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1. Motivation and significance

The calculation of derivatives is used in many applications,
including machine learning, scientific computing, geometry pro-
cessing, computer vision, natural language processing, and many
more. The calculation of derivatives of large and complex com-
putational graphs is a computational bottleneck for these appli-
cations. Thus the efficient computation of derivatives is an area
of active research interest. Extensive research and engineering
efforts have been spent in the last years to support applications
in deep learning, that led to the development of libraries such as
TensorFlow or PyTorch, which target applications with large and
dense tensors. The availability of easy-to-use differentiation li-
braries is one of the reasons for the massive advancement in deep
learning. They allow researchers to focus on the design of new
network architectures and loss functions, while automating and
ensuring correctness in the low-level tasks required to minimize
these functionals. However, they are specialized for computing
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first derivatives only, and they are optimized for large, dense
tensors, which are uncommon in applications outside of deep
learning. The novelty in these libraries is not in the automatic
differentiation technique used, but in the ease of use, cross-
platform availability, and ease of integration in new research
projects.

Our goal is to provide a similar solution for scientific ap-
plications requiring first and second derivatives of expressions
involving small to medium tensors, using an approach based on
symbolic differentiation. When paired with the optimization al-
gorithms available in modern compilers, our approach generates
code around an order of magnitude faster than existing methods
for computing Hessians while allowing users to write their func-
tions directly in the C language. The algorithm is easy to integrate
into existing build systems and produces dependency-free code.

The core parts of the library are implemented in Python
using a C99 parser [1]. We perform symbolic differentiation with
unrolled derivatives, stored as expression trees, and generate an
efficient kernel to evaluate them using an existing C99 com-
piler, addressing the potentially long compilation times with a
file-splitting approach. State-of-the-art compilers are capable of
sophisticated optimizations such as loop and expression trees
vectorization, elimination of redundancy in expressions, and
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reusing computations performed in previous iterations of loops.
Our approach benefits from these features, and the performance
of our method will likely increase as compiler technology pro-
gresses. The expression unrolling also allows us to trivially paral-
lelize computations not only for different data points but also for
a single data point over multiple CPU cores, which are common
in modern architectures. Finally, we provide support for the
efficient differentiation of algorithms with nested loops, arrays,
and functions. A key difference with existing libraries, is that
we create kernels to efficiently evaluate the expression itself,
its gradient, and its Hessian, all optionally supporting parallel
evaluation.

Our open-source implementation makes the integration of
the algorithm straightforward in modern C and C++ applications,
thanks to its ability to directly differentiate code and to produce
standard, dependency-free C99 code that can be easily used in
existing applications.

To demonstrate the practical impact of our approach, we in-
tegrated it into two applications, one in geometry processing
and one in scientific computing. We show that our library pro-
vides important speedups in the overall running time of mesh
parametrization algorithms and in the quasi-static simulation of
non-linear elastic deformations.

1.1. Related work

Automatic (or algorithmic) differentiation has been introduced
in the pioneering works of [2-4]. We briefly review the most
relevant work and refer readers to various books and survey
for further detail [5-8] and www.autodiff.org for a collection of
implementations. We provide comparisons against representative
methods for operator overloading and source transformation for
both gradients and higher order derivatives in Section 4.

1.2. Operator overloading

The most common way of implementing automatic differenti-
ation is through defining a new object class, which associates the
gradient information to the data. In forward mode, the gradient
information is updated throughout the trace of the computation.
And in reverse mode, a tape of computation is recorded, and
the gradient information is then (back)propagated following the
recorded tape. Due to the versatility and freedom of prototyp-
ing, operator overloading based approaches have gained a lot
of attraction, and notable examples include [9-14]. However,
the efficiency of the code often suffers due to the additional
runtime overhead, which is especially noticeable when the same
computation is executed repeatedly.

1.3. Source transformation

Source transformation approaches parse the input source code
(most commonly C and Fortran [15-18]) and generate a new algo-
rithm that computes the derivatives of the input function. Com-
pared to operator overloading approaches, obtaining the source
code file a priori opens the doors to global data flow analysis
and optimization, thus reducing the running time. Additionally,
this approach enables the developers to directly debug the code
for derivatives computation, a crucial feature to identify and
address potential issues with numerical round-off or overflows.
The reliance on compilers to compile the generated source-code
makes these approaches future-proof, in the sense that the gen-
erated code will benefit from progress on compiler design and
optimization.

In our algorithm, we restrict to a subset of C99 covering com-
mon use-cases in scientific computing, finite element analysis,
and computer graphics.
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A minor, yet practically relevant, drawback of source code
transformation is the presence of the additional source files,
posing challenges on the build system and version control of the
evolving software. We show that our library, thanks to its permis-
sive open-source license, minimal dependencies, and availability
in the Conda package system, is effortless to integrate into a
CMake-based build system [19]. We show how to automatically
generate the required files as part of the build process, making the
automatic differentiation transparent to the user (Section 3.3).

1.4. Higher order derivatives

Although valuable in scientific computing and numerical opti-
mization, computing higher-order derivatives is challenging due
to the need of memory management and sparsity pattern detec-
tion [20,21]. Therefore, only few existing libraries support second
or higher-order derivatives computation. Our method supports
dense Hessian computation, taking advantage of the symmetric
structure to reduce computational times [22].

2. Software description

The input of our algorithm is an algorithm written in a sub-
set of C99 [23]: we support arrays, compile time known range
(nested) loops, binary assignments, functions, and variable decla-
rations. The output is a set of self-contained, multi-threaded C99
functions to evaluate the function in the input file, its first deriva-
tive, and its second derivative. We designed our library to become
part of a build system, seamlessly generating the derivative code
as part of the build procedure of a software package (Section 3.3).

We overview our algorithm in Section 2.1, and show a com-
plete execution on a prototypical expression in Section 3. We
then discuss how to parallelize the evaluation in Section 3.1
and how to make our approach scale to large expressions in
Section 3.2. We show the performance of the algorithm on syn-
thetic expressions (Section 4), comparing it with state-of-the-art
differentiation libraries, and integrate it into a physical simulation
library for a realistic benchmark.

2.1. Overview

Primer on automatic differentiation. Given a target function
f:R" — R™ the corresponding Jacobian matrix has entries
Ji = % We use the pyc parser [1] to parse the input C99 code
to procfuce an Abstract Syntax Tree (AST) of the input algorithm.
The leaves of the tree are either numerical constants or variables
and the internal nodes follow a hierarchical structure built from
the code. Let us consider an example: if f is a composite function:
f(x) = hog(x) = h(g(x)), with x € R", g:R" — R¥ h: Rk — R™,
then

ofi _ oh dgs

oh; 9g,
ax;  dgy 9x;

dh; gk
02y 0x;

.. Tgkaxj'

i = (M

From the example we see that the auto-differentiation of a
function f breaks down the action of the Jacobian matrix on a
vector into simple components, which are evaluated sequentially.
We store the operations required for the calculation of the deriva-
tive of each of these pieces as a string. The final derivative is the
accumulation of the piece-wise derivatives of the sub-operations
following the chain rule.

For computing second order derivatives, we differentiate the
tree twice. We further optimize over the number of calculations
by taking advantage of the symmetry of the Hessian: we compute
only the lower triangular part of the matrix and copy it over the
upper triangular half.
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Implementation specific details. The derivative formulas are un-
rolled in a sequence of assignments (no loops or conditional are
used) and saved on a C file. The file is then compiled with full code
optimization (-03 with gcc [24] and clang [25]). This leverages
the compiler’s ability to perform redundancy elimination on trees,
reusing computations (especially memory loads and stores), and
automatically vectorizing the code when appropriate.

In the case of loops or conditional statements being present in
the program, we perform an additional parsing step to expand
these structures. We perform loop unrolling to produce a se-
quence of operations and eliminate other instructions that control
the loop. Conditional statements are removed by evaluating their
condition during parsing. The output of this phase is a list of as-
signment instructions, which are stored in an intermediate binary
format. This file is then parsed to create the AST, differentiated,
and the differentiated AST is exported as a C file.

3. Illustrative example

To further illustrate the mechanisms of ACORNS, we consider
a typical example from statistics. We will compute the gradient
of the cross entropy loss function, between two probability distri-
butions a and b. The loss function can be given by the following
piece of C99 code:

double cross_entropy(const double **a, const double **b){
double loss = 0;
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++ ){
loss = loss - (b[il[j] * log(alil[j]l + 0.00001));
}
}

return loss;

The function is unrolled to produce the following code:

double cross_entropy(const double **a, const double **b){
double loss = 0;

loss = (loss)-((b[0][0])*(1log((al0]1[01)+(0.00001))));
loss = (loss)-((b[0][1])*(log((al0][1]1)+(0.00001))));
loss = (loss)-((b[1][0])*(log((al[1]1[0]1)+(0.00001))));
loss = (loss)-((b[1][1])*(log((al1][1]1)+(0.00001))));

return loss;

An Abstract Syntax Tree is constructed from the unrolled
code. The syntax tree is differentiated using back-propagation to
construct the derivative equations. This unrolled code is finally
compiled by a C compiler with full code optimization enabled (see
Fig. 1).

for(int p = 0; p < num_points; ++p)

{
ders [p*2+0]+= (((((((C0) - (((log((al[0][0] + 0.00001)))
* (b[0]1[0]) + b[0][0] * ((1/((al01[0] + 0.00001))%0))))
)) - (((Qog((al0I[1] + 0.00001))) * (b[0]1[1]) +
b[01[1] * ((1/((al0][1] + 0.00001))%0)))))) -
(((Qog((al1l[0] + ...

}

3.1. Parallelization

Parallel computation can be used to accelerate the evaluation
of large gradients or Hessians [26]. We observe that, in our
case, the evaluation of the different entries is independent, and
can thus be trivially parallelized using OpenMP [27] directives.
We experimentally study the scaling of our generated code in
Section 4.
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Fig. 1. Expression graph for cross entropy loss function.

3.2. Large expressions

As the complexity of the expressions and/or the number of
outputs grows, the size of the generated C file grows accord-
ingly. While this opens more opportunities for the compilers to
optimize the evaluation, it also increases memory consumption
and compilation time. For large expressions, such as the Hessian
of a cubic Lagrangian element, this might become impractical.
We propose a simple, yet effective and practical, strategy to
overcome this issue: we split the output into multiple C files that
are compiled independently. This has the downside of reducing
the optimization opportunities of compilers. However, in our
experiments, the performance drop is negligible and we thus use
this option aggressively to reduce compilation times.

To evaluate the effect of the split on performances, we con-
sider a function for calculating the Neo-Hookean Elasticity en-
ergy [28] for a linear, quadratic, and cubic Lagrange element (12,
30, and 60 variables respectively). The code generated by these
functions is large (29 GB for the function with 60 variables) and
the compilation with gcc9 does not terminate in 160 h.

We tested splitting into different number of files, measuring
compilation time, evaluation time, and binary size after compila-
tion.

As expected, the compilation time decreases as the files be-
come smaller (Fig. 2 Top) while the size of the binary generated
is not noticeably affected by the split (Fig. 2 Middle). Surprisingly,
the evaluation time of the generated code is also not noticeably
affected by the split (Fig. 2 Bottom). As a default, we thus opt for
splitting so that each file had a size of around 16 MB, which is a
good compromise between number of files and compilation time.

3.3. Integration in a CMake build system

One of the key design goal of our system is the easy and
fast deployment in numerical based methods. We show how
ACORNS can be integrated within a CMake build system for quick
and easy deployment. In the following we describe the process
and we refer to our github repository for the complete example
https://github.com/deshanadesai/acorns. Let us consider a simple
problem: we want to minimize the following function (saved in
the file function.c) using gradient descent.

int function_0(double x){
double energy = pow(x, 4) - 3*pow(x, 3) + 2;
return energy;


https://github.com/deshanadesai/acorns

Deshana Desai, Etai Shuchatowitz, Zhongshi Jiang et al.

To use ACORNS to its derivative, we need to add the code
generation to the CMake project file:

cmake_minimum_required (VERSION 3.1)
project(SimpleProject)

file (MAKE_DIRECTORY ${PROJECT_SOURCE_DIR}/ders)
add_custom_command (
OUTPUT
${PROJECT_SOURCE_DIR}/ders/der_0.c
${PROJECT_SOURCE_DIR}/ders/der_0.h
COMMAND
acorns_autodiff
${PROJECT_SOURCE_DIR}/functions/function_0.c
energy --vars x --func function_O
--output_filename ${PROJECT_SOURCE_DIR}/ders/der_0
DEPENDS
${PROJECT_SOURCE_DIR}/functions/function_0.c
)
add_library(derivative "ders/der_0.c")
target_include_directories(derivative PUBLIC ders)

add_executable(main_target src/example.c)

# Link target derivative to main_executable
target_link_libraries(main_target PUBLIC derivative)

This will generate the ders_0.h and ders_0.c file, which
will be directly compiled by CMake and linked with the other
files in the project. To use the derivatives it is then sufficient
to include the generated header file. We show an example of
using the computed derivative to find the root by using gradient
descent.

#include <der_0.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char** argv) {
double vals[1] = {6.0};
double ders[1] = {0.0};

int iteration;

for (iteration = 0; iteration < 10000; iteration++) {
// calculate derivative using ACORNS
compute(vals, 1, ders);

float step = 0.01 * ders[0];
vals[0] -= step;

if (fabs(step) <= le-5)
break;

}

printf ("Minimum: %f\n", vals[0]);
printf("Iterations: %d\n", iteration);
return 0O;

}
4. Impact

We compare our generated code against 4 state-of-the-art
differentiation algorithms:

1. Tapenade [15] shares many similarities with our system. It
converts C code into a C program computing its derivatives
and Hessians.?

2. PyTorch [9] is a backward auto-differentiation library tai-
lored for machine learning. It provides both a CPU and a
GPU version, we compare against the CPU version only.

2 Hessian computation in Tapenade is not officially supported, we used the
semi-manual construction proposed in the Q&A section of the documentation
for the comparison.
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3. Mitsuba Autodiff [ 14,29] compute automatic differentiation
using operator overloading and depends on Eigen [30] for
the linear algebra and storage. We run all our comparisons
using only static stack-allocated matrices, since the dy-
namic mode is slower and unnecessary for the expressions
we use for benchmarking.

4. Enoki [31] is a new library developed specifically to support
differentiable rendering. Similarly to PyTorch, it supports
both CPU and GPU evaluation, and we compare only with
the CPU version and only for gradients, since it does not
support Hessian computation.

5. Adept [32] is a C++ library that uses operator overloading
to perform automatic differentiation. It does not support
higher-order derivatives, so we restrict our comparison to
gradients. Adept does not support parallelization, so we run
our comparison on a single thread.

We run our experiments on a 2.35 GHz AMD EPYC™ 7452
running Ubuntu 19.10 GNU/Linux 5.3.0-29-generic x86_64.

Expression types. We use three expression to evaluate different
realistic scenarios where autodifferentiation is used:

1. An high-order polynomial, a non-polynomial function, and
procedural expressions with large number of variables:

X +3x—x/4

f(x) + x4+ 227733 +X°. (2)

2. A scalar trigonometric function:
g(x) = sin(x) + cos(x) + x°. (3)

3. A vector-valued polynomial with s variables:
N
h)=4][x(1-x), x=@,....x) (4)
i=1

For each expression, we randomly generate evaluation points
and plot the average running times over 10 runs. ACORNS gener-
ates C code, Mitsuba and Enoki are both running in C++. All the
C and C++ code is compiled with gcc9/g++9 with the flags -03,
-ffast-math, -f1to and, only for C++, -std=c++11.

Gradient. In Fig. 3 (top) we report the timings, for different
number of evaluation points, for the three functions. For the
two polynomial functions we are roughly 5x faster than Mit-
suba, Adept, and Enoki and 2.9 times faster than PyTorch. For
the trigonometric function, due to the increase in the cost of
evaluating the trigonometric function, our advantage is slightly
reduced. For gradients, our approach is very similar to Tapenade,
and we obtain comparable timings.

In Fig. 4 (left) we fix the number of evaluations and change the
parameter s in Eq. (4), to evaluate how the methods scale with
the number of variables. As expected, all methods scale linearly,
but our method is still 3.97 x 7.95x%, and 3 x faster than Mitsuba,
Enoki, and Pytorch respectively. As for Fig. 3, Tapenade’s code has
very similar running time as ours. Adept scales similarly to Enoki.

Hessian. We repeat the same experiments as in previous section
to compare ACORNS with Mitsuba, PyTorch, and Tapenade to
compute Hessians. Fig. 3 (bottom) shows that our code is very
efficient, 12.8 x faster than Mitsuba and 1336x faster than Py-
Torch (which is not optimized to evaluate Hessians). Tapenade
is faster than the other alternatives, but it is still around 5 times
slower than our code. Note also that while the Hessian generation
is completely automatic with ACORN, it does require manual
interaction with Tapenade, since Hessian computation is not fully
supported.

The scaling with respect to the number of variables for Hessian
evaluation shown in Fig. 4 (right) has a similar trend as for the
gradients.
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Parallel evaluation. We ran the function in Eq. (4) for s = 25 our workstation, and it then flattens as more threads are added.
and computed the gradient for 100000 evaluation points allowing We speculate that this is due to saturation of the memory band-
OpenMP to use a different number of threads. We observe an width of the workstation, since our task is inherently massively
almost linear scaling up to 15 threads as shown in Fig. 5 (right) on parallelizable.
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5. Conclusions

We introduced ACORNS, a software library for automatic dif-
ferentiation that generates efficient kernels for computing both
gradients and Hessian and can be easily integrated in existing
C or C++ projects. The core idea of our algorithm is to fully
unroll the computational graph, and rely on modern compilers
to optimize the resulting code. Compared with alternatives, our
algorithm is faster at evaluation time for Hessian computation,
but slower during compilation: we believe that this trade-off is
very interesting for many scientific computing applications where
the evaluation of small dense Hessian is repeated millions of
times. The compilation time could be reduced by performing
symbolic simplification on the code before generating the .c files.
In addition, we could avoid the parsing time of the compiler by
directly generating byte-code (for example for the LLVM com-
piler [25]) and compiling it in memory, avoiding unnecessary disk
access. Variable conditional used in branches and loops are not
supported by ACORNS. Support for it could be added, but the
performance will likely decrease, due to the reduced optimization
options and more complex parallelization.

We would like to extend ACORNS to directly support the
generation of sparse Hessians [21,33] and also extend the code
generation to target GPU accelerators.

Our open-source reference implementation and a set of exam-
ples on how to use it is available at https://github.com/deshanad
esai/acorns, and it is also released as a Conda package on conda-
forge to allow an easy installation on all major operating systems.

We also release our benchmark at https://github.com/geometryp
rocessing/acorns-benchmark to foster replicability of our results.
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Appendix. Applications

We integrated ACORNS in two applications in geometry
processing and in physical simulation to evaluate the gain in
performance in a realistic setting. In both these cases, the algo-
rithm needs to assemble a dense gradient and a sparse Hessian.
For both applications, ACORNS is used to compute small dense
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Table A.1
Optimize the parametrization of a surface mesh.
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Autodiff Run Time
Ours Mitsuba Ratio

Total Run Time

Ours Mitsuba

023s 040s 175 |

Table A.2

3.66s 4.27s

Runtime of a Neo-Hookean elastic simulation for different FE degrees.

Input Output

Hessian Run Time

Total Run Time

Degree | Ours Mitsuba Ratio | Ours  Mitsuba Ratio
1 0.14s 0.98s 7.1 12.43s 55.92s 4.5
2 1.18s 5.91s 5.0 | 110.36s 310.61s 2.8
3 8.14s  34.84s 4.2 1 955.71s 2076.08s 2.2

blocks, which are then assembled in a larger sparse Hessian
matrix. Directly supporting the automatic construction of the
sparse Hessian is an interesting avenue for future work.

A.1. Parametrization

Given a surface embedded in three dimensional space, an im-
portant problem in geometry processing is to assign parametric
values to it, i.e. computing a flattening of the surface on a plane.
We refer the readers to [34,35] for a comprehensive survey. In our
application, we consider minimizing the non-convex symmet-
ric Dirichlet energy [36] with projected Newton’s method [37]:
when the Hessian is not positive (semi-)definite, possibly at sad-
dle points, we project it to the closest positive definite matrix
through polar decomposition. The algorithm involves computing
the full Jacobians and Hessians per element: our original imple-
mentation uses Mitsuba, and we replaced it with ACORNS. We

summarize the statistics in Table A.1. The automatic differentia-
tion run time is reduced considerably, but in this application it
is not the bottleneck, thus resulting in a small reduction of the
overall running time.

A.2. Finite element simulation

The finite element method aims at solving partial differential
equations (PDEs) describing physical phenomena. A typical ex-
ample is to simulate the deformation of an elastic body subject
to some external forces (boundary conditions); the algorithm
involves minimizing an elastic energy, and requires computing
derivatives. We integrate ACORNS in PolyFEM [38] and compared,
for different finite element discretization order (ranging from
linear to cubic), the timings of a Neo-Hookean simulation using
the Mitsuba autodiff and with ACORNS to compute Hessian and
gradient of the energy. In the finite element method, all compu-
tations are performed locally on each tetrahedron. The different
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order will have different local number of degree of freedom
(which determine the size of the gradient and Hessian): a linear
tetrahedron has 12, a quadratic has 30, and a cubic has 60. Our
method provides an overall speedup of 2 to 4 times, depending
on the degree, over the entire simulation time (Table A.2).
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