
AutoBraid: A Framework for Enabling Efficient
Surface Code Communication inQuantum Computing

Fei Hua

Rutgers University

huafei90@gmail.com

Yanhao Chen

Rutgers University

chenyh64@gmail.com

Yuwei Jin

Rutgers University

yj243@scarletmail.rutgers.edu

Chi Zhang

University of Pittsburgh

raymond.chizhang@gmail.com

Ari Hayes

Rutgers University

arihayes@gmail.com

Youtao Zhang

University of Pittsburgh

zhangyt@cs.pitt.edu

Eddy Z. Zhang

Rutgers University

eddy.zhengzhang@gmail.com

ABSTRACT
Quantum computers can solve problems that are intractable using

the most powerful classical computer. However, qubits are fickle

and error prone. It is necessary to actively correct errors in the

execution of a quantum circuit. Quantum error correction (QEC)

codes are developed to enable fault-tolerant quantum computing.

With QEC, one logical circuit is converted into an encoded circuit.

Most studies on quantum circuit compilation focus on NISQ

devices which have 10-100 qubits and are not fault-tolerant. In

this paper, we focus on the compilation for fault-tolerant quantum

hardware. In particular, we focus on optimizing communication
parallelism for the surface code based QEC. The execution of sur-

face code circuits involves non-trivial geometric manipulation of

a large lattice of entangled physical qubits. A two-qubit gate in

surface code is implemented as a virtual “pipe" in space-time called

a braiding path. The braiding paths should be carefully routed to

avoid congestion. Communication between qubits is considered

the major bottleneck as it involves scheduling and searching for

simultaneous paths between qubits. We provide a framework for

efficiently scheduling braiding paths. We discover that for quantum

programs with a local parallelism pattern, our framework guaran-

tees an optimal solution, while the previous greedy-heuristic-based

solution cannot. Moreover, we propose an extension to the local

parallelism analysis framework to address the communication bot-

tleneck. Our framework achieves orders of magnitude improvement

after addressing the communication bottleneck.

CCS CONCEPTS
• Software and its engineering → Compilers; • Hardware →

Quantum error correction and fault tolerance;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00

https://doi.org/10.1145/3466752.3480072

ACM Reference Format:
Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang,

and Eddy Z. Zhang. 2021. AutoBraid: A Framework for Enabling Efficient

Surface Code Communication in Quantum Computing. In MICRO’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3466752.3480072

1 INTRODUCTION
Quantum computing has significant theoretical advantages over

classical computing for applications in decryption, simulation, and

optimizations. In some cases, it provides exponential speedup, for

instance, for the quantum fourier transformation and quantum

phase estimation applications. However, the major reason that

prevents theoretical advantages from being realized is that quantum

hardware is error prone. Qubits and gates are subject to decoherence

and operation errors.

To run a quantum program reliably, it is necessary to detect and

correct errors in the circuit. A prominent quantum error correction

code (QEC) is surface code. Surface code yields one of the highest
fault-tolerant threshold error rates. According to Threshold Theorem,

given any QEC, as long as the physical error rate is lower than a
threshold [3], a quantum circuit can run with an arbitrarily low

logical error rate provided that there are enough physical qubits.

Different QECs tolerate different threshold error rates. Surface

code QEC can tolerate up to 1% physical error rate while most other

QEC cannot. For instance, the [7-1-3] error correction code [3] has a

threshold error rate of 10
−6
. Current physical qubit implementation

has a physical error rate of 0.1%-1%. Surface code is a QEC that

makes near term fault-tolerant quantum computing possible.

A fault-tolerant quantum computer equipped with surface code

performs computation in a software defined manner. The quantum

hardware only needs to prepare a large lattice of entangled physical

qubits. Computation is performed through geometric manipulation

of measurement qubits. A logical qubit is encoded using a set of

physical qubits. A two-qubit gate requires communication between

two logical qubits, which is implemented as a virtual “pipe" in

space-time and referred to as a braiding path [10]. At every time

point, simultaneous braiding paths shall not cross. An example for

non-intersecting braiding paths for concurrent two-qubit gates is

shown in Fig. 1.

925

https://doi.org/10.1145/3466752.3480072
https://doi.org/10.1145/3466752.3480072

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

Surface code imposes challenges on both micro-architecture de-

sign and program compilation. As a logical qubit is usually encoded

with a large number of physical qubits, tremendous number of in-

structions are generated during the execution of an encoded circuit.

Tannu et al. [24] exploit the similarity of QEC instructions and sig-

nificantly reduce the instruction footprint through micro-controller

design. On the other hand, when compiling a quantum program

into its encoded form, it must produce a schedule of braiding paths

in the hardware lattice, such that simultaneous paths do not inter-

sect. And we want to schedule as many braiding paths as possible

in short time period, in order to minimize the overall circuit latency.

In this paper, we focus on the compilation of quantum circuits

into their encoded form for the surface code mode. Most existing

studies for quantum circuit compilation are for non-fault-tolerant

hardware. A large body of studies [5, 14, 18, 23, 25–27, 29, 30] are

on noisy intermediate-scale quantum (NISQ) devices with donzens

of qubits. Even the current NISQ devices do not have sufficient

qubits for a fault-tolerant execution, the machine with tremendous

computing capability is emerging. IBM is projected to release a

1,121 qubit machine named Condor in the year of 2023.

The most relevant study to our work is the scheduling frame-

work by Javadi-Abhari et al. [10]. While its main purpose is to

study two different communication modes in surface code: braiding

(double-defect code) and teleportation (planar code), it also pro-

poses techniques that automatically schedule braiding paths. Its

observation is that braiding-based communication may cause sig-

nificant routing congestion and delay the circuit execution, making

the double-defect code less desirable than the planar code (when

physical error rate is low). In this paper, we discovered it is not

the inherent nature of braiding-based communication that causes

congestion, but the inefficient design of braiding algorithms that

causes congestion. Double-defect code tolerates higher error rate

with the same number of physical qubits. With double-defect mode,

it can have the benefits of minimal physical resource usage and

optimized circuit latency at the same time, given proper braiding

methods. Our method significantly outperforms this work [10] as

we achieve (near) critical path performance for small circuits and

orders of magnitude speedup for large-scale circuits.

Another line of relevant research is the routing problem for

VLSI circuit design [22]. The qubit braiding problem is similar

but different in several ways. The traditional VLSI routing problem

determines the paths that connects pins on circuit blocks. It typically

optimizes the length of the routing paths. However, the surface

code braiding problem is insensitive to the path length [10]. The

latency of a braiding operation is constant regardless of the length

of the braiding path. Moreover quantum program have different

characteristics compared to the VLSI circuit.

In this paper, we perform a systematic exploration of communi-

cation scheduling in surface code mode. We develop a framework

named AutoBraid for analyzing the characteristics of quantum pro-

grams and scheduling two-qubit gates in a scalable manner. Our

framework mitigates the bottleneck in the scheduling of braiding

paths in important quantum programs, and achieves up to orders

of magnitude performance improvement. Our contributions are

summarized as follows:

• Wediscover a local parallelism pattern for quantumprograms,

especially for the building block circuits of reversible logical

functions. We show how to discover such a pattern and

obtain an optimal schedule.

• We discover that dynamic qubit placement is important for

communication scheduling. While the previous study [10]

focuses on static qubit placement, our study for the first

time proposes a placement scheme that allows the location

of a logical qubit to be dynamically changed throughout

the circuit execution, which can tackle the communication

bottleneck problem.

• We design and implement a stack-based path finder that can
efficiently find congestion-free braiding paths and maximize

the resource utilization.

• With the dynamic qubit placement optimization and the

stack-based path finder, our framework can efficiently sched-

ule communication for an extensive set of quantum pro-

grams. Our framework outperforms the best known work

[10], especially for large-scale real-world circuits with up to

5,000 logical qubits and 1,620,000 physical qubits.

The rest of the paper is organized as follows. We introduce the

background of quantum error correction in Section 2. We describe

our framework in Section 3. Section 4, 5, and 6 are respectively

evaluation, related work, and conclusion.

2 BACKGROUND

(a) (b)

q1

q3
q5

q14
q9

q17
q22

q26

q33
q27

q1 q3
q9

q5

q14 q17

q26
q27

q22 q33

Figure 1: A braiding pathmust be established between a pair
of qubits participating in a CX (two-qubit) gate: (a) A circuit
of 5 CX gates that can run concurrently in theory; (b) One
possible simultaneous schedule of five braiding paths. (A dot
in the lattice represents a logical qubit)

Error correction. Quantum qubits are fickle and can lose their

state information due to the interaction with the environment.

This phenomenon is called decoherence. In addition to decoher-

ence, quantum gates have low fidelity and can cause erroneous

outcomes. Readout through the classical devices also has a failure

rate. Experiments show an average error rate of 10
−3

per 100 ns for
a superconducting quantum device [19].

Quantum error correction codes (QEC) are necessary to ensure

reliable execution of quantum programs. QEC detects error syn-

dromes and correct them correspondingly. With a proper single

qubit physical error rate, a logical qubit’s error rate can be arbitrar-

ily small if encoded using enough physical qubits, due to Threshold
Theorem [8].

Why surface code. There are different types of quantum error cor-

rection codes. We choose the surface code model as our underlying

926

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication inQuantum Computing MICRO ’21, October 18–22, 2021, Virtual Event, Greece

z
z z

z x
x x

x

(a) (b) (c)

z
z z

z

z
z z

zx
x x

xz
z z

z

z
z z

z

z
z z

z
z

z z
z

z
z z

z

z
z z

z
z

z z
z

z
z z

z

z
z z

z
z

z z
z

z
z z

z

z
z z

z

z
z z

z

z
z z

z

z
z z

z

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

z
z z

z x
x x

x

z
z z

z

z
z z

zx
x x

xz
z z

z

z
z z

z
z

z z
z

z
z z

z

z
z z

z
z

z z
z

z
z z

z

z
z z

z
z

z z
z

z
z z

z

z
z z

z

z
z z

z

z
z z

z

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

x
x x

x

ZL
^

XL^

ZL
^

XL
^

Figure 2: (a) Surface code lattice, (b) a double-defect Z-cut
logical qubit, (c) only the nine data qubits of the Z-cut logical
in (b) are shown. Data qubits are represented using empty
circles, and measurement qubits as dark circles.

platform since it yields one of the highest fault-tolerant threshold

of any QEC. It is also one of the widely used error-correction codes

[16].

The logical qubit error rate of surface code model can be calcu-

lated as follows:

PL = 0.03(
p

pth
)(d+1)/2 (1)

where pth represents the threshold error rate, d represents the

strength of error correction (the minimal number of qubits bit

flipped or phase flipped in order to define a logical XL or ZL opera-

tion), p is the physical error rate.

If the physical qubit error rate is < threshold error pth , the
logical error rate decreases exponentially with the number of qubits

added (d is highly correlated with the total number of physical

qubits). Assume we have physical qubit error rate as 0.1% (this is

what today’s best superconducting quantum devices can achieve),

a typical threshold error rate pth as 0.57% (we use the same as that

by Fowler et al. [6]), a distance d of 55, we can have logical qubit

error as low as PL = 9.334 · e−23.

Surface code model. In the surface code model, quantum hard-

ware prepares a large lattice of entangled qubits. An example of

a two-dimension lattice of entangled physical qubits is shown in

Fig. 2 (a). There are two types of qubits: data qubits and measure-

ment qubits. Measurement qubits are ancilla qubits which can be

measured for detecting error syndromes. Data qubits are used for

encoding logical qubits.

A logical qubit is created by disabling two same-type measure-

ment qubits, as if creating two defects in the lattice. The data qubits

on the boundary of and the link between these two defects repre-

sent one logical qubit. If disabling X measurement qubits in the

defects, it is called X-cut logical qubit. If disabling Z measurement

qubit, it is Z-cut logical qubit. An example of Z-cut qubits is shown

in Fig. 2 (b) and (c).

Measuring the ancilla qubits project the data qubits into a simul-

taneous eigenstate of a set of corresponding stabilizers imposed by

the circuit. A basic building block circuit of surface code is shown

in Fig. 3 (b). As shown in Fig. 3 (c), depending on the measurement

z

z

x

x

x

z

a

b
a

z
b

x

|g>

H

I - +

1 2 3 4 5 6 7 8

 State of qubits a, b

1 1 （|00> + |11>) /
1 1 （|00> - |11>) /
1 1 （|01> + |10>) /
1 1 （|01> - |10>) /

Z ab

2
2
2
2-

+
+

++

-
-

-

(a)

(c)

(b)

X ab

H

I

- +|g>

Figure 3: (a) A building block of the surface code lattice, (b)
the quantum circuit corresponding to the basic block, and (c)
the state of qubits a and b uniquely determined by the mea-
surement outcomeXab andZab . Themeasurement gates cor-
responding to the 8-th cycle in (b), Xab and Zab respectively
denoted by dark circle with text X and Z inside.

outcome of two measurement qubits Xab and Zab , the state of two
data qubits a and b is uniquely determined. It can be verified by

circuit in Fig. 3 (b).

After the first measurement, if there is no error, continuous

measurement outcomes of the ancilla qubits Xab and Zab will be

the same. The state of data qubits a and b also remain unchanged. It

is as if stabilizing the state of the data qubits. There are 8 cycles for

running the circuit in Fig. 3 (b), as denoted by the numbers on top

of the circuit. The 8 physical cycles denote a surface code cycle. The

circuit is repeatedly executed. If there is error, the measurement

outcome changes compared with that in previous surface code cycle.

We will not discuss the details of error detection and correction

as it is not related to our paper. We refer interested readers to the

work by Fowler et al. [16].

{
{

Z-cut

X-cut

(a) (b) (c)

Figure 4: Braiding operation that represents a CNOT be-
tween a Z-cut and X-cut logical qubit

Encoded gate operations. In surface code, logical qubit gates such

as X and Z can be implemented by applying X and Z gates to a

subset of data qubits qubits for the logical qubit, as shown in Fig. 2

(b). Hadamard gate is more complicated, but it can still be applied

locally to the logical qubit itself and its surrounding physical qubits.

Two-qubit gate is more complicated. Controlled NOT - CNOT

gate is one of the most commonly used two-qubit gates. It is also

927

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

the only two-qubit gate in an universal gate set. In this paper, we

also use CX to denote the CNOT gate. For a CX gate, if the control

qubit is 0, the target qubit does not change. If the control qubit is 1,

it flips the target qubit. CX between two different types of logical

qubits, a Z-cut and X-cut is implemented as a process of “dragging"

one defect of a logical qubit around one defect of the other logical

qubit. It is called braiding. An example is shown in Fig. 4.

Moving a defect is implemented as turning off and on relevant

measurement qubits and their involved circuit operations [16] at

different time coordinates. It is not really moving physical qubits.

The path of the defect movements over time for one pair of qubits

should not intersect that of another pair of qubits. That is, a path is

exclusive to one CX operation at one time. Thus the braiding path

scheduling problem essentially reduces to a routing problem, as

shown in our example in Fig. 1.

Auto-braiding as a routing problem. A lattice is prepared with

logical qubits of the same type [10]. It is partitioned into tiles and

channels. The partition divides the lattice by function [10]. No

circuit or qubit operation is involved in the partition. An example

of eight tiles is shown in Fig. 5 (a).

Each tile encloses a logical qubit as well as necessary surround-

ing physical qubits. For instance, the encoded hadamard gate on

a logical qubit q requires the help of the other physical qubits

surrounding q. A tile confines an encoded hadamard gate to only

physical qubits within the tile.

For implementing a CX gate on two same-type qubits, a dy-

namically initialized logical qubit is necessary. This dynamically

allocated logical qubit will interact with the two original logical

qubits in the CX gate. It is initialized within the tile of one logical

qubit; One of its defects goes around one defect of this logical qubit

tile it is created, then goes around one defect of the other logical

qubit, and comes back. An example is shown in Fig. 5 (b). Once

the CX gate is completed, the dynamically allocated logical qubit

is reclaimed. It is done by turning on corresponding measurement

qubits as if erasing the defects. Each tile in the lattice contains

enough physical qubits such that an ancilla logical qubit can be

created on the fly within it.

As can be seen, to perform a CX gate, a routing path must be

established between two tiles and be kept for a certain amount

of time. We call the pathway between the tiles as channels. The
channels are used for "moving" the defects in the braiding process.

CX gate is the only gate that requires to use the channels in the

lattice in the universal gate set we discuss here.

One important feature of braiding path is that it is latency insen-

sitive. As aforementioned, braiding does not really move qubits. It

is essentially turning on/off measurement qubits and their circuit

operations. These operations can happen in parallel for different

measurement qubits. Thus, regardless how long the braiding path

is, the time to perform braiding is always the same [16].

Another important feature of braiding is that it follows topolog-

ical rules. The braiding can take any path as long as the chosen

paths are topologically the same. In surface code braiding, as long

as the braiding paths go around the same defects, the effects are

equivalent on the circuit. Fig. 5 (b), (c), (d), and (e) represent four

topologically equivalent braiding paths for performing CX gate

between a pair of logical qubits in P1 and P2.

3 DESIGN OVERVIEW
3.1 Problem Setting
We define a two-dimensional grid where the braiding paths are

scheduled. We let each cell in the grid represent a logical qubit tile.

We let each vertex represent an intersection of two channels. Each
edge represents a segment of a channel between two vertices. A

braiding path consists of a set of vertices and edges in the grid.

Examples are shown in Fig. 5 (f)-(i).

A braiding path is established from any vertex of a cell to any

vertex of another cell. There are 16 possible path configurations

between two cells with respect to starting and ending vertices. Fig.

5 (f)-(i) represent 4 out of 16 possible combinations between the

two cells P1 and P2.

A single-qubit gate applies locally to a cell and does not use any

routing vertex/edge. A two-qubit gate requires to establish a path

between two operand qubits. Two simultaneous two-qubit gates

must have non-intersecting braiding paths. Our goal is to schedule

braiding paths and minimize the latency of the encoded circuit.

3.2 Design Considerations
Efficient communication scheduling depends on three factors: the

parallelism of CX gates in the program, the placement of the qubits,

and the choice of braiding paths.

Inherent Communication Parallelism. The inherent communica-

tion parallelism in the circuit matters. In certain circuits, even if

there are CX gates, the communication parallelism may be low. An

example is shown in Fig. 6 for the Bernstein Varizani (BV) algo-

rithm, where there is no CX parallelism due to gate dependence.

When communication parallelism is low, braiding paths can be

easily scheduled. In some other circuits, the communication paral-

lelism is high. An example is shown in Fig. 7 for the Ising model

circuit where there are n/2 simultaneous CX gates and n is the

qubit number. For these cases, braiding paths must be scheduled

properly to mitigate congestion.

Path Finding. The choice of braiding paths also matters. The

greedy algorithm by Javadi Abhari et al. [10] finds a shortest path
for each pair of qubits, as shortest paths consume minimal routing

resources. However, just finding shortest paths is not enough. The

scheduler must take a global view, as the path placement for one

pair of qubits might affect that for another pair of qubits. Once a

path is obtained for one pair of qubits, the vertices used by this

path cannot be used by other braiding paths. Even using the same

shortest path method for all pairs of qubits, the set of vertices that

can be used for routing may vary if the order of path search varies.

We show an example in Fig. 8 (a), if the scheduler finds shortest

paths in the order of {A1, A2}, {B1, B2}, and {E1, E2}, then neither

{C1, C2} or {D1, D2} can find a braiding path as the lattice has been

divided into two disconnected components due to the placement of

A, B, and E’s paths. However, as shown in Fig. 8 (b), if the scheduler

finds shortest paths in the order of {B1, B2}, {C1, C2}, {D1, D2}, {E1,
E2}, and {A1, A2}, all CX gates can run simultaneously.

Qubit Layout. The layout of the logical qubits on the physical

lattice matters. An efficient scheduler must find out a proper layout

of the qubits in order to maximally exploit the communication

928

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication inQuantum Computing MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(e) (f) (g) (h)

P2 P2 P2

(a)
P1

(b) (c) (d)
P1 P1 P1

P2

P2

P1

P2

P1

P2

P1

P2

P1

(i)

Figure 5: The braiding problemmodeled as a routing problem: (a) eight tiles in the original lattice; (b), (c), (d), and (e) show that
a braiding path from P1 can start from any corner of P1; (f), (g), (h), and (i) stand for the routing paths in the two-dimensional
grid representation we define, respectively for (b), (c), (d), and (e).

H

H

H

H

H

H

H Z

H

H

H

H

H

H

I

I

q0

q1

q2

q4

q3

q5

q6

Figure 6: 7-qubit bernstein varizani circuit

q1

q3

q4

q6

q5

q7

q8

q9

q0

q2

H

H

H

H

H

H

H

H

H

H

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

H

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

H

Rz

Rz

Rz

Rz

Rz

Rz

H

H

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

H

H

H

H

H

H

H

H

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Figure 7: A part of the 10-qubit Ising model circuit

A1
B1 B2

C2 C1
D1 D2
E1 E2

A2

A1
B1 B2

C2 C1
D1 D2
E1 E2

A2
(a) (b)

Figure 8: Path search for five CX gates: A, B, C, D, and E. A1

and A2 denote two qubits in CX gate A. We use similar no-
tation for other gates; (a) shows that if shortest paths are
found in the order of A, B, and E, then two CX gates C and D
cannot run; (b) shows that if processing in the order of B, C,
D, E, and A, it can find simultaneous paths for all CX gates.

parallelism in the program. We can construct a case where even if

there are only four pairs of qubits, no matter how large the lattice

is, these four CX gates cannot run simultaneously, unless the qubit

layout is changed.

We construct the case as follows. For each CX gate, we draw

a straight line between two closest vertices from its two qubits

and we denote it as straight line path. In the constructed case, for

any CX gate, its straight line path separates any other CX gate’s

two qubits into two sides of the straight line. Further, each qubit is

on the boundary of the lattice. With four such pairs of qubits, we

construct an example in Fig. 9. We can rigorously prove that four

simultaneous braiding paths cannot be scheduled in this case, but

we sketch the proof due to space limit.

If we look at the two CX gates {A0,0, A0,1} and {A1,0, A1,1}, at

least one CX’s braiding path must go around one qubit of the other

CX gate. By going around a qubit q, we mean a braiding path uses

the boundary of the grid, and uses at least one edge of the qubit q
on the boundary. This holds because if neither CX’s braiding path

go around one qubit of the other CX gate, the two braiding paths

will cross. Without loss of generality, we assume such a braiding

path is for {A1,0, A1,1} which goes around the qubit A0,1, as shown

in blue in Fig. 9 (a). This leaves A0,0’s edge on the boundary open.

Then the braiding path for {A0,0,A0,1} shall not go around any qubit

in A1,0 or A1,1 otherwise it will cross the first braiding path. We

draw the braiding path for {A0,0, A0,1} in red in Fig. 9 (a). If we try

to find the path for {A2,0, A2,1}, it must go around A0,0 otherwise it

will cross the first two established paths (the red and blue). Now it

is impossible to find path for {A3,0, A3,1} since the first three paths

have placed A3,0 and A3,1 into two disconnected partitions of the

lattice. And it is proved that, these four CX gates cannot run in

parallel regardless how large the lattice is.

However, if we change the qubit layout by switching A3,0 with

A0,0, and A2,0 with A1,0 as shown in Fig. 9 (b), a congestion-free

routing schedule exists for all four CX gates.

The challenge of qubit layout optimization is that there is no

one-fit-all qubit placement which satisfies all theoretically concur-

rent CX gates. At different execution points, different combinations

of CX gates are allowed to run concurrently. The study by Javadi-

Abhari et al. [10] uses a graph partition method to determine an

initial qubit placement that places the frequently interacting qubits

into as compact regions as possible, but the qubit layout is still fixed

throughout the entire circuit. In our design, we allow the qubit place-
ment to dynamically change throughout the scheduling process, and
hence achieves significant flexibility and up to orders of magnitude
performance improvement in some cases.

3.3 AutoBraid Framework
We propose the AutoBraid framework as shown in Fig. 10. It per-

forms communication scheduling in three stages.

929

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

A0,0 A1,0 A2,0

A0,1A1,1A2,1A3,1

A3,0 A0,0A1,0A2,0

A0,1A1,1A2,1A3,1

A3,0

(a) (b)

Figure 9: Impact of qubit layout: Four CX gates can run si-
multaneously in theory; They are {Ai,0, Ai,1} (i = 0, 1, 2, 3); (a)
shows a qubit-layout which does not allow concurrent exe-
cution of four CX gates nomatter how smart the path finder
is; (b) shows another qubit-layout which allows all four CX
gates to run in parallel.

First, it analyzes communication parallelism. It obtains the in-

formation of the number of CX gates run concurrently in the ideal

logical circuit, if there is any.

Second, it performs initial placement. It analyzes the qubit cou-
pling graph and use iterative graph partitioner metis [12] to find an
initial qubit placement. In a qubit coupling graph, two qubits have

an edge if there is a CX gate between them. We fine tune this initial

mapping returned by metis by two different methods: (1) simulated

annealing based on LLG characteristics (described in Section 3.3.1),

and (2) optimizing for special graphs with maximal degree of two.

Third, it repeats the following two steps until all gates are sched-

uled: (1) a stack-based path finder assigns an order to the CX gates

and then performs path search in this order, and (2) if necessary,

a qubit placement optimizer change the layout. To dynamically

remap qubits, we use the swap-insertion strategy. A swap gate con-

sists of three CX gates, as shown in Fig. 11. Therefore the layout
optimization problem becomes yet another braiding problem.

The key insight of our design is a local parallelism pattern we

discovered in this paper. We characterize the communication par-

allelism using local parallel groups (LLG). LLGs are amenable to

program analysis and optimization, and is highly correlated with

the braiding performance.

We first introduce LLG definition and characterization, then

introduce our detailed framework based on LLG.

3.3.1 LLG Characterization. A LLG is a minimal set of CX gates

whose joint bounding box does not overlap with any other LLG’s

bounding box. The joint bounding box of a set of CX gates is the

minimal bounding box that encloses the bounding boxes of all these

individual CX gates. The size of a LLG is the number of CX gates in

it. A LLG’s size is at minimal 1 and at maximum the total number

of CX gates in the lattice at a concurrent time step. An example of

LLG is shown in Fig. 12.

We discover two properties. We exploit these two properties to

find maximal number of simultaneous paths. We describe them

below (rigorous proof in the Appendix).

Theorem 1. For a LLG with ≤ 3 CX gates, given an arbitrary
placement of the operand qubits, there exist a simultaneous braiding
schedule for all CX gates in the LLG, and the schedule is confined
within or on the boundary of the LLG’s bounding box.

Note that the theoretically concurrent CX gates at one time step

can be divided into a set of LLG(s). The implication of Theorem 1 is

that if all LLGs have size of 3 or smaller, there exists a congestion-

free routing schedule for all CX gates. It is because different LLGs

do not intersect and each LLG can find their braiding paths locally

in their bounding boxes.

However, it does not mean when all LLGs’ size > 3 there does

not exist a congestion-free schedule for all CX gates.

Theorem 2. For a LLG with strictly nested CX gates, there exist a
simultaneous braiding schedule for all CX gates in the LLG, and such
a schedule confined within or on the boundary of the LLG’s bounding
box. A CX gate A is strictly nested within another CX gate B iff B’s
bounding box encloses A’s bounding box and they do not overlap.

An example of strictly nested bounding boxes is shown in Fig.

12 denoted as LLG1, where each CX gate can schedule its braiding

paths on the boundary of its bounding box or inside its bounding

box such that these paths do not intersect.

With Theorem 1 and Theorem 2, we set a foundation for the

framework of schedule braiding paths. First, the initial placement

of the qubits can be optimized to minimize the number of LLGs that

have size > 3 and that are not nested LLGs. We can use simulated

annealing on top of the graph partition result. We can keep swap-

ping qubits until the number of k-LLG (k > 3) cannot be reduced

anymore.

This already significantly reduces the circuit execution time. We

show real experiment results in Table 1, after we apply the afore-

mentioned initial layout optimization, the performance is already

much improved.

Next we can partition a set of concurrent CX gates into multiple

layers such that each layer runs at one time, and each layer contains

maximal number of LLGs that satisfy Theorem 1 and 2. However,

the conditions of Theorem 1 and 2 are overly strict. There still exist

LLGs that do not satisfy either condition, but still can be scheduled

without any congestion. Moreover, we need to come up with an

order for path search as well as to enable dynamic qubit placement.

After LLG Optimization Before LLG Optimization
Benchmark # of LLG’s execution # of LLG’s execution Speed

(size > 3) time(us) (size > 3) time(us) up

qft16 19 1.28K 29 1.84K 1.44

qft50 160 8.97K 176 19.2K 2.14

urf2 268 149K 2515 154K 1.03

IM16 21 745 31 1161 1.55

IM10 11 673 24 950 1.41

Shors 2010 135K 2116 283K 2.09

BTW 20 950 38 1056 1.11

Sqrt8 1 21K 6 21.1K 1.05

Table 1: Impact of LLGs’ sizes

3.3.2 Path Finder and Layout Optimizer.

Path Finder.The path finder is a critical component in ourAutoBraid
framework shown in Fig. 10. It determines of the order of path

finding for different CX gates. It first constructs a CX interference

graph. In the CX interference graph, each node represents a CX

gate, and each edge represents that two CX gates’ bounding box

intersect.

We keep removing the largest degree node from the CX interfer-

ence graph. Each removed node is pushed into a stack. If there is a

tie, the CX gate whose bounding box has the largest area is chosen.

930

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication inQuantum Computing MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Initial Placement
Analysis Placement

Optimizer
More gates to

 schedule?

Path
Finder

Quantum
Program

Communication
Parallelism

Analysis
Transformed

Circuit

Iterative
Graph

Partition

Coupling
Analysis

Stack based
path search No more

gates?

Figure 10: AutoBraid: A Framework for Scheduling Braiding Paths

Figure 11: A SWAP gate implemented as as 3 CX gates

C1 D1
B1

A1 E1 D2
A2

B2 F1 F2
C2 E2

LLG1:
CX A1, A2;
CX B1, B2;
CX C1, C2;

LLG2:
CX D1, D2;
CX E1, E2;
CX F1, F2;

(a) (b)

Figure 12: An example of LLGs: There are two LLGs in this
lattice. Each has three CX gates. Out of these two, LLG1 is a
nested LLG, where the bounding box of C encloses that of B,
and the bounding box of B encloses that of A.

The node removal process terminates until the maximal degree

of the CX interference graph is ≤ 2. It is a relaxation of the condition

in Theorem 1. Because when all LLGs have size ≤ 3, the degree

of the CX interference graph is ≤ 2. But if the maximal degree of

the CX interference graph is 2, it does not necessarily imply that

all LLGs have size ≤ 3, for instance, when there is a chain of more

than 3 nodes in the CX interference graph. However, this greatly

reduces the complexity of path search and in practice usually leads

to fully concurrent braiding paths too.

After the stack is constructed and the CX interference graph is

updated, we use A* to find actual paths. It first schedules braiding

paths for all CX gates in the updated interference graph. Next it

schedules CX gates in the stack. It pops off a CX gate from the

stack, and uses A* to find a shortest path for this CX gate. The stack

ensures a last in first out (LIFO) order. The algorithm is shown in

Fig. 13. This method can also handle the nested CX gate case in

Theorem 2 since the CX gate that encloses other CX gates and have

largest-area bounding box is handled last.

With this algorithm, we can handle path search in a hierarchical

and distributive manner. It is important to avoid the scenario that

a set of CX gate(s) use very long braiding paths and occupy most

of the routing vertices. Our goal is to schedule as many paths as

possible, and the routing resources are limited. Handling the small

LLGs locally will ensure that those short distanced qubit pairs are

handled first. It is also important to ensure that certain paths that

may divide the lattice into disconnected component are scheduled

with lowest priority. The stack ensures that.

Input: IG //CX interference graph

Output: paths //Routing paths for CX gates in LLG without cross

 ratio // #scheduled gates over #total gates in a LLG

——————————————————————

paths = {(key, value)} // key: CX gate; value: path for this CX

S = stack

degreeGT2 = true

While(degreeGT2){

s_tie = ∅

s_tie.push(IG.get_max_degree_nodes())

if(s_tie.size > 1){

cx_d = get_largest_area(s_tie)

}else{ cx_d = s_tie[0] }

if(cx_ d.degree > 2){

S.push(cx_d)

IG.remove(cx_d) //remove node; update degree

}else{ degreeGT2 = false }

}

for cx_ s in IG{

p = get_path(cx_ s) //p = An array stores CX’s path

paths.insert((cx_s, p))

}

while(! S.empty()){

cx_ l = S.pop()

p = get_path(cx_ l)

if(! p.empty()){

paths.insert((cx_l, p)) }

}

ratio = paths.size()/IG.size()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Figure 13: Algorithm for Path Finding

We show an example in Fig. 14 where it has one large LLG of

size 7, while using our algorithm all CX gates can be scheduled

simultaneously.

A

GF

E

DC

B

4

1

45

25

3

(b) Interference graph (c) Removing node B and C

(e) Finding path for cx A D E F G (f) Finding path for cx C (g) Finding path for cx B

A

GF

E

D

2

0

2

1

1

(a)

B
C

(d) Stack

F D E

A1

C B

F A

G G B

E

C D

A1
A2

B1

B2

C1

C2

D1

D2

E1

E2

F2

F1

G1

G2

F D E

A1

C B

F A

G G B

E

C D

A1
A2

B1

B2

C1

C2

D1

D2

E1

E2

F2

F1

G1

G2

F
D E

A1

C B

F A

G G B

E

C D

A1
A2

B1

B2

C1

C2

D1

D2

E1

E2

F2

F1

G1

G2

F D E

A1

C B

F A

G G B

E

C D

A1
A2

B1

B2

C1

C2

D1

D2

E1

E2

F2

F1

G1

G2

Figure 14: An example for the stack-based path finder.

931

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

Layout Optimizer. In some cases, even the best path finder cannot

find fully concurrent braiding paths due to the qubit layout. As

discussed in design considerations in Section 3.2, even there are a

lot of routing resources, they cannot be exploited. In this case, the

qubit layout must be changed. We insert swap gates to dynamically

change the qubit placement. A swap operation exchanges the loca-

tions of two logical qubits. Each swap incurs a cost of 3 CX gates.

It needs to be performed only when it is worthwhile. We use swap

gates to tackle the communication bottleneck cases.

An,0 An-1,0 A2,0

A0,1A1,1A2,1

A3,0

A3,1

A0,0…

…

A1,0

An-1,1An,1

A0,0 A1,0 A3,0

A0,1A1,1A2,1

A2,0

A3,1

An,0…

…

An-1,0

An-1,1An,1

A0,0 A1,0 A2,0

A0,1A1,1A2,1

A3,0

A3,1An,1

An,0…

…

An-1,0

An-1,1

…….

(a) Original placement

(b) Swap-based qubit remapping

(c) Optimized placement

Figure 15: Swap-based qubit placement optimization

We show an example of the communication bottleneck cases.

Assuming there arem CX gates that can be scheduled. However, at

most 3 CX gates can be scheduled at one time. If the qubit layout

can be changed, it takes at most one parallel swap step to make all

CX gates executable.

In this example, the original qubit placement is shown in Fig.

15 (a). It is an extension of the case discussed in Fig. 9. We draw a

straight line between two qubits in every CX gate. Every straight

line separates every other pair of qubits into two different regions

of the lattice. We proved that if there are four such pairs of qubits,

at most three CX gates can run simultaneously. It is the same for m

pairs of such qubits. At most three 3 CX gates can run at the same

time. After we remove 3 CX gates from the circuit, the restm − 3

CX gates still have the same pattern. Therefore, in total it needs

m/3 parallel steps, no matter how much routing resource there is.

However, we can use SWAPs to tackle this communication bot-

tleneck. As shown in Fig. 15 (b) and (c), one parallel layer of swaps

makes all CX gates executable. In this case, even one swap costs

3 CX gates, it takes 4 parallel time steps to finish all the CX gates,

which is significant better thanm/3.

In our placement optimizer, we find pairs of qubits to swap

to change the qubit layout. The swaps must be schedulable with

respect to braiding constraints. We first choose the CX gate that

interferes with most other CX gates in the interference graph. If

there is a tie, we choose the one with the largest bounding box.

Then we choose a second CX gate that interferes with the first

picked one and with the most rest of the gates.

For the two pairs of qubits, we choose two out of four qubits to

swap. Now this swap pair is pushed into a stack. We test the swap

and determine to keep it or not. We repeat this process, until no new

swaps can be added due to braiding constraints. To check whether

a newly inserted swap can run simultaneously with existing swaps

in the stack, we take advantage of Theorem 1 and Theorem 2. If it

immediately satisfies these two theorems, we keep this swap in the

stack. For the cases that do not immediately satisfy Theorem 1 and

2, we try to pop out all swaps from the stack, and find paths in that

order. If simultaneous paths can be found, we keep this swap, and

then push all swaps back to the stack. Otherwise, we do not keep

the new swap in the stack and we restore the stack to its previous

state. We consider the specialization of swap insertion for all-to-all

communication pattern proposed byMaslov [17] which is originally

used for nearest neighbor architectures, i.e., two-qubit gates can

only be enabled between neighboring qubits, as it guarantees linear

depth in this congested case. It is trivial to see that for disjoint

pairs of neighboring qubits, simultaneous routing paths exist. For

applications with all-to-all communication pattern, we apply both

greedy layout optimizer and Maslov’s method, then choose the

better one.

The placement optimizer is only triggered if most of the theoret-

ically concurrent CX gates cannot be scheduled. We try different

threshold ratios p%. If after using the path finder, less than p% CX

gates can be scheduled, we run the placement optimizer. Other-

wise, we skip the placement optimization step. We try 0% to 90%

threshold values on a 10% step and choose the best one among all.

4 EVALUATION
4.1 Experiment Setup
Metric Using surface code, the unit of time is the surface code cycle.

We refer to a surface code cycle as a cycle for simplicity of notation.

Phase gates require magic state ancilla qubits. We use the same

assumption by Javadi-Abhari et al. [10] such that there is a steady

supply of magic state qubits at the location of the data.

We evaluate two versions of our framework. One version does

not optimize the qubit placement.We refer to this version as autobraid-
sp, where sp refers to stack-based path finder. The other version

includes both path finding and layout optimization. We refer to it

as autobraid-full.
Baseline We use the best known approach [10] as our baseline. It

implements seven policies and we choose the best policy as the

baseline. As it is a greedy policy, which prioritize routing paths

with respect to shortest distance, we refer to it as the GP method.

The baseline uses the graph partitionermetis [12] to optimize initial

mapping, We denote it as GP w. initM.

PlatformWe simulate a surface code lattice as a structured two-

dimensional L by L grid, where L is the number of unit cells at each

dimension of the grid. For an input circuit with N qubits, we use

the smallest square grid which provide enough qubits, such that

L =
⌈√

N
⌉
. Using the smallest possible grid can test the effectiveness

of different braiding methods. The simulation runs on a machine

with Intel Xeon CPU E5-1607 which has 4 cores at 3 GHz.

BenchmarkWe use two categories of benchmarks. The bench-

marks are shown in Table 2. The first category benchmarks are

building block circuits [30], which are elementary functions that

can be used to construct large and complex applications. The second

932

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication inQuantum Computing MICRO ’21, October 18–22, 2021, Virtual Event, Greece

category contains real-world applications. They include Bernstein-
Vazirani (BV) algorithm [15], counterfeit-coin (CC) finding algorithm
[2], quantum fourier transformation (QFT), Shor’s algorithm, quan-
tum optimization algorithm(QAOA) algorithm, and Binary-Welded-
Tree (BWT) algorithm [7]. We obtain these real world applications

from IBM Qiskit [2], ScaffCC [11], RevLib [28], and Cirq [1]. Qiskit

can generate arbitrary-size circuits with respect to the qubit number,

for certain applications, including QFT, BV, and CC. We evaluate

these benchmarks with different qubit numbers.

4.2 Experiment Results
Overview. We first present an overview of the experiment re-

sults for small and medium scale inputs, for all the benchmarks in

Table 2. We use a fixed surface code distance d = 33 (which results in

a reasonable logical error rate PL). For each benchmark, we show its

type, qubit number, gate number, physical and computation time in

microseconds. We show our autobraid-full version which includes

both path-find and placement optimizations. We let one surface

code cycle take 2.2 microseconds, based on the parameters in [10]

which are faithful to most recent superconducting implementation

parameters. The experiments show that our approach significantly

reduces the execution time.

Our approach outperforms the baseline method with minimal

1.07X speedup to maximum 30X speedup. In Table 2, we can see

for the category of algorithm building blocks, our approach have

achieved the same result as the ideal case (the critical path without

worrying about braiding constraints) formost cases. TheGPw. initM
method also performs relatively well. It did not achieve critical path

length, but for most cases, it has 10% to 30% more execution time

compared with the critical path. The building block benchmarks are

relatively small. For instance, the one that has the largest number

of qubits is 15, which makes it easier for the GP scheduler to find

a reasonably good routing schedule. Our approach still performs

better than GP w. initM, because it systematically decompose the

concurrent CX gates into LLGs, and we find that in most cases,

there are less than 3 CX gates in each LLG. Thus it is guaranteed to

have the same execution time as the critical path length.

For the category of real-world applications, our approach per-

forms better than GP w. initM. And we achieve larger speedup with

larger qubit number for most cases. For the CC benchmark with

100 qubits, our speedup is 1.12X, it is because the GP baseline al-

ready achieved near-optimal result and there is not much room for

us to improve. For the QFT benchmark, our speedup increases as

the number of qubits increases. When the qubit number is 400, we

achieve 30x speedup. In Table 2, OM refers to out-of-memory.

Scalability analysis. We choose three applications QFT, Ising

Model (IM), and QAOA to evaluate scalability, as they represent

widely-used real-world applications. QFT is also significantly used

in Shor’s algorithm in Table 2. For the baseline, since GP w. initM
provided in ScaffCC [11] runs out of memory when qubit number

is > 400, we implement a scheduler that is as close to GP w. initM
described in [10], and refer to it as baseline.

Fig. 16 shows the circuit execution time with respect to different

logical error rates PL . The logical error rate PL indirectly determines

the size of computation, as the circuit size is inversely proportional

to PL . The code distance d is also related to PL , as d increases when

Table 2: Overview of Experiment Results

Benchmark Baseline (µs) Ours (µs)

Type Name Description # qubit # gate CP GP w initM Auto Speed
~braid up

Build-

ing

Blocks

4gt11_8 Compare

Input

5 20 1313 3049 1313 2.32

4gt5_75 5 48 5387 6655 5387 1.23

alu-v0_26 ALU by Gupta 5 48 5596 6800 5596 1.21

rd32-v0 Bit Adder 4 34 2437 5577 2437 2.2

sqrt8_260

Square Root

12 3.09K 186K 211K 186K 1.12

squar5_261 13 1.11K 118K 132K 118K 1.11

squar7 15 4.07K 426K 492K 426K 1.15

urf1_278

Unstructured

Reversible

Function

9 54.8K 3.63M 5.56M 3.63M 1.52

urf2_277 8 20.1K 1.34M 3.6M 1.34M 2.66

urf5_158 9 0.16M 10.3M 14M 10.3M 1.35

urf5_280 9 49.8K 3.2M 3.5M 3.2M 1.07

Real

World

appli-

cations

QFT

Quantum

Fourier

Transform

200 20.1K 122K 1.47M 0.63M 2.31

400 80.2K 0.24M 70.4M 2.1M 30

500 0.12M 0.38M OM 3.1M N/A

BV

Bernstein

Vezirani

100 299 15.2K 17.2K 15.2K 1.13

150 449 22.8K 25.5K 22.8K 1.11

200 599 30.3K 33.8K 30.3K 1.11

CC

Counterfeit

-Coin

Finding

100 198 15.1K 17.0K 15.1K 1.12

200 398 30.3K 35.4K 30.3K 1.16

300 598 45.4K 53.1K 45.4K 1.16

IM Ising Model

10 480 4162 12K 4162 2.88

500 5494 908 2900 908 2.09

1000 10.9K 908 2100 908 2.31

BWT

Binary

Welded Tree

179 260 7433 10.2K 7433 1.37

240 365 7585 10.3K 7585 1.36

QAOA QAOA

100 4.5K 10.9K 20.8K 13K 1.59

200 9K 12.3K 30.5K 13.4K 2.19

300 13.5K 13.6K 40.7K 15.5K 2.64

Shor’s

Shor’s

algorithm

471 36.5K 0.53M 1.78M 0.54M 3.29

PL decreases. We can see that for all benchmarks, our methods show

significant improvement compared with the baseline. By applying

the layout optimization, the result of “autobraid-full” is closer to

the critical path performance. For IM, the results of “autobraid-full"

exactly match the critical path lengths so the two curves overlap.

Resource utilization analysis. We also analyze the routing

resource usage. The resource usage ratio is defined as the number

of occupied vertices divided by the total number of available vertices.

Higher ratio typically implies better usage of the routing resources.

We scale the problem size of computation (1/PL). The result is shown
in Fig. 17. We can see that our autobraid methods have relatively

good resource usage. It uses up to 70% resource while the baseline

achieves up to 37% resource.

P-sensitivity analysis. The layout optimizer is only triggered

if most of the theoretically concurrent CX gates cannot be scheduled.

We set a threshold percentage p%, such that if 1-p% CX gates cannot

be scheduled by the path finder, the layout optimizer is triggered.

The performance is sensitive to thep value for different benchmarks

and hence we choose to test a range of p values to choose the best

one. We show the p-sensitivity experiment results in Fig. 18 for

QFT-1000 and QAOA-1000.

Compilation time analysis. Weevaluate compilation time over-

head. We compare it with the physical circuit execution time. We

find for most of benchmarks, compilation time takes only around

1-2% percentage of physical computation time.

5 RELATEDWORK
Compilation for quantum programs has been mostly focused on

non-fault-tolerant hardware. Recently studies [14, 18, 23, 25–27, 30]

focus on mapping logical circuits to superconducting quantum

hardware with constrained physical connectivity. Heckey et al. [9]

933

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

4 5 6 7 8
Size of Computation (1/PL) in log

10 3

10 2

10 1

100

101

Ph
ys

ica
l C

om
pu

ta
tio

n
Ti

m
e(

se
co

nd
s)

autobraid-sp
autobraid-full
CP
baseline

(a) QFT

4 5 6
Size of Computation (1/PL) in log

10 3

Ph
ys

ica
l C

om
pu

ta
tio

n
Ti

m
e(

se
co

nd
s)

autobraid-sp
autobraid-full
CP
baseline

(b) IM

4 5 6 7
Size of Computation (1/PL) in log

10 2

Ph
ys

ica
l C

om
pu

ta
tio

n
Ti

m
e(

se
co

nd
s)

autobraid-sp
autobraid-full
CP
baseline

(c) QAOA

Figure 16: Physical circuit execution time (seconds) with respect to different computation sizes (1/PL). “autobraid-full” applies
path finder together with layout optimization, “autobraid-sp” applies only stack-based path finder, and “critical path (CP)” is
the ideal execution time.

4 5 6 7 8
Size of Computation (1/PL) in log

25

30

35

40

45

50

55

60

Ph
ys

ica
l C

om
pu

ta
tio

n
Ti

m
e(

se
co

nd
s)

autobraid-sp
autobraid-full
baseline

(a) QFT

4 5 6
Size of Computation (1/PL) in log

15

20

25

30

35

40

45
Ph

ys
ica

l C
om

pu
ta

tio
n

Ti
m

e(
se

co
nd

s)

autobraid-sp
autobraid-full
baseline

(b) IM

4 5 6 7
Size of Computation (1/PL) in log

20

30

40

50

Ph
ys

ica
l C

om
pu

ta
tio

n
Ti

m
e(

se
co

nd
s)

autobraid-sp
autobraid-full
baseline

(c) QAOA

Figure 17: Resource utilization ratio (%) with respect to computation size (1/PL).

0 20 40 60 80
P

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

(a) QFT-500

0 20 40 60 80
P

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

(b) QAOA-500

Figure 18: P-sensitivity analysis (time is normalized to that
when p = 0 on y-axis). X-axis corresponds to p value.

improve instruction level parallelism for ion-trap quantum com-

puters. The work by Kudrow and others [13] improves dynamic

compilation time. These studies target hardware without QEC.

There are two categories of studies that focus on program com-

pilation on fault-tolerant quantum hardware. The first category of

studies [4, 6, 21] focus on topological transformations in a three di-

mensional lattice, where the physical qubits form a two-dimension

layout, and the third dimension is time. These studies usually focus

on a CX network which consists of a sequence of CNOT gates that

have dependence relationships. The braiding paths can be deformed

with respect to topological transformation rules to minimize circuit

time. This line of work is orthogonal to ours, since we focus on

scheduling parallel CX gates and can use their results as templates

for dependent CX gates. The second category of studies [5, 20]

focus on magic state distillation circuits and how to insert them

into the time-space dimensions during the circuit synthesis phase,

for supporting Clifford+T gates. The magic distillation circuits are

important, but they present a different type of problems as qubits

need to be re-arranged for purifying qubits that have high fidelity

and their work is complementary to ours.

As far as we can tell, the study by Javadi-Abhari et al. [10] is the
most relevant. It provides a comprehensive evaluation of two types

of communication modes in surface codes: the planar code (through

teleportation) and the double-defect code (through braiding). They

provide greedy scheduling policies for braiding operations. Our

study has been shown to outperform their methods for both small-

scale and large-scale circuits. Javadi-Abhari et al. [10] discovered in
certain scenarios, the planar code might be more favorable than the

double-defect code due to braiding congestion. However, it might

not be that the nature of braiding-based two-qubit gate causes

this problem. With a proper design of the braiding scheduler that

addresses the congestion bottleneck, the double-defect code might

be more favorable than the planar code, as it uses fewer physical

qubits than the planar code.

6 CONCLUSION
We propose a framework for analyzing quantum programs in sur-

face code and scheduling braiding paths that correspond to two-

qubit gates. We develop an analytical model for the programs with

local parallelism pattern. Our framework achieves (near-)critical

path performance for small and medium scale quantum programs,

934

AutoBraid: A Framework for Enabling Efficient
Surface Code Communication inQuantum Computing MICRO ’21, October 18–22, 2021, Virtual Event, Greece

and up to orders of magnitude improvement for large-scale quan-

tum programs, compared with the best known approach. Our effort

is an important step for building the required synthesis tool for

future large-scale fault-tolerant quantum computers.

ACKNOWLEDGMENTS
We thank Ali Javadi-Abhari for providing invaluable comments

on the baseline implementation and the anonymous reviewers for

their constructive feedback. This work is supported by grants from

Rutgers Research Council and NSF-FET-2129872. Any opinions,

findings, conclusions, or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect the views

of our sponsors.

APPENDIX
We use the notation E(α , β , γ , ...) to denote the outer bounding box

for a set of CX gates α , β ,γ , We use the notation I(α) to represent
the inner bounding box of CX gate α . It is the minimal bounding

box that encloses at least one vertex of A1 and one vertex of A2.

The outer bounding box of a CX gate does not intersect the inner

bounding box of itself as long as this CX gate’s bounding box is not

one dimensional. Examples of outer and inner bounding boxes are

given in Fig. 19.

A1

A2

(a) (b)

A1

A2

Figure 19: (a) outer bounding box, (b) inner bounding box.

A 4-CX LLG
If a LLG has ≥ 4 CX gates, it is not guaranteed to have simultaneous

braiding paths within the LLG’s bounding box.

Theorem 3. For a LLG with four CX gates A, B, C and D on a two-
dimensional grid, it is not guaranteed that there exist simultaneous
braiding paths within E(A, B, C, D), given arbitrary placement of the
four pairs of qubits.

Proof. We have provided a case of 4 CX gates in Fig. 9 where

simultaneous braiding paths cannot be found in Section 3.2. Hence

it is proved. □

Next we show the proof for the existence of simultaneous braid-

ing paths in 1-CX, 2-CX, and 3-CX LLGs.

B 1-CX LLG
Theorem 4. For a LLG with just one CX A, there exists a braiding

path for A within the bounding box E(A).

Proof. The proof is trivial. We find the shortest path between

A1 and A2 (the two operand qubits in the CX gate A) on the inner

bounding box I(A). Since the inner bounding box I(A) is confined

to the outer bounding box E(A), it is proved. □

C 2-CX LLG
Theorem 5. For a LLG with two CX gates A and B, there ex-

ists simultaneous braiding paths for both A and B within or on the
boundary of the LLG’s bounding box E(A, B).

Proof. To prove the existence, we construct such two braiding

paths. We let A’s braiding path be one shortest path on the inner

bounding box I(A). Let A1 and A2 be the two qubits of the CX gate

A. Either the braiding path does not reach the boundary of E(A, B)

or the entire braiding path is on the boundary of E(A,B). Neither

case will divide E(A, B) into two disjoint connected components.

Since I(A) is the inner bounding box of A, it is either completely

disjoint from the boundary of E(A, B) as shown in Fig. 19, or is

completely on one border of E(A, B) when both A1 and A2 are on

the boundary of E(A, B).

Furthermore, A’s braiding path itself does not form a cycle –

meaning its starting vertex does not overlap with its ending vertex,

hence A’s braiding pathwill not occupy any qubit cell’s four vertices.

So the four vertices of either of B’s two qubits are not fully utilized

by A. Since the rest un-utilized vertices and edges form a connected

component, the CX gate B can find a braiding path within E(A,

B). □

D 3-CX LLG
Now we prove that there exist simultaneous braiding paths for all

CX gates in a 3-CX LLG when the LLG’s bounding box is at least 2

on each dimension.

A1

A2 B1

B2

C1

C2

B1
B2

A1

A2

C1

C2

B1

B2
A1

A2

C1

C2

B1

B2

C1

C2

A2

A1

(a) (b) (c) (d)

Figure 20: Four cases for the proof of 3-CX LLG.

Theorem 6. For a LLG with 3 CX gates, and the LLG’s bounding
box has at least 2 by 3 or 3 by 2 cells, given arbitrary placement of
the six qubits, there exist simultaneous braiding path confined to the
LLG’s bounding box E(A,B,C).

Proof. For each CX gate, we draw a straight line path between

the two qubits in its inner bounding box. If one CX gate’s straight

line path intersects another CX gate’s straight line path or the

vertices of another CX’s qubits, we say that these two CX gates

strictly interference as opposed to CX interference by bounding

box intersection in Section 3.3.2.

Based on the strict interference relationship of the three CX

gates in the LLG, we prove Theorem 6 case by case.

The first case is that no CX gate strictly interfere with any other

CX gate. An example is shown in Fig. 20 (a), we find paths by

routing through the cells each straight line path crosses. There exist

such three paths since three sets of cells that are covered by three

straight line paths are disjoint. The three paths can pick disjoint

set of vertices on each set of qubit cells and cause no congestion.

935

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang

The second case is that two CX gates strictly interfere, while the

third CX gate does not interfere with either. An example is shown

in Fig. 20 (b). Without loss of generality, assuming A is the CX gate

that strictly interferes with B, and C is the CX gate that does not

interfere with either A or B. We first construct braiding paths for B

and C along their straight line paths inside the E(A, B). Then for A,

we find a braiding path that go around the paths of both B and C,

and along the boundary of E(A, B, C).

The third case is that one CX gate strictly interferes with two

other CX gates, while the other two CX gates do not interfere with

each other. An example is shown in Fig. 20 (c). Assuming A is the CX

gate that strictly interferes with B and C, we find braiding paths for

B and C first along B’s and C’s straight line paths, then there exists

at least one path of A along the boundary of the LLG’s bounding

box E(A, B, C) and also around B’s and C’s paths.

The fourth case is that all CX gates strictly interfere with each

other. That means one CX gate’s two qubits are on two sides of

any other CX gate’s straight line path. There is only one way to

construct such a case, as shown in Fig. 20 (d). To handle this case,

we pick any CX gate, and we denote it as A. We first construct a

braiding path along the straight line path of A, which is inside the

LLG’s bounding box. Next we pick any other CX gate, and we call it

B. For B, we let it go around one qubit of A, and call it A1. It means

that we leave the other qubit of A’s untouched – the border of E(A,

B, C) closest to this qubit is open too. Next, for C, it is clear that C

can go around A2 (the other qubit of A) to find a path.

There are only four possible cases with respect to the relation-

ships of strict interference. Hence it is proved. □

REFERENCES
[1] [n. d.]. Cirq, a python framework for creating, editing, and invoking

Noisy Intermediate Scale Quantum (NISQ) circuits. ([n. d.]). url-

https://github.com/quantumlib/Cirq.

[2] Andrew Cross. 2018. The IBM Q experience and QISKit open-source quantum

computing software. Bulletin of the American Physical Society 63 (2018).

[3] Simon J Devitt, William J Munro, and Kae Nemoto. 2013. Quantum error correc-

tion for beginners. Reports on Progress in Physics 76, 7 (2013), 076001.
[4] Simon J Devitt, Ashley M Stephens, William J Munro, and Kae Nemoto. 2013.

Requirements for fault-tolerant factoring on an atom-optics quantum computer.

Nature communications 4 (2013), 2524.
[5] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret

Martonosi, and Frederic Chong. 2018. Magic-state functional units: Mapping and

scheduling multi-level distillation circuits for fault-tolerant quantum architec-

tures. In 2018 51st Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO). IEEE, 828–840.

[6] Austin G Fowler and Simon J Devitt. 2012. A bridge to lower overhead quantum

computation. arXiv preprint arXiv:1209.0510 (2012).
[7] Mrityunjay Ghosh, Amlan Chakrabarti, and Niraj K Jha. 2017. Automated quan-

tum circuit synthesis and cost estimation for the binary welded tree oracle. ACM
Journal on Emerging Technologies in Computing Systems (JETC) 13, 4 (2017), 1–14.

[8] Daniel Gottesman. 2010. An introduction to quantum error correction and

fault-tolerant quantum computation. In Quantum information science and its
contributions to mathematics, Proceedings of Symposia in Applied Mathematics,
Vol. 68. 13–58.

[9] Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow, Ken-

neth R Brown, Diana Franklin, Frederic T Chong, and Margaret Martonosi. 2015.

Compiler management of communication and parallelism for quantum computa-

tion. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 445–456.

[10] Ali Javadi-Abhari, Pranav Gokhale, Adam Holmes, Diana Franklin, Kenneth R.

Brown, Margaret Martonosi, and Frederic T. Chong. 2017. Optimized surface

code communication in superconducting quantum computers. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
2017, Cambridge, MA, USA, October 14-18n.

[11] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, JeffHeckey, Alexey Lvov, Frederic T

Chong, and Margaret Martonosi. 2014. ScaffCC: a framework for compilation

and analysis of quantum computing programs. In Proceedings of the 11th ACM

Conference on Computing Frontiers. 1–10.
[12] George Karypis and Vipin Kumar. 1995. Metis-unstructured graph partitioning

and sparse matrix ordering system, version 2.0. (1995).

[13] Daniel Kudrow, Kenneth Bier, Zhaoxia Deng, Diana Franklin, Yu Tomita, Ken-

neth R. Brown, and Frederic T. Chong. 2013. Quantum Rotations: A Case Study

in Static and Dynamic Machine-Code Generation for Quantum Computers. In

Proceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA ’13). Association for Computing Machinery, New York, NY, USA, 166–176.

https://doi.org/10.1145/2485922.2485937

[14] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem

for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 1001–1014.

[15] Hongwei Li and Li Yang. 2015. A quantum algorithm for approximating the

influences of Boolean functions and its applications. Quantum Information
Processing 14, 6 (2015), 1787–1797.

[16] Austin G. Fowler Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

2012. Surface codes: Towards practical large-scale quantum computation. In

PHYSICAL REVIEW A covering atomic, molecular, and optical physics and quantum
information.

[17] Dmitri Maslov. 2007. Linear depth stabilizer and quantum Fourier transforma-

tion circuits with no auxiliary qubits in finite-neighbor quantum architectures.

Physical Review A 76, 5 (Nov 2007). https://doi.org/10.1103/physreva.76.052310

[18] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Mar-

garet Martonosi. 2019. Noise-adaptive compiler mappings for noisy intermediate-

scale quantum computers. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. 1015–1029.

[19] P. J. J. O’Malley, J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A.

Dunsworth, A. G. Fowler, I.-C. Hoi, and et al. 2015. Qubit Metrology of Ultralow

Phase Noise Using Randomized Benchmarking. Physical Review Applied 3, 4 (Apr

2015). https://doi.org/10.1103/physrevapplied.3.044009

[20] Alexandru Paler. 2019. SurfBraid: A concept tool for preparing and resource

estimating quantum circuits protected by the surface code. arXiv:quant-

ph/1902.02417

[21] R Raussendorf, J Harrington, and K Goyal. 2007. Topological fault-tolerance

in cluster state quantum computation. New Journal of Physics 9, 6 (Jun 2007),

199–199. https://doi.org/10.1088/1367-2630/9/6/199

[22] Michael A Riepe and Karem A Sakallah. 2003. Transistor placement for noncom-

plementary digital VLSI cell synthesis. ACM Transactions on Design Automation
of Electronic Systems (TODAES) 8, 1 (2003), 81–107.

[23] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and

Fernando Magno Quintão Pereira. 2018. Qubit allocation. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. ACM,

113–125.

[24] Swamit S. Tannu, Zachary A. Myers, Prashant J. Nair, Douglas M. Carmean, and

Moinuddin K. Qureshi. 2017. Taming the Instruction Bandwidth of Quantum

Computers via Hardware-Managed Error Correction. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ’17).
Association for Computing Machinery, New York, NY, USA, 679–691. https:

//doi.org/10.1145/3123939.3123940

[25] Swamit S. Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings:

Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mis-

takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’52). Association for Computing Machinery, New York,

NY, USA, 253–265. https://doi.org/10.1145/3352460.3358257

[26] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created

equal: a case for variability-aware policies for NISQ-era quantum computers. In

Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 987–999.

[27] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum

circuits to IBM QX architectures using the minimal number of SWAP and H

operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

[28] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. 2008. RevLib: An

Online Resource for Reversible Functions and Reversible Circuits. In Int’l Symp.
on Multi-Valued Logic. 220–225. RevLib is available at http://www.revlib.org.

[29] Chi Zhang, Ari Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Edd Z. Zhang.

2021. Time-Optimal Qubit Mapping. In Proceedings of the Twenty-Sixth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’21). ACM, Virtual.

[30] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of

quantum circuits to the IBM QX architectures. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1135–1138.

936

https://doi.org/10.1145/2485922.2485937
https://doi.org/10.1103/physreva.76.052310
https://doi.org/10.1103/physrevapplied.3.044009
https://arxiv.org/abs/quant-ph/1902.02417
https://arxiv.org/abs/quant-ph/1902.02417
https://doi.org/10.1088/1367-2630/9/6/199
https://doi.org/10.1145/3123939.3123940
https://doi.org/10.1145/3123939.3123940
https://doi.org/10.1145/3352460.3358257

	Abstract
	1 Introduction
	2 Background
	3 Design Overview
	3.1 Problem Setting
	3.2 Design Considerations
	3.3 AutoBraid Framework

	4 Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	A 4-CX LLG
	B 1-CX LLG
	C 2-CX LLG
	D 3-CX LLG
	References

