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ABSTRACT

In recent years, the ever-growing application complexity and in-
put dataset sizes have driven the popularity of multi-GPU systems
as a desirable computing platform for many application domains.
While employing multiple GPUs intuitively exposes substantial par-
allelism for the application acceleration, the delivered performance
rarely scales with the number of GPUs. One of the major challenges
behind is the address translation efficiency. Many prior works fo-
cus on CPUs or single GPU execution scenarios while the address
translation in multi-GPU systems receives little attention. In this
paper, we conduct a comprehensive investigation of the address
translation efficiency in both “single-application-multi-GPU” and
“multi-application-multi-GPU” execution paradigms. Based on our
observations, we propose a new TLB hierarchy design, called least-
TLB, tailored for multi-GPU systems and effectively improves the
TLB performance with minimal hardware overheads. Experimental
results on 9 single-application workloads and 10 multi-application
workloads indicate the proposed least-TLB improves the perfor-
mances, on average, by 23.5% and 16.3%, respectively.
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tiple data; « Software and its engineering — Virtual memory.

KEYWORDS
multi-application; multi-GPU; TLB

ACM Reference Format:

Bingyao Li, Jieming Yin, Youtao Zhang, and Xulong Tang. 2021. Improving
Address Translation in Multi-GPUs via Sharing and Spilling aware TLB
Design. In MICRO’21: 54th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO °21), October 18-22, 2021, Virtual Event, Greece.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3466752.3480083

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480083

1154

Jieming Yin
Lehigh University
Bethlehem, PA, USA
yin@lehigh.edu

Xulong Tang
University of Pittsburgh
Pittsburgh, PA, USA
tax6@pitt.edu

1 INTRODUCTION

In the past decade, Graphics Processing Units (GPUs) have rapidly
evolved as one of the most popular computing platforms to provide
significant acceleration in machine learning [60, 79], graph process-
ing [30, 61, 63], scientific computing [47, 73], and VR/AR [27, 82].
Such popularity has motivated a comprehensive literature of GPU
optimizations focusing on “single-application-single-GPU” and
“multi-application-single-GPU” execution paradigms [12, 15, 24, 64,
65]. Recently, the ever-growing application compute-intensity and
memory-intensity have driven a shift of attention from single GPU
systems to multi-GPU systems as the capability of a single GPU is
no longer able to catch up with the application requirements. As a
result, multiple GPUs are employed to collaboratively execute the
applications, bringing “single-application-multi-GPU” execution
paradigm. Moreover, multi-tenancy (i.e., applications) has become
a general feature on server-class GPUs to accommodate concurrent
execution of applications with a variety of characteristics, bringing
the “multi-application-multi-GPU” execution paradigm.

To cater the application execution characteristics, GPU vendors
have explored different incarnations of multi-GPU systems, includ-
ing NVIDIA’s DGX [48] and Intel Xe [32]. While these platforms
improve the system parallelism, their potential and the delivered
application performances are constrained by several design chal-
lenges [39, 42]. In particular, an address translation lookup that
misses the GPU local TLB hierarchy experiences a long latency in
accessing the TLB and page table located in the CPU I/O memory
management unit (IOMMU). Such latency gets longer when mul-
tiple GPUs simultaneously compete the shared IOMMU (which is
common in “single-application-multi-GPU” and “multi-application-
multi-GPU” executions), leading to performance degradation. For
example, the translation process can occupy up to 50% of the total
execution time [14, 17, 41]. In our study, we observe a significant
performance drop due to IOMMU TLB contention.

Many prior works have explored TLB optimizations in CPUs and
GPUs. Table 1 summarizes the address translation optimizations in
the literature. We also list the features as the columns in the table.
‘-’ represents that the optimization is less effective or is difficult
to be extended to support the features, whereas ‘+’ represents the
optimization works well supporting the features. Most of these
optimizations, however, focus on single-GPU/CPU executions and
cannot be effectively applied to the multi-GPU environment. First,
employing large pages improves TLB performance but suffers from
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severe intra-page fragmentation [8, 51, 56]. Such fragmentation
causes frequent page swapping between CPU and GPU due to the
limited GPU memory capacity. Moreover, applications with irregu-
lar memory access patterns (e.g., graph applications) benefit little
from larger pages (we quantitatively discuss large pages in Sec-
tion 5.4). Second, range-TLB [41, 52, 84], cluster-TLB [54, 55], and
TLB-compression techniques [75] rely on continuous and stride
memory access patterns. While such regular patterns might be
observable in each individual application, it is rarely observed at
the shared IOMMU TLB when multiple applications run concur-
rently, mainly due to the interference among applications. Third,
TLB speculation and prediction [11] rely on predictable access pat-
terns to deliver high accuracy. However, such predictable patterns
are rarely observed in IOMMU TLB especially when multiple ap-
plications interfere with each other. The prediction accuracy can
reduce dramatically and lead to performance degradation. Fourth,
different from the local TLB hierarchy within a single GPU where
the L1 TLB and L2 TLB (if any) have comparable lower and con-
stant access latencies, accessing the IOMMU TLB from each GPU
experiences much longer latency and has large variance among the
access latencies. As a result, prior works (e.g., [13]) that focus on
local TLB hierarchical are less effective when applied to multi-GPU
execution. This is because these approaches rely on fast inquires
and responses among the local and remote TLBs, which is not pos-
sible when the remote TLB is in another GPU or in CPU. Finally,
several prior works focus on optimizing page table walk (PTW)
in single GPUs [59, 64, 65]. While some of these works can be ex-
tend to support multi-application and multi-GPU systems, they
do not optimize the TLB performance and can be combined with
TLB optimizations to achieve further improvements (discussed in
Section 5.6). These limitations of the prior works motivate us to
rethink the TLB designs in the context of multi-GPU environment:

Can we orchestrate all levels of TLBs in a holistic man-
ner to achieve better performance?

In this paper, we target IOMMU organized multi-GPU systems,
in which the TLB hierarchy consists of local (i.e., within GPU)
and remote (i.e., in IOMMU) counterparts. We first conduct a com-
prehensive investigation of the GPU local TLB and IOMMU TLB
performances and their impact on the overall application perfor-
mance. We observe that the conventional “mostly-inclusive” TLB
designs [19, 85] involve multiple deficiencies when used in the

“local-remote” multi-GPU TLB hierarchy. Then, we propose least-

TLB, which comprises several inter-related optimizations to im-

prove the IOMMU TLB performance. Specifically, we propose i)

“least-inclusive” TLB design to reduce the translation redundancy

and improve the TLB reach; ii) hardware-supported address trans-

lation sharing with peer GPUs in their local TLB; and iii) IOMMU

TLB spilling to reduce the contention when multiple applications

execute concurrently. To the best of our knowledge, this paper

conducts the first investigation and exploration on multi-GPU TLB
hierarchy. The paper makes the following major contributions:

e We comprehensively investigate the TLB performance in multi-
GPU systems under both single- and multi-application execu-
tion. We observe that the “remote” IOMMU TLB suffers from
severe thrashing compared to the “local” GPU TLBs. Such thrash-
ing causes few address translation reuses to be captured by the
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Table 1: Comparison with prior techniques.
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Figure 1: Baseline GPU architecture.

IOMMU TLB, leading to an average of 42.3% and 29% performance
drop for single- and multi-application execution, respectively.

e We propose least-TLB to mitigate TLB thrashing. Specifically, least-
TLB consists of three major components to coordinate all levels of
TLBs in a multi-GPU system. First, a least-inclusive TLB hierarchy
is proposed to improve the TLB reach and TLB hit rate by reducing
translation redundancy. Second, we propose a spilling mechanism
to reduce the IOMMU TLB contention in multi-application execu-
tion. Third, we design a Local TLB Tacker to track the entries of
L2 TLB with the minimal hardware overhead.

o We evaluate least-TLB design using 9 single-application workloads
and 10 multi-application workloads. Experimental results show
that least-TLB significantly improves TLB reach and TLB hit rate,
resulting in an average of 23.5% and 16.3% performance improve-
ment for single- and multi-application workloads, respectively.

2 BACKGROUND

2.1 GPU Architecture

We target discrete multi-GPU system and Figure 1 shows the base-
line system organization. The GPUs are modeled based on AMD
GCN architecture [5]. A GPU consists of multiple shader arrays
(SAs), and each SA consists of four compute units (CUs)!. Within
each CU there are four SIMD units, where each SIMD unit comprises
16 processing elements (PEs), capable of handling 16 work-items in
parallel. Each CU has a private L1 data cache (L1V$). All CUs within
an SA share the L1 scalar cache (L1S$) and the L1 instruction cache
(L1I$). All CUs across SAs share the L2 cache, which is connected to

!In this paper, we use CU in AMD terminology. A CU is equivalent to a streaming
multiprocessor (SM) in NVIDIA terminology.
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the GPU main memory. Apart from the cache hierarchy, each GPU
also includes multi-level TLBs for address translation. Specifically,
each CU has a fully associative private L1 TLB. A larger L2 TLB
is shared among all CUs with a GPU. All the GPUs are connected
with high-bandwidth connections (e.g., InfiniBand [53]), and they
are connected to the CPU. An Input/Output Memory Management
Unit (IOMMU) on the CPU side is shared by all GPUs and has its
own TLB. It is used to handle the requests generated from all the
GPUs. Each GPU has its own local memory. However, the page
tables are centralized in the CPU memory and controlled by the
CPU [20, 50, 81]. Therefore, address translations that miss in the
GPU L2 TLBs will be forwarded to the IOMMU TLB for “remote”
IOMMU TLB lookup or page table walk (PTW).

2.2 Address Translation in GPUs

Figure 1 also illustrates the address translation process. Memory
access requests from the same wavefront are first coalesced by the
memory coalescing unit. Then, the coalesced accesses are sent to
L1 scalar cache and L1 TLB for parallel lookup (@), assuming a
virtually indexed physically tagged cache-TLB design. If the lookup
misses in the L1 TLB, the translation request is forwarded to the
shared L2 TLB (@). If again the request misses in the L2 TLB, the
GPU will generate an Address Translation Service (ATS) packet
and send it to the IOMMU (®). Note that, each GPU in our modeled
baseline has its own local device memory but the page tables are
shared on the CPU side [12, 68]. Upon receiving the ATS packet,
the IOMMU will check its TLB to see if the translation is present. If
it is present, the translation will be returned to the GPU. If not, the
IOMMU will trigger the multi-threaded PTWs to traverse the entire
page table (@). Once the translation is found in the page table, it is
then populated into the IOMMU TLB (®) and sent to the requesting
GPU. Upon receiving, the GPU will populate the translation to its
L2 TLB (0) as well as L1 TLB (@). Note that, when the IOMMU
PTWs detect page faults, the IOMMU will send an ATS response to
notify the GPU about this failure. Then, the GPU will send a request
called Page Request Interface (PRI) to the IOMMU. The IOMMU
records PRI requests from different GPUs in a queue and interrupts
the CPU for page fault handling. As the page fault handling incurs
significant latencies, the IOMMU typically uses batching to amortize
the overhead among multiple PRI requests [6, 20].

Unlike our targeted discrete multi-GPU systems, there are other
multi-GPU systems where each GPU implements its own local page
tables [49]. That is, upon a lookup misses in the L2 TLB, the request
is forwarded to the local page table walker. Only the local page
faults are forwarded to IOMMU. We also evaluate the proposed
least-TLB under such type of multi-GPU systems and present the
quantitative results in Section 5.3.

It is important to note that, there exist different policies to man-
age multi-level TLBs, such as “strictly-inclusive”, “mostly-inclusive”,
and “exclusive” [18, 33, 36]. Each policy has its pros and cons. For
instance, the strict-inclusive policy facilitates translation sharing in
shared TLB, but requires invalidation in private TLBs when an entry
in the shared TLB is evicted. Similarly, exclusive design provides
the best TLB reach but compromises the translation sharing. As the
TLBs are read-only by applications, the mostly-inclusive TLB man-
agement is the most widely used one as it accommodates translation
sharing while avoiding unnecessary invalidations [19, 85].
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3 MOTIVATION
3.1 Baseline Configuration and Workloads

We use MGPUSim [68] to conduct our characterization and later
evaluate our proposed least-TLB design. MGPUSim models AMD
multi-GPU system and is validated against AMD R9 Nano GPUs [4].
We heavily extended MGPUSim by adding the IOMMU module
with a shared TLB to handle ATS and PPR requests (as we described
in Section 2.2).

Table 2: GPU system Configuration.

[ Module [ Configuration |
CU 1.0 GHz, 64 per GPU
L1 Vector Cache 16 KB, 4-way
L1 Inst Cache 32 KB, 4-way
L1 Scalar Cache 16 KB, 4-way
L2 Cache 256 KB, 16-way
DRAM 512 MB
L1 TLB 16 entries, 16-way, 1-cycle lookup latency,
CU private, LRU replacement policy
L2 TLB 512 entries, 16-way, 10-cycle lookup latency,

CUs shared, LRU replacement policy

IOMMU TLB 4096 entries, 64-way, 200-cycle lookup latency,
GPUs shared, LRU replacement policy
Page table walk 8 shared page table

walker, 500-cycle latency [75]

3.1.1 Baseline GPU configuration. In this paper, we target a 4-GPU
system with a shared IOMMU. It is important to emphasize that
our approach is also applicable to multi-GPU systems with more
GPUs. Actually, we provide a sensitivity study with eight GPUs in
Section 5.3. Table 2 shows the baseline GPU configurations. The
page size is set to 4KB?. The baseline TLB hierarchy includes per-
CU private L1 TLB, per-GPU private L2 TLB, and a shared IOMMU
TLB. The baseline GPU TLB hierarchy employs the mostly-inclusive
policy [18]. That is, when an IOMMU TLB miss occurs and the PTW
is triggered, the requested translation is populated into IOMMU
TLB, the L2 TLB and the L1 TLB. However, whenever a translation
is evicted from a lower level TLB, no invalidation is needed for the
translation in the higher level TLBs.

Table 3: Single application workload.

Abbr. [ Application

Benchmark Suite [ MPKI 1

FIR Finite Impulse Resp. Hetero-Mark 0.009
KM KMeans Hetero-Mark 0.502
PR PageRank Hetero-Mark 0.409
AES AES-256 Encryption Hetero-Mark 0.003
MT Matrix Transpose AMDAPPSDK 2.394
MM Matrix Multiplication AMDAPPSDK 0.164
BS Bitonic Sort AMDAPPSDK 0.102
ST Stencil 2D SHOC 1.095
FFT Fast Fourier Transform | SHOC 0.008

3.1.2 Workloads. We select nine applications from AM-
DAPPSDK [3], Hetero-Mark [69], and SHOC [26] benchmark
suites. These applications are listed in Table 3. We use workload
in this paper to represent a single application in single-application
execution or multi-applications in multi-application execution.
Single-application workload: We first characterize single-
application execution on multiple GPUs, i.e., “single-application-
multi-GPU” execution paradigm. The applications cover different
multi-GPU memory access patterns: random (BS, PR), adjacent (ST,
FIR), partition (KM, AES), stride (FFT), and scatter-gather (MT, MM). To
be more specific, workloads with random patterns exhibit random
memory accesses from each GPU. The data sharing among GPUs is

2We also evaluate our approach with large-sized pages in Section 5.4.
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unpredictable. In contrast, the adjacent pattern shows overlapped
memory footprint from neighboring GPUs. The partition pattern
strictly partitions the data set among the GPUs and does not have
any data sharing among GPUs, whereas the stride pattern shares
data between different GPU pairs at each step. In the scatter-gather
access pattern, each GPU reads/writes data from/to local memory
and writes/reads data to/from the other GPUs, showing significant
data sharing and forming a “producer-consumer” execution among
the GPUs. The applications’ memory footprints are sufficiently
large to fill the TLB hierarchy in our targeted GPU architecture.

Table 4: Multi-application workload.

[ Abbr. | Workload [ Applications | Category |
W1 workload1 FIR, FFT, AES, SC LLLL
W2 workload2 FIR, FFT, MM, KM LLMM
w3 workload3 AES, SC, KM, PR LLMM
W4 workload4 FFT, SC, KM, MT LLMH
W5 workload5 AES, FIR, PR, ST LLMH
W6 workload6 FIR, AES, MT, ST LLHH
W7 workload7 FFT, SC, MT, ST LLHH
W8 workload8 KM, PR, MM, BS MMMM
W9 workload9 MM, KM, MT, ST MMHH
W10 workload10 MT, MT, ST, ST HHHH

Multi-application workload: To study the “multi-application-
multi-GPU” execution, we use applications shown in Table 3 and
add another application — Simple Convolution (SC, from AM-
DAPPSDK with an MPKI of 0.018) to form multi-application work-
loads. Table 4 shows the ten workloads where each workload
contains four applications>. The multi-application workloads are
formed by characterizing their memory access intensity. Specifi-
cally, we quantify each application’s misses-per-kilo-instructions
(MPKI) of the address translations at L2 TLB. Based on the L2 TLB
MPKI, we classify the applications into three categories: Low (L,
MPKI<0.1), Medium (M, 0.1<MPKI<1), and High (H, MPKI>1). The
ten workloads are formed as a mix of applications from different cat-
egories, including LLLL, LLMM, LLMH, LLHH, MMMM, MMHH,
and HHHH. Note that, some applications may finish earlier in the
concurrent execution. To maintain the TLB sharing and contention
in multi-application execution, we adopt a similar approach from
prior work [35, 59, 83]. That is, we ensure all GPUs are busy by
re-executing applications that finish faster, until the longest-run
application completes. Statistics are collected only for the first full
execution of each application in a workload.

We use the following metrics in the paper:

e Normalized performance. Defined as the ratio of the execu-
tion time in the baseline approach to the execution time of our
approach.

e Reuse distance. Defined as the number of unique translations
between two accesses to the same translation. In multi-application
environment, we calculate reuse distance considering the applica-
tion process ID to differentiate the reuses from different applica-
tions with workload.

o Weighted Speedup (WS). WS is used in the multi-application
execution to give equal weight to the relative performance of each
application [38]. WS is defined as the sum of each application
speedup running in application mixes with respect to running

. _ wN IPCappi(mix)
alone. That 18, WS = Zi=l W,

of applications in the workload.

where N is the number

3In our multi-application execution on four GPUs, each of the four applications occu-
pies one GPU.
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3.2 Single-Application-Multi-GPU
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Observation 1: Workload suffer from low TLB hit rate in both the
L2 TLB and the shared IOMMU TLB. Figure 2 shows the L2 TLB and
IOMMU TLB hit rate in baseline execution. We observe low hit rates
in both L2 TLB and IOMMU TLB. For example, ST with high MPKI
has a hit rate of 5% in L2 TLB and 35% in IOMMU TLB. AES with
low MPKI has a hit rate of 42% in L2 TLB and 3% in IOMMU TLB.
The massive and intensive translation misses in the TLB hierarchy
cause long latency in address translations.

To understand the impact of IOMMU TLB hit rate on perfor-
mance, we measure the application performance under baseline
and an infinite-sized IOMMU TLB (i.e., only cold misses exist). Fig-
ure 3 shows the performance normalized to the baseline execution.
Overall, the infinite IOMMU TLB achieves 5.6% to 2.4x speedup,
with an average performance improvement of 42.3%. We also ob-
serve that the improvement is more significant for applications with
high MPKIs (e.g., MT and ST). As a result, there is great potential to
improve performance by increasing the IOMMU TLB hit rate.

Observation 2: A large fraction of translation reuses are not
captured by the TLB hierarchy due to long translation reuse distances.
In the “single-application-multi-GPU” execution, different GPUs
may access the same address translations during execution. To
study the sharing behavior, we conduct a quantification of page
reuses and plot the results in Figure 4. As shown in the figure, there
exist a substantial fraction of address translations that are shared
by multiple GPUs during execution. For example, in MM, more than
70% of the translations are shared by all four GPUs. In PR and ST,
over 90% of the translations are shared. In MT and BS, about half of
the translations shared between two or three GPUs. Figure 5 shows
the cumulative distribution function (CDF) of the reuse distance for
the address translation reuses in the IOMMU TLB. We also marked
the IOMMU TLB capacity (4096) in the figure. On average, 45% of
the reuses cannot be captured by the IOMMU TLB capacity.

Observation 3: Translation reuses cause the exact translations to
be redundantly stored in the TLB hierarchy, reducing the TLB reach.
Even if the reused translation can be captured by the TLB hierarchy,
the same translation can be duplicated in both the GPU L2 TLB
and the IOMMU TLB in the baseline execution. In Figure 6, we take
a snapshot of both the L2 TLBs’ and the IOMMU TLB’s contents
at intervals of 40,000 cycles and 20,000 cycles for two workloads
with high page sharing: MM and PR. One can observe that, the higher
translation sharing, the more redundancy in the TLBs. On average,
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Figure 6: Page sharing during execution in MM and PR.
25% and 30% of entries are stored in more than one GPU’s TLB in the
same cycle for MM and PR, respectively. Moreover, the same address
translation may present in both the L2 TLB and the IOMMU TLB.
For example, in MM, the percentages of entries stored in both the L2
TLBs and the IOMMU TLB range from 30% to 70%. As a result, this
redundancy reduces the TLB reach (i.e., effective capacity), leading
to more reuses to miss the TLB.

3.3 Multi-Application-Multi-GPU

4

3
2

Speedup

1

0
w1 w2 w3 w4 W5 wé w7 ws w9 W10
EL BM OH Boverall

Figure 7: The speedup of each application in the workload
and the overall weighted speedup of each workload.

In multi-application execution, application interference occurs
in the shared IOMMU as each application exclusively runs on one
GPU in the baseline. We quantify the performance impact caused
by interference and contention at IOMMU TLB and Figure 7 shows
the weighted speedup (defined in Section 3.1) of the ten workloads
in Table 4. One can make the following observations. First, IOMMU
TLB contention degrades individual application’s performance. In
W1, the performance impact of each application is relatively mi-
nor. While in W10, performance drops by 77.5%. Second, the per-
formance degradation of different applications in the same work-
load is different. For applications with higher MPKI, the impact is
more significant. For example, in W6, the performance drop of AES
(MPKI=0.003) is 15%, whereas the drop is 57% in MT (MPKI=2.394).
This is because when the applications share the IOMMU TLB, trans-
lation requests often induce high contention among the high MPKI
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application execution.
applications, so its TLB miss rate significantly increases. Third, the

performance degradation of the same application in different work-
loads is different. For MT, the performance is reduced by 57% in W6
and 68% in W9. This is because, in W9, the co-running applications
have a higher MPKI than those in W6, hence severer IOMMU TLB
contention.

We further investigate the reuse distance of translations for
multi-application execution. Figure 8 presents the translation reuse
distances of four workloads with representative MPKI mix, i.e.,
LLLL, LLMH, LLHH, and MMHH. We observe that some applica-
tions (e.g., FIR, AES, and KM) have very different reuse distances in
different workloads. For example, 89% of the reuse distance of FIR
in W1 is less than the IOMMU TLB capacity (i.e., 4096), indicating
a higher chance that these reuses can be captured in TLB. However,
in W6, only 45% of the reuses in FIR are within the TLB capacity.
This is because in W6, ST and MT have high MPKIs, and they gener-
ate a large number of translation requests to IOMMU. Therefore,
the reuse distance of FIR is extended because of contention. For
applications like ST and MT, they generate intensive translation re-
quests that miss L2 TLB and occupy a significant portion of entries
in IOMMU TLB. Therefore, their reuse distances does not change
much in each workload. We also marked the IOMMU TLB capacity
in the figure. As one can observe, for severe contention applica-
tions(i.e., MT and ST), more than 60% of the reuses are missed in the
IOMMU TLB.

4 LEAST-TLB DESIGN

Goals: Our goal in this paper is to improve the multi-GPU TLB hit
rates, thereby boosting the performance of both single-application
execution and multi-application execution. To this end, we develop
the least-inclusive TLB (also called least-TLB) that takes advantage
of translation sharing (in single-application) and spilling (in multi-
application) to reduce translation redundancy and mitigate the
contention in IOMMU TLB.

Challenges: Designing least-TLB faces several challenges. First,
in a least-inclusive TLB hierarchy, not all L2 TLB entries are present
in the IOMMU TLB. So one GPU might find the desired address
translation in another GPU’s L2 TLB rather than in the IOMMU
TLB. In such a scenario, querying only the IOMMU TLB will result
in a miss, which can be avoided. Second, in multi-application-multi-
GPU execution, it is important to select an appropriate GPU’s L2
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TLB as the receiver for IOMMU TLB spilling. Receiving spilled en-
tries may introduce contention in that GPU’s L2 TLB. In addition,
the receiver GPU should be selected dynamically during execution
by considering the phase behavior of applications where the trans-
lation request intensity may vary. Finally, the hardware overhead
of least-TLB should be minimized to make it feasible in the practical
GPU hardware.

4.1 Single-Application-Multi-GPU

Virtual Addr
GPUO l GPU1
L2 TLB © L2TLB |
© © (4]
Local TLB
tracker

Page table walker

Figure 9: The lookup and insertion in least-TLB for single-
application execution.

In this paper, we propose least-TLB design where the IOMMU
TLB is used as a “victim TLB" for the GPU L2 TLBs. That is, trans-
lations are only inserted into the L2 TLB upon lookup, and only
when the translations are evicted from the L2 TLB, they will be
placed into the IOMMU TLB. Note that, our design does not affect
the GPU L1 TLB and L2 TLB where the mostly-inclusive policy is
used. The key hardware structure used in least-TLB is the Local
TLB tracker (as highlighted in Figure 9) in IOMMU.

Local TLB tracker: Although the proposed least-inclusive TLB
design reduces translation redundancy, it causes extra IOMMU TLB
misses compared to the inclusive and most-inclusive designs. This
is because, least-inclusive policy brings a translation directly to
the L2 TLB without allocating an entry in the IOMMU TLB. When
another GPU tries to access the same translation, it cannot find
the translation in the IOMMU TLB and a page table walk request
is issued. To allow sharing while maintaining the proposed least-
inclusive policy, we implement the Cuckoo filter[28] in the IOMMU
to track the translations in all GPUs’ L2 TLBs. At a high-level,
Cuckoo filter is similar to Bloom filters [23], and is a space-efficient
data structure that tests whether an element is in a set. It uses hash
functions to derive the inserted items into a bit string of fingerprints.
Each inserted item is stored as a fingerprint instead of a key-value
pair. The Cuckoo filter supports efficient deletion operations. It
checks two candidate buckets for a given item; if any fingerprint in
any bucket matches, it deletes a copy of the matching fingerprint
from that bucket. If two items share the same bucket and fingerprint,
a random one is selected and deleted, causing false positive cases.
Another source of false positive is the repetition of fingerprints.
That is, multiple elements may produce the same fingerprint. In
the context of TLB tracking, when a translation is brought to the
L2 TLB, it is also registered in the Cuckoo filter hardware. When a
translation is evicted from the L2 TLB and inserted into the IOMMU
TLB, it is also removed from the Cuckoo filter.

TLB lookup: Figure 9 shows TLB lookup procedure in least-TLB
during single-application execution. The corresponding algorithm
is given in Algorithm 1. Specifically, when a translation request
arrives at the IOMMU, the IOMMU TLB (@) and the Local TLB
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Algorithm 1: Single-application Lookup & Insertion.

1 /* Lookup () */
2 if hitin L2_TLB then
3 update L2_TLB;

4 respond to L1 TLB and L1$;

5 else

6 Pthread IOMMUTLB and Tracker;

7 if hit in [IOMMU_TLB then

8 end Pthread_Tracker;

9 Insert()—L2_TLB;

10 evict translation from IOMMU_TLB;
11 add translation to Tracker;
12 else

13 PTW;

14 L Insert()—L2_TLB;
15 if positive in Tracker_x then

16 forward request to GPU_x;

17 if hit in GPU_x then

18 end Pthread_IOMMUTLB;
19 Insert()—L2_TLB;

20 add translation to Tracker;

21 |  respond to L1 TLB and L1$;

23 /" Insert () */

24 if L2 TLB iis full then

25 insert the first translation of LRU list into IOMMU_TLB;
L delete translation from Tracker_i;

27 if IOMMU_TLB is full then
28 L evict the first translation of LRU list ;

tracker (@) are searched in parallel. Depending on where the trans-
lation is present, three different scenarios may occur. First, if the
request hits in the IOMMU TLB, the translation is fetched to L2 TLB
and the lookup in the Local TLB tracker is abandoned (@). This
fetched translation is also placed in the corresponding Local TLB
tracker ((®)) for future references and is removed from the IOMMU
TLB based on the proposed least-inclusive policy (lines 7 to 11).
Second, if the request misses the IOMMU TLB and hits the tracker,
the request is forwarded to the corresponding remote GPU and is
served by the remote GPU’s L2 TLB (@). Considering the shared
translation may be accessed frequently, we keep the translation
in both the sender’s L2 TLB and the receiver’s L2 TLB ((©)) and
update the tracker in the IOMMU () (lines 16 to 20). Note that, it
can happen that the Cuckoo filter provides a false prediction and
the remote GPU does not hold the translation. In such a case, the
IOMMU still sends the miss requests to the PTWs after IOMMU TLB
lookup (@), hiding the latency caused by the tracker mis-prediction
(lines 12-13). Note also that, retrieving a translation from page table
could be faster than accessing remote TLB in some cases (e.g., the
interconnect is congested). Therefore, performing PTW and remote
lookup simultaneously can avoid causing additional latencies in
such cases. In our implementation, the IOMMU uses a lookup table
to track the pending requests that are sent to PTW and the remote
TLB. Whichever comes first, the table translation is served to the
requesting GPU and the table is updated by removing the request.
When the same translation comes again, it will be discarded as
the request has been served already. Third, if the request misses
both IOMMU TLB and the Local TLB tracker, it is sent to the PTWs.
When the request returns, the translation is only inserted in the L2
TLB (@) (line 14) due to least-inclusive policy.

TLB insertion: When the L2 TLB is full, one entry is evicted
from the L2 TLB based on LRU policy. The evicted entry is placed
in the IOMMU TLB ((®) (lines 24 to 26) and the translation is also
removed from the Local TLB tracker.
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Lookup
step |[GPU |VAddr Least-TLB
1 0 0x5 miss miss

2 1 0x1  [miss hit in IOMMU TLB
3 2 0x1 hit in IOMMU TLB| hit in remote GPU
4 3 0x1___|hitin IOMMU TLB| hit in remote GPU

Insertion
" L2TLB IOMMU TLB
SteP [Gpuo [ePU1 [GPU2 [GPU3 |Baseline |Least-TLB
0x1 0x2
0 0x1 |0x2 [0x3 |0x4 0x3 Ox4
0x2 0x3
1 0x5 |0x2 (0x3 |0x4 ox4 0x5 |°X1
0x3 0x4 |0x2 0x3
2-4 [0x5 [0x1 |Ox1 |[Ox1 0x5 0x1 | Oxé4

Figure 10: A walk-through example for single-application
execution.

A walk-through example: We use a simple example in Fig-
ure 10 to illustrate how least-TLB works. For simplicity, let us
assume that each GPU L2 TLB has only one entry and IOMMU
TLB has four entries. Initially, virtual pages 0x1-0x4 are present
in the corresponding GPUs and the IOMMU is empty. In step 1,
a request of 0x5 arrives at GPUy L2 TLB. Then, in least-TLB, 0x1
is evicted from L2 TLB and inserted into IOMMU TLB. In step 2,
GPUj requests 0x1, which is hit in the IOMMU TLB. Then, the
entry of 0x1 is removed from the IOMMU TLB and inserted into
GPU; L2 TLB. In steps 3 and 4, GPU, and GPUj3 request 0x1 and
they can hit in remote GPUj. The figure also shows the baseline
with most-inclusive TLB. As one can observe, least-TLB achieves
better hit rate.

Note that, our proposed least-TLB is not equivalent to an exclu-
sive TLB hierarchy. An exclusive hierarchy guarantees that one
translation is presented in either one of GPUs’ L2 TLBs or the
IOMMU TLB, but not both. In our least-inclusive TLB hierarchy,
when a translation is evicted from one GPU’s L2 TLB, if it is inserted
into the IOMMU TLB, we do not invalidate the translation in other
GPUs’ L2 TLBs. As a result, a translation may exist in both the
GPU’s L2 TLB and IOMMU TLB at the same time.

4.2 Multi-Application-Multi-GPU

Now let us discuss how we leverage the proposed least-TLB hi-
erarchy in the “multi-application-multi-GPU” execution. Recall
our discussion in Section 3.3, when multiple applications run con-
currently on multiple GPUs, they compete for the IOMMU TLB,
leading to increased IOMMU TLB misses and performance degra-
dation. To mitigate the contention, our intuition is to leverage the
GPUs’ L2 TLB as a temporary “victim buffer” for the entries that
are evicted from the IOMMU TLB. However, as discussed earlier,
spilling IOMMU TLB entries to a GPU’s L2 TLB may slow down
the local application execution due to extra L2 TLB thrashing. For-
tunately, we observe that some compute-intensive applications
are less sensitive to TLB miss, compared with memory-intensive
applications. As a result, when the co-running applications have
mixed MPKIs, those applications with low MPKI could be suitable
candidates for receiving the TLB spilling translations. Based on the
above observation, we answer the following questions in multi-
application execution regarding how the proposed least-TLB can
be used: what to spill?, where to spill?, and how to spill?.

What to spill: In multi-application execution, we allow the evic-
tions from the IOMMU TLB to have more chances to reside in the
TLB hierarchy by spilling them to the other GPU’s L2 TLB when
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Figure 11: IOMMU TLB contents during executions of W4
and W6.

possible. This is extremely helpful to capture long reuses distances
caused by interference from concurrent executions and improves
the weighted performance when the GPU receiver executes an ap-
plication that is insensitive to its L2 TLB performance. Potentially,
one can allow the spilling chances of each entry by specifying a
counter N. When N equals 1, each translation is associated with
one extra spilling bit which is initialized to 1. The bit is set to 0
when the translation is evicted from IOMMU TLB and is spilled to
another GPU’s L2 TLB. Later, when the same entry is evicted from
the L2 TLB, the spilling bit is checked and the entry is abandoned
without putting it in the IOMMU TLB due to least-inclusiveness. If
an access/reuse happens to a spilled entry, the tracker informs the
requesting GPU of the location of the entry, and the spilled bit is
reset to 1. Note that, larger N gives the translation more opportuni-
ties to recirculate through the TLB hierarchy and is, therefore, more
likely to capture long-distanced reuses. However, when both the
IOMMU TLB and the L2 TLB are full, the spilling between the L2
TLBs and IOMMU TLB may cause a “chain” effect where ping-pong
evictions can happen. With a large N, there expect a severe chain
effect. Therefore, in our design, we set N = 1. We also provide
sensitivity study in Section 5.3 with different values of N.

Where to spill: Next, it is important to determine which GPU
should receive the spilled translations. Ideally, we want to choose
the GPU whose L2 TLB is least thrashed, and whose running appli-
cation is insensitive to L2 TLB performance. Meanwhile, in many
applications, the TLB access intensity varies during program exe-
cution. We need to choose the receiver GPU dynamically by con-
sidering the TLB access intensity in different execution phases.

To this end, in our least-TLB design, each GPU can potentially act
as a receiver of the IOMMU evictions. To help find the most suitable
candidate GPU receiver, we choose two representative workloads
with hybrid MPKIs and take snapshots of the IOMMU TLB contents
at specific intervals, as shown in Figure 11. One can observe that for
those applications with higher L2 TLB thrashing, more translations
are kept in the IOMMU TLB. Therefore, we use the number of
translations present in the IOMMU TLB to determine the receiver
GPU dynamically. We introduce a hardware Eviction Counter for
each GPU in the IOMMU to record the IOMMU TLB entries from
different GPUs. Whenever an IOMMU eviction happens with the
spill bit set to 1, we use the Eviction Counter to select the GPU
receiver that has the smallest counter value.

How to spill: We use the same Cuckoo filter based Local TLB
tracker to track the spills in multi-application execution. When
a translation in the IOMMU TLB spills to a GPU’s L2 TLB, it is
recorded in the Local TLB tracker. When the spilled translation is
evicted from the receiver GPU or hit by the original GPU again,
it is removed from the receiver’s L2 TLB and is removed from the
tracker. The Cuckoo filter configuration is the same as the single-
application execution.
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Figure 12: The lookup and insertion in least-TLB for multi-
application execution.

Algorithm 2: Multi-applications Lookup & Insertion.

1 /* Lookup () */

2 if hit in L2_TLB then

3 update L2_TLB;

4 ‘ respond to L1 TLB and L1$;

5 else

6 Pthread IOMMUTLB and Tracker;

7 if hit in IOMMU_TLB then

8 end Pthread_Tracker;

9 Insert()—L2_TLB;

evict translation from IOMMU_TLB;

10

11 else

12 PTW;

13 L Insert()—L2_TLB;

14 if positive in Tracker_x then

15 forward request to GPU_x;

16 if hit in GPU_x then

17 end Pthread_IOMMUTLB;

18 Insert()—L2_TLB;

19 delete translation from Tracker_x;

20 | respond to L1 TLB and L1$;
22 /* Insert () */
23 if L2 TLB iis full then
24 if the spill bit of first translation of LRU list == 1 then
25 insert translation into IOMMU_TLB;
‘ Eviction_Counter_i ++ ;
27 else
28 evict translation;
L delete translation from Tacker_i;

30 if IOMMU_TLB is full then

31 min = min(Eviction_Counter) ;

32 insert the first translation of LRU list to GPU_min;
33 Eviction_Counter —— ;

34 | add translation to Tacker_min ;

Figure 12 shows the lookup and insertion procedures. The algo-
rithms are given in Algorithm 2.
TLB lookup: The lookup process is similar to the lookup in single-
application execution. The only difference is that when a translation
hits in the other GPU’s L2 TLB (i.e., remote hit), unlike in single-
application execution where it presents in both the requesting and
receiver GPUs, the translation is removed from the receiver GPU’s
L2 TLB in multi-application execution. That is because there is no
translation sharing among the applications running on different
GPUs. Therefore, this is no need to keep the spilled translation in
the GPU receiver after the original GPU requests it. After fetching,
the Local TLB tracker in the IOMMU is updated accordingly.
TLB insertion: When an eviction occurs from the GPU’s L2 TLB,
we first check the spill bit of the eviction. If the bit is 1 (meaning
it is not a spilled translation), the translation is inserted into the
IOMMU TLB ((B), and the Eviction Counter is updated (lines 24
to 26). Otherwise, when the spill bit is 0 (meaning it is a spilled
entry), we simply discard the translation and delete the record from
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Lookup
step GPU VAddr Baseline Least-TLB
1 2 0x11 miss miss
2 2 0x7 miss hit in remote GPU
3 1 0x12 miss miss
4 1 0x13 miss miss
Spill
L2TLB step |[GPUO [GPU1 [GPU2 |GPU3 [IOMMU TLB
0 ox1 ox3 0x4 0x6 0x7 0x8 0x9 0xA
0x2 0x5 0xB 0xC 0xD 0xE
0 0x1 0x5 0x8 0x9 0xA 0xB
Baseline |1 Joxz |3 Jox11 |™®  |oxc oxp oxE oxi1
0x1 0x3 0x5 0x8 0x9 0xA 0xB
LeastTLBI1 loxo  fox7  [ox11 |®®  |oxc oxD oxE0xa
Baseline |2 0x1 ox3 0x11 0x6 0x9 0xA 0xB 0xC

0x2 0x7.
0x1 0x3 0x11
0x2 0x8 0x7
0ox1 0x3 0x11 0x6
0x2 0x12  |0x7

ox1 0x8 0x11 0x6
0x2 0x12 0x7 0x9
0x1 0x12  (0x11 0x6
0x2 0x13 _ [0x7
ox1 0x12 0x11 0x6
0x2 0x13 0x7 0x9

0xD OxE 0x11 0x7
0x9 0xA 0xB 0xC
0xD OxE 0x4 0x5
0xA 0xB 0xC 0xD
OxE 0x11 0x7 0x12
0xA 0xB 0xC 0xD
OxE 0x4 0x5 0x3
0xB 0xC 0xD 0xE
0x11 0x7 0x12 0x13
0xA 0xB 0xC 0xD
0xE 0x4 0x5 0x3

Least-TLB|2 0x6

Baseline |3

Least-TLB|3

Baseline (4

Least-TLB|4

Figure 13: A walk-through example for multi-application ex-
ecution.

the Local TLB tracker (lines 28 to 29). When an IOMMU eviction
occurs, the evicted translation is inserted into the GPU receiver’s
L2 TLB (®). As we discussed before, the receiver is selected as the
GPU that has the fewest entries in the IOMMU TLB. The spill bit is
also set to 0, and the Eviction Counter is updated. The translation
is registered in the Local TLB tracker (®), so that future accesses
to the same address can query the tracker (lines 31 to 34).

A walk-through example: Figure 13 illustrates how least-TLB
spilling works in multi-application execution. For simplicity, let us
assume that each GPU L2 TLB has two entries and IOMMU TLB
has eight entries. Initially, virtual pages 0x7-0xE are presented in
the IOMMU TLB, where 0x7, 0x8 and 0xE are evicted from GPU
L2 TLB, 0x9 from GPU1, 0xA-0xC from GPUs, and 0xD from GPUs.
In the first step, a request of 0x11 arrives at GPU, L2 TLB. Then, in
least-TLB, 0x4 is evicted from the L2 TLB and inserted into IOMMU
TLB. The IOMMU TLB is also full so 0x7 is spilled into GPU1, which
has the fewest entries in the IOMMU TLB. In step 2, GPU; requests
0x7, which can hit in the remote GPU; L2 TLB. Then, 0x7 is inserted
into GPU; L2 TLB and the entry is removed from the GPU; L2 TLB.
The insertion of 0x7 causes the eviction of 0x5 from GPUs. Then,
0x5 is inserted into the IOMMU TLB, and 0x8 is spilled to GPUj. In
step 4, GPU; requests 0x13, then 0x13 is inserted into GPUj, and
0x8 is evicted without being inserted into the IOMMU TLB since it
is a spilled entry. The figure also shows the hit rate in both baseline
and least-TLB. Obviously, least-TLB has less number of misses.

4.3 Hardware Overhead

In our configuration, the Cuckoo filter has a total of 2048 entry with
0.2 false positive probability. The Cuckoo filter are divided equally
according to the number of GPUs. The total hardware overhead
of Cuckoo filter is 1.08KB. Our design also requires 32-bit for four
Eviction Counter to record the number of entries stored in the
IOMMU TLB. We use CACTI [77] to estimate the area and power
overheads of our approach. The result shows 0.19% area overhead
compared to the area of IOMMU TLB.

4.4 Discussion

TLB shootdown: In the case of GPU local L1/L2 TLB shootdown,
all TLB entries, including the spilled entries, are invalidated. As a
result, when the tracker in the IOMMU sends a request to spilled en-
tries, it cannot be found in remote TLBs. And this spilled entry will
then be removed from the tracker. Note that this does not introduce
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extra overheads because the IOMMU sends page table walk and
the remote access simultaneously in our current implementation.
In the case of IOMMU TLB shootdown, the tracker is also reset.
Therefore, the spilled entries will be no longer accessible and will
be eventually evicted from GPU local TLBs.

Limitations of least-TLB: Our approach increases the TLB hit
rate relying on the increase in address translation locality. As such,
our approach has limited improvements if i) the majority of the
translation reuses distances are far beyond the IOMMU TLB ca-
pacity, or ii) the majority of the translation reuses distances are
comparable short to be captured by the GPU local L1 and L2 TLBs.
Other types of system: So far, we model and evaluate the pro-
posed least-TLB in the multi-GPU system where the page tables
are shared on the CPU side. However, our least-TLB is not bound
to a particular multi-GPU system. It also works for other types of
multi-GPU systems where each GPU has its own page table (as we
quantitatively evaluated in Section 5.3). For other types of accelera-
tors, such as NPU [31], which requires high translation throughput
in the IOMMU’s PTWs, our least-TLB can potentially achieve bet-
ter performance when combined with the optimizations on PTWs.
This is because that the improved IOMMU TLB hit rate brought by
least-TLB will reduce the traffic and contention on PTWs. Besides,
we envision that the least-TLB will provide huge improvement
potentials in future multi-chiplet heterogeneous systems where
each GPU chiplet has limited TLB entries and does not have its
own local memory. For the cases that heterogeneous devices are
connected to the IOMMU, each device may have different local con-
figurations (e.g., TLB sizes, QoS requirements, etc.). The proposed
least-TLB can be enhanced to accommodate the fairness and effi-
ciency requirements of different devices by adding the device IDs
to the TLB entries. Then the least-TLB can perform device aware
policies to manage the fairness and efficiency across heterogeneous
devices. In our future work, we plan to investigate how the concept
of least-TLB can be implemented in those systems.

5 EVALUATION

In this section, we evaluate the proposed least-TLB design using
MGPUSim [68]. The system configuration is the same as the base-
line shown in Table 2.

5.1 Single-Application-Multi-GPU Execution

Figure 14 shows the performance improvements brought by least-
TLB and an impractical IOMMU TLB design with infinite entries,
both normalized to the baseline. The proposed least-TLB delivers
an average speedup of 1.24X over the baseline. Specifically, the five
applications (ST, MT, MM, KM, PR) achieve an average performance
speedup of 1.38X. This is because these applications have either
medium (M) or high (H) MPKI values (in Table 3) and benefit more
from the least-TLB design. The remaining four applications have rel-
atively low (L) MPKI values, so the performance improvements are
less. Overall, least-TLB achieves comparable performance improve-
ment compared with the infinite IOMMU TLB, with the exception
of MT. For MT, the reason is that the reuse distance is too large
to be captured by the limited TLB capacity even after reducing
redundancy.

We further look into the IOMMU TLB hit rate and remote GPU
L2 TLB hit rate to understand the reason behinds the performance
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Figure 14: Normalized performance improvements in single-
application execution.
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Figure 15: IOMMU TLB hit rate and remote hit rate in single-
application execution.

improvements. As shown in Figure 15, least-TLB improves the
IOMMU TLB hit rate by 12.9% across all applications, and the aver-
age remote L2 TLB hit rate is 4.7%. Specifically, in workloads like
ST, MT, MM, KM, and PR, where the degree of page sharing is relative
high (as illustrated before in Figure 4), least-TLB improves the hit
rate by 22.2% on average (including both IOMMU and remote L2
TLBs). This is because, least-TLB reduces duplicated address trans-
lations in IOMMU and L2 TLBs, which in turn improves the TLB
reach, allowing more translation reuses to be captured. Although
the amount of translation sharing among GPUs is low in AES, there
is still a significant improvement in its IOMMU TLB hit rate due to
the increased TLB reach. For FIR, BS, and FFT, the impact of min-
imizing redundant translations is limited and the reuse distances
of FIR and BS are mostly within baseline IOMMU TLB capacity.
Therefore, the improvement on hit rate is minor. However, we want
to emphasize that least-TLB does not incur any extra misses. In
other words, it does not hurt the application performance that is
already good in the baseline execution.

5.2 Multi-Application-Multi-GPU Execution

[l

w1 w2 w3 w4 W5 weé w7 ws we w10
L EM OH Hoverall

Figure 16: Normalized performance improvements in multi-
application execution.
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Figure 16 shows the weighted performance improvements (de-
noted by the last bar of each workload) of the multi-application
workloads listed in Table 4. For a clear comparison, we also show the
performance improvements of individual applications within each
workload. Results are normalized to the baseline multi-application
execution. From the figure, one can make the following observa-
tions. First, the proposed least-TLB improves the performance up
to 59.1%, with an average of 16.3% across all workloads. The im-
provement is more significant for workloads that suffer from severe
contention in the IOMMU TLB. For example, W4 (LLMH) achieves
12% improvement and W7 (LLHH) achieves 18% improvement, re-
spectively. This is because workloads that comprise applications
with mixed MPKIs are likely to find a GPU candidate running a low
MPKI application (i.e., with less thrashing in its L2 TLB) to act as a
receiver for the translation spilling from the GPU that runs high
MPKI application. One interesting observation is that, for W10, all
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four applications have high MPKI and W10 still achieves significant
improvement. This is because these applications show interleaved
intensity in TLB access patterns, i.e., some applications access TLBs
more intensively during execution periods that others are not. As
such, our approach dynamically selects the receiver GPUs in differ-
ent phases (as we discussed in Section 4.2). Second, within the same
workload, the performance improvement is larger for applications
with high MPKI, indicated by the yellow bars in the figure. The
improvement mainly comes from the increased hit rate (including
IOMMU TLB and remote L2 TLB) in least-TLB design. Finally, for
applications with low MPKIs within a workload, our least-TLB does
not provide as much improvement as we achieved for applications
with high MPKIs. This is due to the fact that either these applica-
tions are TLB insensitive, or the baseline TLB is already doing a
good job in capturing all the translation reuses.

Hit rate
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nl_ | Ml IHD [ TR IHD lﬂm alll

wi1 w2 W3 W4 W5 W6 W7 W8 W9 W10
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Figure 17: IOMMU TLB hit rate and remote hit rate in multi-
appli1cation execution.
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Figure 18: L2 hit rate in multi-application execution.

Figure 17 and Figure 18 plot the IOMMU TLB hit rate and L2 TLB
hit rate for each application in each workload. We also show the
remote hit rate in Figure 17. First, on average, least-TLB improves
IOMMU TLB hit rate by 7.8% across all workloads and achieves an
average remote hit rate of 10%. The increase in TLB hit rate directly
translates to performance improvement. Comparing the remote
hit rate with the IOMMU TLB hit rate improvement (difference
between orange and blue bars in Figure 17), we notice that in most
workloads, the remote hit rate is larger. This indicates that our
least-TLB effectively captures long-distance translation reuses by
allowing dynamic spilling. For example, the average IOMMU hit
rate of W10 is 21.5% that is 9.3% better than the baseline, whereas
the average remote hit rate is 22.5%. Second, the L2 TLB hit rate
is not affected in most applications. On average, the L2 hit rate of
least-TLB is 3% lower than the baseline. However, the hit rate drop
is more obvious in W10. This is because ST and MT have H MPKI,
which are sensitive to TLB misses. Spilling IOMMU TLB entries to
L2 TLBs can cause L2 TLB thrashing. Finally, in most workloads,
applications with higher MPKIs have higher hit rate improvement.
For example, in W2, W6 and W7, KM and ST have high MPKI in the
corresponding workloads and their hit rate improvement is higher
compared to other applicants in the same workloads. However, for
KM in W3, the observation is the opposite. This is because, although
applications with H MPKIs generate a number of spilled translations
in the runtime, these spilled translations are evicted before they
can be reused. This might happen if the GPU receiver changes
the execution phase and becomes TLB intensive. As a result, the
spilled translations will be evicted from the receiver base on the
LRU replacement policy.
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5.3 Sensitivity Study
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Figure 19: Normalized performance of spilling counter N =
2.

Sensitivity to spilling counter: In our discussion so far, the
spilling counter N is set to 1, indicating that the IOMMU TLB
evicted entry only gets one chance to spill to other GPUs’ L2 TLBs.
In this study, we evaluate the performance impact when changing
the spilling counter to N=2. Figure 19 shows the results. While the
average performance improvement is 12.7% over the baseline, there
is 3.1% performance drop compared to N=1. The main reason behind
this is the “chain” effect (described in Section 4.2), which causes
ping-pong eviction between L2 TLBs and the IOMMU TLB.
Sensitivity to the IOMMU TLB size: We evaluate least-TLB un-
der a smaller IOMMU with 2048 entries [31]. The results show an
average performance improvement of 14.7% and 10.2% in single-
application and multi-application executions, respectively. The per-
formance benefits are lower (as opposed to 23.5% and 16.3% when
using a 4096-entry IOMMU TLB). This is because a smaller IOMMU
TLB will reduce the chances of reuses being captured.
Sensitivity to the remote access latency: We evaluate least-TLB
under different remote GPU TLB access latencies to show the cross-
over point when accessing a remote GPU compared against invok-
ing the page table walk in the DRAM. Figure 20 shows the scaling
results. The black solid line represents the baseline mostly-inclusive
implementation. As none of the requests is going to the remote
GPUs, the performance does not vary when remote GPU access
latency changes. The colored solid line represents the results where
all the requests indicated as positive by the Cuckoo filter are sent to
remote GPUs, and only those missing in the remote GPU TLB will
access the page table in the DRAM. One can observe that, for exam-
ple in multi-application execution, when the remote access latency
is beyond 5% of the DRAM latency, the performance of accessing
the remote GPU is worse compared to accessing the page tables in
the DRAM. The dashed lines in Figure 20 represent the results of
least-TLB. As the PTW and the remote TLB lookup are performed
simultaneously, the translation is served by whichever comes first.
Therefore, after the remote accessing latency is higher than the
average PTW latency (3.5x of DRAM latency in multi-application
execution), least-TLB can maintain performance benefits compared
to waiting for remote lookups. Note that after 3.5%, our least-TLB
still performs better than the baseline where all the translations
missed on the IOMMU TLB are served by the PTW. This is due to
the increased IOMMU TLB hit rate brought by the least-inclusive
policy in least-TLB. We also marked the PCIe and HBM latencies in
the Figure 20. The CPU and GPUs are connected via PCle (~300ns
latency [76]) in our configuration, and the latency of HBM (~106.7ns
latency [80]) is much less than that of PCle. It is important to note
that, as the DRAM technologies evolving, the DRAM latency is
reducing and the memory bandwidth is increasing (e.g., HBM [67]
and HBM2 [37]). On the contrary, the interconnection can be con-
gested when multiple devices, especially heterogeneous ones with
different quality of service (QoS) requirements, are connected to
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Figure 21: Normalized performance of least-TLB with 8 and
16 GPUs.

Table 5: 8- & 16-GPU multi-application workload.

[ Abbr. [ Applications [ Category ]
Wwi1 AES, FIR, SC, PR, MM, KM, MT, ST LLLMMMHH
W12 FIR, FFT, SC, MM, KM, MT, MT, ST LLLMMHHH
W13 FIR, FFT, SC, AES, KM, MM, PR, BS LLLLMMMM
W14 KM, MM, PR, BS, MT, MT, ST, ST MMMMHHHH
W15 FIR, FFT, SC, AES, MT, MT, ST, ST LLLLHHHH
W16 FIR, FFT, SC, AES, KM, MM, PR, BS LLLLLLMMMMMHHHHH
MT, MT, ST, ST FIR, AES, KM, MT

Table 6: Mix-workload.
Abbr. [ Applications

Category ]
W17 FIR+KM, AES+MT, MM+ST LM, LH, MH
W18 FIR+AES, KM+MM, MT+ST LL, MM, HH
W19 SC+KM, FIR+MT, AES+ST LM, LH, LH

the IOMMU. As a result, multi-application execution may prefer
invoking DRAM page table walk instead of going remote devices.
However, for single application execution, the substantial address
translation sharing may still prefer remote TLB accesses, as indi-
cated in Figure 20 where the cross-over point has higher remote
latency in single-application execution.

Sensitivity to the number of GPUs: We evaluate least-TLB with
8 GPUs and 16 GPUs to show its scalability. Figure 21 plots the
performance of single-application execution normalized to baseline
execution. The average performance improvement of 8-GPU and
16-GPU is 24.1% and 22.5%, respectively. Figure 21 also shows the
multi-application execution results. We use applications in Table 3
to form 5 8-GPU workloads and a 16-GPU workload as listed in
Table 5. We observe that the performance of 8-GPU achieves an
average of 20.2% improvement and 16-GPU achieves 14.0%. In a nut-
shell, the proposed least-TLB is able to deliver scalable performance
improvements with more GPUs.

Sensitivity to the mix-workload per GPU: We evaluate least-
TLB with mix-workload as shown in Table 6 where the application is
not strictly one-to-one mapping to GPUs. Instead, two applications
with different MPKIs run on the same GPU. Figure 22 shows that the
performance of mix-workload execution improves by an average
of 9.8% over the baseline execution. This demonstrates that our
approach is general and can work under mixed workloads per GPU.
Sensitivity to GPUs with local page tables: We also model the
multi-GPU system where each GPU has its own page table stored
in the device memory and evaluate the proposed least-TLB. We
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Figure 23: Normalized performance in multi-GPU systems
where each GPU has its own page table.

implement the local page table for each GPU and model its address
translation process (i.e., only local page faults are forwarded to
IOMMU.) Figure 23 plots the performance of single-application
and multi-application executions normalized to baseline executions
using workloads in Table 3 and Table 4. The results show that
least-TLB improves performance by 2.8% and 3.8% in single- and
multi-application executions, respectively. The performance gain
is less than that in AMD GCN-based systems. This is because page
faults occur less frequently than L2 TLB misses.

5.4 Comparison to Large-sized Pages
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Figure 24: Normalized performance when using with 2MB

page.

Regardless of the deficiencies in large pages, e.g., fragmentation,
large pages generally effectively improve the TLB reach. In this part,
we evaluate how least-TLB works with large-sized pages (i.e., 2MB).
Figure 24 presents the normalized performance when we apply
least-TLB on 2MB page size. The results are normalized to baseline
2MB page execution. We observed the average speedups over the
baseline are 0.78% in single-application execution and 2.3% in multi-
application execution, respectively. While it is expected that the
improvements are less since large pages intuitively improve the
TLB reach, our proposed least-TLB is able to further improve the
overall performance when combined with large pages, especially
for multi-application execution that has diverse TLB access patterns
from different applications.

5.5 Comparison to State-of-the-art
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Figure 25: Comparison to TLB probing [13].
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We compare least-TLB with the state-of-the-art TLB probing
scheme [13]. The original work [13] focused on a single-GPU sys-
tem, and TLB-probing scheme was proposed to enable translation
sharing among L1 TLBs. In our comparison, we extend TLB-probing
scheme to L2 TLBs and connect all L2 TLBs from all GPUs into a
ring network, such that TLB probing requests can be send between
any neighboring GPUs. Figure 25 shows the performance compari-
son for single-application and multi-application. On average, our
approach outperforms TLB-probing by 15.7% in single-application
execution and 13.1% in multi-application execution. The main rea-
son is that, when a GPU L2 TLB miss occurs, TLB-probing scheme
sends two requests to neighbor GPUs for lookup. Such a ring-based
lookup works well within single GPU (as the target in [13]). It is less
efficiently in the multi-GPU scenario due to long probing delay and
low TLB reaching. In contrast, our least-TLB avoids such remote
queries by lookup in the Local TLB Tracker.

5.6 Combined with PTW optimization
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Figure 26: Combined with DWS [59].

To show the proposed least-TLB can achieve better performance
when combining with prior PTW optimizations, we apply least-TLB
to one state-of-the-art PTW optimization proposed by Pratheek et
al. [59]. They focused on mitigating PTW contention under multi-
tenancy on a single GPU. Figure 26 shows that the least-TLB+DWS
achieves a 22.4% performance improvement in multi-application
execution, which is a 6.1% improvement over the least-TLB alone.
In short, we demonstrate that least-TLB can work with PTW opti-
mization and bring additional performance benefits.

6 RELATED WORK

Address translation optimizations: There exist a substantial
body of prior works focusing on optimizing address translation
process in CPU apart from the ones we have discussed in Sec-
tion 1 [1, 2, 10, 16, 17, 21, 40, 46, 55, 70-72, 74]. Barr et al. [11]
exploited the spatial locality in physical memory allocators and
used speculation for address translation to mitigate PTW overhead.
Bhattacharjee et al. [19, 22] and Lustig et al. [45] proposed shared
last-level TLB to accelerate parallel CPU applications by sharing
translations between cores. Srikantaiah et al. [66] presented a “syn-
ergistic TLB" design that allows one TLB victim entries to be stored
in other TLBs during evictions. Compared to these prior efforts,
our approach employs emerging execution paradigms, multiple
GPUs, and is built upon the unique execution characteristics in a
multi-GPU environment. More importantly, our least-TLB hierar-
chy benefits both single application execution and multi-application
execution where few approaches work efficiently in both execu-
tion scenarios. Meanwhile, our approach is complementary to prior
PTW optimizations (e.g., [59]).

TLB optimizations on GPU: Recent works have investigated
GPU TLB optimizations [8, 57, 58, 64, 65, 78, 86]. Jaleel et al. [34]
proposed to use last-level cache to store cache lines and TLB entries
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and memorizes virtual to physical address translations in DRAM.
Ausavarungnirun et al. [9] proposed to use TLB-fill token and L2-
TLB bypass to avoid thrashing and improve the performance of con-
current applications at the L2-TLB level. Buruah et al. [13] exploited
the TLB sharing and proposed prefetching and probing mechanisms
to improve the performance of sensitive TLB applications. Tang et
al. [75] proposed TLB compression and decompression mechanisms
that allow more address translations to be stored in the same TLB
entry. All these works focus on single GPU optimization. In contrast,
our proposed least-TLB is the first TLB optimization that targets
multi-GPU systems. Moreover, these prior works rely on fast com-
munication within a GPU to work efficiently and deliver good TLB
performance. However, the latency in multi-GPU systems is signifi-
cantly higher. Our proposed least-TLB design leverages the Cuckoo
filter to index instead of sending inquiries during execution, remove
the need for broadcasting and receiving inquiries. This is also why
our approach outperforms the state-of-the-art optimization [13],
as we discussed in Section 5.4.

Software TLB optimizations: There also exist some works that
proposed OS and compiler optimizations to improve the TLB per-
formance [7, 14, 25, 43, 44]. Yan et al. [84] proposed OS support
called translation ranger to reduce address translation overhead
by leveraging the contiguity in access pattern. Pham et al. [54]
exploited the spatial locality in page table entries and presented a
multi-granular TLB organization to map multiple pages per entry
to increase TLB reach. Shahar et al. [62] proposed ActivePoint-
ers, a software address translation mechanism, to support for page
faults and virtual address space management for GPU programs. In
our work, we enhance the IOMMU design with minimal hardware
overhead. Potentially, our approach is orthogonal to the software
approaches and can be combined with them to further accelerate
the address translation.

7 CONCLUSION REMARKS

In this paper targeting multi-GPU systems, we comprehensively
and systematically studied the address translation performance
for both single application execution and multi-application exe-
cution. Our investigation reveals that there exist significant re-
dundancy of translation in the TLB hierarchy, causing severe TLB
thrashing and reducing the TLB reach. To this end, we proposed
least-TLB design for multi-GPU systems. The least-TLB employs
least-inclusive policy to eliminate the translation redundancy while
leveraging Cuckoo filter to capture translation reuses efficiently.
Experimental results show that the proposed TLB effectively im-
proves, on average, 23.5% and 16.3% for single application execution
on multi-GPUs and multi-application execution on multi-GPUs,
respectively.
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