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Abstract—Bit-flip attack (BFA) has become one of the most
serious threats to Deep Neural Network (DNN) security. By
utilizing Rowhammer to flip the bits of DNN weights stored
in memory, the attacker can turn a functional DNN into a
random output generator. In this work, we propose ModelShield,
a defense mechanism against BFA, based on protecting the
integrity of weights using hash verification. ModelShield performs
real-time integrity verification on DNN weights. Since this can
slow down a DNN inference by up to 7×, we further propose
two optimizations for ModelShield. We implement ModelShield
as a lightweight software extension that can be easily installed
into popular DNN frameworks. We test both the security and
performance of ModelShield, and the results show that it can
effectively defend BFA with less than 2% performance overhead.

Index Terms—GPU, Machine Learning, Rowhammer

I. INTRODUCTION

Recently, deep neural networks (DNNs) based machine
learning (ML) algorithms have shown their great potential
in multiple fields [1], [5]. Instead of investing in their own
DNN models, a lot of companies and personal users prefer
to use Machine-Learning-as-a-Service (MLaaS) cloud server
platforms. MLaaS significantly reduces the effort and cost of
developing and maintaining ML applications. However, there
is usually more than one application running on the server
at the same time, and the hardware resources on the server
are shared between the ML application and other co-running
applications. With this setup, the internal DNN model of an
ML application, which is typically stored in the main memory
of the server, can be modified by the co-located malicious
application (the attacker) indirectly, using Rowhammer [6].

Rowhammer is a security exploit that alters the 1-bit data
stored in a memory cell by repeatedly accessing cells in its
neighboring rows. Previous works have shown that Rowham-
mer can be utilized to flip the bits of DNN weights and
significantly reduce the inference accuracy or even make the
DNN a random output generator [18]. Recently, a very efficient
attack named Bit-Flip based Attack (BFA) [12] was proposed
where the attacker efficiently identifies and flips only a small
number of most vulnerable bits in a DNN model. Several de-
fense mechanisms against BFA have been proposed, including
binarization-aware training [4], and weight reconstruction [9].
However, these methods are only making DNN models more
robust against BFA instead of strictly protecting them from
BFA.

Challenge. One way to prevent BFA is to protect the integrity
of DNN weights using hash verification. However, a naive hash
verification design could cause both security and performance
problems. First, using unkeyed hashes for verification may not
protect the model: the attacker could modify the hashes stored
in memory as well to ensure they match the modified weights.
Thus, one may consider using a keyed hash and keeping the
key on chip instead of storing it in memory. However, this re-
quires hardware modification, which significantly complicates
the protection. Second, to avoid the time-of-check to time-of-
use problem, we need to perform real-time hash verifications.
Unfortunately, this can slow down the inference by up to 7×,
making it an impractical protection for MLaaS platforms.

In this work, we propose ModelShield, a lightweight de-
fense mechanism that can strictly prevent BFA by protecting
the integrity of DNN weights. ModelShield is implemented as
a software extension that can be simply added into modern
frameworks (e.g., Pytorch [11]). We overcome the mentioned
security and performance challenges by thoroughly analyzing
the strength of BFA and optimizing performance while main-
taining security based on the analysis. Specifically, we first
prove that a BFA attacker is not able to precisely modify the
hash to make it match the corrupted weights, which gives us a
chance to protect weights without a keyed hash and hardware
modification. Second, we summarize the critical features of
hashes for defending BFA and explore hashes that not only
have these features but also good performance. Third, to
further reduce the overhead, we build a software hash tree
and find the tree structure that provides optimal performance.

Since most DNN inferences are performed on GPUs, we
implement ModelShield in a CUDA kernel and build a script to
link this kernel with modern frameworks. With ModelShield,
programmers can verify the integrity of weights in one-line
python code. We test ModelShield with popular DNN models,
and the experimental results show that using ModelShield can
successfully protect DNN models from BFA with less than
2% performance overhead and zero accuracy degradation.

II. BACKGROUND AND PRIOR WORKS

A. Rowhammer Attack

Modern DRAM-based memory chips consist of a two-
dimensional array of cells. Each cell stores 1-bit information,
represented by the charge of the capacitor in the cell. In
2014, it was found out that current DRAMs are vulnerable
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to disturbance errors induced by adjacent row activation [6]:
activating a row in a DRAM bank can cause a little disturbance
in its neighboring row; with frequently activating/accessing the
same row (i.e. hammering the same row), the disturbance on
the neighboring row will accumulate and eventually become
significant enough to flip the stored bits in this row, before it
gets refreshed. With Rowhammer, attackers are able to change
the memory data of a co-located application without even
accessing it directly. Very recently, Fan et al. discovered that
Rowhammer attacks can be used to modify the weights of a
functional DNN and make it a random output generator [18].

B. Bit-Flip based Adversarial Weight Attack

Adversarial weight attack is one of the main challenges
on DNN security: even small changes to weights can lead
to significant differences in inference accuracy [12]. The bit-
flip based adversarial weight attack (bit-flip attack for short) is
one of such adversarial attacks. This attack performs weight
modification by flipping the bits of DNN weights stored in
memory, utilizing well-developed Rowhammer tools. In 2019,
Adnan et al. proposed a very efficient Bit-Flip Attack [12]
(aka. BFA). Using their proposed Progressive Bit Search (PBS)
algorithm, a BFA attacker can compromise a quantized DNN
model with only several bit-flips.

C. Previous Defenses

Binarization-aware training: Zhezhi et al. made an important
observation that BFA is prone to identify vulnerable bits in
close-to-zero weights, and modify them to be large values [4].
Based on this observation, they proposed to use binarization-
aware training to defend against BFA. In this training method,
weights that are originally in floating point are converted to be
represented by a binary-based format, and thus can be trained
to stay far from zero to make the model more robust against
BFA.
Weight reconstruction: When the attacker flips a bit in a
weight, it induces a change of ∆w on the target weight,
which will affect the loss. Thus, to defend BFA, Jingtao et
al. proposed weight reconstruction method which can reduce
the ∆w caused by a bit-flip and thus the overall increase in
loss [9]. This weight reconstruction consists of three steps: 1)
averaging, which spreads the effect of |∆w| on a group of size
G; 2) quantization, which cancels the effect of this |∆w/G|
change on the quantized mean; 3) clipping, which restricts all
the weights to a small range near the quantized mean.
Limitations of previous works: The discussed previous
defenses focus on modifying DNN models themselves to make
them more robust against BFA. But this kind of method can
only weaken BFA, rather than preventing it. As an example,
without any defense mechanism, the BFA attacker only needs
to flip the most significant bits (MSBs) of about 28 weights
in a ResNet-20 model to make it generate random outputs on
CIFAR-10. In contrast, with binarization-aware training, the
attacker now needs to flip at least 500 MSBs. However, an
attacker can easily find 500 weights with vulnerable MSBs,
which is less than 0.2% of the total weights.

Fig. 1: Parallelizing hash verification in GPU by building a
2-level hash tree; each wavy line represents a GPU thread.

III. THE DESIGN OF MODELSHIELD

A. Design Overview

We propose ModelShield which can defend BFA by verify-
ing the integrity of weights every time after the DNN inference
is finished but before the result is sent back to the user.
Specifically, we use a cryptographic non-keyed hash to pre-
calculate the hash value over weights in each layer of the DNN
model, and store the hash values together with the weights.
When this model is used for inference, we re-calculate the hash
values and compare them with the stored ones for integrity
verification.

There are two natural questions about our design: 1) what
if the attacker flips all the weights he modified back to the
original value after the inference is finished but before the
hash verification is performed, and 2) since the hash values
are also stored in memory, why can’t a “smart” attacker
modify the hash values together with weights to ensure that
they still match after the attack. We argue that although these
two concerns are valid in theory, they are not feasible in reality.

First, according to previous works [6], [17], each memory
cell can only be flipped in one certain direction (either 1
→ 0 or 0 → 1). Thus, once the attacker modifies a weight,
he will never be able to undo the modification. Second, the
following properties of cryptographic hashes [14] guarantee
that the attacker cannot manipulate the stored hash value:

1©Diffusion: hash values are guaranteed to be diffused, i.e.
even modifying one bit in the input can cause many bits to
change in the hash value;

2© Randomness: each hash value is expected to be random,
i.e. there are about same amount of “0” and “1” in it.

Due to these two properties, if the attacker wants to modify
the hash value to make it match the modified weights, he needs
to flip many bits of the hash value including both 1→ 0 and 0
→ 1 flips. However, according to previous works [6], [17], all
the memory cells in the same row can only be flipped in one
certain direction. As a hash value is typically smaller than one
cache line, its bits are all stored in one memory row. Thus, it
is almost impossible for the attacker to get the correct hash
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value by only performing one-direction bit-flips to all the bits
(e.g., for SHA256, the success rate is 1/2127).

ModelShield can effectively prevent BFA; however, the real-
time verification can also introduce significant performance
overhead. To solve this problem, we further propose two
optimizations for ModelShield.
Optimization 1 Use high-performance non-cryptographic
hash functions to defend BFA.

Cryptographic hash functions can be used to defend BFA
because they can protect data integrity. In cryptography, strict
integrity protection requires/indicates that the generated hash
value has the property of diffusion and randomness, which
are needed for defending BFA. However, integrity protection
also indicates the guarantee of collision resistance, which is
not necessary for defending BFA, due to the limited ability of
Rowhammer attacks.

Thus, a cryptographic hash function is not necessary for
defending BFA. We instead only need a hash function with the
property of diffusion and randomness. This requirement can
actually be satisfied by some non-cryptographic hashes (e.g.,
xxHash [2]). Most cryptographic hashes are much more com-
plicated than non-cryptographic hashes, and thus have worse
performance. Therefore, we change to use non-cryptographic
hashes that are highly optimized to defend BFA.
Optimization 2 Build a hash tree to fully utilize the calcula-
tion resource in GPU.

The nature of hash function is to compress an arbitrary-size
input data to a fixed-size output. A longer input usually renders
higher hash calculation latency, as it requires more iterations
of compression. On GPU, although the hash values of different
DNN layers can be generated in parallel, the calculation of a
certain hash value is not parallelizable because compressions
have to be done sequentially; if a layer in the DNN model
is very large, it can result in very high total hash calculation
latency.

Thus, to reduce the hash calculation overhead, we build
a small hash tree (for each DNN layer) to parallelize the
hash calculation: for all the weight bits in layer l (B′

l), we
first divide them into several chunks ({B′

l,i}Ii=1) 1©; then we
calculate the hash of each chunk (H ′

l,i) simultaneously using
different threads in GPU 2©; after this, we concatenate the
outputs in 2© and get H ′

l,1||H ′
l,2||...||H ′

l,I . Then we calculate
the hash of this concatenated result as the final hash of this
layer (H ′

l ) to compare with the stored hash (Hl) 3©, as shown
in Figure 1.

Note that we cannot use too many chunks in 1©, i.e. I cannot
be too large a number. In the extreme case, if each chunk is
1-block long, there will be no compression in 2©, and after
2© the output size will be same with the input. Then in 3©

we still need to do a long calculation/compression. Thus, the
problem is how many chunks should we have in 1© to reach
the best performance, i.e. for an n-block input, if the latency
of hashing n-block to 1-block is about (n− 1) · t, what is the
chunk number c that makes the total latency shown as follows
the minimum:

Lhash = (n/c− 1) · t︸ ︷︷ ︸
Lhash1

+ (c− 1) · t︸ ︷︷ ︸
Lhash2

(1)

Note that Lhash is the total latency, and Lhash1 and Lhash2 are
the hash latencies in 2© and 3©. By solving this math problem,
we know that when c =

√
n, Lhash reaches the minimum.

Thus, for each layer, we divide the weights into
√
n chunks,

and use a 2-level hash tree to reduce the calculation latency.

IV. EVALUATION

In this section, we analyze the security and performance
of ModelShield. We use two baselines including 1) the
insecure baseline, where there is no protection against BFA,
and 2) the binarization aware training mechanism (BAT).

A. Experiment Setup

Datasets and netwroks: We focus on the most widely used vi-
sual datasets CIFAR-10 [7] and ImageNet [8]. We use CIFAR-
10 to test VGG-11 [16] and ResNet-20 [3], and use ImageNet
to test MobileNetV2 [15]. We use 8-bit quantization-aware
training in all the experiments.
BFA configuration: We test the security of previous works
and ModelShield against BFA, using the BFA public code-
base [13] (commit: 6ad210c), with the same setup in [12].
Hardware platform: All the experiments are conducted using
Pytorch, running on the platform with an AMD Ryzen 3900XT
CPU and an NVIDIA 1080TI GPU.

B. ModelShield Implementation

Hash functions: We evaluate ModelShield with two hash
functions, including 1) SHA256 [10], one of the most widely-
used cryptographic hash functions with a 256-bit output hash
value; 2) xxHash, a high-speed non-cryptographic hash func-
tion with excellent diffusion and randomness [2]. We use the
64-bit version of xxHash which gives a 64-bit hash value.
Software implementation: We implement ModelShield in
a stand-alone CUDA kernel, and provide a script to link
this kernel to existing DNN frameworks. Users can install
ModelShield as an extension to their local framework.

C. Security Analysis
We run BFA to test the security of ModelShield, BAT, and

the insecure baseline. As shown in Figure 2, in the insecure
baseline, 50 bit-flips are enough to convert a DNN model into
a random output generator (when the accuracy is no more than
10% for CIFAR-10, and 0.1% for ImageNet). BAT makes a
major breakthrough on defending BFA: with BAT, less than
20 bit-flips can barely decrease accuracy. However, it is also
shown in Figure 2 that, when the number of bit-flips is higher
than a certain threshold (about 20 for ResNet-20, 60 for VGG-
11, and 30 for MobileNetV2), the accuracy starts to drop very
fast with the increase in the number of bit-flips, making the
DNN still vulnerable to BFA.

In contrast, ModelShield is able to detect any bit-flip, and
reload the correct model parameters if necessary. Thus, the
weights used during the inference are guaranteed to be the
unmodified weights, and BFA does not decrease accuracy
when using ModelShield.
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TABLE I: The inference latency (given one input image), and the verification latency when using different hash functions and
setups; each (%) represents the corresponding overhead on inference latency.

Max # of weights
in a layer Inference latency (ms) Verification latency (ms)

SHA256
Verification latency (ms)

xxHash
Verification latency (ms)

xxHash+Tree
ResNet-20 36,864 17.10 28.72 (167.95%) 0.92 (5.38%) 0.02 (0.12%)
MobileNet 1,280,000 19.51 74.29 (380.08%) 12.52 (64.17%) 0.19 (0.10%)
VGG-11 2,359,296 21.03 164.20 (780.79%) 22.12 (105.18%) 0.37 (1.76%)
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Fig. 2: The BFA result on ResNet-20, VGG-11, and Mo-
bileNetV2 with different defense mechanisms. Regions in
shadow indicate the error band w.r.t 10 trials.

D. Performance Analysis

Although BAT has relatively weak security protection on
DNN models, it does not increase the inference latency.
In contrast, ModelShield may cause some overhead on the
inference. In this section, we show that this overhead is in
fact negligible.
As shown in Table I, given one input image, the inference la-
tency on GPU is about 17.10 ms. Using SHA256 to verify the
integrity of all the weights in ResNet-20 will take about 28.72
ms, introducing 167.95% overhead on inference. Instead, using
xxHash can reduce this overhead to 5.8%, and building a
2-level hash tree can further reduce it to only 0.12%. Hash
verifications generate much higher overhead on MobileNetV2
and VGG-11, than ResNet-20, as their layers are much larger:
using SHA256 can cause 380.08% and 780.79% overhead on
MobileNetV2 and VGG-11, respectively. Even when using
xxHash, the overhead can still be 64.17% and 105.18%.
These large overheads come from sequentially compressing
the weights many times. Therefore, using a hash tree to

parallelize this process can significantly reduce the overhead,
to only 0.10% and 1.76%, which can be considered negligible.
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VI. CONCLUSION

In this work, we proposed to use hashes to protect the
integrity of DNN weights, and thus defend BFA. We im-
plemented this method in a software extension named Mod-
elShield. We also designed two optimizations to ensure that
ModelShield does not generate unfeasible inference overhead.
Finally, our experimental results show that ModelShield can
effectively protect DNN models from BFA as well as maintain
low inference latency.
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