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We describe GraSPI - extensible graph-based software implemented as a C/C++ package. GraSPI
computes a large set of descriptors relevant to organic electronics given a segmented 2D or 3D
microstructure. The package represents a microstructure as an equivalent graph and harnesses
algorithms from graph theory to compute those descriptors efficiently. It also includes a suite of
tools for converting data between various formats and post-processing the raw results from the graph
analysis. Herein, we provide illustrative examples of GraSPI’s capabilities in extracting microstructure
descriptors and demonstrate the advantages that a graph-based approach affords via computational
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1. Motivation and significance

The aim of GraSPI, the package described in this paper, is
to provide an efficient, extensible tool for microstructural data
analytics. Such a tool can streamline the ability of material scien-
tists to extract physics-informed features from a microstructure
dataset. The availability of such a suite of features can greatly
simplify and democratize capacity to map and explore structure—
property (SP) relationships. Although the package’s design is gen-
eral, our primary focus of application is the active-layer mor-
phology of organic electronic devices. Numerous emerging fields,
including wearable electronics [1], multiplexed sensors [2], and
bioelectronics [3], would significantly benefit from an improved
understanding of those underlying SP relationships.

* Corresponding author.
E-mail address: olgawodo@buffalo.edu (Olga Wodo).

https://doi.org/10.1016/j.s0ftx.2021.100969

Extensible software frameworks such as ours are timely as
more structure-property maps relying on the morphological de-
scriptors are being established for organic electronics [4]. The
organic electronic industry now has the potential to inexpen-
sively and automatically characterize and image vast numbers of
samples [5,6] produced by a combinatorial exploration of pro-
cessing conditions. The ability to collect such data far outstrips
the current capacity to understand and reason with those data [7].
Thus, software tools able to rapidly, efficiently, and automatically
extract physically meaningful features from each image can pave
the way for identifying meaningful process—structure-property
(PSP) maps. Identifying PSP maps is rarely a trivial task due
to the inherent mismatch between microstructural information
that is observed (e.g., via microscopy or simulations) and the
significantly fewer (i.e., limited) degrees of freedom needed to
describe a PSP map. After all, whereas the goal of microstructural
imaging is to provide detailed, high-resolution maps that produce
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high-dimensional datasets, the goal of establishing quantitative
SP links is to derive a small set of features that can explain the
most variability in the material properties. Further complicating
that quandary is the fact that the desired set of features may not
be directly measurable or even known a priori.

GraSPI computes a set of features’ from a microstructure that
can be used for subsequent data analytics and machine learning,
especially in organic electronics. For input, the package uses a
segmented micrograph with two or more phases to calculate a
set of features that comprehensively captures descriptors of size,
shape, and topology. GraSP1I focuses on the microstructure quan-
tification of organic photovoltaics (OPV) [8,9], modern versions of
which have a so-called “bulk-heterojunction” (BH]J) architecture
in which the photovoltaic active layer is a blend of two materi-
als: electron donors and electron acceptors. The morphology of
thin OPV films directly affects the physical processes within the
cells and thus impacts the performance of the electronic devices.
Therefore, to quantify, understand, and optimize the relationships
between OPV morphology and performance, we have focused on
the microstructural features that encode diffusion, transport, and
interfacial characteristics.

Several research groups have used those features to estab-
lish SP maps [10,10-16] in OPV and leveraged those maps for
microstructure-sensitive design [17]. In its current form, GraSPI
handles the quantification of two-phase morphology, although all
data structures are generalizable to handle multiphase morpholo-
gies [18]. Moreover, we have ensured extensibility by making the
data structures agnostic to dimension as well as able to handle
both structured (i.e., lattice) and unstructured (i.e., point cloud)
data. Such capacities have been particularly useful in related
work [19,20], in which data from molecular dynamics simulations
and quantum chemical calculations were coupled to establish SP
relationships across multiple scales using the same graph-based
representation of the morphology.

2. Software description

GraSPI is built on the concept of the graph-based representa-
tion of a microstructure. The segmented, digitized morphology is
represented as a labeled, weighted, undirected graph. Each pixel,
or voxel in 3D, becomes a graph vertex with a label denoting
its phase, and all vertices are connected with edges that encode
information about distances. Graph construction for simple two-
and three-phase morphologies are illustrated in Fig. 1. Once the
morphology is represented as a graph, standard algorithms from
graph theory are used to quantify information about shortest
paths and connectivity. In the following paragraphs, we first
introduce a few definitions of graphs and their features, fol-
lowed by the formalization of graph construction from a digitized
morphology.

2.1. Basic definitions

e An undirected graph G = (V,E) is defined by a set of
vertices, V, and a set of edges, E, where each edge in E is
an unordered pair of vertices drawn from V.

e A weighted undirected graph G = (V, (E, W)) is an undi-
rected graph (V, E) with an associated weight function, W :
E — R,, that assigns a non-negative real weight to each
edge in E.

1 We use feature and descriptor interchangeably to mean the same thing.
Features are commonly used in the machine learning field, while descriptors
are more commonly used in materials science literature.
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o A labeled weighted undirected graph G = ((V, L), (E, W)) is
a weighted undirected graph (V, (E, W)) with an associated
labeling function, L, that assigns a label to each vertex in V.
In this work, we label each vertex with a color.

e A path between a source vertex, s € V, and a target vertex,
t € Vis a sequence p = [vg, v1,...V;...vk] of vertices
such that v, = s, vy = t and for each i from 0 to i — 1,
vertices v; and v;y; are adjacent in G. The length of path p
is 30 wle(vi, vig1))-

e A shortest path between a source vertex s € V and a target
vertex t € V is a path between s and t that is of the
shortest length among all paths between s and t in G. The
distance between vertices s and t in G is the length of a
shortest path between s and t in G. If no such path exists,
the distance is defined as infinity. Note that the shortest
path between a pair of vertices need not be unique, but the
distance between them is unique.

e A subgraph of G is a graph ¢’ = (V', E’) such that V/ C V
and E’ C E. A vertex-induced subgraph on vertex set V' C V
is the maximal subgraph with the vertex set V'.

e A graph G is connected if there is a path between any pair
of vertices in G. A connected component C in G is a maximal
connected subgraph of G.

GraSPI has three building blocks: graph construction, short-
est path and connectivity calculations, and graph filtering to tailor
graph queries that define the targeted descriptors. Several diffu-
sion, interfacial, and transport descriptors are recast as queries
on the constructed graphs. All descriptors defined in the package
depend on those building blocks.

2.2. Graph construction

A segmented morphology is the input for the software. With-
out the loss of generality, a labeled weighted undirected graph
G = ((V, L), (E, W)) for a two-phase, two-dimensional morphol-
ogy can be constructed, which corresponds to the top row in
Fig. 1. A vertex v € V corresponds to an individual pixel or voxel
in the morphology. Each vertex v € V is assigned a label L(v) as
a “BLACK”, “WHITE”, or “GREY” index depending on the phase of
the respective pixel. Vertices are connected via a set of edges E.

The inherent structure of the morphology (e.g., pixel locations
on a uniform lattice) is used to construct the set of edges E. For
each pixel in the digitized morphology, the local neighborhood
is established; for example, a pixel can have eight neighbors
in 2D, hence a vertex corresponding to a pixel can have up to
eight neighbors in the graph. An edge between a pair of vertices
corresponds to the neighboring pixels’ positions. Each edge e =
(u,v) € E is assigned a weight W(e) equal to the Euclidean
distance between the pixels corresponding to u and v in the
morphology. First-order neighbors one lattice distance away have
an edge weight of 1, whereas second-order neighbors have an
edge weight of +/2. For 3D systems, third-order neighbors are
included as well.

The graph G can be constructed for several types of data. In
Fig. 1, the graph construction is for three types of data, with
structured two-phase morphology, structured three-phase mor-
phology, and unstructured two-phase morphology, respectively.
To address various types of data, GraSPI offers two options
for inputting the data required to construct the graph. The first
option allows reading the structured morphologies and can be
used when the phases of the input morphology are discretized
on a structured grid. In that case, the neighborhood is defined
through the edges, and vertices are simultaneously created and
added to the graph. The second option is for unstructured data. In
that case, the data are read from the input file according to the in-
ternal format described in Appendix. That option allows handling
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Fig. 1. Graph construction for three types of morphology: structured two-phase morphology (the first row), structured three-phase morphology (the second row),
and unstructured two-phase morphology (the third row). Stage 0 represents input with digitized morphology. In Stage 1, each unit element (e.g., pixel or atom) of
morphology is represented as a vertex in the graph with a corresponding color assigned. Local neighborhood is used to connect vertices through edges. In Stage 2,
meta-vertices are added to the graph that represent characteristic elements or landmarks—in our case, anodes and cathodes, with the anode vertex connected to all
top vertices via additional edges and the cathode vertex connected to all bottom vertices. In Stage 3, graph queries are made on the filtered graph, whereas Stage 4
involves the post-processing of descriptors in terms of histograms. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

unstructured datasets where the neighborhood is specific to lo-
cation and needs to be determined externally (e.g., using Voronoi
diagrams or k-nearest neighbors). One can further expand the
functionality of the package to account for multi-phase material
systems fabricated for ternary and quaternary blends as these are
promising candidates for high-performing devices [21,22]. With
the current design of the package, the extension requires that
the set of vertex labels and the set of meta-vertices are expanded
accordingly. It also requires that the corresponding graph queries
are redefined accordingly.

In the second stage, depicted in the third column in Fig. 1,
more meta-vertices are added to the graph. For OPV morpholo-
gies, two types of meta-vertices are added. The first type facili-
tates the extraction of information with respect to the electrodes:
anodes and cathodes, respectively on the red and blue vertices
in the figure. The second type extracts information about the
interface (i.e., GREEN vertex). For two-phase morphologies, only
one type of interface exists between BLACK and WHITE vertices.
That interface is tracked, and the edges that connect a BLACK and
a WHITE vertex are deleted and subsequently connected via an

added meta-vertex (i.e., GREEN vertex).2 Once edges are added
to the meta-vertices, weights are assigned to them. Edges of
weight W = 1 are added between the anode (or cathode) and
the vertices v € V that are placed physically adjacent to the
anode (or cathode). Meanwhile, the edges of weight 0.5 are added
to represent the connections between the interface vertex and
the BLACK or WHITE vertices, v € V. The anode, cathode, and
interface vertices are labeled “anode”, “cathode”, and “interface”,
respectively. The added vertices allow for a straightforward esti-
mation of graph distances from any location in the domain of the
morphology to the electrodes, as well as of any distance from any
point of the domain to the interface.

Once the graph is constructed, its quantification becomes in-
dependent of the original dimensions (i.e., 2D or 3D) and type
(i.e., structured or unstructured). The quantification of morphol-
ogy is recast as a graph query (i.e.,, Stage 3 in Fig. 1), which

2 Interfaces in three-phase morphologies are stored with two meta vertices:
dark green and light green. They extract the connections between BLACK and
GREY phases, and WHITE and GREY phases.



Devyani Jivani, Jaroslaw Zola, Baskar Ganapathysubramanian et al.

Listing 1
class edge_same_color_predicate {
public:

edge_same_color_predicate() : G_(0), color_(0) { }
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edge_same_color_predicate(const gt::graph_t& G, const std::vector<COLOR>%& color)

: G_(&G), color_(&color) { }
bool operator() (const gt::edge_t& e) const {

return ((*color_) [boost::source(e, *G_)] == (*color_) [boost::target(e, *G_)1);

3
private:
const gt::graph_t* G_;
const std::vector<COLOR>* color_;

};

relies on constructs from graph theory (e.g., all-pairs shortest
paths, connected components (CC), and breadth- and depth-first
searches) described in the next subsection.

2.3. Three basic operations on graphs

For a targeted application, characterization can be posed as a
graph query operation using two graph-based algorithms: finding
CCs and computing the shortest paths. Those algorithms are
defined in Sections 2.3.1 and 2.3.2 and are used to construct
application-specific queries. We provide the intuition behind the
example presented and explain the details of the execution. In so
doing, we pay special attention to the graph-filtering operation
that enables the query definitions to capture some aspects of the
underlying physics.

2.3.1. Identifying connected components of a graph

We start by elucidating the link between quantifying the num-
ber of individual domains and the graph queries. Here, our aim
is to identify the subdomains of the morphology, which are
surrounded by subdomains of other color(s). We accomplish that
end by assigning an index of their CC to each vertex (Fig. 2). That
process requires two steps. First, we define the filtered graph
by masking the edges connecting vertices of different labels or
colors. In other words, we ensure that only the edges connecting
vertices of the same label are considered. In the second step, we
invoke the CC algorithm on the filtered graph.

Translating that process into code requires only few lines of
code, see Listing 1. We use the data structure and functions from
the boost library. First, the code defines the predicate to facilitate
graph filtering via class edge_same_color_predicate. That
class has an operator, operator (), that checks whether a given
edge satisfies the filtering condition and returns a true or a
false value if the condition is satisfied or not. In that case, we
check the condition of whether the colors of the two vertices that
form the edge e (source and target) are the same. To retrieve
the labels of vertices constituting the edge, the class additionally
stores pointers to the graph G_ and the vector of the vertices’
labels (e.g., color_).

Once the graph filtering is defined, it is used to filter the
original graph. The function to determine the CCs in the graph
is included in Listing 2. It consists of three lines: the decla-
ration of the object p of type defined above, the declaration
of the filtered graph FG of the type of filtered_graph de-
fined in boost::graph library, and the call of function con-
nected_components from boost library that determine con-
nected components in the filtered graph. The outcome of that
procedure is stored in the vector components with integer values
that correspond to the index of the CCs.

Fig. 2 illustrates a simple example with the indices of CCs
marked. In the figure, each vertex in the graph has an assigned
index representing the CC that it belongs to. All vertices, included

meta-vertices, have been assigned indices. With the CCs deter-
mined, a detailed quantification can be performed. For instance,
a simple operation is to query the graph on the total number of
CCs. In our example, the total number of CCs is seven, with three
CCs being black (i.e., Indices 1-3), two being white (i.e., Indices
4 and 5), and two corresponding to two electrodes (i.e., Indices
0 and 6). In the next round of graph queries, we perform an
additional operation that aims to determine the CCs adjacent to
the bottom boundary. We first find all nearest neighbors of the
blue meta-vertex, after which we create the corresponding set
of CC indices in that neighborhood. In that case, the set consists
of one CC index: Index 1. That CC is black, and no WHITE CC is
directly adjacent to the BLUE vertex. We repeat the query for
the red meta-vertex and learn that the set of CC consists of two
indices: Indices 3 and 4. The CC with Index 3 is BLACK, whereas
the CC with Index 4 is WHITE. For our targeted application, BLACK
CC can be considered useful if connected to an anode (i.e., RED
meta-vertex) and WHITE CC if connected to a cathode (i.e., BLUE
meta-vertex). In that morphology, only one CC is considered to be
useful: CC with Index 4. The gradual evolution of the graph query
exemplifies the translation of queries into physically meaningful
descriptors.

2.3.2. The shortest path in the graph

The computation of shortest paths is useful to estimate the
properties related to the transport of charged and uncharged
species within a BH] morphology. In particular, such computation
can be used to estimate the path lengths of excitons as they dif-
fuse toward the donor-acceptor interface and both electrons and
holes (i.e., with positive and negative charges) as they traverse the
tortuous domains to a specific electrode. For those calculations,
the shortest paths are first determined from meta-vertex to other
vertices of interest, followed by post-processing to determine
histograms of path lengths.

An example code to define a class with a predicate in order
to filter the original graph is presented in Listing 3. The predicate
allows for the filtration of edges that connect the RED vertex to
all BLACK vertices as well as BLACK to BLACK vertices. There
are several ways of defining the conditions to filter the edges.
Our implementation involves checking for three conditions. For
each edge defined by source and target vertices, we check two
combinations of colors: RED and BLACK as well as BLACK and
RED.?

Once the predicate to filter the graph is defined, we use it in
the function that determines the shortest paths in the graph. The
code of that function, included in Listing 4, begins by declaring
the predicate and the corresponding filtered graph. Next, we

3 The function also preserves all edges that connect vertices of the same color.
The predicate ensures that we preserve the edges that connect WHITE and WHITE
vertices. Those edges are ignored while computing the shortest paths, because
the edges connecting WHITE and BLACK vertices are ignored.
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Listing 2
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void DetermineConnectedComponents(gt: :graph_t* G, const std::vector<COLOR>& color,

std: :vector<int>& components){
edge_same_color_predicate p( *G, color);

boost: :filtered_graph<gt::graph_t, edge_same_color_predicate> FG(*G, p);

boost: : connected_components (FG, &components[0]);

Listing 3

class edge_color_BLACK_or_RED_predicate {

public:
edge_color_BLACK_or_RED_predicate() : G_(0), color_(0) { }
edge_color_BLACK_or_RED_predicate(const gt::graph_t& G,

const std::vector<COLOR>& color)

: G_(&G), color_(&color) { }
bool operator() (const gt::edge_t& e) const {
if ( ( (xcolor_) [boost: :source(e, *G_)] == RED )
&& ( (*color_) [boost::target(e, *G_)] == BLACK ) )
return true;
if ( ( (*color_ ) [boost::target(e, *G_)] == RED )
&& ( (*color_) [boost: :source(e, *G_)] == BLACK ) )
return true;

return ((*color_) [boost::source(e, *G_)] == (xcolor_) [boost::target(e, *G_)1);

}
private:
const gt::graph_t* G_;
const std::vector<COLOR>* color_;

};

define two vectors to store the outcome from the shortest-path
calculations: p and d. Vector d stores the lengths of all single-
sourced shortest paths, whereas vector p stores the indices to
the parents along the shortest path. Both vectors are initialized
to be used in the last line of the code snippet, the execution of
Dijkstra’s algorithm, used to solve the single-source shortest-path
problem [23,24]. Here, we determine the shortest paths from the
RED vertex to all vertices in the filtered graph. As the outcome, for
each vertex we can look up the distance to the RED meta-vertex
and reconstruct the shortest path by tracing the generation of all
parental vertices using vector p.

The structure of the code is similar to the code in Section 2.3.1.
It not only involves graph filtering via the predicate and executing
the graph algorithm but also has a generic function in choosing
the source in the single-source shortest-path problem. In GraSPI,
that function is used for several descriptors—for instance, to find
the shortest path from the GREEN vertex to all BLACK vertices, as
well as from the BLUE vertex to all WHITE vertices.

We now explain how the graph query’s outcome is post-
processed to provide qualitative and quantitative means to com-
pare morphologies. In Fig. 3, we depict three morphologies along
with the histograms of the shortest paths from all black pixel
to the interface. Those morphologies are selected due to the
dramatic variation in feature size and distance to the interface.
In the second row, we depict the histogram of the length of all
shortest paths from the graph query. That histogram provides
insight into the number of paths of varying length. From the
histograms, information about the fraction of domains that are
at an exceptionally short distance from the interface can be
easily extracted. In the case of the first morphology, 10% of black
vertices are within a 0.5-pixel distance from the interface. The
other morphologies have 18.5% and 20%, respectively.

In our application in OPVs, the described query is translated
to quantify the fraction of the donor (BLACK) within d distance
from the interface. That information can be more seamlessly ex-
tracted from the cumulative histogram (Fig. 3, third row), which

Number of BLACK CCs : 3 (Indices: 1, 2, 3)
Number of WHITE CCs : 2 (Indices: 4 ,5)
Number of BLACK CCs conn to RED : 1 (Index: 4)
Number of WHITE CCs conn to BLUE : 0 (-)

Fig. 2. Example of a simple graph with indices of the connected components marked. Number of BLACK components (i.e., three) and WHITE components (i.e., two),
number of BLACK components connected to top (one), white components connected to bottom (i.e., none).

5
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void FindDistancesToVertexN( gt::graph_t* G, const std::vector<COLOR>& color, gt::vertex_t n ){

edge_color_BLACK_or_RED_predicate pred( *G, color);

boost: :filtered_graph<gt::graph_t, edge_color_BLACK_or_RED_predicate> FG(*G, pred);

std: :vector<double> d(boost::num_vertices(*G));

std: :vector<gt::vertex_t> p(boost: :num_vertices(*G));
std::fill(d.begin(), d.end(), 0.0);

for (unsigned int i = 0; i < n; ++i) pl[i] = i;

boost: :dijkstra_shortest_paths(FG, top_electrode, boost::predecessor_map(&p[0]).distance_map(&d[0]));
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Fig. 3. Various types of information extracted from three example morphologies (top). Depicted histograms provide a detailed characterization of morphologies
with respect to the distance from any vertex representing donor material (BLACK) to the interface. We plot histograms illustrating the probability mass function
P(distance = x) (second row) and the cumulative probability mass function P(distance < x) (last row).

facilitates a physically meaningful understanding of the total frac-
tion of electron donor material within 10 nm distance from the
interface (P(distance = x)). Among the analyzed morphologies,
that fraction is the highest for the third morphology (100%) and
the lowest for the first (82%). We can also vary the distance, d,
and extract the fraction of pixels within that distance from a
histogram (i.e., the probability mass function) of the path lengths
(i.e., distances). That method is an example of post-processing
the histograms to extract physically meaningful descriptors that
capture certain aspects of the targeted application.

2.4. Software architecture

GraSPI is a command line tool with settings configurable
in the command line. Details about the available functionality
appear in Section 2.5. GraSPI is written in C/C++ using the boost
library for graph-based operation [25]. GraSPI accepts two input
formats for structured and unstructured data (see Appendix for
details on those formats) and a set of text files for output. The set
of descriptors is outputted to the standard stream and can be used
in the sequence of more than one command (i.e., in a pipeline).
For example, the standard output from GraSPI can be redirected
to the log file. GraSPI is supplemented by a set of tools including
format converters that convert the plt format to the row-major
format of the input data and post-processing tools that can be

used to generate histograms of distances and generate a one-page
summary of all descriptors:

o format converters: from plt format to the row-major format
of the input data;

e post-processing tools that can be used to: generate his-
tograms of distances, and to generate one page summary of
all descriptors.

2.5. Software functionalities

To learn the set of GraSPI’s available settings, the user is
encouraged to execute GraSPI in the command line without any
arguments. The usage message provides the list of parameters
that can be used:

./graspi

GraSPI accepts input data in two formats: graph, and
array.

For more information check documentation

./graspi -g <INPUT_FILE.graphe>

./graspi -a <INPUT_FILE.txt> (row-major order) -s
<pixelSize> (default 1) -p <0,1> (default O-false) -
n <2,3> (default 2-D,A) -r path where store results
(default ./)
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Table 1
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The list of descriptors along with the relation to the graph algorithms, the OPV performance measure, and the three steps of the photovoltaic process: light absorption
(ABS), exciton dissociation (DISS), and charge transport (CT). When no direct relation with OPV performance exists, then the descriptor is labeled as statistics (STAT).
The naming is consistent with the log file outputted by GraSPI The third column lists the relation to the graph algorithms. CC = connected component algorithm,

DA = Dijkstra’s algorithm, GF = graph filtering.

Descriptors

Relation to graph Relation to OPV performance

ABS_wf_D Weighted fraction of BLACK vertices

STAT_CC_D Number of BLACK CCs:

STAT_CC_A Number of WHITE CCs

STAT_CC_D_An Number of BLACK CCs conn to RED

STAT_CC_A_Ca Number of WHITE CCs conn to BLUE

STAT_n Number of vertices:

STAT_n_D Number of BLACK vertices

STAT_n_A Number of WHITE vertices

ABS_f D Fraction of BLACK vertices

CT_f_conn Fraction of useful vertices - w/o islands:

CT_f_conn_D_An Fraction of BLACK vertices conn to RED

CT_f_conn_A_Ca Fraction of WHITE vertices conn to BLUE

DISS_wf10_D Weighted fraction of BLACK vertices in 10 distance to GREEN
DISS_f10_D Fraction of BLACK vertices in 10 distance to GREEN

STAT_e Number of GREEN 1st order edges

CT_e_conn Number of int edges with complementary paths
CT_f_e_conn Fraction of interface with complementary paths to BLUE and RED
CT_e_D_An Number of BLACK int vertices with path to RED

CT_e_A_Ca Number of WHITE int vertices with path to BLUE
CT_f_D_tort1 Fraction of BLACK vertices with straight rising paths (t=1)
CT_f_A_tort1 Fraction of WHITE vertices with straight rising paths (t=1)
CT_n_D_adj_An Number of BLACK vertices in direct contact with RED vertex
CT_n_A_adj_Ca Number of WHITE vertices in direct contact with BLUE vertex

cardinality of V

CC+GF

cardinality of V
GF+cardinality of V
GF+cardinality of V
GF+cardinality of V
CC+GF

CC+GF

CC+GF

GF+DA

GF+DA

cardinality of E
GF+CC

GF+CC

GF+CC

GF+CC

GF+DA

GF+DA

GF+DA

GF+DA

light absorption

light absorption
charge transport
charge transport
charge transport
exciton diffusion
exciton diffusion
exciton diffusion
charge transport
charge transport
charge transport
charge transport
charge transport

GraSPI requires one mandatory input parameter: the name of
the input file with the corresonding argument, (-a or -g and <IN-
PUT_FILE>). The remaining parameters are optional and have
the default value if the parameter is not explicitly provided.

-a <INPUT_FILE.txt> (row-major order) is the option to in-
put information about structured data. With that assump-
tion, the neighborhood of each voxel or pixel can be deter-
mined as the graph is constructed.

-g <INPUT_FILE.graphe> is the option to input information
about unstructured data. The input file has to provide all in-
formation about the graph, meaning that the neighborhood
of each vertex in the graph needs to be determined exter-
nally. Meta-vertices and the associated edges need to be
defined in the input file. When this option is used, GraSPI
reads the text file and initializes the set of vertices and edges
from the input file, which need to be in agreement with
those defined in the package for a given usage case.

-s <pixelSize> (default = 1) is the option that sets the size
of the pixel to compute the length of the shortest paths. If
unspecified, then all results will be outputted in terms of the
number of pixels and need to be rescaled for dimensional
analysis.

-p <0, 1> (default = 0, meaning false) is the option that speci-
fies whether periodicity on the side faces is to be applied,
which is valid only for morphology inputted as the array
option (i.e., —a).

-n <2, 3> (default = 2, i.e., black and white, electron-donor and
electron accepting material) is the option for specifying the
number of phases. For three-phase morphology (option -n
3), black, white, and grey vertices are read, which corre-
spond to electron donor, electron acceptor, and mixed phase
material, respectively.

-r path is the option that specifies where results are stored
(default ./)—that is, where text files with results will be
saved.

GraSPI computes two types of descriptors: scalar descrip-
tors and array descriptors. Scalar descriptors are directed to

the standard output,* whereas array descriptors are directed to
the corresponding file. The list of scalar descriptors along with
their graph relationships is summarized in Table 1. The array
descriptors correspond to the shortest distances and are saved
in the files DistancesGreenToRedViaBlack.txt, DistancesGreen-
ToBlueViaWhite.txt, DistancesBlackToRed.txt, DistancesWhiteTo-
Blue.txt, DistancesBlackToGreen.txt, TortuosityBlackToRed.txt, and
TortuosityWhiteToBlue.txt. The name of the file indicates the con-
ditions used to filter the graph. For example, the file Distances-
BlackToGreen.txt stores all of the shortest distances between any
donor, black, and O voxel and the green interface. If there is
no direct connection between the source vertex and the target
vertex, then the distance is set to infinity. This is how boost
library is initializing the distance vector. The distances are saved
in the order of the labels from the input file, and the infinity
distances are maintained in order to maintain the capability to
map back the distances to the input voxels.

3. Illustrative examples of morphology annotation through
graph-queries

In this section, we present an example morphology annotation
with the set of descriptors in the form of a one-page summary
(Fig. 4) generated using GraSPI with bash, a command line tool
for processing text (e.g., grep and sed); gnuplot, which allows
rapid visualization; and latex, which allows combining various
data sources. The scripts are included in the folder with examples.

The left column in the summary includes the figure with
the morphology, 22 scalar descriptors computed in GraSPI, and
three additional descriptors post-processed from the distance
array. The right column in the summary depicts six histograms of
distances for the quick visual display of the characteristics of the
pathways. For one type of pathway, A-path to Ca (i.e., acceptor
pathways toward the cathode), three types of information are
displayed: the histogram of the path lengths, the tortuosity of
the pathways, and the pathway balance (i.e., between donor and
acceptor pathways).

4 standard output std: :cout.
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Fig. 4. Example one page summary of descriptors and histograms generated by GraSPI.
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Fig. 5. The runtime of GraSPI for 2D and 3D morphologies with increasingly large graphs in terms of the number of vertices and edges. For both 2D and 3D
morphologies, the runtime is in seconds. The largest morphologies analyzed consisted of 2.5 million vertices, or 13 million edges and vertices, on a desktop computer

with a 2.3-GHz dual-core Intel Core i5 processor and 8 GB of RAM.

4. Computational complexity

The complete framework discussed thus far is implemented
in C++ using the boost library for graph-based operations [25].
We performed a set of experiments to demonstrate the compu-
tational cost associated with the descriptor calculations. Fig. 5
reports the total runtime (in seconds) for all of the operations
involved in descriptor calculations. The reported runtime includes
the reading of data, graph filtration, the determination of the CCs
and shortest distances, and the computation of the descriptors
(Table 1).

The tests were executed on two types of data of increasing
size. We used 2D and 3D periodic structures which were gener-
ated using Cahn-Hillard equations for thin-film geometries [26].

The representative morphologies of thin films are included in the
second and third columns of Fig. 5. To gradually increase the
size of the morphologies, the basic morphology was replicated
gradually: vertically in 2D and horizontally in 3D.°

For 2D analysis, three morphologies of varying domain sizes
and geometries were considered. We selected those structures to
test the performance with different types of morphologies for a
range of CCs and shortest distances. The quantities are plotted for
the topmost morphology in the second column in Fig. 5.5

5 The basic morphologies are periodic, meaning that the replication ensures
the continuity of the morphologies.

6 we also replicated the morphologies horizontally (not reported here) but
did not notice any significant difference.
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Fig. A.6. Simple example of structured phase information and the two formats: array and graph-based.

The smallest 2D or 3D sample explored was a 100 x 400
micrograph that corresponds to a total of &~ 40, 000 vertices.” The
sample size was doubled for every test, with the largest sample
sizes exhibiting approximately 2.56 million vertices in 2D and
1.6 million in 3D, which correspond to a total of approximately
12 million vertices and edges combined. The upper range of the
problem size is limited due to RAM limitations. For samples with
more than 3 million vertices, the maximum RAM (8 GB) limit was
reached on the machine used.

In Fig. 5, we plot the time taken to evaluate those two types
of morphology. We plot data for the 2D and 3D structures as a
function of problem size (i.e., to the total of edges and vertices)
using black and grey lines and points, respectively. For 2D, the
runtime increases from 2 s for the smallest sample and to 32 s for
the largest. Moreover, the runtimes for 3D structures with sizes
similar to the graphs of the 2D structures are comparable.

For the range of the morphology sizes examined, the runtime
is observed to be nearly linear. That agrees with complexity
theory, which holds that Dijkstra’s algorithm and the CCs have
a time complexity of O(V log(V)) and O(V + E), respectively, in
which V is the number of vertices and E is the number of edges
of the input graph. The computational complexities of the graph-
based algorithms depend on the size of the data (i.e., the number
of vertices and edges). The analysis was repeated five times for
each sample size, and the values were within 2% of the mean
runtime value (not shown here).

In summary, our analysis demonstrates that in the problem
range (i.e., of up to 12 million (V + E), 2.5 million vertices in 2D,
and 10 million (V + E) that correspond to 1.6 million vertices
in 3D), the total execution time is less than 1 min, which cre-
ates opportunities to run real-time analysis and high-throughput
exploration. Moreover, the execution time is insensitive to the
dimensionality (i.e., 2D vs. 3D). That quality is valuable for using
graph-based algorithms to evaluate 3D structures, because the
complexities depend only on the size of the graph.

5. Impact

GraSPI has already been instrumental in advancing current
understandings of PSP maps in OPVs. Furthermore, it can be
used to democratize the ability of non-computer-savvy domain
scientists to rapidly and nearly in real time extract a wide suite
of microstructure descriptors. GraSPI has previously been used
to build a surrogate model of performance in OPVs [11] and mi-
crostructure optimization for OPVs [17,27], as well as to create a
corpus of data for analysis [ 10-16]. We have applied the approach
to quantify two- and three-phase morphologies and extended
it to point cloud data for the analysis of molecular dynamics
simulations [20]. We also expanded it into a multiscale approach

7 To match that dimension in 3D, we took 2D morphology with thickness of
1 voxel in the third dimension.

for SP mapping [19]. We anticipate that GraSPI can contribute to
various fields of research, including biomaterials and ceramics at
both the molecular and continuum scales.
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Appendix. Two input formats

GraSPI accepts two input formats for structured and unstruc-
tured data. The structured data assumes that the size of discrete
points in each dimension is known. The dimensionality is pro-
vided in the first line of the input file as ny, n,, n,. The reminder
of the input file contains the array (i.e., row-wise representation
of the corresponding matrix) with the corresponding phases from
the set of available labels. Once the data are structured, the local
neighborhood can be constructed as the data are read by GraSPI.

In the second format, corresponding to unstructured data,
information about phases needs to be provided along with the
neighborhood. Here, we use the adjacency matrix to inform
GraSPI about the neighborhood. The input file starts with the
total number of vertices in the dataset. Next, each line provides
the information about each vortex: the index of the vertex,
followed by the color of the vertex. The remainder of the line
consists of triplets with information about the neighbors. Each
triplet consists of the index of the neighbor, the distance from
the neighbor, and the type of neighbor. In our example, three
types of neighbors are considered: first-, second-, and third-order
neighbors, demarcated as “f”, “s”, and “t". The set of types may
be redefined to encode additional information (see Fig. A.6).
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