AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing

Fei Hua Yanhao Chen Yuwei Jin
Rutgers University Rutgers University Rutgers University
huafei90@gmail.com chenyh64@gmail.com yj243@scarletmail. rutgers.edu
Chi Zhang Ari Hayes Youtao Zhang

University of Pittsburgh
raymond.chizhang@gmail.com

Rutgers University
arihayes@gmail.com

University of Pittsburgh
zhangyt@cs.pitt.edu

Eddy Z. Zhang
Rutgers University
eddy.zhengzhang@gmail.com

ABSTRACT

Quantum computers can solve problems that are intractable using
the most powerful classical computer. However, qubits are fickle
and error prone. It is necessary to actively correct errors in the
execution of a quantum circuit. Quantum error correction (QEC)
codes are developed to enable fault-tolerant quantum computing.
With QEC, one logical circuit is converted into an encoded circuit.

Most studies on quantum circuit compilation focus on NISQ
devices which have 10-100 qubits and are not fault-tolerant. In
this paper, we focus on the compilation for fault-tolerant quantum
hardware. In particular, we focus on optimizing communication
parallelism for the surface code based QEC. The execution of sur-
face code circuits involves non-trivial geometric manipulation of
a large lattice of entangled physical qubits. A two-qubit gate in
surface code is implemented as a virtual “pipe” in space-time called
a braiding path. The braiding paths should be carefully routed to
avoid congestion. Communication between qubits is considered
the major bottleneck as it involves scheduling and searching for
simultaneous paths between qubits. We provide a framework for
efficiently scheduling braiding paths. We discover that for quantum
programs with a local parallelism pattern, our framework guaran-
tees an optimal solution, while the previous greedy-heuristic-based
solution cannot. Moreover, we propose an extension to the local
parallelism analysis framework to address the communication bot-
tleneck. Our framework achieves orders of magnitude improvement
after addressing the communication bottleneck.

CCS CONCEPTS

« Software and its engineering — Compilers; - Hardware —
Quantum error correction and fault tolerance;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480072

925

ACM Reference Format:

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang,
and Eddy Z. Zhang. 2021. AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing. In MICRO’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), October 18-22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3466752.3480072

1 INTRODUCTION

Quantum computing has significant theoretical advantages over
classical computing for applications in decryption, simulation, and
optimizations. In some cases, it provides exponential speedup, for
instance, for the quantum fourier transformation and quantum
phase estimation applications. However, the major reason that
prevents theoretical advantages from being realized is that quantum
hardware is error prone. Qubits and gates are subject to decoherence
and operation errors.

To run a quantum program reliably, it is necessary to detect and
correct errors in the circuit. A prominent quantum error correction
code (QEC) is surface code. Surface code yields one of the highest
fault-tolerant threshold error rates. According to Threshold Theorem,
given any QEC, as long as the physical error rate is lower than a
threshold [3], a quantum circuit can run with an arbitrarily low
logical error rate provided that there are enough physical qubits.
Different QECs tolerate different threshold error rates. Surface
code QEC can tolerate up to 1% physical error rate while most other
QEC cannot. For instance, the [7-1-3] error correction code [3] has a
threshold error rate of 107°. Current physical qubit implementation
has a physical error rate of 0.1%-1%. Surface code is a QEC that
makes near term fault-tolerant quantum computing possible.

A fault-tolerant quantum computer equipped with surface code
performs computation in a software defined manner. The quantum
hardware only needs to prepare a large lattice of entangled physical
qubits. Computation is performed through geometric manipulation
of measurement qubits. A logical qubit is encoded using a set of
physical qubits. A two-qubit gate requires communication between
two logical qubits, which is implemented as a virtual “pipe" in
space-time and referred to as a braiding path [10]. At every time
point, simultaneous braiding paths shall not cross. An example for
non-intersecting braiding paths for concurrent two-qubit gates is
shown in Fig. 1.

https://doi.org/10.1145/3466752.3480072
https://doi.org/10.1145/3466752.3480072

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Surface code imposes challenges on both micro-architecture de-
sign and program compilation. As a logical qubit is usually encoded
with a large number of physical qubits, tremendous number of in-
structions are generated during the execution of an encoded circuit.
Tannu et al. [24] exploit the similarity of QEC instructions and sig-
nificantly reduce the instruction footprint through micro-controller
design. On the other hand, when compiling a quantum program
into its encoded form, it must produce a schedule of braiding paths
in the hardware lattice, such that simultaneous paths do not inter-
sect. And we want to schedule as many braiding paths as possible
in short time period, in order to minimize the overall circuit latency.

In this paper, we focus on the compilation of quantum circuits
into their encoded form for the surface code mode. Most existing
studies for quantum circuit compilation are for non-fault-tolerant
hardware. A large body of studies [5, 14, 18, 23, 25-27, 29, 30] are
on noisy intermediate-scale quantum (NISQ) devices with donzens
of qubits. Even the current NISQ devices do not have sufficient
qubits for a fault-tolerant execution, the machine with tremendous
computing capability is emerging. IBM is projected to release a
1,121 qubit machine named Condor in the year of 2023.

The most relevant study to our work is the scheduling frame-
work by Javadi-Abhari et al. [10]. While its main purpose is to
study two different communication modes in surface code: braiding
(double-defect code) and teleportation (planar code), it also pro-
poses techniques that automatically schedule braiding paths. Its
observation is that braiding-based communication may cause sig-
nificant routing congestion and delay the circuit execution, making
the double-defect code less desirable than the planar code (when
physical error rate is low). In this paper, we discovered it is not
the inherent nature of braiding-based communication that causes
congestion, but the inefficient design of braiding algorithms that
causes congestion. Double-defect code tolerates higher error rate
with the same number of physical qubits. With double-defect mode,
it can have the benefits of minimal physical resource usage and
optimized circuit latency at the same time, given proper braiding
methods. Our method significantly outperforms this work [10] as
we achieve (near) critical path performance for small circuits and
orders of magnitude speedup for large-scale circuits.

Another line of relevant research is the routing problem for
VLSI circuit design [22]. The qubit braiding problem is similar
but different in several ways. The traditional VLSI routing problem
determines the paths that connects pins on circuit blocks. It typically
optimizes the length of the routing paths. However, the surface
code braiding problem is insensitive to the path length [10]. The
latency of a braiding operation is constant regardless of the length
of the braiding path. Moreover quantum program have different
characteristics compared to the VLSI circuit.

In this paper, we perform a systematic exploration of communi-
cation scheduling in surface code mode. We develop a framework
named AutoBraid for analyzing the characteristics of quantum pro-
grams and scheduling two-qubit gates in a scalable manner. Our
framework mitigates the bottleneck in the scheduling of braiding
paths in important quantum programs, and achieves up to orders
of magnitude performance improvement. Our contributions are
summarized as follows:

926

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

e We discover a local parallelism pattern for quantum programs,
especially for the building block circuits of reversible logical
functions. We show how to discover such a pattern and
obtain an optimal schedule.

o We discover that dynamic qubit placement is important for
communication scheduling. While the previous study [10]
focuses on static qubit placement, our study for the first
time proposes a placement scheme that allows the location
of a logical qubit to be dynamically changed throughout
the circuit execution, which can tackle the communication
bottleneck problem.

e We design and implement a stack-based path finder that can
efficiently find congestion-free braiding paths and maximize
the resource utilization.

e With the dynamic qubit placement optimization and the
stack-based path finder, our framework can efficiently sched-
ule communication for an extensive set of quantum pro-
grams. Our framework outperforms the best known work
[10], especially for large-scale real-world circuits with up to
5,000 logical qubits and 1,620,000 physical qubits.

The rest of the paper is organized as follows. We introduce the
background of quantum error correction in Section 2. We describe
our framework in Section 3. Section 4, 5, and 6 are respectively
evaluation, related work, and conclusion.

2 BACKGROUND

a9

q14

P

N —m

a6

l m
| [|
(b)

(a)

FanY
A\ 74

1

Fany

Figure 1: A braiding path must be established between a pair
of qubits participating in a CX (two-qubit) gate: (a) A circuit
of 5 CX gates that can run concurrently in theory; (b) One
possible simultaneous schedule of five braiding paths. (A dot
in the lattice represents a logical qubit)

Error correction. Quantum qubits are fickle and can lose their
state information due to the interaction with the environment.
This phenomenon is called decoherence. In addition to decoher-
ence, quantum gates have low fidelity and can cause erroneous
outcomes. Readout through the classical devices also has a failure
rate. Experiments show an average error rate of 1073 per 100 ns for
a superconducting quantum device [19].

Quantum error correction codes (QEC) are necessary to ensure
reliable execution of quantum programs. QEC detects error syn-
dromes and correct them correspondingly. With a proper single
qubit physical error rate, a logical qubit’s error rate can be arbitrar-
ily small if encoded using enough physical qubits, due to Threshold
Theorem [8].

Why surface code. There are different types of quantum error cor-
rection codes. We choose the surface code model as our underlying

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing

z z z z z z
Zez0ze0z0z20Z ZzezOZzezOZzez

z X z X z z X z X z

O Xr@uX O X»e1X O ox J9)

zZ x z x z z A A
ze20ze20z02Z zez 22,2 Z

z X z X z z -

O XI@TX O XN@X O ox X0

z X z X z z X X z '
zez0zez0zez zezozgzozez H

zZ X z X z z X 2 z ' n

O XI@ X O Xrewx O OXreX % X, XO (<} X

z x z x z z x - Z '
zez20zez0ze0Z zez0z$zozez '

z X z X z z X X z '

O XI@ X O Xre X O 0 xsenx & Xrewx O

zZ x z x z z x X z
zezpze2p0z02Z zezg ozez

zZ x z X 2z z x X z

O X»euX O Xneux O O X»@uX O X»eux O

z x z x 2z zZ x z x z
ZeZOzez0oZeZ zezZ zezZ zez

z z z z z z

(a)

—_
(=3
-

(c)

Figure 2: (a) Surface code lattice, (b) a double-defect Z-cut
logical qubit, (c) only the nine data qubits of the Z-cut logical
in (b) are shown. Data qubits are represented using empty
circles, and measurement qubits as dark circles.

platform since it yields one of the highest fault-tolerant threshold
of any QEC. It is also one of the widely used error-correction codes
[16].

The logical qubit error rate of surface code model can be calcu-
lated as follows:

Py = 0.03(L-y@+/2 (1)
Pth

where p,j, represents the threshold error rate, d represents the
strength of error correction (the minimal number of qubits bit
flipped or phase flipped in order to define a logical Xj or Zj opera-
tion), p is the physical error rate.

If the physical qubit error rate is < threshold error p;j, the
logical error rate decreases exponentially with the number of qubits
added (d is highly correlated with the total number of physical
qubits). Assume we have physical qubit error rate as 0.1% (this is
what today’s best superconducting quantum devices can achieve),
a typical threshold error rate p,j, as 0.57% (we use the same as that
by Fowler et al. [6]), a distance d of 55, we can have logical qubit
error as low as Py = 9.334 - e~23,

Surface code model. In the surface code model, quantum hard-
ware prepares a large lattice of entangled qubits. An example of
a two-dimension lattice of entangled physical qubits is shown in
Fig. 2 (a). There are two types of qubits: data qubits and measure-
ment qubits. Measurement qubits are ancilla qubits which can be
measured for detecting error syndromes. Data qubits are used for
encoding logical qubits.

A logical qubit is created by disabling two same-type measure-
ment qubits, as if creating two defects in the lattice. The data qubits
on the boundary of and the link between these two defects repre-
sent one logical qubit. If disabling X measurement qubits in the
defects, it is called X-cut logical qubit. If disabling Z measurement
qubit, it is Z-cut logical qubit. An example of Z-cut qubits is shown
in Fig. 2 (b) and (c).

Measuring the ancilla qubits project the data qubits into a simul-
taneous eigenstate of a set of corresponding stabilizers imposed by
the circuit. A basic building block circuit of surface code is shown
in Fig. 3 (b). As shown in Fig. 3 (c), depending on the measurement

927

MICRO 21, October 18-22, 2021, Virtual Event, Greece

1 2 345 67 8
pag Oy — 8
z U

©: 0 & T bdum

(a (b)

(c)

Figure 3: (a) A building block of the surface code lattice, (b)
the quantum circuit corresponding to the basic block, and (c)
the state of qubits a and b uniquely determined by the mea-
surement outcome X,; and Z,;;,. The measurement gates cor-
responding to the 8-th cycle in (b), X,; and Z; respectively
denoted by dark circle with text X and Z inside.

outcome of two measurement qubits X5 and Z,p, the state of two
data qubits a and b is uniquely determined. It can be verified by
circuit in Fig. 3 (b).

After the first measurement, if there is no error, continuous
measurement outcomes of the ancilla qubits X,; and Z,; will be
the same. The state of data qubits a and b also remain unchanged. It
is as if stabilizing the state of the data qubits. There are 8 cycles for
running the circuit in Fig. 3 (b), as denoted by the numbers on top
of the circuit. The 8 physical cycles denote a surface code cycle. The
circuit is repeatedly executed. If there is error, the measurement
outcome changes compared with that in previous surface code cycle.
We will not discuss the details of error detection and correction
as it is not related to our paper. We refer interested readers to the
work by Fowler et al. [16].

2 |
O

3

X-cut{

O O I%I

(@ (b)

Q

0--0

ol B

Q-0-0-0
&

0--0---0-

Figure 4: Braiding operation that represents a CNOT be-
tween a Z-cut and X-cut logical qubit

Encoded gate operations. In surface code, logical qubit gates such
as X and Z can be implemented by applying X and Z gates to a
subset of data qubits qubits for the logical qubit, as shown in Fig. 2
(b). Hadamard gate is more complicated, but it can still be applied
locally to the logical qubit itself and its surrounding physical qubits.

Two-qubit gate is more complicated. Controlled NOT - CNOT
gate is one of the most commonly used two-qubit gates. It is also

MICRO 21, October 18-22, 2021, Virtual Event, Greece

the only two-qubit gate in an universal gate set. In this paper, we
also use CX to denote the CNOT gate. For a CX gate, if the control
qubit is 0, the target qubit does not change. If the control qubit is 1,
it flips the target qubit. CX between two different types of logical
qubits, a Z-cut and X-cut is implemented as a process of “dragging”
one defect of a logical qubit around one defect of the other logical
qubit. It is called braiding. An example is shown in Fig. 4.

Moving a defect is implemented as turning off and on relevant
measurement qubits and their involved circuit operations [16] at
different time coordinates. It is not really moving physical qubits.
The path of the defect movements over time for one pair of qubits
should not intersect that of another pair of qubits. That is, a path is
exclusive to one CX operation at one time. Thus the braiding path
scheduling problem essentially reduces to a routing problem, as
shown in our example in Fig. 1.

Auto-braiding as a routing problem. A lattice is prepared with
logical qubits of the same type [10]. It is partitioned into tiles and
channels. The partition divides the lattice by function [10]. No
circuit or qubit operation is involved in the partition. An example
of eight tiles is shown in Fig. 5 (a).

Each tile encloses a logical qubit as well as necessary surround-
ing physical qubits. For instance, the encoded hadamard gate on
a logical qubit g requires the help of the other physical qubits
surrounding g. A tile confines an encoded hadamard gate to only
physical qubits within the tile.

For implementing a CX gate on two same-type qubits, a dy-
namically initialized logical qubit is necessary. This dynamically
allocated logical qubit will interact with the two original logical
qubits in the CX gate. It is initialized within the tile of one logical
qubit; One of its defects goes around one defect of this logical qubit
tile it is created, then goes around one defect of the other logical
qubit, and comes back. An example is shown in Fig. 5 (b). Once
the CX gate is completed, the dynamically allocated logical qubit
is reclaimed. It is done by turning on corresponding measurement
qubits as if erasing the defects. Each tile in the lattice contains
enough physical qubits such that an ancilla logical qubit can be
created on the fly within it.

As can be seen, to perform a CX gate, a routing path must be
established between two tiles and be kept for a certain amount
of time. We call the pathway between the tiles as channels. The
channels are used for "moving" the defects in the braiding process.
CX gate is the only gate that requires to use the channels in the
lattice in the universal gate set we discuss here.

One important feature of braiding path is that it is latency insen-
sitive. As aforementioned, braiding does not really move qubits. It
is essentially turning on/off measurement qubits and their circuit
operations. These operations can happen in parallel for different
measurement qubits. Thus, regardless how long the braiding path
is, the time to perform braiding is always the same [16].

Another important feature of braiding is that it follows topolog-
ical rules. The braiding can take any path as long as the chosen
paths are topologically the same. In surface code braiding, as long
as the braiding paths go around the same defects, the effects are
equivalent on the circuit. Fig. 5 (b), (c), (d), and (e) represent four
topologically equivalent braiding paths for performing CX gate
between a pair of logical qubits in P1 and P2.

928

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

3 DESIGN OVERVIEW
3.1 Problem Setting

We define a two-dimensional grid where the braiding paths are
scheduled. We let each cell in the grid represent a logical qubit tile.
We let each vertex represent an intersection of two channels. Each
edge represents a segment of a channel between two vertices. A
braiding path consists of a set of vertices and edges in the grid.
Examples are shown in Fig. 5 (f)-(i).

A braiding path is established from any vertex of a cell to any
vertex of another cell. There are 16 possible path configurations
between two cells with respect to starting and ending vertices. Fig.
5 (f)-(i) represent 4 out of 16 possible combinations between the
two cells P1 and P2.

A single-qubit gate applies locally to a cell and does not use any
routing vertex/edge. A two-qubit gate requires to establish a path
between two operand qubits. Two simultaneous two-qubit gates
must have non-intersecting braiding paths. Our goal is to schedule
braiding paths and minimize the latency of the encoded circuit.

3.2 Design Considerations

Efficient communication scheduling depends on three factors: the
parallelism of CX gates in the program, the placement of the qubits,
and the choice of braiding paths.

Inherent Communication Parallelism. The inherent communica-
tion parallelism in the circuit matters. In certain circuits, even if
there are CX gates, the communication parallelism may be low. An
example is shown in Fig. 6 for the Bernstein Varizani (BV) algo-
rithm, where there is no CX parallelism due to gate dependence.
When communication parallelism is low, braiding paths can be
easily scheduled. In some other circuits, the communication paral-
lelism is high. An example is shown in Fig. 7 for the Ising model
circuit where there are n/2 simultaneous CX gates and n is the
qubit number. For these cases, braiding paths must be scheduled
properly to mitigate congestion.

Path Finding. The choice of braiding paths also matters. The
greedy algorithm by Javadi Abhari et al. [10] finds a shortest path
for each pair of qubits, as shortest paths consume minimal routing
resources. However, just finding shortest paths is not enough. The
scheduler must take a global view, as the path placement for one
pair of qubits might affect that for another pair of qubits. Once a
path is obtained for one pair of qubits, the vertices used by this
path cannot be used by other braiding paths. Even using the same
shortest path method for all pairs of qubits, the set of vertices that
can be used for routing may vary if the order of path search varies.

We show an example in Fig. 8 (a), if the scheduler finds shortest
paths in the order of {A;, Az}, {B1, B2}, and {E1, E3}, then neither
{C1, C2} or {D1, D3} can find a braiding path as the lattice has been
divided into two disconnected components due to the placement of
A, B, and E’s paths. However, as shown in Fig. 8 (b), if the scheduler
finds shortest paths in the order of {B1, Bz}, {C1, Ca}, {D1, D2}, {E1,
E}, and {A1, Az}, all CX gates can run simultaneously.

Qubit Layout. The layout of the logical qubits on the physical
lattice matters. An efficient scheduler must find out a proper layout
of the qubits in order to maximally exploit the communication

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing

MICRO 21, October 18-22, 2021, Virtual Event, Greece

P2 P2 P2 P2

® (9) (h) (i)

P1 P1

Figure 5: The braiding problem modeled as a routing problem: (a) eight tiles in the original lattice; (b), (c), (d), and (e) show that
a braiding path from P1 can start from any corner of P1; (f), (g), (h), and (i) stand for the routing paths in the two-dimensional

grid representation we define, respectively for (b), (c), (d), and (e).

i
B

HHEHEHE
7] E‘E
D Cl
b— d
H

7

H

Figure 7: A part of the 10-qubit Ising model circuit

(a) (b)

Figure 8: Path search for five CX gates: A, B, C, D, and E. A;
and A, denote two qubits in CX gate A. We use similar no-
tation for other gates; (a) shows that if shortest paths are
found in the order of A, B, and E, then two CX gates C and D
cannot run; (b) shows that if processing in the order of B, C,
D, E, and A, it can find simultaneous paths for all CX gates.

parallelism in the program. We can construct a case where even if
there are only four pairs of qubits, no matter how large the lattice
is, these four CX gates cannot run simultaneously, unless the qubit
layout is changed.

We construct the case as follows. For each CX gate, we draw
a straight line between two closest vertices from its two qubits
and we denote it as straight line path. In the constructed case, for
any CX gate, its straight line path separates any other CX gate’s

929

two qubits into two sides of the straight line. Further, each qubit is
on the boundary of the lattice. With four such pairs of qubits, we
construct an example in Fig. 9. We can rigorously prove that four
simultaneous braiding paths cannot be scheduled in this case, but
we sketch the proof due to space limit.

If we look at the two CX gates {A,0, Ao, 1} and {A1,0, A1,1}, at
least one CX’s braiding path must go around one qubit of the other
CX gate. By going around a qubit q, we mean a braiding path uses
the boundary of the grid, and uses at least one edge of the qubit ¢
on the boundary. This holds because if neither CX’s braiding path
go around one qubit of the other CX gate, the two braiding paths
will cross. Without loss of generality, we assume such a braiding
path is for {A1,0, A1,1} which goes around the qubit Ag 1, as shown
in blue in Fig. 9 (a). This leaves Ag ¢’s edge on the boundary open.
Then the braiding path for {A,0, Ao, 1} shall not go around any qubit
in Ay o or Ay,1 otherwise it will cross the first braiding path. We
draw the braiding path for {A ¢, Ao,1} in red in Fig. 9 (a). If we try
to find the path for {A o, A2, 1}, it must go around Ay, ¢ otherwise it
will cross the first two established paths (the red and blue). Now it
is impossible to find path for {As3 o, A3 1} since the first three paths
have placed As o and A3 ; into two disconnected partitions of the
lattice. And it is proved that, these four CX gates cannot run in
parallel regardless how large the lattice is.

However, if we change the qubit layout by switching As o with
Ao,0, and Ay o with Aj o as shown in Fig. 9 (b), a congestion-free
routing schedule exists for all four CX gates.

The challenge of qubit layout optimization is that there is no
one-fit-all qubit placement which satisfies all theoretically concur-
rent CX gates. At different execution points, different combinations
of CX gates are allowed to run concurrently. The study by Javadi-
Abhari et al. [10] uses a graph partition method to determine an
initial qubit placement that places the frequently interacting qubits
into as compact regions as possible, but the qubit layout is still fixed
throughout the entire circuit. In our design, we allow the qubit place-
ment to dynamically change throughout the scheduling process, and
hence achieves significant flexibility and up to orders of magnitude
performance improvement in some cases.

3.3 AutoBraid Framework

We propose the AutoBraid framework as shown in Fig. 10. It per-
forms communication scheduling in three stages.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

X Azo Asp '/W
Azt Az A1 Ao,1

(b)

Figure 9: Impact of qubit layout: Four CX gates can run si-
multaneously in theory; They are {A; o, A; 1} (i = 0, 1,2, 3); (a)
shows a qubit-layout which does not allow concurrent exe-
cution of four CX gates no matter how smart the path finder
is; (b) shows another qubit-layout which allows all four CX
gates to run in parallel.

First, it analyzes communication parallelism. It obtains the in-
formation of the number of CX gates run concurrently in the ideal
logical circuit, if there is any.

Second, it performs initial placement. It analyzes the qubit cou-
pling graph and use iterative graph partitioner metis [12] to find an
initial qubit placement. In a qubit coupling graph, two qubits have
an edge if there is a CX gate between them. We fine tune this initial
mapping returned by metis by two different methods: (1) simulated
annealing based on LLG characteristics (described in Section 3.3.1),
and (2) optimizing for special graphs with maximal degree of two.

Third, it repeats the following two steps until all gates are sched-
uled: (1) a stack-based path finder assigns an order to the CX gates
and then performs path search in this order, and (2) if necessary,
a qubit placement optimizer change the layout. To dynamically
remap qubits, we use the swap-insertion strategy. A swap gate con-
sists of three CX gates, as shown in Fig. 11. Therefore the layout
optimization problem becomes yet another braiding problem.

The key insight of our design is a local parallelism pattern we
discovered in this paper. We characterize the communication par-
allelism using local parallel groups (LLG). LLGs are amenable to
program analysis and optimization, and is highly correlated with
the braiding performance.

We first introduce LLG definition and characterization, then
introduce our detailed framework based on LLG.

3.3.1 LLG Characterization. A LLG is a minimal set of CX gates
whose joint bounding box does not overlap with any other LLG’s
bounding box. The joint bounding box of a set of CX gates is the
minimal bounding box that encloses the bounding boxes of all these
individual CX gates. The size of a LLG is the number of CX gates in
it. A LLG’s size is at minimal 1 and at maximum the total number
of CX gates in the lattice at a concurrent time step. An example of
LLG is shown in Fig. 12.

We discover two properties. We exploit these two properties to
find maximal number of simultaneous paths. We describe them
below (rigorous proof in the Appendix).

THEOREM 1. For a LLG with < 3 CX gates, given an arbitrary
placement of the operand qubits, there exist a simultaneous braiding
schedule for all CX gates in the LLG, and the schedule is confined
within or on the boundary of the LLG’s bounding box.

Note that the theoretically concurrent CX gates at one time step
can be divided into a set of LLG(s). The implication of Theorem 1 is

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

930

that if all LLGs have size of 3 or smaller, there exists a congestion-
free routing schedule for all CX gates. It is because different LLGs
do not intersect and each LLG can find their braiding paths locally
in their bounding boxes.

However, it does not mean when all LLGs’ size > 3 there does
not exist a congestion-free schedule for all CX gates.

THEOREM 2. For a LLG with strictly nested CX gates, there exist a
simultaneous braiding schedule for all CX gates in the LLG, and such
a schedule confined within or on the boundary of the LLG’s bounding
box. A CX gate A is strictly nested within another CX gate B iff B’s
bounding box encloses A’s bounding box and they do not overlap.

An example of strictly nested bounding boxes is shown in Fig.
12 denoted as LLG1, where each CX gate can schedule its braiding
paths on the boundary of its bounding box or inside its bounding
box such that these paths do not intersect.

With Theorem 1 and Theorem 2, we set a foundation for the
framework of schedule braiding paths. First, the initial placement
of the qubits can be optimized to minimize the number of LLGs that
have size > 3 and that are not nested LLGs. We can use simulated
annealing on top of the graph partition result. We can keep swap-
ping qubits until the number of k-LLG (k > 3) cannot be reduced
anymore.

This already significantly reduces the circuit execution time. We
show real experiment results in Table 1, after we apply the afore-
mentioned initial layout optimization, the performance is already
much improved.

Next we can partition a set of concurrent CX gates into multiple
layers such that each layer runs at one time, and each layer contains
maximal number of LLGs that satisfy Theorem 1 and 2. However,
the conditions of Theorem 1 and 2 are overly strict. There still exist
LLGs that do not satisfy either condition, but still can be scheduled
without any congestion. Moreover, we need to come up with an
order for path search as well as to enable dynamic qubit placement.

After LLG Optimization Before LLG Optimization
Benchmark | # of LLG’s execution #of LLG’s execution Speed

(size > 3) time(us) (size > 3) time(us) up
qft16 19 1.28K 29 1.84K 1.44
qft50 160 8.97K 176 19.2K 2.14
urf2 268 149K 2515 154K 1.03
IM16 21 745 31 1161 1.55
M10 11 673 24 950 1.41
Shors 2010 135K 2116 283K 2.09
BTW 20 950 38 1056 111
Sqrt8 1 21K 6 21.1K 1.05

Table 1: Impact of LLGs’ sizes

3.3.2 Path Finder and Layout Optimizer.

Path Finder. The path finder is a critical component in our AutoBraid
framework shown in Fig. 10. It determines of the order of path
finding for different CX gates. It first constructs a CX interference
graph. In the CX interference graph, each node represents a CX
gate, and each edge represents that two CX gates’ bounding box
intersect.

We keep removing the largest degree node from the CX interfer-
ence graph. Each removed node is pushed into a stack. If there is a
tie, the CX gate whose bounding box has the largest area is chosen.

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Quantum :

Program : Initial Placement :

* : Analysis :

Communication Bl Coupiin Iterative
q —_—: PiNg ®8 Graph Heee

Parallelism g Anelysie st :

Analysis : H

Path : : :
Finder :Moregatesto : Placement ':
i schedule? Optimizer :
Stack based E CETTTTTT T LTI S \J
pathsearch i No more Transformed
gates? Circuit

Figure 10: AutoBraid: A Framework for Scheduling Braiding Paths

D
\VV

) oD
A\ % \J

Figure 11: A SWAP gate implemented as as 3 CX gates

LLG1:
CX A1, A2;
CX B1, B2;
CXC1,C2;

LLG2:
CX D1, D2;
CX E1, E2;
CXF1, F2;

(a)

Figure 12: An example of LLGs: There are two LLGs in this
lattice. Each has three CX gates. Out of these two, LLG1is a
nested LLG, where the bounding box of C encloses that of B,
and the bounding box of B encloses that of A.

The node removal process terminates until the maximal degree
of the CX interference graph is < 2.1t is a relaxation of the condition
in Theorem 1. Because when all LLGs have size < 3, the degree
of the CX interference graph is < 2. But if the maximal degree of
the CX interference graph is 2, it does not necessarily imply that
all LLGs have size < 3, for instance, when there is a chain of more
than 3 nodes in the CX interference graph. However, this greatly
reduces the complexity of path search and in practice usually leads
to fully concurrent braiding paths too.

After the stack is constructed and the CX interference graph is
updated, we use A* to find actual paths. It first schedules braiding
paths for all CX gates in the updated interference graph. Next it
schedules CX gates in the stack. It pops off a CX gate from the
stack, and uses A” to find a shortest path for this CX gate. The stack
ensures a last in first out (LIFO) order. The algorithm is shown in
Fig. 13. This method can also handle the nested CX gate case in
Theorem 2 since the CX gate that encloses other CX gates and have
largest-area bounding box is handled last.

With this algorithm, we can handle path search in a hierarchical
and distributive manner. It is important to avoid the scenario that
a set of CX gate(s) use very long braiding paths and occupy most
of the routing vertices. Our goal is to schedule as many paths as
possible, and the routing resources are limited. Handling the small
LLGs locally will ensure that those short distanced qubit pairs are
handled first. It is also important to ensure that certain paths that
may divide the lattice into disconnected component are scheduled
with lowest priority. The stack ensures that.

931

1 Input: IG /CX interference graph
2 Output: paths //Routing paths for CX gates in LLG without cross

3 ratio // #scheduled gates over #total gates ina LLG
4

5 paths = {(key, value)} // key: CX gate; value: path for this CX
6 S = stack

7 degreeGT2 = true

8 While(degreeGT2){

9 s tie=o

10 s_tie.push(1G.get_max_degree_nodes())

11 if(s_tie.size > 1){

12 cx_d = get_largest_area(s_tie)

13 lelse{ cx_d = s_tie[0] }

14 if(cx_ d.degree > 2){

15 S.push(cx_d)

16 IG.remove(cx_d) //remove node; update degree
1; lelse{ degreeGT2 = false }

19 forex_sinIG{

20 p = get_path(cx_s) //p = An array stores CX’s path
21 paths.insert((cx_s, p))

22

23 while(S.empty(){

24 cx_|=S.pop()

25 p = get_path(cx_)

26 if(t p.empty(){

27 paths.insert((cx_l, p)) }

28

29 ratio = paths.size()/IG.size()

Figure 13: Algorithm for Path Finding

We show an example in Fig. 14 where it has one large LLG of
size 7, while using our algorithm all CX gates can be scheduled
simultaneously.

(b) Interference graph (c) Removing node B and C

(e) Finding path forcx ADEF G

(f) Finding path for cx C

(g) Finding path for cx B

Figure 14: An example for the stack-based path finder.

(d) Stack

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Layout Optimizer. In some cases, even the best path finder cannot
find fully concurrent braiding paths due to the qubit layout. As
discussed in design considerations in Section 3.2, even there are a
lot of routing resources, they cannot be exploited. In this case, the
qubit layout must be changed. We insert swap gates to dynamically
change the qubit placement. A swap operation exchanges the loca-
tions of two logical qubits. Each swap incurs a cost of 3 CX gates.
It needs to be performed only when it is worthwhile. We use swap
gates to tackle the communication bottleneck cases.

Azt A2 Atq Ao
(a) Original placement

Aoo Ao Azo Asp An10 Ano

Ant Anan T Asr Az Ata Aos
(b) Swap-based qubit remapping
Ano Anto - Aso Ao Ao Aoo

Az A2 Avq Ao
(c) Optimized placement

o e
Ant At o

Figure 15: Swap-based qubit placement optimization

We show an example of the communication bottleneck cases.
Assuming there are m CX gates that can be scheduled. However, at
most 3 CX gates can be scheduled at one time. If the qubit layout
can be changed, it takes at most one parallel swap step to make all
CX gates executable.

In this example, the original qubit placement is shown in Fig.
15 (a). It is an extension of the case discussed in Fig. 9. We draw a
straight line between two qubits in every CX gate. Every straight
line separates every other pair of qubits into two different regions
of the lattice. We proved that if there are four such pairs of qubits,
at most three CX gates can run simultaneously. It is the same for m
pairs of such qubits. At most three 3 CX gates can run at the same
time. After we remove 3 CX gates from the circuit, the rest m — 3
CX gates still have the same pattern. Therefore, in total it needs
m/3 parallel steps, no matter how much routing resource there is.

However, we can use SWAPs to tackle this communication bot-
tleneck. As shown in Fig. 15 (b) and (c), one parallel layer of swaps
makes all CX gates executable. In this case, even one swap costs
3 CX gates, it takes 4 parallel time steps to finish all the CX gates,
which is significant better than m/3.

In our placement optimizer, we find pairs of qubits to swap
to change the qubit layout. The swaps must be schedulable with
respect to braiding constraints. We first choose the CX gate that
interferes with most other CX gates in the interference graph. If
there is a tie, we choose the one with the largest bounding box.
Then we choose a second CX gate that interferes with the first
picked one and with the most rest of the gates.

For the two pairs of qubits, we choose two out of four qubits to
swap. Now this swap pair is pushed into a stack. We test the swap
and determine to keep it or not. We repeat this process, until no new

932

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

swaps can be added due to braiding constraints. To check whether
a newly inserted swap can run simultaneously with existing swaps
in the stack, we take advantage of Theorem 1 and Theorem 2. If it
immediately satisfies these two theorems, we keep this swap in the
stack. For the cases that do not immediately satisfy Theorem 1 and
2, we try to pop out all swaps from the stack, and find paths in that
order. If simultaneous paths can be found, we keep this swap, and
then push all swaps back to the stack. Otherwise, we do not keep
the new swap in the stack and we restore the stack to its previous
state. We consider the specialization of swap insertion for all-to-all
communication pattern proposed by Maslov [17] which is originally
used for nearest neighbor architectures, i.e., two-qubit gates can
only be enabled between neighboring qubits, as it guarantees linear
depth in this congested case. It is trivial to see that for disjoint
pairs of neighboring qubits, simultaneous routing paths exist. For
applications with all-to-all communication pattern, we apply both
greedy layout optimizer and Maslov’s method, then choose the
better one.

The placement optimizer is only triggered if most of the theoret-
ically concurrent CX gates cannot be scheduled. We try different
threshold ratios p%. If after using the path finder, less than p% CX
gates can be scheduled, we run the placement optimizer. Other-
wise, we skip the placement optimization step. We try 0% to 90%
threshold values on a 10% step and choose the best one among all.

4 EVALUATION
4.1 Experiment Setup

Metric Using surface code, the unit of time is the surface code cycle.
We refer to a surface code cycle as a cycle for simplicity of notation.

Phase gates require magic state ancilla qubits. We use the same
assumption by Javadi-Abhari et al. [10] such that there is a steady
supply of magic state qubits at the location of the data.

We evaluate two versions of our framework. One version does
not optimize the qubit placement. We refer to this version as autobraid-
sp, where sp refers to stack-based path finder. The other version
includes both path finding and layout optimization. We refer to it
as autobraid-full.

Baseline We use the best known approach [10] as our baseline. It
implements seven policies and we choose the best policy as the
baseline. As it is a greedy policy, which prioritize routing paths
with respect to shortest distance, we refer to it as the GP method.
The baseline uses the graph partitioner metis [12] to optimize initial
mapping, We denote it as GP w. initM.

Platform We simulate a surface code lattice as a structured two-
dimensional L by L grid, where L is the number of unit cells at each
dimension of the grid. For an input circuit with N qubits, we use
the smallest square grid which provide enough qubits, such that

L= [\/ﬁ] Using the smallest possible grid can test the effectiveness

of different braiding methods. The simulation runs on a machine
with Intel Xeon CPU E5-1607 which has 4 cores at 3 GHz.

BenchmarkWe use two categories of benchmarks. The bench-
marks are shown in Table 2. The first category benchmarks are
building block circuits [30], which are elementary functions that
can be used to construct large and complex applications. The second

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing

category contains real-world applications. They include Bernstein-
Vazirani (BV) algorithm [15], counterfeit-coin (CC) finding algorithm
[2], quantum fourier transformation (QFT), Shor’s algorithm, quan-
tum optimization algorithm(QAOA) algorithm, and Binary-Welded-
Tree (BWT) algorithm [7]. We obtain these real world applications
from IBM Qiskit [2], ScaffCC [11], RevLib [28], and Cirq [1]. Qiskit
can generate arbitrary-size circuits with respect to the qubit number,
for certain applications, including QFT, BV, and CC. We evaluate
these benchmarks with different qubit numbers.

4.2 Experiment Results

Overview. We first present an overview of the experiment re-
sults for small and medium scale inputs, for all the benchmarks in
Table 2. We use a fixed surface code distance d = 33 (which results in
areasonable logical error rate Pr). For each benchmark, we show its
type, qubit number, gate number, physical and computation time in
microseconds. We show our autobraid-full version which includes
both path-find and placement optimizations. We let one surface
code cycle take 2.2 microseconds, based on the parameters in [10]
which are faithful to most recent superconducting implementation
parameters. The experiments show that our approach significantly
reduces the execution time.

Our approach outperforms the baseline method with minimal
1.07X speedup to maximum 30X speedup. In Table 2, we can see
for the category of algorithm building blocks, our approach have
achieved the same result as the ideal case (the critical path without
worrying about braiding constraints) for most cases. The GP w. initM
method also performs relatively well. It did not achieve critical path
length, but for most cases, it has 10% to 30% more execution time
compared with the critical path. The building block benchmarks are
relatively small. For instance, the one that has the largest number
of qubits is 15, which makes it easier for the GP scheduler to find
a reasonably good routing schedule. Our approach still performs
better than GP w. initM, because it systematically decompose the
concurrent CX gates into LLGs, and we find that in most cases,
there are less than 3 CX gates in each LLG. Thus it is guaranteed to
have the same execution time as the critical path length.

For the category of real-world applications, our approach per-
forms better than GP w. initM. And we achieve larger speedup with
larger qubit number for most cases. For the CC benchmark with
100 qubits, our speedup is 1.12X, it is because the GP baseline al-
ready achieved near-optimal result and there is not much room for
us to improve. For the QFT benchmark, our speedup increases as
the number of qubits increases. When the qubit number is 400, we
achieve 30x speedup. In Table 2, OM refers to out-of-memory.

Scalability analysis. We choose three applications QFT, Ising
Model (IM), and QAOA to evaluate scalability, as they represent
widely-used real-world applications. QFT is also significantly used
in Shor’s algorithm in Table 2. For the baseline, since GP w. initM
provided in ScaffCC [11] runs out of memory when qubit number
is > 400, we implement a scheduler that is as close to GP w. initM
described in [10], and refer to it as baseline.

Fig. 16 shows the circuit execution time with respect to different
logical error rates Py . The logical error rate Py, indirectly determines
the size of computation, as the circuit size is inversely proportional
to Pr. The code distance d is also related to Py, as d increases when

933

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Table 2: Overview of Experiment Results

Benchmark Baseline (ys) Ours (s)
s . L. Auto | Speed

Type Name | Description | # qubit | # gate | CP GP w initM braid | up
4gt11_8 Compare 5 20 1313 3049 1313 2.32
4gt5_75 Input 5 48 5387 6655 5387 1.23
alu-v0_26 | ALU by Gupta 5 48 5596 6800 5596 1.21
rd32-v0 Bit Adder 4 34 2437 5577 2437 2.2
Build- sqrt8_260 12 3.09K | 186K 211K 186K 112
ing squar5_261 | Square Root 13 1.11K | 118K 132K 118K 1.11
Blocks squar? 15 4.07K | 426K 492K 426K 1.15
urfl_278 Unstructured 9 54.8K | 3.63M 5.56M 3.63M 1.52
urf2_277 Reversible 8 20.1K | 1.34M 3.6M 1.34M 2.66
urf5_158 Function 9 0.16M | 10.3M 14M 10.3M 1.35
urf5_280 9 49.8K | 3.2M 3.5M 3.2M 1.07
Quantum 200 20.1K 122K 1.47M 0.63M 2.31
QFT Fourier 400 80.2K | 0.24M 70.4M 2.1M 30
Transform 500 0.12M | 0.38M OM 3.1M N/A
Bernstein 100 299 15.2K 17.2K 15.2K 1.13
BV . . 150 449 22.8K 25.5K 22.8K 1.11

Vezirani
200 599 30.3K 33.8K 30.3K 1.11
Counterfeit 100 198 15.1K 17.0K 15.1K 112
Real cc -Coin 200 398 30.3K 35.4K 30.3K 1.16
World Finding 300 598 45.4K 53.1K 45.4K 1.16
appli- 10 480 4162 12K 4162 2.88
cations M Ising Model 500 5494 | 908 2900 908 2.09
1000 10.9K | 908 2100 908 2.31
BWT Binary 179 260 7433 10.2K 7433 1.37
Welded Tree 240 365 7585 10.3K 7585 1.36
100 4.5K 10.9K 20.8K 13K 1.59
QAOA QAOA 200 9K 12.3K 30.5K 13.4K 2.19
300 13.5K 13.6K 40.7K 15.5K 2.64
Shor’s Shor's 471 | 365K | 053M | 178M 054M | 3.29

algorithm

Py decreases. We can see that for all benchmarks, our methods show
significant improvement compared with the baseline. By applying
the layout optimization, the result of “autobraid-full” is closer to
the critical path performance. For IM, the results of “autobraid-full"
exactly match the critical path lengths so the two curves overlap.

Resource utilization analysis. We also analyze the routing
resource usage. The resource usage ratio is defined as the number
of occupied vertices divided by the total number of available vertices.
Higher ratio typically implies better usage of the routing resources.
We scale the problem size of computation (1/Pr). The result is shown
in Fig. 17. We can see that our autobraid methods have relatively
good resource usage. It uses up to 70% resource while the baseline
achieves up to 37% resource.

P-sensitivity analysis. The layout optimizer is only triggered
if most of the theoretically concurrent CX gates cannot be scheduled.
We set a threshold percentage p%, such that if 1-p% CX gates cannot
be scheduled by the path finder, the layout optimizer is triggered.
The performance is sensitive to the p value for different benchmarks
and hence we choose to test a range of p values to choose the best
one. We show the p-sensitivity experiment results in Fig. 18 for
QFT-1000 and QAOA-1000.

Compilation time analysis. We evaluate compilation time over-
head. We compare it with the physical circuit execution time. We
find for most of benchmarks, compilation time takes only around
1-2% percentage of physical computation time.

5 RELATED WORK

Compilation for quantum programs has been mostly focused on
non-fault-tolerant hardware. Recently studies [14, 18, 23, 25-27, 30]
focus on mapping logical circuits to superconducting quantum
hardware with constrained physical connectivity. Heckey et al. [9]

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

w w w

B] B

§ 10t { —¢— autobraid-sp o § —e— autobraid-sp o— § —e— autobraid-sp /”'
g autobraid-full /./ 2 autobraid-full 2 autobraid-full of

] —e— CP vl .] —e— CP] —e— CP o o—°
€ 0 € 10-3 £

£ 10°3 —e— baseline / e £ 1077 —e— baseline £ —e— baseline —

c P c / < 10-24 o

S — S S

S 19-1 o =1 - =1]
g10 Y, / " g —* g ./././ /.’./
% o/ CEL /./o %‘ S, ./o

§102] o 3 — 3 Vs

© /}4. o . © 0=35

B L = 8 ./ S *

103] e g o g e

£z T r £ T - r £ T - T -
o 4 5 7 8 o 4 5 6 o 4 5 6 7

6
Size of Computation (1/PL) in log

(a) QFT

Size of Computation (1/PL) in log

(b) IM

Size of Computation (1/PL) in log

(c) QAOA

Figure 16: Physical circuit execution time (seconds) with respect to different computation sizes (1/Pr). “autobraid-full” applies
path finder together with layout optimization, “autobraid-sp” applies only stack-based path finder, and “critical path (CP)” is

the ideal execution time.

Size of Computation (1/PL) in log

(a) QFT

Size of Computation (1/PL) in log

(b) IM

) g 2

60 45

g e £ L —| & —

@ 55 o ~- @ 40] b4 o

o / N\ &40 250 4 N
£ 50 oo, 2 . 2 .
E N £ 351 / =

c 45 e < o < 404 —e— autobraid-sp
2 o o—e. 2 30 / 2 autobraid-full
T 40 -— ~e—o. k] . 8 N

g o— AN 2 '/ g —e— baseline

£ 35| . g5 £ 3%

8 —e— autobraid-sp . 8 —e— autobraid-sp S . o __e—e
< 30 autobraid-full 220 autobraid-full = %04 ST

i 251 ¢ —e— baseline § 15| —e— baseline i —"

£ T r - T T £ T - T £ T T T r
o 4 5 6 7 8 o 4 6 & 4 5 6 7

Size of Computation (1/PL) in log

(c) QAOA

Figure 17: Resource utilization ratio (%) with respect to computation size (1/Pr).

\

3.01
2251

2.0 /’

AN

N

Normalized execution time
- ~
o o
.
[}
.
!\
4 e
Normalized execution time
-
o
.
.
]
\

(a) QFT-500 (b) QAOA-500
Figure 18: P-sensitivity analysis (time is normalized to that
when p = 0 on y-axis). X-axis corresponds to p value.

improve instruction level parallelism for ion-trap quantum com-
puters. The work by Kudrow and others [13] improves dynamic
compilation time. These studies target hardware without QEC.
There are two categories of studies that focus on program com-
pilation on fault-tolerant quantum hardware. The first category of
studies [4, 6, 21] focus on topological transformations in a three di-
mensional lattice, where the physical qubits form a two-dimension
layout, and the third dimension is time. These studies usually focus
on a CX network which consists of a sequence of CNOT gates that
have dependence relationships. The braiding paths can be deformed
with respect to topological transformation rules to minimize circuit
time. This line of work is orthogonal to ours, since we focus on
scheduling parallel CX gates and can use their results as templates
for dependent CX gates. The second category of studies [5, 20]

934

focus on magic state distillation circuits and how to insert them
into the time-space dimensions during the circuit synthesis phase,
for supporting Clifford+T gates. The magic distillation circuits are
important, but they present a different type of problems as qubits
need to be re-arranged for purifying qubits that have high fidelity
and their work is complementary to ours.

As far as we can tell, the study by Javadi-Abhari et al. [10] is the
most relevant. It provides a comprehensive evaluation of two types
of communication modes in surface codes: the planar code (through
teleportation) and the double-defect code (through braiding). They
provide greedy scheduling policies for braiding operations. Our
study has been shown to outperform their methods for both small-
scale and large-scale circuits. Javadi-Abhari et al. [10] discovered in
certain scenarios, the planar code might be more favorable than the
double-defect code due to braiding congestion. However, it might
not be that the nature of braiding-based two-qubit gate causes
this problem. With a proper design of the braiding scheduler that
addresses the congestion bottleneck, the double-defect code might
be more favorable than the planar code, as it uses fewer physical
qubits than the planar code.

6 CONCLUSION

We propose a framework for analyzing quantum programs in sur-
face code and scheduling braiding paths that correspond to two-
qubit gates. We develop an analytical model for the programs with
local parallelism pattern. Our framework achieves (near-)critical
path performance for small and medium scale quantum programs,

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication in Quantum Computing

and up to orders of magnitude improvement for large-scale quan-
tum programs, compared with the best known approach. Our effort
is an important step for building the required synthesis tool for
future large-scale fault-tolerant quantum computers.

ACKNOWLEDGMENTS

We thank Ali Javadi-Abhari for providing invaluable comments
on the baseline implementation and the anonymous reviewers for
their constructive feedback. This work is supported by grants from
Rutgers Research Council and NSF-FET-2129872. Any opinions,
findings, conclusions, or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of our sponsors.

APPENDIX

We use the notation E(, f3, y, ...) to denote the outer bounding box
for a set of CX gates a, 3, y, We use the notation I(«) to represent
the inner bounding box of CX gate a. It is the minimal bounding
box that encloses at least one vertex of A1 and one vertex of As.
The outer bounding box of a CX gate does not intersect the inner
bounding box of itself as long as this CX gate’s bounding box is not
one dimensional. Examples of outer and inner bounding boxes are
given in Fig. 19.

Aq Aq

Figure 19: (a) outer bounding box, (b) inner bounding box.

A 4-CXLLG

If aLLG has > 4 CX gates, it is not guaranteed to have simultaneous
braiding paths within the LLG’s bounding box.

THEOREM 3. For a LLG with four CX gates A, B, C and D on a two-
dimensional grid, it is not guaranteed that there exist simultaneous
braiding paths within E(A, B, C, D), given arbitrary placement of the
four pairs of qubits.

Proor. We have provided a case of 4 CX gates in Fig. 9 where
simultaneous braiding paths cannot be found in Section 3.2. Hence
it is proved. O

Next we show the proof for the existence of simultaneous braid-
ing paths in 1-CX, 2-CX, and 3-CX LLGs.

B 1-CXLLG

THEOREM 4. For a LLG with just one CX A, there exists a braiding
path for A within the bounding box E(A).

Proor. The proof is trivial. We find the shortest path between
A1 and Ay (the two operand qubits in the CX gate A) on the inner
bounding box I(A). Since the inner bounding box I(A) is confined
to the outer bounding box E(A), it is proved. O

935

MICRO 21, October 18-22, 2021, Virtual Event, Greece

C 2-CXLLG

THEOREM 5. For a LLG with two CX gates A and B, there ex-
ists simultaneous braiding paths for both A and B within or on the
boundary of the LLG’s bounding box E(A, B).

Proor. To prove the existence, we construct such two braiding
paths. We let A’s braiding path be one shortest path on the inner
bounding box I(A). Let A; and Az be the two qubits of the CX gate
A. Either the braiding path does not reach the boundary of E(A, B)
or the entire braiding path is on the boundary of E(A,B). Neither
case will divide E(A, B) into two disjoint connected components.
Since I(A) is the inner bounding box of A, it is either completely
disjoint from the boundary of E(A, B) as shown in Fig. 19, or is
completely on one border of E(A, B) when both A; and A, are on
the boundary of E(A, B).

Furthermore, A’s braiding path itself does not form a cycle —
meaning its starting vertex does not overlap with its ending vertex,
hence A’s braiding path will not occupy any qubit cell’s four vertices.
So the four vertices of either of B’s two qubits are not fully utilized
by A. Since the rest un-utilized vertices and edges form a connected
component, the CX gate B can find a braiding path within E(A,
B). O

D 3-CXLLG

Now we prove that there exist simultaneous braiding paths for all
CX gates in a 3-CX LLG when the LLG’s bounding box is at least 2
on each dimension.

E{’\‘“ @ [52] A1 [
M -] j

=

B2

A2 A2] c2| E] }
(a) (b) (c) (d

Figure 20: Four cases for the proof of 3-CX LLG.

THEOREM 6. For a LLG with 3 CX gates, and the LLG’s bounding
box has at least 2 by 3 or 3 by 2 cells, given arbitrary placement of
the six qubits, there exist simultaneous braiding path confined to the
LLG’s bounding box E(A,B,C).

Proor. For each CX gate, we draw a straight line path between
the two qubits in its inner bounding box. If one CX gate’s straight
line path intersects another CX gate’s straight line path or the
vertices of another CX’s qubits, we say that these two CX gates
strictly interference as opposed to CX interference by bounding
box intersection in Section 3.3.2.

Based on the strict interference relationship of the three CX
gates in the LLG, we prove Theorem 6 case by case.

The first case is that no CX gate strictly interfere with any other
CX gate. An example is shown in Fig. 20 (a), we find paths by
routing through the cells each straight line path crosses. There exist
such three paths since three sets of cells that are covered by three
straight line paths are disjoint. The three paths can pick disjoint
set of vertices on each set of qubit cells and cause no congestion.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

The second case is that two CX gates strictly interfere, while the
third CX gate does not interfere with either. An example is shown
in Fig. 20 (b). Without loss of generality, assuming A is the CX gate
that strictly interferes with B, and C is the CX gate that does not
interfere with either A or B. We first construct braiding paths for B
and C along their straight line paths inside the E(A, B). Then for A,
we find a braiding path that go around the paths of both B and C,
and along the boundary of E(A, B, C).

The third case is that one CX gate strictly interferes with two
other CX gates, while the other two CX gates do not interfere with
each other. An example is shown in Fig. 20 (c). Assuming A is the CX
gate that strictly interferes with B and C, we find braiding paths for
B and C first along B’s and C’s straight line paths, then there exists
at least one path of A along the boundary of the LLG’s bounding
box E(A, B, C) and also around B’s and C’s paths.

The fourth case is that all CX gates strictly interfere with each
other. That means one CX gate’s two qubits are on two sides of
any other CX gate’s straight line path. There is only one way to
construct such a case, as shown in Fig. 20 (d). To handle this case,
we pick any CX gate, and we denote it as A. We first construct a
braiding path along the straight line path of A, which is inside the
LLG’s bounding box. Next we pick any other CX gate, and we call it
B. For B, we let it go around one qubit of A, and call it A;. It means
that we leave the other qubit of A’s untouched - the border of E(A,
B, C) closest to this qubit is open too. Next, for C, it is clear that C
can go around A; (the other qubit of A) to find a path.

There are only four possible cases with respect to the relation-
ships of strict interference. Hence it is proved. O

REFERENCES
(1] [dl.

Noisy Intermediate Scale Quantum (NISQ) circuits.
https://github.com/quantumlib/Cirq.

Andrew Cross. 2018. The IBM Q experience and QISKit open-source quantum
computing software. Bulletin of the American Physical Society 63 (2018).
Simon J Devitt, William] Munro, and Kae Nemoto. 2013. Quantum error correc-
tion for beginners. Reports on Progress in Physics 76, 7 (2013), 076001.

Simon J Devitt, Ashley M Stephens, William] Munro, and Kae Nemoto. 2013.
Requirements for fault-tolerant factoring on an atom-optics quantum computer.
Nature communications 4 (2013), 2524.

Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret
Martonosi, and Frederic Chong. 2018. Magic-state functional units: Mapping and
scheduling multi-level distillation circuits for fault-tolerant quantum architec-
tures. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 828-840.

Austin G Fowler and Simon J Devitt. 2012. A bridge to lower overhead quantum
computation. arXiv preprint arXiv:1209.0510 (2012).

Mrityunjay Ghosh, Amlan Chakrabarti, and Niraj K Jha. 2017. Automated quan-
tum circuit synthesis and cost estimation for the binary welded tree oracle. ACM
Journal on Emerging Technologies in Computing Systems (JETC) 13, 4 (2017), 1-14.
Daniel Gottesman. 2010. An introduction to quantum error correction and
fault-tolerant quantum computation. In Quantum information science and its
contributions to mathematics, Proceedings of Symposia in Applied Mathematics,
Vol. 68. 13-58.

Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow, Ken-
neth R Brown, Diana Franklin, Frederic T Chong, and Margaret Martonosi. 2015.
Compiler management of communication and parallelism for quantum computa-
tion. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 445-456.
Ali Javadi-Abhari, Pranav Gokhale, Adam Holmes, Diana Franklin, Kenneth R.
Brown, Margaret Martonosi, and Frederic T. Chong. 2017. Optimized surface
code communication in superconducting quantum computers. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
2017, Cambridge, MA, USA, October 14-18n.

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T
Chong, and Margaret Martonosi. 2014. ScaffCC: a framework for compilation
and analysis of quantum computing programs. In Proceedings of the 11th ACM

Cirq, a python framework for creating, editing, and invoking
([n. d.]). url-

(2]
(3]
(4]

(11

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

[12

[13

[14

[15

[16

(17

(18

[19

[20

[21

[22

[24

[25

[26

[27

[28

[29

[30

936

]

]

]

Conference on Computing Frontiers. 1-10.

George Karypis and Vipin Kumar. 1995. Metis-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

Daniel Kudrow, Kenneth Bier, Zhaoxia Deng, Diana Franklin, Yu Tomita, Ken-
neth R. Brown, and Frederic T. Chong. 2013. Quantum Rotations: A Case Study
in Static and Dynamic Machine-Code Generation for Quantum Computers. In
Proceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA ’13). Association for Computing Machinery, New York, NY, USA, 166-176.
https://doi.org/10.1145/2485922.2485937

Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 1001-1014.

Hongwei Li and Li Yang. 2015. A quantum algorithm for approximating the
influences of Boolean functions and its applications. Quantum Information
Processing 14, 6 (2015), 1787-1797.

Austin G. Fowler Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. In
PHYSICAL REVIEW A covering atomic, molecular, and optical physics and quantum
information.

Dmitri Maslov. 2007. Linear depth stabilizer and quantum Fourier transforma-
tion circuits with no auxiliary qubits in finite-neighbor quantum architectures.
Physical Review A 76, 5 (Nov 2007). https://doi.org/10.1103/physreva.76.052310
Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Mar-
garet Martonosi. 2019. Noise-adaptive compiler mappings for noisy intermediate-
scale quantum computers. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. 1015-1029.

P.].J. O’'Malley, J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A.
Dunsworth, A. G. Fowler, L.-C. Hoi, and et al. 2015. Qubit Metrology of Ultralow
Phase Noise Using Randomized Benchmarking. Physical Review Applied 3, 4 (Apr
2015). https://doi.org/10.1103/physrevapplied.3.044009

Alexandru Paler. 2019. SurfBraid: A concept tool for preparing and resource
estimating quantum circuits protected by the surface code. arXiv:quant-
ph/1902.02417

R Raussendorf,] Harrington, and K Goyal. 2007. Topological fault-tolerance
in cluster state quantum computation. New Journal of Physics 9, 6 (Jun 2007),
199-199. https://doi.org/10.1088/1367-2630/9/6/199

Michael A Riepe and Karem A Sakallah. 2003. Transistor placement for noncom-
plementary digital VLSI cell synthesis. ACM Transactions on Design Automation
of Electronic Systems (TODAES) 8, 1 (2003), 81-107.

Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintdo Pereira. 2018. Qubit allocation. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. ACM,
113-125.

Swamit S. Tannu, Zachary A. Myers, Prashant J. Nair, Douglas M. Carmean, and
Moinuddin K. Qureshi. 2017. Taming the Instruction Bandwidth of Quantum
Computers via Hardware-Managed Error Correction. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50 °17).
Association for Computing Machinery, New York, NY, USA, 679-691. https:
//doi.org/10.1145/3123939.3123940

Swamit S. Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings:
Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mis-
takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’52). Association for Computing Machinery, New York,
NY, USA, 253-265. https://doi.org/10.1145/3352460.3358257

Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created
equal: a case for variability-aware policies for NISQ-era quantum computers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 987-999.

Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum
circuits to IBM QX architectures using the minimal number of SWAP and H
operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

R. Wille, D. Grofe, L. Teuber, G. W. Dueck, and R. Drechsler. 2008. RevLib: An
Online Resource for Reversible Functions and Reversible Circuits. In Int’l Symp.
on Multi-Valued Logic. 220-225. RevLib is available at http://www.revlib.org.
Chi Zhang, Ari Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Edd Z. Zhang.
2021. Time-Optimal Qubit Mapping. In Proceedings of the Twenty-Sixth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’21). ACM, Virtual.

Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of
quantum circuits to the IBM QX architectures. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1135-1138.

https://doi.org/10.1145/2485922.2485937
https://doi.org/10.1103/physreva.76.052310
https://doi.org/10.1103/physrevapplied.3.044009
https://arxiv.org/abs/quant-ph/1902.02417
https://arxiv.org/abs/quant-ph/1902.02417
https://doi.org/10.1088/1367-2630/9/6/199
https://doi.org/10.1145/3123939.3123940
https://doi.org/10.1145/3123939.3123940
https://doi.org/10.1145/3352460.3358257

	Abstract
	1 Introduction
	2 Background
	3 Design Overview
	3.1 Problem Setting
	3.2 Design Considerations
	3.3 AutoBraid Framework

	4 Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	A 4-CX LLG
	B 1-CX LLG
	C 2-CX LLG
	D 3-CX LLG
	References

