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Abstract—Training Deep Neural Networks (DNNs) models is
a time-consuming process that requires immense amount of data
and computation. To this end, GPUs are widely adopted to
accelerate the training process. However, the delivered training
performance rarely scales with the increase in the number
of GPUs. The major reason behind this is the large amount
of data movement that prevents the system from providing
the GPUs with the required data in a timely fashion. In this
paper, we propose ScaleDNN, a framework that systematically
and comprehensively investigates and optimizes data-parallel
training on two types of multi-GPU systems (PCIe-based and
NVLink-based). Specifically, ScaleDNN performs: i) CPU-centric
input batch splitting, ii) mini-batch data pre-loading, and iii)
model parameter compression to effectively a) reduce the data
movement between the CPU and multiple GPUs, and b) hide
the data movement overheads by overlapping the data transfer
with the GPU computation. Our experimental results show that
ScaleDNN achieves up to 39.38%, with an average of 17.96%
execution time saving over modern data parallelism on PCIe-
based multi-GPU system. The corresponding execution time
reduction on NVLink-based multi-GPU system is up to 19.20%
with an average of 10.26%.

Index Terms—Data Movement, Data Parallelism, Multi-GPU

I. INTRODUCTION

With the capability to provide unprecedented accuracy lev-
els, Deep Neural Networks (DNNs) have become a popular
technique in application domains such as object classification,
autonomous vehicles and natural language processing [16],
[40], [44]. However, training DNN models is time-consuming.
For instance, with 16 Google TPUs, training the BERT net-
work with 512 batch size takes 81.4 hours [6]. Similarly,
training DenseNet-40 using a single GPU takes two days to
achieve convergence [12].

To accelerate the training process, multi-GPU systems are
adopted with DNN data parallelism and model parallelism
to provide speedups [19], [21], [24], [33]. However, naively
employing data parallelism across multiple GPUs can lead to
sub-optimal execution even performance degradation. This is
because the data movement overheads significantly increase
and may dominate the execution time when multiple GPUs
are employed. Specifically, modern DNN data parallelism
employs a master GPU to split and distribute mini-batches.
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Fig. 1. Interconnections in multi-GPU system. (a) PCIe interconnection and
(b) Hybrid Cube-Mesh topology NVLink interconnection

While doing so reduces the CPU load and avoids potential
CPU bottlenecks that are caused by frequent API calls (e.g.,
cudaMemcpy()), it introduces extra data movements. As
revealed by our characterization (Section III), such data move-
ment is significant when the batch size is large. Furthermore,
mini-batch and model parameter (i.e., weight) transfers are
on the critical execution path. As a result, GPUs cannot start
forward propagation until the required data is in place, leading
to the under-utilization of GPU computing resources.

To reduce the data movement overheads, we propose
ScaleDNN, a framework that systematically and comprehen-
sively optimizes the data movement to improve the scalability
of DNN training on two types of multi-GPU systems (i.e.,
PCIe-based and NVLink-based). Specifically, ScaleDNN em-
ploys CPU-centric input batch distribution and pre-loading to
effectively hide the mini-batch transfers by overlapping it with
the GPU computation. As such, ScaleDNN removes mini-
batch transfer from the execution’s critical path and improves
GPU utilization. It also implements a dynamic compression
mechanism for weights1 built upon the weight similarity with
negligible accuracy impact. This paper contributes as below:
• We conduct an in-depth characterization of various DNN

models running data parallelism training in multi-GPU sys-
tems and quantitatively demonstrate the overheads caused by
excessive data movements. Our characterization is conducted
on PCIe-based and NVLink-based multi-GPU systems to
reflect the data movement overheads in state-of-the-art multi-
GPU systems.

1In this paper, we use the term “weight” and “model parameter” inter-
changeably.
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• We propose ScaleDNN, a framework that equips three opti-
mizations: CPU-centric input batch splitting, mini-batch pre-
loading, and model parameter compression. The first two
optimizations employ CPU to dispatch the mini-batches and
remove mini-batch transfer from the execution’s critical path.
The third optimization explores the similarity among model
parameters and leverages compression to reduce the data
transfer with negligible impact on model accuracy.

• We evaluate ScaleDNN on both PCIe-based and NVLink-
based multi-GPU systems. Our experimental results show
that ScaleDNN achieves up to 39.38%, with an average of
17.96% execution time saving over modern data parallelism
on the PCIe-based multi-GPU system. On the NVLink-based
multi-GPU system, it achieves up to 19.20%, with an average
of 10.26% execution time saving.

II. BACKGROUND

A. Multi-GPU system architecture

GPUs are widely used in training DNN models [8], [14],
[15], [39], [49]. In this paper, we target DNN training on a
single-node multi-GPU system as shown in Fig 1. Fig 1(a)
shows that, in a two-socket multi-GPU server, each pair of
GPUs is connected to a PCI host bridge and the two pairs
are separately connected to two CPU sockets. The two CPU
sockets are linked with QPI [27]. In such a multi-GPU system,
PCIe buses are used to connect CPU and GPUs. Another
modern multi-GPU system employs NVLink instead of PCIe
to connect GPUs as shown in Fig 1(b). In such a system,
different topologies can be used to connect the GPUs such
as ring [18], [46], hybrid cube-mesh [1], [22], [41], etc. The
example in Fig 1(b) uses the hybrid cube-mesh topology to
connect the multiple GPUs, ensuring that a GPU is no more
than two hops away from any of the other GPUs.

B. Baseline Data Parallelism on Multi-GPU
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Fig. 2. Data parallelism training on multi-GPU systems.

The DNN training process consists of multiple epochs
and each epoch refers to one pass through the entire in-
put training dataset. In general, the dataset is divided into
a number of batches. Processing each batch is called an
iteration. Figure 2 shows the dataflow of one iteration. We
use the data parallelism in PyTorch [34] as our baseline. As
shown in the figure, the batch of input feature maps is first
transferred from CPU to the master GPU2 ( 1 ). Note that,
for the weights, only the initial values are generated by the

2In data parallelism, the master GPU is responsible for receiving data from
CPU, scattering/gathering data to/from peer GPU workers, and updating the
model parameters.

CPU and transferred to the master GPU before the first batch
starts. All the subsequent weight updates are performed on
the master GPU without CPU involvement. The master GPU
then splits the input batch into mini-batches and distributes the
mini-batches among the peer GPU workers ( 2 ). The master
GPU also broadcasts the updated weights to peer GPUs ( 3 ).
Upon receiving the mini-batches and updated weights, all the
GPUs start forward propagation (FP) and the outputs of FP
are gathered on the master GPU to compute the loss ( 4 ).
Then, these loss values are sent back to the GPUs ( 5 ) for
backward propagation (BP) to compute the updated gradients.
Finally, the gradients are gathered back on the master GPU
( 6 ) to update the weights for the next batch processing.
The training iterates this process using different batches until
convergence is reached ( 7 ). Note that, the data parallelism
training involves different types of data movements between
the CPU and multiple GPUs as highlighted by the colored
lines in the figure. As our focus in this paper is a single node
server with multiple GPUs, we adopt the master-GPU based
data parallelism training in the PyTorch framework [4], [26].
However, our approach is applicable to distributed multi-node
systems and is complementary to distributed data parallelism
to provide additional benefits when combined.

III. CHARACTERIZATION AND MOTIVATION

A. Methodology
TABLE I

CHARACTERISTICS OF SERVERS USED IN EXPERIMENTS.

Server name GPUs per Server Interconnects GPU memory

Server-A 4x GTX1080Ti PCIe 11GB
Server-B 8x V100 PCIe and NVLink 32GB

We use two multi-GPU servers, one with PCIe-based, and
another with NVLink-based (summarized in Table I) commu-
nication to conduct our characterization as well as to evaluate
our proposed optimizations later in Section V. Server-A is
equipped with the Intel(R) Xeon(R) Silver 4112 processor.
Each processor has two CPU sockets connected with Intel QPI
and each CPU socket consists of 4 cores working at 2.60GHz.
The node is featured with 96GB RAM. Each node has 4
NVIDIA GTX1080 Ti GPUs (with 11GB on-board GDDR
memory) connected via PCIe 3.0.

TABLE II
LIST OF DNN MODELS.

Models Model Size
VGG19 549MB
VGG16 528MB
AlexNet 233MB
ResNet34 84MB
ResNet50 98MB

MobileNet v2 14MB
MNASNet1_3 24MB
Bert-large 1.3GB

Server-B is equipped with 2
socket Intel Xeon ”Cascade Lake”
CPUs. Each CPU socket consists
of 20 cores working at 2.50-
3.90GHZ. The server has 8 V100
GPUs connected using NVLink,
each with 32GB of GPU memory.
PCIe bus is used to connect the
CPU and GPUs. The server is

featured with 512GB RAM. All DNNs are trained using
modern data parallelism on multiple GPUs that is supported
in PyTorch 1.4.1. We use CUDA 10.1 and cuDNN v7.6.5 and
NCCL 2.4 [30] libraries for communications (e.g., broadcast
and all-reduce operations) across the multiple GPUs. Table II
summarizes the eight representative DNN models with diverse
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Fig. 3. Normalized execution time of different configurations–Server A. The x-axis represents different configurations in the form of <DNN model, Batch
size, Number of GPUs>. Except Bert, all results are normalized to the <DNN model, 128, 4>. Bert is normalized to the <Bert-large, 4, 4>.
There are two y-axes in the figure. The stacked bars are associated with the left y-axis to represent the normalized execution time. The red lines are associated
with the right y-axis to represent the portions of data movement overheads in the overall execution time. The configurations without corresponding stacked
bars suffer out-of-memory issues.
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Fig. 4. Normalized execution time of different configurations–Server B.

model sizes as benchmarks in our experiments. For image
classification tasks (the first seven models in table II), we
use Tiny-Imagenet dataset [20] as the training input. The
models are trained using the stochastic gradient descent (SGD)
algorithm. The dataset applied for the Bert (one representative
language model) is SQuAD2.0 [36] and the model is pre-
trained. We use three different batch sizes (128, 256, and 512
images) for image classification tasks. For Bert, we use differ-
ent batch sizes on different servers due to the different GPU
memory capacities of GTX 1080Ti and V100. To conduct the
characterization, we use the NVIDIA profiler tool (nvprof [31]
and Nsight system [32]).

B. Execution Time Breakdown Analysis

In this section, we conduct the detailed execution time
breakdown analysis of DNN training on two servers with
different interconnections. The results are shown in Figure 3
and Figure 4. The stacked bars represent the execution time
breakdown and are associated with the left y-axis. The line
graph is associated with the right y-axis and shows the
percentage of execution time spent on data movement. Note
that, the executions of configurations without stacked bars
incur out-of-memory (OOM) errors on GPUs. Due to larger
GPU memory in Server B than Server A, Server B has less
OOM occurrence. We breakdown the execution time into six
categories: 1) transferring input batch of feature maps from
CPU to the master GPU (denoted as HtoD3 in the figure),
2) distributing mini-batches from the master GPU to other
GPUs (denoted as PtoP), 3) broadcasting the model parameters

3While most HtoD is caused by batch transfer, it also includes a small
portion of transferring other marginal data such as input targets, etc.

from the master GPU to other GPUs (denoted as NCCL-
broadcast), 4) forward propagation and backward propagation
(denoted as FP+BP), 5) gathering the gradients after BP to
the master GPU (denoted as NCCL-reduce), and 6) others
that include initialization, updating weights, etc. Among these
six categories, except for the FP+BP and others, the rest four
categories involve data movement. From the figures, one can
make the following observations:

Observation 1. The total execution time does not propor-
tionally scale with the increasing number of GPUs for all
the DNN models and batch sizes (shown in stacked bars).
For example, on server A, ResNet34 with batch size 256
(<ResNet34, 256, 4>) only obtains 2.2X execution time
reduction on four GPUs compared to running on one GPU
(<ResNet34, 256, 1>). Other models show a similar trend.
In particular, AlexNet and Bert-large do not benefit
from more GPUs and its execution time increases when four
GPUs are used. The major reason behind this is the dominating
data movement overheads. As shown in the figures, while the
data parallelism effectively parallelizes the computation (i.e.,
FP+BP) across multiple GPUs, the data movement overheads
occupy a large portion of the execution time as depicted
by the line graph. The average data movement overheads
occupy 26.83%, 34.31%, 46.28% of the training time with
1 GPU, 2 GPUs and 4 GPUs, respectively. We also observe
from the line graph that the percentage of time spent on
transferring data increases when more GPUs are employed
for data parallelism. This is because employing more GPUs
introduces additional data transfers among CPU and GPUs
(e.g., weight broadcasting and mini-batch dispatching), and
consequently, spends more time on data movement. Server
B results in Figure 4 show similar trends as Server A. The
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average data movement overheads on server B occupy 12.75%,
22.81%, 31.64% of the training time with 1 GPU, 2 GPUs
and 4 GPUs, respectively. We can observe that server B has
less data movement overhead compared with server A due to
the adoption of faster interconnection–NVLink. However, the
data movement overheads still occupy a sizeable portion of
the execution time.

Observation 2. HtoD data transfer occupies the most sig-
nificant portion of execution time among the aforementioned
four types of data movements. Take server A results as an
example, on average, HtoD takes 20.28% and 24.51% for 2
GPUs and 4 GPUs, respectively. Further, we can observe that
when the input batch size changes (e.g., from 256 to 512), the
HtoD transfer time also increases due to the increased data
movements involved in transferring mini-batches.

Observations 3. As the number of GPUs increases, addi-
tional PtoP data transfer occurs. It can be observed that with
larger batch sizes, the PtoP portion is more significant due to
the increased size of mini-batches. Intuitively, the PtoP time
is expected to be at a similar magnitude of HtoD. However, as
shown in the figure, PtoP occupies a smaller portion compared
to HtoD. This is because the PtoP transfer has a higher
throughput (optimized by NVIDIA APIs) compared to HtoD
transfer. Specially, we measure that the throughput of PtoP is
around 7-10 times over HtoD transfer throughput.

Observations 4. For models with a large number of weights,
NCCL-broadcast and NCCL-reduce overheads also contribute
a sizable portion of the training time. In particular, for those
4 large models we studied on server A (i.e., VGG19, VGG16,
AlexNet and Bert-large), NCCL-broadcast and NCCL-
reduce occupies an average of 24.85%, 35.88% of the training
time on 2 GPUs and 4 GPUs, respectively. In fact, as modern
DNNs become wider and deeper, the model size increases and
the broadcast and the reduce overheads are identified as one
of the major bottlenecks that limit the scalability [25].

C. GPU SM Efficiency

To further understand the impact of data movements, we
conduct a timeline analysis of GPU utilization on server A. We
use sm efficiency4 available in the nvprof toolset to represent
the GPU utilization. Figure 5 shows the sm efficiency of four
GPUs during a snippet of execution. The figure plots three
batches (i.e., epoch 30, batches 100 to 102) from <VGG19,
128, 4> and <ResNet50, 256, 4>. The observed pattern
applies to other batches and models as well. The shaded blocks
in the figure capture the phases where GPUs are waiting for
input batch data and model parameters to be propagated before
FP computation and after BP computation. For instance, in
<ResNet50, 256, 4>, training three batches takes 1.56s in
total where 0.45s (29.05%) spend on waiting for data and all
four GPUs are under-utilized. The timeline results reported
in Figure 5 is consistent with the percentage reported in the
Figure 3, indicating that the data movement is a primary

4we use sm efficiency which is defined as the percentage of time that the
streaming multiprocessor (SM) has at least one warp that is active.
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Fig. 5. Timeline results of GPU utilization for three batches during baseline
training on Server A. (a) Results for <VGG19, 128, 4>. (b) Results for <
ResNet50, 256, 4>.
impediment that prevents the scaling of training DNN models
on multi-GPU systems.

D. Takeaway.

Based on the results, it is imperative to optimize/reduce the
data movement overheads in order to deliver scalable DNN
training performance. Therefore, the implications are twofold.
First, it is important to reduce the data movement overheads
caused by input batch data as it causes the most significant per-
formance degradation. Second, though the overheads caused
by transferring model parameters are relatively small (due to
the using of peer to peer GPU transfer), it still occupies sizable
portions in large networks (e.g., VGG19, VGG16, AlexNet,
Bert-large).

IV. OUR APPROACH: SCALEDNN

In this paper, we aim to i) reduce the data movement
overheads caused by transferring input batches and model
parameters (i.e., weights), ii) remove data transfers from the
execution’s critical path, and iii) improve the GPU utiliza-
tion for data parallelism training. To this end, we propose
ScaleDNN which consists of three optimizations to tackle
the challenges and achieve our goals. Specifically, ScaleDNN
implements i) CPU-centric input batch splitting, ii) mini-batch
pre-loading, and iii) model parameter compression. In the rest
of this section, we discuss each optimization in detail.

A. CPU-centric Batch Splitting

(a) Baseline (b) Batch Splitting

Batch

Mini-batch

Mini-batch

Mini-batch

Fig. 6. CPU-centric batch splitting.

Figure 6(a) depicts the baseline input batch dispatching.
Such a data transfer flow has two disadvantages. First, the
volume of data transferred increases with more GPUs. For
instance, let us assume the batch size is n MBs, the number
of GPU is x, and the mini-batch size is n/x MBs. The whole
batch is first transferred to the master GPU and split into
mini-batches which are then distributed to x − 1 peer GPUs.
Totally, the baseline mechanism transfers n + (x − 1) × n/x
MBs. Therefore, with more GPUs (x) and fixed batch size
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Fig. 7. The execution time reduction brought by our proposed optimizations
compared to the baseline execution.

(n), (x − 1)/x is larger and finally leads to more data
transfer. Second, the master GPU may potentially become
the bottleneck. Additionally, since modern GPUs have limited
memory capacity compared to CPUs, employing a master GPU
is more likely to hit the bounds of GPU memory capacity as
the master GPU will receive the entire batch, leading to more
memory consumption compared to other peer GPU workers.

Figure 6(b) shows the proposed CPU-centric mini-batch dis-
patch mechanism. The number of mini-batches is determined
by the number of GPUs in the system that is performing FP
and BP computation. By employing CPU-centric mini-batch
dispatching, there is no need to have a master GPU for mini-
batch dispatching5. As a result, the time spent on transferring
mini-batches among multiple GPUs (referred to as PtoP data
transfer in Figure 3) can be completely removed. Meanwhile,
the amount of data movement is fixed when the batch size is
fixed, and does not increase with the number of GPUs. We also
remove the need to hold the entire batch data in the master
GPU memory. We use Figure 7 to illustrate the execution time
savings brought by ScaleDNN. As shown in Figure 7(b), the
“GPU-to-GPU mini-batch copy” is completely removed from
the execution time compared to the baseline in Figure 7(a).
As a result, the proposed CPU-centric mini-batch dispatching
provides a saving in the execution time.

B. Mini-batch Pre-loading

Another benefit brought by CPU-centric input batch split-
ting is to enable the pre-loading of subsequent batches. Recall
the observations from Section III, the HtoD batch movement
occupies a large portion of training time. The fundamental
reason behind this is that the GPUs need to wait for the
mini-batches to arrive before starting the FP computation. To
reduce the waiting time, ScaleDNN implements mini-batch
pre-loading as depicted in Figure 7(c). The key idea is to
“pre-load” the mini-batches of batch n + 1 to overlap it
with the computation (i.e., FP+BP) of batch n. As a result,
by the time when the GPUs start processing batch n + 1,
the mini-batches have already been pre-loaded to the GPU
memory, eliminating the need to wait for the mini-batch
transfer. The pre-loading is implemented by launching new
CUDA streams for each GPU device to transfer mini-batch

5The master GPU still handles the update of model parameters.

data6. We also employ asynchronous memory copy APIs to
enable the potential overlapping between data transfer and
computation. Figure 7(c) shows the execution time saving
with mini-batch pre-loading in addition to the mini-batch split
optimization. As one can observe from Figure 7(c), with the
proposed mini-batch pre-loading, ScaleDNN is able to save
an additional b time. While such pre-loading requires the
GPU to pre-allocate and reserve certain memory space for the
mini-batches of the next batch, the overheads are marginal.
For example, with 224x224 input image resolution, one mini-
batch (of 512 batch size) only occupies 73.5MB memory when
parallelized among 4 GPUs. Our evaluation results reported
later in Section V include these overheads.

C. Model Parameter Compression

While the previous two optimizations focus on reducing the
data movement overheads caused by transferring input batch
data, it is also important to reduce the overhead caused by
transferring model weights, since it also occupies a sizable
portion (35.88% on average with 4 GPUs) of execution time
while training large DNN models (e.g., VGG19, VGG16,
AlexNet and Bert-large in Figure 3).

Compressibility of model weights. To reduce the size of
model weights, we investigate the potential of using compres-
sion on it. The model weights are stored in the IEEE-754
single-precision floating-point (FP32) format in the baseline
execution (as shown in Figure 8(a)). In an IEEE-754 rep-
resentation, the 32 bits are split into 1 sign bit, 8 exponent
bits, and 23 mantissa bits. In this representation, the value’s
significant bits are captured by the higher bits (i.e., the sign
bit, the exponent bit, and the higher bits in the mantissa).
We conduct a study to show the similarity of exponents bits
among the weights, and the value discrepancy of removing the
tailing bits of mantissa. In Figure 9(a), the x-axis represents
the possible values of the 8 exponent bits from VGG19 model
parameters. The y-axis represents the CDF distribution of
the exponent values. We use the weights averaged from all
iterations. We observe that most of the exponent values are
clustered in a small range of values (from 112 to 124). The
values in this range (112-124) share the same higher order 4
bits (0111XXXX). This observation reveals that the potential
to use base-delta compression to store the higher 4 bits as base
and the lower 4 bits as delta. The observed pattern applies to all
other DNNs as well. Figure 9(b) shows the PDF distribution of
the value discrepancy between the original value and the value
after removing the lower 18 bits from mantissa. The data is
collected from model parameters of VGG19. We use the same
batches as Figure 9(a) to show value discrepancy. One can
further observe from Figure 9(b) that removing the lower 18
bits has a negligible impact on the majority of the values (i.e.,
∼99% of the values are clustered in a small range of value
from -0.0005 to 0.0005). This is because the significant bits

6A CUDA stream is a sequence of device operations that execute on
the GPU device in order. Operations from different streams may execute
concurrently depends on hardware resource availability.
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Fig. 9. (a) Cumulative Distribution Function (CDF) of exponent bits in
weights. (b) Probability Density Function (PDF) of value discrepancy after
removing the lower 18 bits in mantissa.

are carried in higher bits. Due to space constraints we only
show two DNN models to motivate the compressibility of the
weight data, however, we observed similar behaviour in other
DNN models as well. The intuition of these observations is
similar to weight quantization. Furthermore, we quantitatively
compare our approach with quantization in Section V-D.

Based on these observations, we develop a simple-yet-
effective compression method to significantly reduce the vol-
ume of model parameters being transferred among GPUs.
Figure 8(b) shows the format of compressing three FP32
values into one FP32. For the 8 exponent bits, we split them
into two parts: higher 4 bits as the base and lower 4 bits as
the delta. We use two bases (0111 and 0110) for exponent bits
since they are able to capture 99% of the exponent values.
We set a flag bit (shown in Figure 8(b)) to denote which
base is used in the current compression of the three floating-
point numbers. If all three compressed values share the same
exponent bits 0111, then we set the flag bit to 1. Otherwise, the
flag bit is set to 0 indicating the base 0110 is selected. For the
mantissa bits, we remove the lower 18 bits from the value.
The new format of the compressed data includes 1 bit for
base selection and 10 bits for each compressed floating-point
number. As a result, our compression ratio is 3. Figure 8(c)
shows the decompression results where the received FP32 is
split to restore the three values. Depending on the flag bit,
a different base is selected and concatenated with the delta
to form the original exponent bits. Our compression is lossy
since we set 0s for the lower 18 bits when decompression.

At the beginning of each batch processing, the model
weights after synchronization are compressed by the master
GPU before broadcasting the model to peer GPUs. Upon
receiving, each GPU worker decompresses the parameters and
start their forward propagation. With our compression, the
data movement overheads of model parameters are reduced,
bringing additional c time saving as illustrated in Figure 7.
Note that, the compression and decompression processes add

runtime overheads to the batch processing. Therefore, it may
happen that training small models with fewer parameters will
encounter marginal gains or even performance degradation. To
minimize the overheads, we leverage GPUs to perform par-
allel compression and decompression. As later demonstrated
by the experimental results, our proposed compression and
decompression significantly reduces the model parameter copy
time for DNN models with a large number of parameters,
while it has negligible overheads for those models with few
parameters.

V. EVALUATION

A. Overall Performance

We use the same set of DNN models and system configura-
tion in characterization to evaluate the proposed ScaleDNN
framework. We also compare our work with the state-of-
the-art data parallelism DNN training framework–Horovod to
address our contributions [38]. Horovod takes advantage of
NCCL (one collective communication library) to synchronize
and average the gradients among multi-GPU. It also proposes
to use FP16 as the compression format for gradients during
synchronization. Figure 10 and Figure 11 plot the normal-
ized execution time with 4 GPUs setup (i.e., configuration
<Model, Batch Size, 4>) on two kinds of servers (one
is fully equipped with PCIe bus, the other uses NVLink
for GPU-GPU communication). Results are normalized to 4
GPUs baseline execution without applying our optimizations.
We only show 4 GPUs results as the trends for 2 GPUs
and 3 GPUs are similar. For each DNN model, the first bar
represents the results with only splitting and pre-loading, the
second bar represents the results with all three optimizations
in ScaleDNN, the third bar represents the Horovod results.

From the result in Figure 10, first, we observe up to 39.38%,
with an average of 17.96%, execution time saving compared
to baseline data parallelism training across the eight DNNs
we evaluated. Compared to Horovod using FP16 for gradient
compression on large models, our approach achieves an aver-
age of 13.13% execution time saving by splitting, pre-loading
and weight compression. This observation further reflects our
effectiveness in removing data movement overheads. Further,
we have two stack bars named ”average” to show the averaged
normalized execution times of large models and small models,
respectively. We observe that with splitting and pre-loading,
ScaleDNN achieves an average of 20.02% execution time
saving on small models, and 10.29% execution time saving on
large models. This is because these four small models have
a large HtoD time ratio (as discussed earlier in Figure 3),
providing us significant benefit from overlapping a large
portion of HtoD transfer time with GPU computation. Second,
large batch sizes have more benefits comparing to small batch
sizes as more data movement overheads have been reduced. An
exception is AlexNet whose computation occupies a small
portion of execution time and having more GPUs increases
the execution time as we discussed in Section III. Third, the
proposed weight compression effectively reduces the weight
transfer time and further improves the performance of large
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Fig. 10. Overall Normalized Execution Time–Server-A.
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Fig. 11. Overall Normalized Execution Time–Server-B.

models. For instance, we observe an average of 7.22% of
additional time saving for VGG19, VGG16, AlexNet and
Bert-large with the overheads included. However, for
small model sizes (less than 100MB in Table II), the compres-
sion and decompression overheads offset the savings, leading
to 1.64% overheads. The results with compression overheads
for all models are reported to provide a fair comparison.
However, one can easily turn off the compression by setting
a command flag in ScaleDNN framework for small models.

The results on server B show an average of 10.26% ex-
ecution time saving compared to baseline data parallelism
training across the eight DNNs we evaluated. Note that, the
performance improvement on server B is less than server A.
This is because we use high-performance server with NVLink
to transfer the data. In addition, as the batch size increases,
the improvement trend on server B is different from server
A. For instance, on server B, the improvement ResNet34
value decreases as the batch size increases. This is because,
server B has less computation time than server A (due to
the more powerful V100 GPU computing capability) but the
time spent on transferring input data is the same (both of
them use PCIe buses to connect CPU and GPUs), leading
to overlapping incompletely. We also conduct the experiments
of models VGG19, VGG16, ResNet50 and MobileNet v2
with 8 GPUs and batch size 512. The results show an average
of 14.11% execution time saving compared to baseline data
parallelism training, indicating that our approach is effective
in any number of GPUs.

Figure 12 shows the reduced data movement overheads in
ScaleDNN on server A. Similar trend is observed on server
B as well. Results are normalized to the data movement
overheads in baseline configuration (<Model, Batch Size,
4>). As one can observe, ScaleDNN significantly reduces
the data movement overheads with an average of 41.55%.
Specifically, HtoD+PtoP of VGG19, VGG16, ResNet34 and
ResNet50 are almost completely hidden in ScaleDNN. The
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Fig. 13. Timeline results of GPU utilization in ScaleDNN on Server A. (a)
Results for <VGG19, 128, 4>. (b) Results for <ResNet50, 256, 4>.

few HtoD+PtoP cannot be overlapped is because of data
transfers other than input batch (e.g., input targets used in
loss computation) as we mentioned in Section III-B. We
further observe that, for AlexNet, the normalized HtoD+PtoP
increases when the batch size increases. This is because the
computation in AlexNet is comparably fast and cannot hide
the large data movement overheads.

B. GPU SM Efficiency

Figure 13 shows the sm efficiency on server A to further
explain the effectiveness of ScaleDNN. The figure uses the
same models from Figure 5. Comparing these two figures,
we observe that the data transfer overheads (i.e., denoted
using shaded boxes) where sm efficiency is low have been
significantly reduced, indicating that the execution time spent
on data movement is saved and overall GPU utilization is
improved. As a result, the processing of three batches finishes
earlier. Using VGG19 as an example, the three batch execution
consumes 1.38s in Figure 13(a) compared to baseline 1.68s in
Figure 5(a). Note that, there still exists a portion of unopti-
mized data movement overheads. This portion is caused by
NCCL-reduce operation where compression is not applicable.
We leave the optimization of NCCL-reduce to our future work.

C. Accuracy

Table III shows the top-1 accuracy and top-5 accuracy
of baseline training and ScaleDNN under 4 GPU setup on
server A. The results on server B are the same. We see that
despite using lossy compression, ScaleDNN has a negligible
(less than 1%) impact on model accuracy across all DNN
models. We also show the over time accuracy of two example
DNNs in Figure 14. As one can observe, ScaleDNN has little
impact on accuracy over epochs compared to the baseline,
indicating the optimizations in ScaleDNN do not compromise
the model accuracy. We test the loss value of baseline training
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TABLE III
ACCURACY COMPARISON BETWEEN BASELINE AND SCALEDNN ON

SERVER A.

Model Top-1 Accuarcy (%) Top-5 Accuracy (%) No. of Epochs
ScaleDNN Baseline ScaleDNN Baseline

VGG19-128 54.52 54.86 78.02 78.28 80
VGG19-256 46.26 47.07 71.60 72.41 80
VGG16-128 55.73 55.81 78.76 78.84 80
VGG16-256 47.93 48.33 73.21 73.64 80

AlexNet-128 51.78 52.27 76.18 76.40 80
AlexNet-256 47.28 48.10 72.60 73.42 80
AlexNet-512 38.76 38.87 65.08 65.34 80
ResNet34-128 79.66 80.39 91.73 92.09 80
ResNet34-256 79.75 80.51 91.78 92.18 80
ResNet34-512 77.47 78.03 90.04 91.10 80
ResNet50-128 63.47 64.36 83.80 84.55 80
ResNet50-256 58.30 58.73 80.66 81.00 80

MobileNet v2-128 50.40 51.27 74.71 75.64 80
MobileNet v2-256 49.43 50.47 74.16 75.09 80
MobileNet v2-512 41.00 41.61 67.06 67.67 80
MNASNet1_3-128 66.60 67.21 85.73 86.18 80
MNASNet1_3-256 74.61 75.32 89.62 90.10 80
MNASNet1_3-512 74.91 75.79 89.68 90.37 80
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Fig. 14. Overtime accuracy.

and ScaleDNN under 4 GPU setup on Bert-large model.
We can also observe that optimizations in ScaleDNN do not
compromise the model loss.

D. Comparison with Quantization

Recall that the compression in scaleDNN is lossy and the
intuition behind is similar to weight quantization. BFloat16
[17], [47] has been proposed to be a state-of-the-art cus-
tomized quantization data format for deep learning. It works
as well as the FP32 format while delivering increased
performance and reducing memory usage. In this work,
we implement BFloat16 support on GPUs and quantita-
tively compare the training performance with ScaleDNN.
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ScaleDNN and BFloat16 on
server A.

Figure 15 plots NCCL-broadcast
times of three large models (i.e.,
VGG19, VGG16, AlexNet and
Bert-large) with 4 GPUs nor-
malized to the baseline 4 GPUs
NCCL-broadcast time. We use
256 batch size in comparison be-
cause the NCCL-broadcast time
does not change with the input
batch size. For each model, the
red bar represents ScaleDNN, and the black bar represents the
BFloat16 results. From the figure, we observe that ScaleDNN
has better performance than BFloat16 due to the higher com-
pression ratio and less model transfer overheads in ScaleDNN.
On average, ScaleDNN achieves an average of 45.77% time
saving on NCCL-broadcast, whereas BFloat16 obtains 26.98%
time saving. We also want to mention that for small models,
both ScaleDNN and BFloat16 does not provide any significant

saving in NCCL-broadcast time. Both approaches have a
negligible impact on model accuracy (less than 1%).

VI. RELATED WORK

Multi-GPU Parallel Training Previous works have explored
data parallelism optimizations to reduce training time [13],
[23], [28], [35]. Krizhevsky et al. [19] used data parallelism
for convolutional and pooling layers and model parallelism
for fully-connected layers. Goyal et al. [7] proposed a three-
step all-reduce operation to optimize communication across
devices and aggressively overlap gradient synchronization
with backward propagation. Pal et al. [33] explored hybrid
parallelization to overcome the statistical efficiency losses
that data-parallel training incurs at scale. Compared to these
prior efforts, we investigate different types of data movements
involved in data parallelism on two types of multi-GPU sys-
tems (PCIe-based and NVLink-based). Our approach leverages
GPU parallelization to hide the data transfer and efficiently
compresses the redundancy in weights. Our approach is also
orthogonal to prior communication bandwidth optimization [9]
and can be combined with these works to further reduce
training time.
Data Movements on Multi-GPU Many researchers have
contributed to reducing data movement overheads [2], [3],
[5], [10], [11], [29], [37], [42], [43], [45], [48] because data
movement is one of the key challenges in data parallelism. In
these prior works, model compression has been proven as an
effective way for DNN models. For example, the parameter
pruning [10] and quantization [3] based methods explore
the removal of redundant parameters that make a negligible
influence on the performance. The knowledge distillation [11]
transfers knowledge from a large model to a smaller one.
However, they require modifications of the network architec-
tures and cause ineffective training on multi-GPU platforms.
Our approach uses simple but effective techniques without any
hardware or architecture changes to accelerate the training.

VII. CONCLUSION

DNN training on multi-GPU systems encounters a severe
performance burden due to expensive data movement over-
heads. In this paper, we propose ScaleDNN, a framework that
systematically and comprehensively exploits and optimizes
the data movement (including both input batches and model
weights) to improve the scalability of training on two types
of multi-GPU systems (PCIe-based and NVLink-based). Our
experimental results show that ScaleDNN achieves up to
39.38%, with an average of 17.96% execution time saving
over modern data parallelism on the PCIe-based multi-GPU
system. On the NVLink-based multi-GPU system, we can also
achieve up to 19.20%, with an average of 10.26% execution
time saving over baseline.
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