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Influence of heterogeneous
age-group contact patterns

on critical vaccination rates for herd
immunity to SARS-CoV-2

Joan Saldafa®!* & Caterina Scoglio?

Currently, several western countries have more than half of their population fully vaccinated against
COVID-19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases,
most of them concentrated in sectors of the populations whose vaccination coverage is lower than
the average. So, the initial scenario of vaccine prioritization has given way to a new one where
achieving herd immunity is the primary concern. Using an age-structured vaccination model with
waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on
minimizing the basic reproduction number allows for the deployment of a number of vaccine doses
lower than the one required for maximizing the vaccination coverage. Such minimization is achieved
by giving greater protection to those age groups that, for a given social contact pattern, have smaller
fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those
groups that are more vulnerable to infection.

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still imposing incredible
pressure on many countries’ healthcare and economic systems.

Nations in America, Europe, Asia, and Africa have faced large numbers of deaths due to COVID 19, and a
continued crisis situation. The only good news in this dark situation is that vaccines are becoming available from
different companies all over the world. Some countries are currently evaluating the efficacy and effectiveness of
developed vaccines, while some other countries have already started their vaccination campaign. In particular,
as of November 2021, more than 75% of the people in countries like Canada, United Kingdom, and France have
received at least one dose of the vaccination, while no more than 35% of people in Bangladesh, Guinea, and
Armenia have received one dose at least’. These examples give an idea of the heterogeneous situation of the vac-
cination campaign in the world. Additionally, current studies suggest a decay of neutralizing antibody responses
in convalescent patients?, as well as a decline in the effectiveness of mRNA COVID-19 vaccines®. Therefore,
vaccines probably provide a short-lived immunity. For instance, comparing the rate of decay of the antibody
responses following infections by human coronavirus (hCoV) and by SARS-CoV-2, it has been suggested that
individuals may become susceptible to reinfection within 12-18 months after a previous infection® Similarly, a
recent comparative evolutionary analysis of coronavirus relatives of SRAS-CoV-2 reveals that, under endemic
conditions, reinfection by SARS-CoV-2 would likely occur between 3 months and 5.1 years after peak antibody
response, with a median of 16 months*.

While during the ongoing pandemic most countries agree to vaccinate first public health personnel and
people in long term care facilities, the limited availability of vaccines and the logistic complexities are still posing
big questions on when and how the vaccination campaign will be completed. Initially, some countries assessed
reaching herd immunity at around 70% of the population vaccinated®. With time, several hurdles upon this
achievement are becoming evident®. These difficulties in obtaining herd immunity may further discouraging
people from attaining it’.

Countries are now developing immunization plans to face the challenge of distributing millions of vaccines,
some of which require very special maintenance conditions. These plans include the definition of priority schemes
to start the distribution process and, since it is very likely that not all people will be vaccinated for different
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reasons, understanding how vaccine distribution among population age segments impacts the obtained herd
immunity is of primary importance.

A vaccination strategy can be developed to obtain different goals such as minimizing deaths, minimizing
number of cases, minimizing severe cases requiring hospitalization, etc.”. For instance, in a very recent paper®,
the authors consider five different vaccine prioritization strategies. Among their findings, it was shown that giving
priority to adults ages 20-40 years minimizes the cumulative incidence, while mortality is minimized by giving
priority to adults ages 60 and more. Another very recent article’ investigates two criteria for vaccination priority
based on age: lives saved and years of future life saved. While in general these two criteria can be in conflict, in
the case of COVID-19, vaccinating the oldest first saves the most lives and simultaneously also maximizes years
of remaining life expectancy.

In another approach to vaccination'?, the authors have investigated how much vaccine is required by any given
country, year by year, to create herd immunity to block SARS-CoV-2 transmission, assuming immunity is short
lived (waning immunity). To answer this question, a simple model is developed showing the percentage of the
population in the first year of an epidemic that must be vaccinated and the percentage that must be vaccinated
once the system reaches equilibrium after a few years. Results show that in year 1 a much larger fraction of the
population needs to be vaccinated, being most of the population susceptible, compared with the population
fraction to be vaccinated in subsequent years, to create effective herd immunity.

The study of vaccination strategies to achieve herd immunity has been considered for several infectious
diseases and for many years''~!*. In particular, vaccination schemes aiming to reduce Ry below its threshold
value 1 are called preventive because, once they have been launched, epidemic outbreaks are not possible under
occasional introduction of new cases in the population. For stochastic SIR epidemics with permanent immu-
nity, preventive strategies have been considered, for instance, in'*. However, due to the lack of vaccines at the
beginning of the COVID-19 pandemic, some papers analysed the possibility of reaching disease-induced herd
immunity in age-structured models. In a recent paper'®, an SEIR model has been developed to assess the fea-
sibility of suppressing the virus transmission or, alternatively, of achieving herd immunity, by applying social
distancing to differing age groups and self-isolation by symptomatic infectious individuals. The model revealed
that obtaining herd immunity without exceeding hospital capacity was not a practical objective because, without
a vaccination program, social distancing needed to be maintained for an extended period and adapted over time
in a “precise yet unfeasible way”. Almost at the same time, a second paper' has adopted a similar approach to
study the level of immunity that can be achieved with non-pharmaceutical interventions. Its aim was to relate the
severity of preventive measures imposed at the beginning of the pandemic with the size of outbreaks appearing
after these measures were lifted. In this setting, it is shown that, when the age structure of the focal population is
considered, herd immunity can be reached at around 43% instead of the traditional value of 60% that appears for
a basic reproduction number Ry = 2.5 under a homogeneous mixing of the population. In both papers'>'¢, social
distancing interventions are modeled by reducing the mean number of contacts in the original contact matrix.

In this paper, we deal with the question of the challenges associated to creating herd immunity to SARS-CoV-2
infection by means of preventive vaccination strategies with waning immunity that take into account the contact
rates among age segments. In particular, short-lived immunity implies that continuous vaccination campaigns
are needed to preserve the herd immunity. Therefore, we adopt the assumption of reaching a disease-free equi-
librium (DFE) where susceptible and vaccinated individuals are only present'’. Then, using an age-structured
Susceptible-Infected-Recovered-Vaccinated model, we firstly derive the expression for the vaccination rates that
lead to the maximum vaccination coverage at this equilibrium for a given supply of vaccines per unit time (the
total vaccination rate). Next, if R} denotes the basic reproduction number at the DFE with vaccinated individuals,
we compute two different sets of per age-group vaccination rates: (1) the set that minimizes Rj with the constraint
that the total vaccination rate is the same as the critical rate under uniform vaccination, and (2) the set at which
the minimum R equals 0.996 when a suitable (and lower) total vaccination rate is assumed.

For the limited supply of vaccine given by the critical vaccination rate under a homogeneous mixing, we found
that the value of R} obtained by maximizing the vaccination coverage is always larger than the minimum of R}
attainable under the same constraint on the total vaccination rate. The latter then defines the optimal allocation
of vaccines among age groups under the given supply. On the other hand, since this minimum R} will be clearly
less than 1, the vaccination rates of the second set (R} = 0.996) will be smaller than those of the first set, thus
achieving the herd immunity at a lower supply of vaccine. We have also verified that these results hold when
considering (1) a high but not complete success rate for vaccines, and (2) a different duration of immunity for
each age group, in accordance with observations of the age-related decline of the immune system that weakens
the ability to mount effective responses to vaccines. This decline is often referred to as “immunosenescence”!”!8.

To our knowledge, this is the first study on the combined impact of age-group contact patterns and short-
lived vaccination immunization on the optimal allocation of vaccines among age groups. We are able to quantify
the importance of specific contact patterns in different countries through the reduction of R at the optimal
strategy that results when vaccination by age group is used instead of the one based on a uniform distribution of
vaccines'’. In contrast to other preventive vaccination strategies, like the one aiming to maximize the vaccina-
tion coverage under a given supply of vaccines, minimizing R} with respect to the set of per capita vaccination
rates leads to preferential targeting for the most vulnerable age groups, that is, those with higher contact rates.
Although the importance of targeting highly connected individuals to reduce the virus transmission is well
known in epidemiology' and, in particular, in the so-called contact network epidemiology®, this is the first
time that the criterion of minimizing R is used to find an optimal vaccine allocation among age groups. Even
though we are aware that the numerical results are obtained on the base of measured and consequently noisy
contact patterns, our mathematical model reveals the critical role played by the age-based contact patterns in
efficiently administering vaccines and can be useful in encouraging the population to see a possible end of the
pandemic by vaccination.
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The model

In this paper we consider a deterministic epidemic model with continuous vaccination where individuals are
classified in three age groups: youngsters, adults, and the elderly (i = 1,2, 3 respectively). Within each age class,
individuals are classified according to their disease status: susceptible, infectious, recovered, and vaccinated. It
is assumed a loss of immunity in recovered and vaccinated individuals at rates §;and 87 (i = 1, 2, 3), respectively.
Moreover, as mentioned at the Introduction, the probability that the vaccine successfully protects against infec-
tion is assumed to be age-dependent and it is denoted by p; (i = 1,2, 3).

The number of infections in age group i caused by individuals of age group j is B ¢;;S;I;/N;j, where S; is the
number of susceptible individuals in age group i, I;/N; is the fraction of infected individuals in age group j, 8 is
the transmission probability through an infectious contact, and C = (cj;) is the social contact matrix. C gives the
(mean) number of contacts per unit time between an individual of age group i and individuals of age group j, and
is the central ingredient of the model since it reflects how individuals mix with each other in different countries.

To model the limited capacity of a public health system or situations of vaccine shortage as those occurring in
low-income countries where fewer than 3% of people has been fully vaccinated against COVID-19 as of Novem-
ber 2021, a fixed number w of individuals is assumed to be vaccinated per unit of time and, moreover, we will
assume an age-dependent targeting of vaccination®'?!. So, if w; denotes the number of vaccines assigned to age
group i per unit of time (vaccination rate of age group i), then w; S;/N; is the number of susceptible individuals
in age group i vaccinated per unit of time when vaccination is made regardless of disease status®>. In particular,
if we do not consider age, then under a uniformly random vaccination of a population it follows that w; = wf;
with f; = N;/N, i.e., w; is proportional to the fraction of the population in age group i, with Zl L Wi = w, the
total vaccination rate. In such a case, the vaccination term in the equation for the susceptible individuals in age
group i is given by w; S;/N; = wf; Si/N; = w S;/N. So, any strategy that departs from this uniform vaccination
will be given by a vector (w1, w,, w3) of vaccination rates satisfying > *;_; w; = w.

According to these hypotheses, assuming an arbitrary vaccination strategy (wj, wa, w3), and ignoring the
demographics of aging, birth, and death given the short timescale of an epidemic, the equations governing its
dynamics are
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withS; +I; + R + V; = N;,i = 1,2,3, andZ?zl Wi = W.
Writing the system in terms of fractions (s; = S;/Nj, y; = I;/N;, ri = R;/Nj, and v; = V;/N;) and neglecting
the last equation because it is redundant, we have
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withs; + y; + ri +v; = 1, and w; = w;/N; (i = 1,2, 3) being the per capita Vacc1nat10n rate of age group i. Note
that, from the constraint 23 . wi = wand the definition of w;, it follows that Z i1 Wifi = w/N = w, the mean
per capita vaccination rate in the population.

The previous relationship among the per capita vaccination rates of each age group implies that, if the popula-
tion fraction of an age group i is lower than the number w of available vaccines per person and per unit of time
(fi < w),thenw; > 1is required when vaccines are mainly targeted at this age group (i.e., whenw; &~ O for j # i).
Roughly speaking, w; > 1 corresponds to situations in which there are more available vaccines per unit of time
than people to be vaccinated in the i-age group (remember we are assuming a constant vaccination rate w) .

The disease-free equilibrium and vaccination strategies. The disease-free equilibrium (DFE) of sys-
tem (1) is (s*, y*, r*) = (s}, 0,0) where

sV
=% 2
bopiwi+ ] @
with 37| w;f; = #. Therefore, at this equilibrium, only susceptible and vaccinated individuals are present with
vi=1-=s(i=12,3).
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Figure 1. R} (w) for system (1) at the disease-free equilibrium given by (2). The critical vaccination rate is given
by the intersection of R} (w) with the dashed line R*(w) = 1. Parameters: y; = 1, = 1,3 = 0.9, 87 = 1/40,
8y =1/52,85 = 1/40, p1 = p» = p3 = 1, and B is scaled such that Ry = 2.5 for the data set from Italy in the
absence of vaccinated individuals (w = 0), see “Results” for details.

The basic reproduction number at the DFE, here denoted by R} to distinguish it from the one for the model
without vaccination, is the largest eigenvalue of the next-generation matrix*

N} = p diag(s?) C diag(1/71)

where s is given by (2), C is the social contact matrix, and 1/y; is the mean mfectlous period of infected indi-
viduals of age group i. Moreover, since the per capita vaccination rates #; satisfy >3_, w;f; = w (limited supply
of vaccines), R can be considered a function of w; and w; only, that is, R} (w1, w»).

From (2) we can compute the condition on w; for having a maximum vaccination coverage of the popula-
tion at the DFE, which is equivalent to minimize the fraction of susceptible population at this equilibrium,
$* = Zl | fisk. Precisely, the condition grad(s* (w1, w2)) = (0, 0) and the positivity of the rates amount to

piwi+687 _ pawi +8;  pawi 483 3)
V18] VD283 \V/P38;

with #} satisfying 37| wif; = . So, from (3) one easily obtains an explicit expression for the vaccinations
rates w; leading to the maximum vaccination coverage under the constraint of having a given amount of vaccine
per unit of time, which turns out to be a global maximum. In particular, it follows that, if the rate of immunity
loss 8} is the same for the vaccinated individuals of all the age groups and the probability of being protected
after vaccination p; is also the same across age groups, then the vaccination rates that guarantee the maximum
fraction of vaccinated population are w; = w, i.e., they correspond to a uniformly random vaccination of the
population, irrespective of age.

By definition, under such a vaccination strategy, the probability of being vaccinated per unit of time is the
same for any individual regardless of age. In this case, the differential equation governing the dynamics of the
susceptible individuals of age group i is

3
= — Z ﬂcijsiyj + 8iri + 82’1/,' — piws;.
=1

dsi
dt

Using w as a tuning parameter, we compute the basic reproduction number Rjj (w), and find the critical per capita
vaccination rate w, defined by R} (w.) = 1. As an example, Fig. 1 shows the behaviour Rj(w) with the data set
from Italy which leads to w. = 0.0328.

When the rates §} of immunity loss among groups differ from each other, the maximum vaccination coverage
at the DFE will be attained for values of the per capita vaccination rates w;* that do not correspond to a uniformly
random vaccination of the population. These w} are optimal in the sense that they maximize the vaccination
coverage; however, they do not guarantee the minimum value of R} at the DFE. This fact, indeed, can be used
to define an alternative criterion for an optimal vaccination strategy, namely, the one than leads to the lowest
value of R at the DFE. Under such a strategy, we control the disease by targeting age groups according to their
potential contribution to an epidemic outbreak. So, we use the same amount of vaccines per unit of time but, in
comparison to the random vaccination, we are vaccinating more individuals from some age groups while other
age groups are less vaccinated. This situation corresponds to what has been called an optimal but inequitable
distribution of vaccine’.
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Methods

Data. The Social Contact Data initiative (http://www.socialcontactdata.org) includes contact matrices for
Belgium, Finland, Germany, Italy, Luxembourg, Netherlands, Poland and the UK from POLYMOD?, as well as
data from studies on social mixing in other countries®. All data are available on Zenodo at https://doi.org/10.
5281/zen0do.1215899, and can be retrieved within R using the socialmixr package. The SOcial Contact RATES
(Socrates) data tool at http://www.socialcontactdata.org/socrates/>® enables quick and convenient retrieval of
these social contact matrices. Using the Socrates data tool, we have selected six countries for our numerical
evaluations: Belgium, Germany;, Italy, the Netherlands, Peru, and Zimbabwe. All the European data-sets are from
the POLYMOD project®. The contact matrix for Peru is from?” and the one for Zimbabwe is from?:.

We have selected three age groups: the first group includes people of age 0-17 years, the second group
includes people of age 18-59 years, and the third group includes people 60 years old and older. For each of these
countries, the Socrates data tool provides a matrix containing the mean daily number of contacts an individual
of age group i (row) has with individuals of age group j (column). The row sums of this matrix correspond to the
total per capita contact rate of each age group. In all these matrices, contacts are reciprocal (see Supplementary
Table S1 online for more details).

The four European countries have a similar population composition with 20-25% of people in the third age
group (the elderly) and about 57% in the second age group (adults), which is in sharp contrast with the younger
populations of Peru and Zimbabwe where the elderly only represents 8.9% and 4.4% of the population, respec-
tively (see Supplementary Table S2 online). However, the contact patterns of these four European countries
show clear and important differences. Two of them, Italy and the Netherlands, have very dissimilar per capita
contact rates, with very high daily numbers of contacts among children and among adults, whereas Belgium and
Germany have lower and less dissimilar per capita contact rates. On the other hand, in Zimbabwe, elderly people
are the age group with the highest total per capita contact rate, whereas the same age group has the lowest total
per capita contact rate in the other countries. In Peru, the total per capita daily number of contacts in the first
age group almost doubles the total per capita daily number of contacts in the other two age groups.

Parameters. The recovery rate and loss of immunity rate are assumed to be the same in the six countries in
exam and, also, to be very similar among groups. The recovery rates are y; = y, = 1 and y3 = 0.9. Therefore,
since these rates are equal to 1 (or very close to it), we can consider that time is measured in units of the infec-
tious period, which is about 1 week (8-10 days) for moderate cases of COVID-19%. The loss of immunity rates
for recovered (8;) and vaccinated (8} = §;) individuals are §; = 83 > &, = 1/52. These values of §} say that, on
average, individuals between 18 and 60 years have 1 year (52 weeks) of immunity against the disease, while the
length of this period is assumed to be shorter for individuals from the other two age groups (40 weeks; except for
Supplementary Fig. S1 online where it is equal to 26 weeks). These shorter periods reflect the lower maturity of
the immune system in the first age group® and the immunosenescence in the elderly's.

For each country, the transmission rate 8 is obtained by imposing that Ry = 2.5 at the beginning of the
epidemic when vaccinated individuals are not present. In this case, Ry is the largest eigenvalue of the next-
generation matrix

Ny = B Cdiag(1/y:).

The original matrix C is given in terms of contacts per day. Since our unit of time is 1 week, we multiply the
contact matrices in the Appendix by 7 to compute . However, note that working with these re-scaled contact
matrices only affects the value of 8 (which is divided by 7 when re-scaled contact matrices are used) but not
the results we are presenting because the product Bc;; in the incidence term is invariant to the re-scaling of C.

Results

Without vaccination. Given that the disease parameters across the countries are assumed to be the same,
we can assess the impact of the social contact patterns on the disease spread and, in particular, on the optimal
vaccination strategy. Figure 2 shows the evolution of the fraction of susceptible individuals during an epidemic
without vaccination for the selected parameters. Although the mean fraction is always very similar (we are
imposing the same value of Ry in all considered countries), we can see that the smallest (highest) fraction of
susceptible individuals always corresponds to the age group with the highest (lowest) total per capita contact rate
(see the last column of Supplementary Table S1 online). This figure also reveals that the similar contact patterns
in Italy and the Netherlands lead to the same ordering of the fractions of susceptible individuals with respect to
the mean fraction.

Critical rates under uniformly random vaccination. For all the data sets, the critical per capita vacci-
nation rate under the uniformly random vaccination w. € (0.0312,0.0354) when perfect protection is assumed.
The specific critical rate values and vaccination coverage for each country are reported in Table 1 under full
protection of the vaccine (the two left columns), and probabilities p; = 1, p» = 0.95, and p3 = 0.9 of being
protected after vaccination (the two right columns). In both scenarios, Peru is the country with the largest criti-
cal per capita vaccination rate (3.54% and 3.59%, respectively), which leads to the highest vaccination coverage
of the population (62.03% and 61.48%, respectively). We can interpret these values of the coverage as the herd
immunity level required for Peru under a uniformly random vaccination.

Table 1 shows that, as expected, the critical vaccination rate increases when there is a fraction of people who
are not completely protected after being vaccinated (p; < 1fori = 2,3). It also shows a small decrease in the
vaccination coverage for all the data sets except for the one from Zimbabwe. Recall that, under uniformly random
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Figure 2. Examples of evolution of susceptible individuals during an epidemic given by (1) without vaccination
with initial condition (s;(0), y;(0), 7;(0)) = (0.9999, 0.0001, 0) fori = 1, 2, 3. Parameters: y; = 1,2 = 1,

y3 = 0.9,8; = 1/40, 8, = 1/52, and 83 = 1/40. For each country, S is scaled such that Ry = 2.5 for the
corresponding data set in the absence of vaccinated individuals.

Data set We Vi we(p) Vi (p)
Belgium 3.1222 59.16 3.2678 58.99
Germany 3.1487 59.37 3.2836 59.04
Italy 3.2765 60.36 3.3823 59.77
The Netherlands 3.3374 60.86 3.4246 60.27
Peru 3.5408 62.02 3.5898 61.47
Zimbabwe 3.2882 59.73 3.4161 59.98

Table 1. Mean vaccination coverage (in %) given by (4) adopting the uniformly random vaccination strategy

at the critical per capita vaccination rate with a 100% vaccine efficacy, w, (in %), and with probabilities

p = (1, 0.95, 0.9) of being successful, w.(p) (in %). Parameters: y; = 1,y, = 1,3 = 0.9,8] = 1/40,8} = 1/52,
3 = 1/40. For each country, B is scaled such that Ry = 2.5 without vaccination.

vaccination, w; = w for i = 1,2, 3. Hence, the mean vaccination coverage at the DFE given by (2) with a critical
per capita vaccination rate w.(p), p = (p1, p2, p3)s is given by

3 3 v
fi§
Vi (p) = E ivip)=1- g —
(p) - Ji Vi ()] o piwe(p) + 5]!/ 4)

Note that w,(p) decreases when the probabilities p; of being protected after vaccination increase. So, the depend-
ence of Vy;, (p) on p; is through the products p;jw.(p)(j = 1,2, 3). From the critical vaccination rates in this table
and the corresponding values of p;, it follows that p;w.(p) < w, for j = 2, 3. This means that the first age group is
the only one with a higher percentage of vaccinated individuals at the DFE when p, 3 < 1. Zimbabwe, moreover,
is the country with the highest fraction of people in this age group (49.1%, see Supplementary Table S2 online).
These two facts explain why the mean vaccination coverage increases only in Zimbabwe when an imperfect
protection of the vaccine is assumed for the second and third age groups.

Vaccination strategies. In Fig. 3, we show the contour plots of R} as a function of w; and w5 for the six
data sets. In this figure, we assume that the mean vaccination rate w = w, and 100% of vaccine efficacy. Because
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Figure 3. Contour levels of R} (w1, w,) at the DFE of system (1) with p; = 1(i = 1,2, 3). Black level curve
corresponds to R} = 1. Blue point: Minimum of Rj}. Red point: R under uniformly random vaccination

(w1 = wy = w.). Green point: R} at the disease-free equilibrium with the maximum vaccination coverage.
Parameters: y; = 1,y = 1,3 = 0.9,8} = 1/40,8) = 1/52, 8} = 1/40, and w = w, for each data set. For each
country, B is scaled such that Ry = 2.5 in the absence of vaccinated individuals.

of the constraint 7| #;f; = , the interior boundary of each plot corresponds to W3 = 0, i.e., to straight line
given by wifi + wafa = we.

It is interesting to observe that the population fraction of the second age group (18-59 years), f,, varies
narrowly from 0.46 (Zimbabwe) to 0.59 (Netherlands). This is why the range of values of w, goes from 0 to
0.055-0.071 in all panels of Fig. 3 (its maximum value is w3"** = w,/f,). By contrast, the values of w; (and, so,
those of w3) show a greater variability. The most extreme situation appears in the data from Zimbabwe with the
highest population fraction in the first group (0-17 years) (i = 0.49, w{"** = 0.067), and the lowest fraction in
the third group (60+ years) (f3 = 0.04, w5** = 0.749).

With respect to the vaccination strategies shown in the panels of this figure, the (red) point (w., w.) cor-
responds to the uniformly random vaccination with Rj = 1 and, as expected, it is very close to the one that
maximizes the vaccination coverage (green point) because we are assuming very similar rates of immunity loss
for the vaccinated individuals of the three age groups. However, increasing the differences between these rates
results in greater distances between both points, as it can be observed in Supplementary Fig. S1 online, where
the probabilities p; are also different for each age group. In both figures, R§ > 1at the maximum coverage (green
point) for the data sets from Belgium (1.0028, 1.0037) and Germany (1.0020, 1.0017), whereas R}, < 1at this point
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Data set R w) wy w3 Ve wy w3 w3 Vinax
Belgium 0.977 3.26 3.59 1.78 58.16 3.19 3.07 3.19 59.17
Germany 0.957 4.04 3.59 1.50 57.63 3.22 3.09 3.22 59.38
Italy 0.914 5.46 3.51 1.26 57.46 3.36 3.22 3.36 60.36
The Netherlands 0.924 5.13 3.27 1.50 59.00 3.43 3.27 3.43 60.87
Peru 0.874 6.04 2.16 1.97 58.53 3.64 3.26 3.64 62.03
Zimbabwe 0.977 2.88 3.39 6.86 59.15 3.35 3.21 3.35 59.74

Table 2. Mean vaccination coverage (in %) at the vaccination strategy {#?} (in %) leading to the minimum R}
at the DFE, and at the vaccination strategy {w}} (in %) computed from Eq. (3) leading to the maximum mean
vaccination coverage. In both cases, the mean per capita vaccination rate w = w,, and 100% vaccine efficacy
is assumed. Parameters: y; = 1,2 = 1,3 = 0.9, 8] = 1/40, ) = 1/52, and 85 = 1/40. For each country, B is
scaled such that Ry = 2.5 in the absence of vaccinated individuals.

for the data sets from Italy (0.99786, 0.99024), the Netherlands (0.99538, 0.98184), and Peru (0.99001, 0.97032).
For the data set from Zimbabwe, R§ = 1.0008 in Fig. 3 and R} = 0.9998 in Supplementary Fig. S1 online.

In Fig. 3 we can also see the vaccine allocations that result in the least disease containment (the worst strate-
gies). In all the plots, these strategies result in values of R} larger than 2 (orange region), while it is assumed to be
equal to 2.5 at the DFE without vaccinated individuals. In Belgium and Germany, the orange region is at bottom
of the contour plots which corresponds to a very low vaccination of the adults (w, = 0). This age group makes
up 57% of the population in both countries, and its total per capita contact rate is the highest in Belgium and very
close to the highest in Germany. In Peru, the worst strategies (orange region) are clearly on left side of the contour
plot, which corresponds to a very low vaccination rate of the age group [0, 18) (w; ~ 0), which makes up 36% of
the population and has the highest per capita number of contacts. In Italy, the Netherlands, and Zimbabwe, the
orange region is concentrated at the lower left corner, that is, the worst strategies correspond to allocate most of
the available vaccines to the elderly (w; ~ 0, w, = 0). This age group either has the fewest contacts per capita
(Italy, the Netherlands), or it is by far the least numerous group (Zimbabwe).

In Table 2, we can see that, as just explained above, the per capita vaccination rates w; computed from (3) are
all very close to w. with wj = w} (because 8} = 8}). Moreover, these rates lead to the same vaccination coverage
as the uniformly random vaccination with w = w, (cf. Table 1). But, remarkably, they are clearly different from
the vaccination rates #? defining the minimum value of R for the same value of w (blue points in Fig. 3). The
latter are the optimal per capita vaccination rates and they nicely correlate with the total contact rate of the age
groups (see Supplementary Table S1 online). For instance, the variation in the magnitude of Zimbabwe’s vac-
cination rates is the opposite of that of the other countries, as is the order of the magnitude of its total per capita
contact rates. Moreover, the similarity of the contact patterns of the data sets of Belgium and Germany, and those
of the data sets of Italy and The Netherlands (see “Methods”), is reflected in the similarity of the values of the
corresponding optimal per capita vaccination rates.

In Fig. 3, we also observe that there is a distance between the blue point and the Rj = 1black curve, which
is more evident in some of the six plots. This distance creates the opportunity for vaccination rates that can still
guarantee a locally stable DFE but with a mean per capita vaccination rate below the critical rate obtained under
the assumption of a uniformly random vaccination.

To illustrate this fact, in Fig. 4, we show contour plots for w = wj such that the rounded value of the mini-
mum R is equal to 0.996. As expected, in these figures this minimum (blue point) is very close to the R} =1
curve because, now, we are administering a lower number of vaccines. Considering Italy, for example, we obtain
wo = 0.0283, which, compared with w, = 0.0328, is equivalent to a reduction of the vaccination rate of 13.7%.
Such a reduction of the vaccination rate can correspond to non-negligible savings. Peru is the country, among
the ones considered, which gains the larger vaccination rate reduction, from 0.0354 to 0.0284, with a vaccination
reduction of 19.8%. Table 3 summarizes the vaccination rates for w = w. and w = wy for the selected countries
and the corresponding vaccination coverage. When we look for a vaccination strategy to bring the system to the
disease-free equilibrium, taking into account the country’s contact patterns per age-group provides an oppor-
tunity to reduce the critical vaccination rate compared with the one needed considering homogeneous mixing.
This also has a consequence on the estimation of the herd immunity coverage for each country. The considera-
tion of contact patterns at the level of age groups, reducing the required vaccination rate, also reduces the level
of vaccination coverage required, reducing in turn the herd immunity levels, as it is also shown in this table.

Discussion and conclusions

During an ongoing epidemic like COVID-19, priorities are focused on immunizing in a short time as many
people as possible, those working in front-line healthcare staff, in essential services, and those whose health
conditions predispose to severe morbidity from infection. In contrast, in the long term, Rq can play a role in
defining the minimum vaccination coverage for preventing new epidemic invasions'®'? by reaching the so-
called herd immunity. It is currently not clear whether many countries could achieve such a herd immunity for
COVID-19. Several reasons have been proposed for that: the limited availability of vaccines in many countries,
the fact that immunity might not last forever, or the appearance of new variants of the virus that could change
the herd-immunity threshold itself*. There is also a critical hesitation against vaccination arising from the spread
of misinformation on the Internet®, which has been called COVID-19 infodemic®.
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Figure 4. Contour levels of R} (w1, w,) at the DFE of system (1) with p; = 1(i = 1,2, 3) and for w = wy, a value
for which Ry &~ 0.996 (see Table 3). Black level curve corresponds to R = 1. Blue point: Minimum of Rj. Red
point: R} under uniformly random vaccination (w; = w, = w,). Green point: R}, at the disease-free equilibrium
with the maximum vaccination coverage. Parameters: y; = 1y, = 1,3 = 0.9,8) = 1/40,8) = 1/52,

85 = 1/40. For each country, f is scaled such that Ry = 2.5 in the absence of vaccinated individuals.

Data set We Vi wo Vi

Belgium 3.12 59.16 3.02 57.32
Germany 3.15 59.37 2.94 55.89
Italy 3.28 60.36 2.83 53.69
The Netherlands 3.34 60.86 2.94 55.81
Peru 3.54 62.02 2.84 52.74
Zimbabwe 3.29 59.73 3.18 58.33

Table 3. Mean vaccination coverage (in %) at the critical per capita vaccination rate w, (in %) under the
uniformly random vaccination strategy, and at the mean per capita vaccination rate wy (in %) at the DFE for
which R§ & 0.996. 100% vaccine efficacy is assumed in both cases.
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In this paper, we have assumed a limited supply of vaccines conferring waning immunity to deal with some
of these issues. The aim is to see how herd immunity can be achieved in partially vaccinated populations whose
individuals are classified in three age groups (youngsters, adults, and the elderly), when their contact patterns
are taken into account. Moreover, by assuming similar disease rates for all age groups and countries, we have
been able to assess the impact of social contact patterns on the critical vaccination coverage.

Such an impact has been analyzed by obtaining the set of per capita vaccination rates that minimizes Rg,
the basic reproduction number at the DFE with vaccinated individuals. Such a minimization is done under the
assumptions of (1) a limited supply of vaccines given by the critical vaccination rate (R} = 1) and (2) a uniformly
random vaccination. Even though these are strong constraints, the first observation is that this minimizing set
of rates defines a vaccination strategy that reduces Rj; to values that are clearly below 1 (R = 0.874 for the data
set of Peru). So, our first conclusion is that there is room for an improvement in the vaccine distribution when
demographic (population composition) and social aspects are considered. We estimate the vaccine reduction
achieved following the Rj-minimization strategy by decreasing even more the total availability of vaccines per
unit of time in such a way that the minimum of Ry is close to 1 (R} = 0.996).

A second conclusion is that, by adopting a vaccination strategy that minimizes R, we are giving higher pro-
tection to those age groups that are more vulnerable to contract the infection in the absence of vaccination due
to their social contact pattern. This vaccination strategy is in sharp contrast to the one that yields the maximum
mean coverage of the population, which only depends on the rate of immunity loss and the probabilities of suc-
cessful protection against infection. Precisely, age groups with the highest/lowest per capita vaccination rates at
the minimum R} (see Table 2) correspond to those with the smallest/highest fractions of susceptible individuals
at the endemic equilibrium without vaccination (cf. Fig. 2) which, in turn, correspond to the age groups with the
highest/lowest total per capita contact rates. The data set from Zimbabwe is particularly interesting since it is the
only data set where the highest total per capita vaccination rate corresponds to the 60+ years age group, while
the fraction of population that it represents (4.4%) is the smallest one in all data sets. However, the per capita
number of contacts of this age group is much higher than the one of the same age group in the rest of the data sets.

These findings are consistent with the well-known fact that vaccinating individuals with the highest numbers
of contacts reduces the spread of an infectious disease. Indeed, minimizing R} can be thought as a way to find
effective risk-based allocations of a limited supply of vaccines. However, other criteria of optimality have been
adopted in previous literature as, for instance, the one that chooses the vaccination strategy that allocates the
fewest vaccines among all the strategies guaranteeing Ry < 1 when there is a sufficient supply of vaccines and
permanent immunity'*.

The results presented in the paper provide a first insight into the role of contact patterns in the spread of an
infectious disease like COVID-19 which leads to a short-lived immunity, and in the optimal vaccination strat-
egy based on the minimization of Ry. The values of the disease parameters have been chosen to approximately
mimic the COVID-19 infectious period (1 week) and the current estimates of the possible duration of the
immunity (about 1 year). For our study, we used a simple SIRV epidemic model that neglects relevant aspects
of the COVID-19 dynamics, such as, for instance, the existence of a latent period and different levels of disease
severity. Nevertheless, our analysis mainly focuses on the basic reproduction number for populations where only
susceptible and vaccinated individuals are present. Therefore, the inclusion of more non-infectious compart-
ments in the model will not change the paper’s main conclusions. Other modeling aspects such as the individual
variation in susceptibility, or differences in social activity within age groups leading to different exposures to the
virus, have also been neglected in the present study, even though they may contribute to an even larger reduction
in the required vaccination coverage, as recent studies on disease-induced herd immunity against SARS-CoV-2
have revealed's>.
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