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Influence of heterogeneous 
age‑group contact patterns 
on critical vaccination rates for herd 
immunity to SARS‑CoV‑2
Joan Saldaña 1* & Caterina Scoglio2

Currently, several western countries have more than half of their population fully vaccinated against 
COVID‑19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases, 
most of them concentrated in sectors of the populations whose vaccination coverage is lower than 
the average. So, the initial scenario of vaccine prioritization has given way to a new one where 
achieving herd immunity is the primary concern. Using an age‑structured vaccination model with 
waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on 
minimizing the basic reproduction number allows for the deployment of a number of vaccine doses 
lower than the one required for maximizing the vaccination coverage. Such minimization is achieved 
by giving greater protection to those age groups that, for a given social contact pattern, have smaller 
fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those 
groups that are more vulnerable to infection.

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still imposing incredible 
pressure on many countries’ healthcare and economic systems.

Nations in America, Europe, Asia, and Africa have faced large numbers of deaths due to COVID 19, and a 
continued crisis situation. The only good news in this dark situation is that vaccines are becoming available from 
different companies all over the world. Some countries are currently evaluating the efficacy and effectiveness of 
developed vaccines, while some other countries have already started their vaccination campaign. In particular, 
as of November 2021, more than 75% of the people in countries like Canada, United Kingdom, and France have 
received at least one dose of the vaccination, while no more than 35% of people in Bangladesh, Guinea, and 
Armenia have received one dose at  least1. These examples give an idea of the heterogeneous situation of the vac-
cination campaign in the world. Additionally, current studies suggest a decay of neutralizing antibody responses 
in convalescent  patients2, as well as a decline in the effectiveness of mRNA COVID-19  vaccines3. Therefore, 
vaccines probably provide a short-lived immunity. For instance, comparing the rate of decay of the antibody 
responses following infections by human coronavirus (hCoV) and by SARS-CoV-2, it has been suggested that 
individuals may become susceptible to reinfection within 12–18 months after a previous  infection2. Similarly, a 
recent comparative evolutionary analysis of coronavirus relatives of SRAS-CoV-2 reveals that, under endemic 
conditions, reinfection by SARS-CoV-2 would likely occur between 3 months and 5.1 years after peak antibody 
response, with a median of 16  months4.

While during the ongoing pandemic most countries agree to vaccinate first public health personnel and 
people in long term care facilities, the limited availability of vaccines and the logistic complexities are still posing 
big questions on when and how the vaccination campaign will be completed. Initially, some countries assessed 
reaching herd immunity at around 70% of the population  vaccinated5. With time, several hurdles upon this 
achievement are becoming  evident6. These difficulties in obtaining herd immunity may further discouraging 
people from attaining  it5.

Countries are now developing immunization plans to face the challenge of distributing millions of vaccines, 
some of which require very special maintenance conditions. These plans include the definition of priority schemes 
to start the distribution process and, since it is very likely that not all people will be vaccinated for different 
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reasons, understanding how vaccine distribution among population age segments impacts the obtained herd 
immunity is of primary importance.

A vaccination strategy can be developed to obtain different goals such as minimizing deaths, minimizing 
number of cases, minimizing severe cases requiring hospitalization, etc.7. For instance, in a very recent  paper8, 
the authors consider five different vaccine prioritization strategies. Among their findings, it was shown that giving 
priority to adults ages 20–40 years minimizes the cumulative incidence, while mortality is minimized by giving 
priority to adults ages 60 and more. Another very recent  article9 investigates two criteria for vaccination priority 
based on age: lives saved and years of future life saved. While in general these two criteria can be in conflict, in 
the case of COVID-19, vaccinating the oldest first saves the most lives and simultaneously also maximizes years 
of remaining life expectancy.

In another approach to  vaccination10, the authors have investigated how much vaccine is required by any given 
country, year by year, to create herd immunity to block SARS-CoV-2 transmission, assuming immunity is short 
lived (waning immunity). To answer this question, a simple model is developed showing the percentage of the 
population in the first year of an epidemic that must be vaccinated and the percentage that must be vaccinated 
once the system reaches equilibrium after a few years. Results show that in year 1 a much larger fraction of the 
population needs to be vaccinated, being most of the population susceptible, compared with the population 
fraction to be vaccinated in subsequent years, to create effective herd immunity.

The study of vaccination strategies to achieve herd immunity has been considered for several infectious 
diseases and for many  years11–13. In particular, vaccination schemes aiming to reduce R0 below its threshold 
value 1 are called preventive because, once they have been launched, epidemic outbreaks are not possible under 
occasional introduction of new cases in the population. For stochastic SIR epidemics with permanent immu-
nity, preventive strategies have been considered, for instance,  in14. However, due to the lack of vaccines at the 
beginning of the COVID-19 pandemic, some papers analysed the possibility of reaching disease-induced herd 
immunity in age-structured models. In a recent  paper15, an SEIR model has been developed to assess the fea-
sibility of suppressing the virus transmission or, alternatively, of achieving herd immunity, by applying social 
distancing to differing age groups and self-isolation by symptomatic infectious individuals. The model revealed 
that obtaining herd immunity without exceeding hospital capacity was not a practical objective because, without 
a vaccination program, social distancing needed to be maintained for an extended period and adapted over time 
in a “precise yet unfeasible way”. Almost at the same time, a second  paper16 has adopted a similar approach to 
study the level of immunity that can be achieved with non-pharmaceutical interventions. Its aim was to relate the 
severity of preventive measures imposed at the beginning of the pandemic with the size of outbreaks appearing 
after these measures were lifted. In this setting, it is shown that, when the age structure of the focal population is 
considered, herd immunity can be reached at around 43% instead of the traditional value of 60% that appears for 
a basic reproduction number R0 = 2.5 under a homogeneous mixing of the population. In both  papers15,16, social 
distancing interventions are modeled by reducing the mean number of contacts in the original contact matrix.

In this paper, we deal with the question of the challenges associated to creating herd immunity to SARS-CoV-2 
infection by means of preventive vaccination strategies with waning immunity that take into account the contact 
rates among age segments. In particular, short-lived immunity implies that continuous vaccination campaigns 
are needed to preserve the herd immunity. Therefore, we adopt the assumption of reaching a disease-free equi-
librium (DFE) where susceptible and vaccinated individuals are only  present10. Then, using an age-structured 
Susceptible-Infected-Recovered-Vaccinated model, we firstly derive the expression for the vaccination rates that 
lead to the maximum vaccination coverage at this equilibrium for a given supply of vaccines per unit time (the 
total vaccination rate). Next, if R∗

0 denotes the basic reproduction number at the DFE with vaccinated individuals, 
we compute two different sets of per age-group vaccination rates: (1) the set that minimizes R∗

0 with the constraint 
that the total vaccination rate is the same as the critical rate under uniform vaccination, and (2) the set at which 
the minimum R∗

0 equals 0.996 when a suitable (and lower) total vaccination rate is assumed.
For the limited supply of vaccine given by the critical vaccination rate under a homogeneous mixing, we found 

that the value of R∗
0 obtained by maximizing the vaccination coverage is always larger than the minimum of R∗

0 
attainable under the same constraint on the total vaccination rate. The latter then defines the optimal allocation 
of vaccines among age groups under the given supply. On the other hand, since this minimum R∗

0 will be clearly 
less than 1, the vaccination rates of the second set ( R∗

0 = 0.996 ) will be smaller than those of the first set, thus 
achieving the herd immunity at a lower supply of vaccine. We have also verified that these results hold when 
considering (1) a high but not complete success rate for vaccines, and (2) a different duration of immunity for 
each age group, in accordance with observations of the age-related decline of the immune system that weakens 
the ability to mount effective responses to vaccines. This decline is often referred to as “immunosenescence”17,18.

To our knowledge, this is the first study on the combined impact of age-group contact patterns and short-
lived vaccination immunization on the optimal allocation of vaccines among age groups. We are able to quantify 
the importance of specific contact patterns in different countries through the reduction of R∗

0 at the optimal 
strategy that results when vaccination by age group is used instead of the one based on a uniform distribution of 
 vaccines10. In contrast to other preventive vaccination strategies, like the one aiming to maximize the vaccina-
tion coverage under a given supply of vaccines, minimizing R∗

0 with respect to the set of per capita vaccination 
rates leads to preferential targeting for the most vulnerable age groups, that is, those with higher contact rates. 
Although the importance of targeting highly connected individuals to reduce the virus transmission is well 
known in  epidemiology19 and, in particular, in the so-called contact network  epidemiology20, this is the first 
time that the criterion of minimizing R∗

0 is used to find an optimal vaccine allocation among age groups. Even 
though we are aware that the numerical results are obtained on the base of measured and consequently noisy 
contact patterns, our mathematical model reveals the critical role played by the age-based contact patterns in 
efficiently administering vaccines and can be useful in encouraging the population to see a possible end of the 
pandemic by vaccination.
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The model
In this paper we consider a deterministic epidemic model with continuous vaccination where individuals are 
classified in three age groups: youngsters, adults, and the elderly ( i = 1, 2, 3 respectively). Within each age class, 
individuals are classified according to their disease status: susceptible, infectious, recovered, and vaccinated. It 
is assumed a loss of immunity in recovered and vaccinated individuals at rates δi and δvi  ( i = 1, 2, 3 ), respectively. 
Moreover, as mentioned at the Introduction, the probability that the vaccine successfully protects against infec-
tion is assumed to be age-dependent and it is denoted by pi ( i = 1, 2, 3).

The number of infections in age group i caused by individuals of age group j is β cijSiIj/Nj , where Si is the 
number of susceptible individuals in age group i, Ij/Nj is the fraction of infected individuals in age group j, β is 
the transmission probability through an infectious contact, and C = (cij) is the social contact matrix. C gives the 
(mean) number of contacts per unit time between an individual of age group i and individuals of age group j, and 
is the central ingredient of the model since it reflects how individuals mix with each other in different countries.

To model the limited capacity of a public health system or situations of vaccine shortage as those occurring in 
low-income countries where fewer than 3% of people has been fully vaccinated against COVID-19 as of Novem-
ber  20211, a fixed number w of individuals is assumed to be vaccinated per unit of time and, moreover, we will 
assume an age-dependent targeting of  vaccination8,12,21. So, if wi denotes the number of vaccines assigned to age 
group i per unit of time (vaccination rate of age group i), then wi Si/Ni is the number of susceptible individuals 
in age group i vaccinated per unit of time when vaccination is made regardless of disease  status22. In particular, 
if we do not consider age, then under a uniformly random vaccination of a population it follows that wi = wfi 
with fi = Ni/N , i.e., wi is proportional to the fraction of the population in age group i, with 

∑3
i=1 wi = w , the 

total vaccination rate. In such a case, the vaccination term in the equation for the susceptible individuals in age 
group i is given by wi Si/Ni = wfi Si/Ni = w Si/N . So, any strategy that departs from this uniform vaccination 
will be given by a vector (w1,w2,w3) of vaccination rates satisfying 

∑3
i=1 wi = w.

According to these hypotheses, assuming an arbitrary vaccination strategy (w1,w2,w3) , and ignoring the 
demographics of aging, birth, and death given the short timescale of an epidemic, the equations governing its 
dynamics are

with Si + Ii + Ri + Vi = Ni , i = 1, 2, 3 , and 
∑3

i=1 wi = w.
Writing the system in terms of fractions ( si = Si/Ni , yi = Ii/Ni , ri = Ri/Ni , and vi = Vi/Ni ) and neglecting 

the last equation because it is redundant, we have

with si + yi + ri + vi = 1 , and w̄i = wi/Ni ( i = 1, 2, 3 ) being the per capita vaccination rate of age group i. Note 
that, from the constraint 

∑3
i=1 wi = w and the definition of w̄i , it follows that 

∑3
i=1 w̄ifi = w/N = w̄ , the mean 

per capita vaccination rate in the population.
The previous relationship among the per capita vaccination rates of each age group implies that, if the popula-

tion fraction of an age group i is lower than the number w̄ of available vaccines per person and per unit of time 
( fi < w̄ ), then w̄i > 1 is required when vaccines are mainly targeted at this age group (i.e., when w̄j ≈ 0 for j  = i ). 
Roughly speaking, w̄i > 1 corresponds to situations in which there are more available vaccines per unit of time 
than people to be vaccinated in the i-age group (remember we are assuming a constant vaccination rate w) .

The disease‑free equilibrium and vaccination strategies. The disease-free equilibrium (DFE) of sys-
tem (1) is (s∗, y∗, r∗) = (s∗i , 0, 0) where

with 
∑3

i=1 w̄ifi = w̄ . Therefore, at this equilibrium, only susceptible and vaccinated individuals are present with 
v∗i = 1− s∗i  ( i = 1, 2, 3).

dSi

dt
= −

3
∑

j=1

βcijSi
Ij

Nj
+ δiRi + δvi Vi − piwi

Si

Ni
,

dIi

dt
=
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dsi

dt
= −
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The basic reproduction number at the DFE, here denoted by R∗
0 to distinguish it from the one for the model 

without vaccination, is the largest eigenvalue of the next-generation  matrix23

where s∗i  is given by (2), C is the social contact matrix, and 1/γi is the mean infectious period of infected indi-
viduals of age group i. Moreover, since the per capita vaccination rates w̄i satisfy 

∑3
i=1 w̄ifi = w̄ (limited supply 

of vaccines), R∗
0 can be considered a function of w̄1 and w̄2 only, that is, R∗

0(w̄1, w̄2).
From (2) we can compute the condition on w̄i for having a maximum vaccination coverage of the popula-

tion at the DFE, which is equivalent to minimize the fraction of susceptible population at this equilibrium, 
s∗ =

∑3
i=1 fis

∗
i  . Precisely, the condition grad(s∗(w̄1, w̄2)) = (0, 0) and the positivity of the rates amount to

with w̄∗
i  satisfying 

∑3
i=1 w̄

∗
i fi = w̄ . So, from (3) one easily obtains an explicit expression for the vaccinations 

rates w̄∗
i  leading to the maximum vaccination coverage under the constraint of having a given amount of vaccine 

per unit of time, which turns out to be a global maximum. In particular, it follows that, if the rate of immunity 
loss δvi  is the same for the vaccinated individuals of all the age groups and the probability of being protected 
after vaccination pi is also the same across age groups, then the vaccination rates that guarantee the maximum 
fraction of vaccinated population are w̄i = w̄ , i.e., they correspond to a uniformly random vaccination of the 
population, irrespective of age.

By definition, under such a vaccination strategy, the probability of being vaccinated per unit of time is the 
same for any individual regardless of age. In this case, the differential equation governing the dynamics of the 
susceptible individuals of age group i is

Using w̄ as a tuning parameter, we compute the basic reproduction number R∗
0(w̄) , and find the critical per capita 

vaccination rate w̄c defined by R∗
0(w̄c) = 1 . As an example, Fig. 1 shows the behaviour R∗

0(w̄) with the data set 
from Italy which leads to w̄c = 0.0328.

When the rates δvi  of immunity loss among groups differ from each other, the maximum vaccination coverage 
at the DFE will be attained for values of the per capita vaccination rates w̄∗

i  that do not correspond to a uniformly 
random vaccination of the population. These w̄∗

i  are optimal in the sense that they maximize the vaccination 
coverage; however, they do not guarantee the minimum value of R∗

0 at the DFE. This fact, indeed, can be used 
to define an alternative criterion for an optimal vaccination strategy, namely, the one than leads to the lowest 
value of R∗

0 at the DFE. Under such a strategy, we control the disease by targeting age groups according to their 
potential contribution to an epidemic outbreak. So, we use the same amount of vaccines per unit of time but, in 
comparison to the random vaccination, we are vaccinating more individuals from some age groups while other 
age groups are less vaccinated. This situation corresponds to what has been called an optimal but inequitable 
distribution of  vaccine7.

N∗
g = β diag(s∗i )C diag(1/γi)

(3)
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Figure 1.  R∗
0(w̄) for system (1) at the disease-free equilibrium given by (2). The critical vaccination rate is given 

by the intersection of R∗
0(w̄) with the dashed line R∗(w̄) = 1 . Parameters: γ1 = 1 , γ2 = 1 , γ3 = 0.9 , δv1 = 1/40 , 

δv2 = 1/52 , δv3 = 1/40 , p1 = p2 = p3 = 1 , and β is scaled such that R0 = 2.5 for the data set from Italy in the 
absence of vaccinated individuals ( ̄w = 0 ), see “Results” for details.
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Methods
Data. The Social Contact Data initiative (http:// www. socia lcont actda ta. org) includes contact matrices for 
Belgium, Finland, Germany, Italy, Luxembourg, Netherlands, Poland and the UK from  POLYMOD24, as well as 
data from studies on social mixing in other  countries25. All data are available on Zenodo at https:// doi. org/ 10. 
5281/ zenodo. 12158 99, and can be retrieved within R using the socialmixr package. The SOcial Contact RATES 
(Socrates) data tool at http:// www. socia lcont actda ta. org/ socra tes/26 enables quick and convenient retrieval of 
these social contact matrices. Using the Socrates data tool, we have selected six countries for our numerical 
evaluations: Belgium, Germany, Italy, the Netherlands, Peru, and Zimbabwe. All the European data-sets are from 
the POLYMOD  project24. The contact matrix for Peru is  from27 and the one for Zimbabwe is  from28.

We have selected three age groups: the first group includes people of age 0–17 years, the second group 
includes people of age 18–59 years, and the third group includes people 60 years old and older. For each of these 
countries, the Socrates data tool provides a matrix containing the mean daily number of contacts an individual 
of age group i (row) has with individuals of age group j (column). The row sums of this matrix correspond to the 
total per capita contact rate of each age group. In all these matrices, contacts are reciprocal (see Supplementary 
Table S1 online for more details).

The four European countries have a similar population composition with 20–25% of people in the third age 
group (the elderly) and about 57% in the second age group (adults), which is in sharp contrast with the younger 
populations of Peru and Zimbabwe where the elderly only represents 8.9% and 4.4% of the population, respec-
tively (see Supplementary Table S2 online). However, the contact patterns of these four European countries 
show clear and important differences. Two of them, Italy and the Netherlands, have very dissimilar per capita 
contact rates, with very high daily numbers of contacts among children and among adults, whereas Belgium and 
Germany have lower and less dissimilar per capita contact rates. On the other hand, in Zimbabwe, elderly people 
are the age group with the highest total per capita contact rate, whereas the same age group has the lowest total 
per capita contact rate in the other countries. In Peru, the total per capita daily number of contacts in the first 
age group almost doubles the total per capita daily number of contacts in the other two age groups.

Parameters. The recovery rate and loss of immunity rate are assumed to be the same in the six countries in 
exam and, also, to be very similar among groups. The recovery rates are γ1 = γ2 = 1 and γ3 = 0.9 . Therefore, 
since these rates are equal to 1 (or very close to it), we can consider that time is measured in units of the infec-
tious period, which is about 1 week (8–10 days) for moderate cases of COVID-1929. The loss of immunity rates 
for recovered ( δi ) and vaccinated ( δvi = δi ) individuals are δ1 = δ3 > δ2 = 1/52 . These values of δvi  say that, on 
average, individuals between 18 and 60 years have 1 year (52 weeks) of immunity against the disease, while the 
length of this period is assumed to be shorter for individuals from the other two age groups (40 weeks; except for 
Supplementary Fig. S1 online where it is equal to 26 weeks). These shorter periods reflect the lower maturity of 
the immune system in the first age  group30 and the immunosenescence in the  elderly18.

For each country, the transmission rate β is obtained by imposing that R0 = 2.5 at the beginning of the 
epidemic when vaccinated individuals are not present. In this case, R0 is the largest eigenvalue of the next-
generation matrix

The original matrix C is given in terms of contacts per day. Since our unit of time is 1 week, we multiply the 
contact matrices in the Appendix by 7 to compute β . However, note that working with these re-scaled contact 
matrices only affects the value of β (which is divided by 7 when re-scaled contact matrices are used) but not 
the results we are presenting because the product βcij in the incidence term is invariant to the re-scaling of C.

Results
Without vaccination. Given that the disease parameters across the countries are assumed to be the same, 
we can assess the impact of the social contact patterns on the disease spread and, in particular, on the optimal 
vaccination strategy. Figure 2 shows the evolution of the fraction of susceptible individuals during an epidemic 
without vaccination for the selected parameters. Although the mean fraction is always very similar (we are 
imposing the same value of R0 in all considered countries), we can see that the smallest (highest) fraction of 
susceptible individuals always corresponds to the age group with the highest (lowest) total per capita contact rate 
(see the last column of Supplementary Table S1 online). This figure also reveals that the similar contact patterns 
in Italy and the Netherlands lead to the same ordering of the fractions of susceptible individuals with respect to 
the mean fraction.

Critical rates under uniformly random vaccination. For all the data sets, the critical per capita vacci-
nation rate under the uniformly random vaccination w̄c ∈ (0.0312, 0.0354) when perfect protection is assumed. 
The specific critical rate values and vaccination coverage for each country are reported in Table 1 under full 
protection of the vaccine (the two left columns), and probabilities p1 = 1 , p2 = 0.95 , and p3 = 0.9 of being 
protected after vaccination (the two right columns). In both scenarios, Peru is the country with the largest criti-
cal per capita vaccination rate (3.54% and 3.59%, respectively), which leads to the highest vaccination coverage 
of the population (62.03% and 61.48%, respectively). We can interpret these values of the coverage as the herd 
immunity level required for Peru under a uniformly random vaccination.

Table 1 shows that, as expected, the critical vaccination rate increases when there is a fraction of people who 
are not completely protected after being vaccinated ( pi < 1 for i = 2, 3 ). It also shows a small decrease in the 
vaccination coverage for all the data sets except for the one from Zimbabwe. Recall that, under uniformly random 

Ng = β C diag(1/γi).

http://www.socialcontactdata.org
https://doi.org/10.5281/zenodo.1215899
https://doi.org/10.5281/zenodo.1215899
http://www.socialcontactdata.org/socrates/
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vaccination, w̄i = w̄ for i = 1, 2, 3 . Hence, the mean vaccination coverage at the DFE given by (2) with a critical 
per capita vaccination rate w̄c(p) , p = (p1, p2, p3) , is given by

Note that w̄c(p) decreases when the probabilities pi of being protected after vaccination increase. So, the depend-
ence of Vw̄c (p) on pi is through the products pjw̄c(p) (j = 1, 2, 3) . From the critical vaccination rates in this table 
and the corresponding values of pi , it follows that pjw̄c(p) < w̄c for j = 2, 3 . This means that the first age group is 
the only one with a higher percentage of vaccinated individuals at the DFE when p2,3 < 1 . Zimbabwe, moreover, 
is the country with the highest fraction of people in this age group (49.1%, see Supplementary Table S2 online). 
These two facts explain why the mean vaccination coverage increases only in Zimbabwe when an imperfect 
protection of the vaccine is assumed for the second and third age groups.

Vaccination strategies. In Fig. 3, we show the contour plots of R∗
0 as a function of w̄1 and w̄2 for the six 

data sets. In this figure, we assume that the mean vaccination rate w̄ = w̄c and 100% of vaccine efficacy. Because 

(4)Vw̄c (p) =

3
∑

j=1

fj v
∗
j (p) = 1−

3
∑

j=1

fj δ
v
j

pjw̄c(p)+ δvj
.

Figure 2.  Examples of evolution of susceptible individuals during an epidemic given by (1) without vaccination 
with initial condition (si(0), yi(0), ri(0)) = (0.9999, 0.0001, 0) for i = 1, 2, 3 . Parameters: γ1 = 1 , γ2 = 1 , 
γ3 = 0.9 , δ1 = 1/40 , δ2 = 1/52 , and δ3 = 1/40 . For each country, β is scaled such that R0 = 2.5 for the 
corresponding data set in the absence of vaccinated individuals.

Table 1.  Mean vaccination coverage (in %) given by (4) adopting the uniformly random vaccination strategy 
at the critical per capita vaccination rate with a 100% vaccine efficacy, w̄c (in %), and with probabilities 
p = (1, 0.95, 0.9) of being successful, w̄c(p) (in %). Parameters: γ1 = 1 , γ2 = 1 , γ3 = 0.9 , δv1 = 1/40 , δv2 = 1/52 , 
δv3 = 1/40 . For each country, β is scaled such that R0 = 2.5 without vaccination.

Data set w̄c Vw̄c
w̄c(p) Vw̄c

(p)

Belgium 3.1222 59.16 3.2678 58.99

Germany 3.1487 59.37 3.2836 59.04

Italy 3.2765 60.36 3.3823 59.77

The Netherlands 3.3374 60.86 3.4246 60.27

Peru 3.5408 62.02 3.5898 61.47

Zimbabwe 3.2882 59.73 3.4161 59.98
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of the constraint 
∑3

i=1 w̄ifi = w̄ , the interior boundary of each plot corresponds to w̄3 = 0 , i.e., to straight line 
given by w̄1f1 + w̄2f2 = w̄c.

It is interesting to observe that the population fraction of the second age group (18–59 years), f2 , varies 
narrowly from 0.46 (Zimbabwe) to 0.59 (Netherlands). This is why the range of values of w̄2 goes from 0 to 
0.055–0.071 in all panels of Fig. 3 (its maximum value is w̄max

2 = w̄c/f2 ). By contrast, the values of w̄1 (and, so, 
those of w̄3 ) show a greater variability. The most extreme situation appears in the data from Zimbabwe with the 
highest population fraction in the first group (0–17 years) ( f1 = 0.49 , w̄max

1 = 0.067 ), and the lowest fraction in 
the third group (60+ years) ( f3 = 0.04 , w̄max

3 = 0.749).
With respect to the vaccination strategies shown in the panels of this figure, the (red) point (w̄c , w̄c) cor-

responds to the uniformly random vaccination with R∗
0 = 1 and, as expected, it is very close to the one that 

maximizes the vaccination coverage (green point) because we are assuming very similar rates of immunity loss 
for the vaccinated individuals of the three age groups. However, increasing the differences between these rates 
results in greater distances between both points, as it can be observed in Supplementary Fig. S1 online, where 
the probabilities pi are also different for each age group. In both figures, R∗

0 > 1 at the maximum coverage (green 
point) for the data sets from Belgium (1.0028, 1.0037) and Germany (1.0020, 1.0017), whereas R∗

0 < 1 at this point 

Figure 3.  Contour levels of R∗
0(w̄1, w̄2) at the DFE of system (1) with pi = 1 ( i = 1, 2, 3 ). Black level curve 

corresponds to R∗
0 = 1 . Blue point: Minimum of R∗

0 . Red point: R∗
0 under uniformly random vaccination 

( ̄w1 = w̄2 = w̄c ). Green point: R∗
0 at the disease-free equilibrium with the maximum vaccination coverage. 

Parameters: γ1 = 1 , γ2 = 1 , γ3 = 0.9 , δv1 = 1/40 , δv2 = 1/52 , δv3 = 1/40 , and w̄ = w̄c for each data set. For each 
country, β is scaled such that R0 = 2.5 in the absence of vaccinated individuals.
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for the data sets from Italy (0.99786, 0.99024), the Netherlands (0.99538, 0.98184), and Peru (0.99001, 0.97032). 
For the data set from Zimbabwe, R∗

0 = 1.0008 in Fig. 3 and R∗
0 = 0.9998 in Supplementary Fig. S1 online.

In Fig. 3 we can also see the vaccine allocations that result in the least disease containment (the worst strate-
gies). In all the plots, these strategies result in values of R∗

0 larger than 2 (orange region), while it is assumed to be 
equal to 2.5 at the DFE without vaccinated individuals. In Belgium and Germany, the orange region is at bottom 
of the contour plots which corresponds to a very low vaccination of the adults ( ̄w2 ≈ 0 ). This age group makes 
up 57% of the population in both countries, and its total per capita contact rate is the highest in Belgium and very 
close to the highest in Germany. In Peru, the worst strategies (orange region) are clearly on left side of the contour 
plot, which corresponds to a very low vaccination rate of the age group [0, 18) ( ̄w1 ≈ 0 ), which makes up 36% of 
the population and has the highest per capita number of contacts. In Italy, the Netherlands, and Zimbabwe, the 
orange region is concentrated at the lower left corner, that is, the worst strategies correspond to allocate most of 
the available vaccines to the elderly ( ̄w1 ≈ 0, w̄2 ≈ 0 ). This age group either has the fewest contacts per capita 
(Italy, the Netherlands), or it is by far the least numerous group (Zimbabwe).

In Table 2, we can see that, as just explained above, the per capita vaccination rates w̄∗
i  computed from (3) are 

all very close to w̄c with w̄∗
1 = w̄∗

3 (because δv1 = δv3 ). Moreover, these rates lead to the same vaccination coverage 
as the uniformly random vaccination with w̄ = w̄c (cf. Table 1). But, remarkably, they are clearly different from 
the vaccination rates w̄0

i  defining the minimum value of R∗
0 for the same value of w̄ (blue points in Fig. 3). The 

latter are the optimal per capita vaccination rates and they nicely correlate with the total contact rate of the age 
groups (see Supplementary Table S1 online). For instance, the variation in the magnitude of Zimbabwe’s vac-
cination rates is the opposite of that of the other countries, as is the order of the magnitude of its total per capita 
contact rates. Moreover, the similarity of the contact patterns of the data sets of Belgium and Germany, and those 
of the data sets of Italy and The Netherlands (see “Methods”), is reflected in the similarity of the values of the 
corresponding optimal per capita vaccination rates.

In Fig. 3, we also observe that there is a distance between the blue point and the R∗
0 = 1 black curve, which 

is more evident in some of the six plots. This distance creates the opportunity for vaccination rates that can still 
guarantee a locally stable DFE but with a mean per capita vaccination rate below the critical rate obtained under 
the assumption of a uniformly random vaccination.

To illustrate this fact, in Fig. 4, we show contour plots for w̄ = w̄0 such that the rounded value of the mini-
mum R∗

0 is equal to 0.996. As expected, in these figures this minimum (blue point) is very close to the R∗
0 = 1 

curve because, now, we are administering a lower number of vaccines. Considering Italy, for example, we obtain 
w̄0 = 0.0283 , which, compared with w̄c = 0.0328 , is equivalent to a reduction of the vaccination rate of 13.7%. 
Such a reduction of the vaccination rate can correspond to non-negligible savings. Peru is the country, among 
the ones considered, which gains the larger vaccination rate reduction, from 0.0354 to 0.0284, with a vaccination 
reduction of 19.8%. Table 3 summarizes the vaccination rates for w̄ = w̄c and w̄ = w̄0 for the selected countries 
and the corresponding vaccination coverage. When we look for a vaccination strategy to bring the system to the 
disease-free equilibrium, taking into account the country’s contact patterns per age-group provides an oppor-
tunity to reduce the critical vaccination rate compared with the one needed considering homogeneous mixing. 
This also has a consequence on the estimation of the herd immunity coverage for each country. The considera-
tion of contact patterns at the level of age groups, reducing the required vaccination rate, also reduces the level 
of vaccination coverage required, reducing in turn the herd immunity levels, as it is also shown in this table.

Discussion and conclusions
During an ongoing epidemic like COVID-19, priorities are focused on immunizing in a short time as many 
people as possible, those working in front-line healthcare staff, in essential services, and those whose health 
conditions predispose to severe morbidity from infection. In contrast, in the long term, R0 can play a role in 
defining the minimum vaccination coverage for preventing new epidemic  invasions10,12 by reaching the so-
called herd immunity. It is currently not clear whether many countries could achieve such a herd immunity for 
COVID-19. Several reasons have been proposed for that: the limited availability of vaccines in many countries, 
the fact that immunity might not last forever, or the appearance of new variants of the virus that could change 
the herd-immunity threshold  itself31. There is also a critical hesitation against vaccination arising from the spread 
of misinformation on the  Internet32, which has been called COVID-19  infodemic33.

Table 2.  Mean vaccination coverage (in % ) at the vaccination strategy {w̄0
i } (in % ) leading to the minimum R∗

0 
at the DFE, and at the vaccination strategy {w̄∗

i } (in % ) computed from Eq. (3) leading to the maximum mean 
vaccination coverage. In both cases, the mean per capita vaccination rate w̄ = w̄c , and 100% vaccine efficacy 
is assumed. Parameters: γ1 = 1 , γ2 = 1 , γ3 = 0.9 , δv1 = 1/40 , δv2 = 1/52 , and δv3 = 1/40 . For each country, β is 
scaled such that R0 = 2.5 in the absence of vaccinated individuals.

Data set R
∗

0 w̄
0
1 w̄

0
2 w̄

0
3 VR

∗

0
w̄
∗

1 w̄
∗

2 w̄
∗

3 Vmax

Belgium 0.977 3.26 3.59 1.78 58.16 3.19 3.07 3.19 59.17

Germany 0.957 4.04 3.59 1.50 57.63 3.22 3.09 3.22 59.38

Italy 0.914 5.46 3.51 1.26 57.46 3.36 3.22 3.36 60.36

The Netherlands 0.924 5.13 3.27 1.50 59.00 3.43 3.27 3.43 60.87

Peru 0.874 6.04 2.16 1.97 58.53 3.64 3.26 3.64 62.03

Zimbabwe 0.977 2.88 3.39 6.86 59.15 3.35 3.21 3.35 59.74
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Figure 4.  Contour levels of R∗
0(w̄1, w̄2) at the DFE of system (1) with pi = 1 ( i = 1, 2, 3 ) and for w̄ = w̄0 , a value 

for which R0 ≈ 0.996 (see Table 3). Black level curve corresponds to R∗
0 = 1 . Blue point: Minimum of R∗

0 . Red 
point: R∗

0 under uniformly random vaccination ( ̄w1 = w̄2 = w̄c ). Green point: R∗
0 at the disease-free equilibrium 

with the maximum vaccination coverage. Parameters: γ1 = 1 , γ2 = 1 , γ3 = 0.9 , δv1 = 1/40 , δv2 = 1/52 , 
δv3 = 1/40 . For each country, β is scaled such that R0 = 2.5 in the absence of vaccinated individuals.

Table 3.  Mean vaccination coverage (in %) at the critical per capita vaccination rate w̄c (in %) under the 
uniformly random vaccination strategy, and at the mean per capita vaccination rate w̄0 (in %) at the DFE for 
which R∗

0 ≈ 0.996 . 100% vaccine efficacy is assumed in both cases.

Data set w̄c Vw̄c
w̄0 Vw̄0

Belgium 3.12 59.16 3.02 57.32

Germany 3.15 59.37 2.94 55.89

Italy 3.28 60.36 2.83 53.69

The Netherlands 3.34 60.86 2.94 55.81

Peru 3.54 62.02 2.84 52.74

Zimbabwe 3.29 59.73 3.18 58.33
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In this paper, we have assumed a limited supply of vaccines conferring waning immunity to deal with some 
of these issues. The aim is to see how herd immunity can be achieved in partially vaccinated populations whose 
individuals are classified in three age groups (youngsters, adults, and the elderly), when their contact patterns 
are taken into account. Moreover, by assuming similar disease rates for all age groups and countries, we have 
been able to assess the impact of social contact patterns on the critical vaccination coverage.

Such an impact has been analyzed by obtaining the set of per capita vaccination rates that minimizes R∗
0 , 

the basic reproduction number at the DFE with vaccinated individuals. Such a minimization is done under the 
assumptions of (1) a limited supply of vaccines given by the critical vaccination rate ( R∗

0 = 1 ) and (2) a uniformly 
random vaccination. Even though these are strong constraints, the first observation is that this minimizing set 
of rates defines a vaccination strategy that reduces R∗

0 to values that are clearly below 1 ( R∗
0 = 0.874 for the data 

set of Peru). So, our first conclusion is that there is room for an improvement in the vaccine distribution when 
demographic (population composition) and social aspects are considered. We estimate the vaccine reduction 
achieved following the R∗

0-minimization strategy by decreasing even more the total availability of vaccines per 
unit of time in such a way that the minimum of R0 is close to 1 ( R∗

0 = 0.996).
A second conclusion is that, by adopting a vaccination strategy that minimizes R∗

0 , we are giving higher pro-
tection to those age groups that are more vulnerable to contract the infection in the absence of vaccination due 
to their social contact pattern. This vaccination strategy is in sharp contrast to the one that yields the maximum 
mean coverage of the population, which only depends on the rate of immunity loss and the probabilities of suc-
cessful protection against infection. Precisely, age groups with the highest/lowest per capita vaccination rates at 
the minimum R∗

0 (see Table 2) correspond to those with the smallest/highest fractions of susceptible individuals 
at the endemic equilibrium without vaccination (cf. Fig. 2) which, in turn, correspond to the age groups with the 
highest/lowest total per capita contact rates. The data set from Zimbabwe is particularly interesting since it is the 
only data set where the highest total per capita vaccination rate corresponds to the 60+ years age group, while 
the fraction of population that it represents ( 4.4% ) is the smallest one in all data sets. However, the per capita 
number of contacts of this age group is much higher than the one of the same age group in the rest of the data sets.

These findings are consistent with the well-known fact that vaccinating individuals with the highest numbers 
of contacts reduces the spread of an infectious disease. Indeed, minimizing R∗

0 can be thought as a way to find 
effective risk-based allocations of a limited supply of vaccines. However, other criteria of optimality have been 
adopted in previous literature as, for instance, the one that chooses the vaccination strategy that allocates the 
fewest vaccines among all the strategies guaranteeing R0 < 1 when there is a sufficient supply of vaccines and 
permanent  immunity14.

The results presented in the paper provide a first insight into the role of contact patterns in the spread of an 
infectious disease like COVID-19 which leads to a short-lived immunity, and in the optimal vaccination strat-
egy based on the minimization of R0 . The values of the disease parameters have been chosen to approximately 
mimic the COVID-19 infectious period (1 week) and the current estimates of the possible duration of the 
immunity (about 1 year). For our study, we used a simple SIRV epidemic model that neglects relevant aspects 
of the COVID-19 dynamics, such as, for instance, the existence of a latent period and different levels of disease 
severity. Nevertheless, our analysis mainly focuses on the basic reproduction number for populations where only 
susceptible and vaccinated individuals are present. Therefore, the inclusion of more non-infectious compart-
ments in the model will not change the paper’s main conclusions. Other modeling aspects such as the individual 
variation in susceptibility, or differences in social activity within age groups leading to different exposures to the 
virus, have also been neglected in the present study, even though they may contribute to an even larger reduction 
in the required vaccination coverage, as recent studies on disease-induced herd immunity against SARS-CoV-2 
have  revealed16,34.
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