(AA) (XXT =00 )]

[a*A) (xxT -TUD TP (A A) (xXT -0 0] |

XX - vud 102 (A A) (XX - 0,0 ) |

shxx™ - vuf o) (1117 + |0:)?)

Jxxt - v X

s(lvx (xx -ood )| + |vawe Wi, o) 11

where in the third and fourth line we used the estimates from above. The fifth line is due to
assumption |Uy]| < 3||X|. In the last line we used Lemma B.4. Hence, it follows that

Ve [(A*A) (xxT -u o) ouf [(A*A) (xx"-uvuH]|

<Toag i COIVE (XXT =007 )|+ 455 0min (O U0 W UT |

~ 1000 400
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where the last inequality is due to due to the assumption p < cx 2| X |2 for a sufficiently small
constant ¢ > 0.

Combining the estimates: By combining the estimates, it follows that

2
(X
IVE (XXT -~ U UL, < (1 - 500 Tin (X)) IVE (xxT -vul)| + M%WMWMWELU? I
which finishes the proof. O
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