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Abstract

We give an algorithm for augmenting the edge connectivity of an undirected graph by using the isolating cuts
framework (Li and Panigrahi, FOCS ’20). Our algorithm uses poly-logarithmic calls to any max-flow algorithm, which
yields a running time of O(m + n3/2) and improves on the previous best time of O(n?) (Benczir and Karger, SODA ’98)
for this problem. We also obtain an identical improvement in the running time of the closely related edge splitting off
problem in undirected graphs.

1 Introduction

In the edge connectivity augmentation problem, we are given an undirected graph G = (V, E) with (integer) edge weights w,
and a target connectivity 7 > 0. The goal is to find a minimum weight set F of edges on V such that adding these edges to G
makes the graph r-connected. (In other words, the value of the minimum cut of the graph after the augmentation should
be at least 7.) The edge connectivity augmentation problem is known to be tractable in poly(m, n) time, where m and
n denote the number of edges and vertices respectively in G. This was first shown by Watanabe and Nakamura [21]
for unweighted graphs, and the first strongly polynomial algorithm was obtained by Frank [6]. Since then, several
algorithms [5, 19, 8, 7, 18] have progressively improved the running time to the current best O(n?®) obtained by Benczur
and Karger [4].! In this paper, we give an algorithm to solve the edge connectivity augmentation problem using polylog(n)
calls to any max-flow algorithm:

THEOREM 1.1. There is a randomized, Monte Carlo algorithm for the edge connectivity augmentation problem that runs in
O(m) + polylog(n) - F(m, n) time where F(m, n) is the running time of any maximum flow algorithm on an undirected graph
containing m edges and n vertices.

Using the current best max-flow algorithm on undirected graphs [20],? this yields a running time of O(m + n*?), thereby
improving on the previous best bound of O(n?).

The edge connectivity augmentation problem is closely related to edge splitting off, a widely used tool in the graph
connectivity literature (e.g., [7, 18]). A pair of (weighted) edges (u,s) and (s,v) both incident on a common vertex s is
said to be split off by weight w if we reduce the weight of both these edges by w and increase the weight of their shortcut
edge (u,v) by w. Such a splitting off is valid if it does not change the (Steiner) connectivity of the vertices V' \ {s}. If all
edges incident on s are eliminated by a sequence of splitting off operations, we say that the vertex s is split off. We call
the problem of finding a set of edges to split off a given vertex s the edge splitting off problem.

Lovasz [15] initiated the study of edge splitting off by showing that any vertex s with even degree in an undirected
graph can be split off while maintaining the (Steiner) connectivity of the remaining vertices. (Later, more powerful splitting
off theorems [16] were obtained that preserve stronger properties and/or apply to directed graphs, but these come at the
cost of slower algorithms. We do not consider these extensions in this paper.) The splitting off operation has emerged
as an important inductive tool in the graph connectivity literature, leading to many algorithms with progressively faster
running times being proposed for the edge splitting off problem [5, 6, 7, 18]. Currently, the best running time is O(n?),
which was obtained in the same paper of Benczur and Karger that obtained the edge connectivity augmentation result [4].
We improve this bound as well:
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10(+) ignores (poly)-logarithmic factors in the running time.

2We note that for sparse graphs, there is a slightly faster max-flow algorithm that runs in O(m3/2=%) time [9], where § > 0 is a small constant. If
we use this max-flow algorithm in Theorem 1.1, we also get a running time of O(m?*%~9) for the augmentation problem.
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THEOREM 1.2. There is a randomized, Monte Carlo algorithm for the edge splitting off problem that runs in O(m)+polylog(n)-
F(m, n) time where F(m, n) is the running time of any maximum flow algorithm on an undirected graph containing m edges
and n vertices.

As in previous work (e.g., [4]), instead of giving separate algorithms for the edge connectivity augmentation and
the edge splitting off problems, we give an algorithm for the degree-constrained edge connectivity augmentation (DECA)
problem, which generalizes both these problems. In this problem, given an edge connectivity augmentation instance, we
add additional degree constraints f(v) > 0 requiring the total weight of added edges incident on each vertex to be at most
its degree constraint. The goal is to either return an optimal set of edges for the augmentation problem that satisfy the
degree constraints, or to say that the instance is infeasible.

Clearly, DECA generalizes the edge connectivity augmentation problem. To see why DECA also generalizes splitting
off, create the following DECA instance from a splitting off instance: Remove the edges incident on s and set f(v) to the
weighted degree of v in these edges. Then, set 7 to the (Steiner) connectivity of V in the input graph. Once the DECA
solution F is obtained, for vertices v whose degree in F is smaller than f(v), use an arbitrary weighted matching to increase
the degrees to exactly f(v).

For the DECA problem, we show that:

THEOREM 1.3. There is a randomized, Monte Carlo algorithm for the degree-constrained edge connectivity augmentation
problem that runs in O(m) + polylog(n) - F(m, n) time where F(m, n) is the running time of any maximum flow algorithm
on an undirected graph containing m edges and n vertices.

Theorem 1.3 implies Theorem 1.1 and Theorem 1.2. The rest of this paper focuses on proving Theorem 1.3.

1.1 Our Techniques A key tool in many augmentation/splitting off algorithms (e.g., in [21, 19, 8, 3, 4]) is that of extreme
sets. A non-empty set of vertices X C V is called an extreme set in graph G = (V, E) if for every proper subset Y C X,
we have 56(Y) > 5¢(X), where dg(X) (resp., 6(Y)) is the total weight of edges with exactly one endpoint in X (resp.,
Y) in G. (If the graph is unambiguous, we drop the subscript G and write §(-).) The extreme sets form a laminar family,
therefore allowing an O(n)-sized representation in the form of an extreme sets tree. The main bottleneck of the Benczur-
Karger algorithm is in the construction of the extreme sets tree. They use the recursive contraction framework of Karger
and Stein [12] for this construction, which takes O(n?) time. In this paper, we obtain a faster algorithm for finding the
extreme sets of a graph:

THEOREM 1.4. There is a randomized, Monte Carlo algorithm for finding the extreme sets tree of an undirected graph that runs
in O(m) + polylog(n) - F(m,n) time where F(m,n) is the running time of any maximum flow algorithm on an undirected
graph containing m edges and n vertices.

Our extreme sets algorithm is based on the isolating cuts framework that we introduced in a recent paper [13]. (This
was independently discovered by Abboud et al. [2].) Given a set of k terminal vertices, this framework uses O(logk)
max-flows to find the minimum cuts that separate each individual terminal from the remaining terminals (called isolating
cuts). In the current paper, instead of using the framework directly, we use a gadget called a Cut THRESHOLD that is
defined as follows: for a given vertex s and threshold ¢ > 0, the CuT THRESHOLD ct(s, ¢) is the set of vertices ¢ such that
the value of the minimum s — ¢ cut A(s, ) < ¢. We showed recently [14] that the isolating cuts framework can be used to
find the Cut THRESHOLD for any vertex s and threshold ¢ in polylog(n) max-flows. We use this result here, and focus on
obtaining extreme sets using a CuT THRESHOLD subroutine.

Our main observation is that if an extreme set Y partially overlaps the complement X of a Cut THRESHOLD, then
it must actually be wholly contained in X. (Intuitively, one may interpret this property as saying that an extreme set
and a Cut THRESHOLD are non-crossing, although our property is actually stronger, and only the non-crossing property
does not suffice for our algorithm.) This allows us to design a divide and conquer algorithm that runs a recursion on
two subproblems generated by contracting each side of a carefully chosen Cut THREsSHOLD. The above property ensures
that every extreme set in the original problem continues to be an extreme set in either of the two subproblems. In order
to bound the depth of recursion, it is important to use a Cut THRESHOLD that produces a balanced partition of vertices.
We ensure this by adapting a recent observation of Abboud et al. [1] which asserts that a Cut THRESHOLD based on the
connectivity between two randomly chosen vertices is balanced with constant probability. One additional complication
is that while the contraction of the Cut THRESHOLD (or its complement) does not eliminate any extreme set, it might
actually add new extreme sets. We run a post-processing phase where we use a dynamic tree data structure to eliminate
these spurious extreme sets added by the recursive algorithm.
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After obtaining the extreme sets tree, the next step (in our algorithm and in previous work such as [4]) is to add
a vertex s and use a postorder traversal on the extreme sets tree to find an optimal set of edges incident on s for edge
connectivity augmentation. This step takes O(n) time.

Next, we split off vertex s using an iterative algorithm that again uses the extreme sets tree. At a high level, this
splitting off algorithm follows a similar structure to the Benczur-Karger algorithm, but with a couple of crucial differences
that improves the running time from O(n?) to O(m). The first difference is in the construction of a min-cut cactus data
structure. At the time of the Benczur-Karger result, the fastest cactus algorithm was based on recursive contraction [12]
and had a running time of O(n?). But, this has since been improved to O(m) by Karger and Panigrahi [11]. Using this
faster algorithm removes the first O(n?) bottleneck in the augmentation algorithm.

The second and more significant improvement is in the use of data structures in the splitting off algorithm. This is an
iterative algorithm that has O(n) iterations and adds O(n) edges in each iteration. The Benczur-Karger algorithm updates
its data structures for each edge in all these iterations, thereby incurring O(n?) updates. Instead, we use the following
observation (this was known earlier): there are only O(n) distinct edges used across the O(n) iterations, and the total
number of changes in the set of edges from one iteration to the next is O(n). To exploit this property, we use a lazy
procedure based on the top tree data structure due to Goldberg et al. [10] (and additional priority queues to maintain
various ordered lists). Our data structure only performs updates on edges that are added/removed in an iteration, thereby
reducing the total number of updates to O(n), and each update can be implemented in O(log n) using standard properties
of top trees and priority queues. We obtain the following:

THEOREM 1.5. Given an input graph and its extreme set tree, there is an O(m) time algorithm that solves the degree-constrained
edge connectivity problem.

Theorem 1.3 now follows from Theorem 1.4 and Theorem 1.5.
Roadmap. We give the algorithm for finding extreme sets that establishes Theorem 1.4 in Section 2. The algorithm
for the DECA problem that uses the extreme sets tree and establishes Theorem 1.5 is given in Section 3.

2 Algorithm for Extreme Sets

In this section, we present our extreme sets algorithm and prove Theorem 1.4, restated below.

THEOREM 2.1. There is a randomized, Monte Carlo algorithm for finding the extreme sets tree of an undirected graph that runs
in O(m) + polylog(n) - F(m, n) time where F(m, n) is the running time of any maximum flow algorithm on an undirected
graph containing m edges and n vertices.

Recall that the input graph G = (V, E) is an undirected graph with integer edge weights w. An extreme set is a set of
vertices X C V such that for every proper subset Y ¢ X, we have §(Y) > §(X). Note that all singleton vertices are also
extreme sets by default since they do not have non-empty strict subsets.

The following is a well-known property of extreme sets (see, e.g., [4]):

LEMMA 2.1. The extreme sets of an undirected graph form a laminar family, i.e., for any two extreme sets, either one is contained
in the other, or they are entirely disjoint.

This lemma allows us to represent the extreme sets of G = (V, E) as a rooted tree TS* with the following properties:
« The set of vertices in V exactly correspond to the set of leaf vertices in TS

« The extreme sets in G exactly correspond to the (proper) subtrees of TS in the following sense: for any extreme set
X c V, there is a unique subtree of G denoted Té"t (X) such that the vertices in X are exactly the leaves in Té"t (X).
Overloading notation, we also use TS (X) to denote the root of the subtree corresponding to X in TS

We call TS the extreme sets tree of G, and give an algorithm to construct it in this section.
We will use a Cut THRESHOLD procedure from our recent work [14]. Recall that a CuT THRESHOLD is defined as
follows:

DEFINITION 2.1. Let A(s,t) denote the value of the max-flow between two vertices s and t; we call A(s,t) the connectivity
between s andt. Then, the CUT THRESHOLD for vertex s and threshold ¢ > 0, denoted ct(s, ¢), is the set of all verticest € V\{s}
such that A(s, t) < ¢.
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In recent work, we gave an algorithm for finding a Cut THRESHOLD [14] based on our isolating cuts framework [13]:

THEOREM 2.2. (L1 AND PANIGRAHI [14]) Let G = (V, E) be an undirected graph containing m edges and n vertices. For any
given vertex s € V and threshold ¢ > 0, there is a randomized Monte Carlo algorithm for finding the CUT THRESHOLD ct(s, ¢)
in O(m) + polylog(n) - F(m,n) time, where F(m,n) is the running time of any max-flow algorithm on undirected graphs
containing m edges and n vertices.

In order to use this result, we first relate extreme sets to CuT THRESHOLD. We need the following definition:

DEFINITION 2.2. We say that a set of vertices X respects the extreme sets of G if for any extreme set Y of G, one of the following
holds: (a)Y € X or (b)) X C Y or (c) X NY = @. In other words, if there exist two vertices x1, %X, € X such that x; € Y and
xy € Y, then it must be that Y C X.

Our main observation that relates extreme sets to CuT THRESHOLD is the following:

LeEMMA 2.2. Let G = (V,E) be an undirected graph. For any vertexs € V and threshold ¢ > 0, the complement of the Cut
THRESHOLD ct(s, ¢p), denoted X =V \ ct(s, ¢), respects the extreme sets of G.

Note that s € X by definition of ct(s, ¢). The crucial ingredient in the proof of Lemma 2.2 is that minimum s — ¢ cuts for
any ¢ ¢ X are non-crossing with respect to the cut ct(s, ¢):

LEMMA 2.3. For any vertext € ct(s, ¢), the side containing t of a minimum s — t cut must be entirely contained in ct(s, ¢).

Proof. Suppose not; then, there is at least one vertex t” ¢ ct(s, §) such that the minimum s — ¢ cut also separates s and ¢’.
But, then A(s, t") < A(s,t) < ¢. This contradicts t’ ¢ ct(s, ¢). 0

Now, we use Lemma 2.3 to prove Lemma 2.2.

Proof. [Proof of Lemma 2.2] An extreme set Y that violates Lemma 2.2 has the following properties: (a) Y separates s, ¢’
for some vertex t’ ¢ ct(s, ¢), and (b) Y contains some vertex t € ct(s, ¢). Let Z denote the side containing t of a minimum
s — 1 cut.

Now, since the cut function is submodular, we have:

(2.1) S(Y)+8(Z) > 8(YNZ)+8(YUZ).

But, by Lemma 2.3, we have Z C ct(s, #). Now, since Y separates s,t’ ¢ ct(s, @), if follows that Y U Z also separates s, t’.
As a consequence,

(2.2) S(YUZ) = As, t') > .

Finally, since t € ct(s, ¢), we have A(s,t) < ¢. Since Z is a minimum s — ¢ cut, it follows that:
(2.3) 6(2) < ¢.

Combining Equation (2.2) and Equation (2.3), we get:

(2.9) 5(Z) <6(YU2Z).

Finally, we note Y N Z is a proper subset of Y. This is because Y contains one vertex among s,t” ¢ ct(s, ¢) by virtue of
separating them, but Z is entirely contained in ct(S, ¢) by Lemma 2.3. Now, since Y is an extreme set, we have

(2.5) S(YNZ)>6(Y).
The lemma follows by noting that Equation (2.4) and Equation (2.5) contradict Equation (2.1). 0

2.1 Description of the Algorithm We now use Lemma 2.2 to design a divide and conquer algorithm for extreme sets.
The algorithm has two phases. In the first phase, we construct a tree T that includes all extreme sets of G as subtrees, but
might contain other subtrees that do not correspond to extreme sets. In the second phase, we remove all subtrees of T
that are not extreme sets and obtain the final extreme sets tree TS
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Phase 1: The first phase of the algorithm uses a recursive divide and conquer strategy. A general recursive subproblem
is defined on a graph G&" = (V&°", E&") that is obtained by contracting some sets of vertices in G that will be defined
below. The contracted vertices are denoted C8" and the uncontracted vertices U™ C V. Thus, V& = (C8 U Use",
Note that the contracted vertices C8" form a partition of the vertices in V' \ U8®". The graph G&" is obtained from G by
contracting each set of vertices that is represented by a single contracted vertex in C&", deleting self-loops and unifying
parallel edges into a single edge whose weight is the cumulative weight of the parallel edges. The goal of the recursive
subproblem on G8" is to build a tree T(G&") that contains all extreme sets in G8". Initially, U8" = V and C5" = g, i.e.,
G&" = G. Therefore, the overall goal of the algorithm is to find all extreme sets of G.

First, we perturb the edge weights of the input graph G&" as follows: We independently generate a random value
r(u, v) for each edge that is drawn from the uniform distribution defined on {1, 2, ..., N}. (We will set the precise value of
N later, but it will be polynomial in the size of the graph G&".) We define new edge weights w’(u,v) := mN-w(u,v)+r(u,v)
for all edges (u,v) € E. We first show that all extreme sets under the original edge weights w continue to be extreme sets
under the new edge weights w':

LEMMA 2.4. All extreme sets in G&" under edge weights w are also extreme sets under edge weights w’.

To show this lemma, we will prove that the (strict) relative order of cut values is preserved by the transformation from w to
w’. Let §,,(+) and d,, () respectively denote the value of §(-) under edge weights w and w’. Then, we have the following:

LeEmMa 2.5. If §,,(X) < 8,,(Y) for two sets of vertices X, Y C V&, then §,y(X) < 8,/ (Y).
Proof. Since all edge weights are integers, d,,(X) < 8,,(Y) implies
(2.6) dw(X) < w(Y) - 1.

Let r(X) (resp., r(Y)) denote the sum of the random values r(u, v) over all edges (u,v) that have exactly one endpoint in
X (resp., Y). Then,

Sw(X)=mN -5,(X)+r(X) <mN - (5,(Y) - 1) +r(X) (by Equation (2.6))
<mN-6,(Y) (since r(u,v) < N,r(X) < mN)
<mN-8,(Y)+r(Y)=5,(Y). (since r(u,v) > 1,r(Y) = 1)

|

We now prove Lemma 2.4 using Lemma 2.5:

Proof. [Proof of Lemma 2.4] Suppose X is an extreme set under edge weights w. Then, §,,(Y) > §,,(X) for all non-empty
proper subsets Y C X. By Lemma 2.5, this implies that §,,(Y) > 8,y (X). Thus, X is an extreme set under edge weights w’
as well. ]

Lemma 2.4 implies that we can use edge weights w’ instead of w since our goal is to obtain a tree T(G8") that includes
as subtrees all the extreme sets in G®" under edge weights w.

We are now ready to describe the recursive algorithm. There are two base cases: if |V&"| < 32 or if U8*" = @, we use
the Benczur-Karger algorithm [4] to find the extreme sets tree and return it as T(G8").

For the recursive case, we have |V8"| > 32. Let s, t be two distinct vertices sampled uniformly at random from V&
(these vertices may either be contracted or uncontracted vertices), and let ¢ := A(s, t) be the connectivity between s and ¢
in G8". We invoke Theorem 2.2 on G&" to find the CuT THRESHOLD ct(s, ¢) on G&" and define X := V& \ ct(s, ¢). We
repeat this process until we get an X that satisfies:

|Vgen| 15 . |Vgen|
Elex e 222

2.7
@7 16 16

Once Equation (2.7) is satisfied, we create the following two subproblems:

« In the first subproblem, we contract the vertices in X into a single (contracted) vertex to form a new graph G)g(en. We

find the tree T(G;g(e ") on G)g(en by recursion.
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() T(G9")

@T(GL™) (B)T(Glotn )

X veen \ X

AAAA

e ) are combined in the first phase of the

Veen\x
extreme sets algorithm to obtain the tree T(G8™). Here, s € X. Yellow leaves are in V9" \ X, and blue leaves are in X.

Figure 1: This figure illustrates how the trees obtained from recursive calls T(Gf(en) and T(G

« In the second subproblem, we contract the vertices in V8" \ X into a single (contracted) vertex to form a new graph
G‘g,egx:n\x. We find the tree T(G‘g,egx:n\x) on G%,e;eln\x by recursion.
We combine the trees T(Gie ™) and T(Gf;,zr:n\x) to obtain the overall tree T(G8") as follows: in tree T(G%iﬂn\x), we discard
the leaf representing the contracted vertex V& \ X; let Tx denote this new tree whose leaves correspond to the vertices
in X. Next, note that X is a contracted vertex in Gf:n that appears as a leaf in tree T(Gf:n). We replace the contracted
vertex X in this tree with the tree Ty to obtain our eventual tree T(G8"). (This is illustrated in Figure 1.)

The following is the main claim after the first phase of the algorithm, where T = T(G):

LEMMA 2.6. Every extreme set of the input graph G is a subtree of tree T returned by the first phase of the extreme sets
algorithm.

Phase 2: The second phase retains only the subtrees of T that are extreme sets in G and eventually returns T, In
this phase, we do a postorder traversal of T. For any vertex y € T, let V(y) denote the set of leaves in the subtree under y.
During the postorder traversal, we label each vertex y in T with the value of §(V (y)) in G under the original edge weights
w. (We will describe the data structures necessary for this labeling when we analyze the running time of the algorithm.)
If the label for y is strictly smaller than the labels of all its children nodes, then V (y) is an extreme set and we keep y in
T. Otherwise, we remove node y from T and make its parent node the new parent of all of its children nodes.

At the end of the second phase of the algorithm, we claim the following:

LEMMA 2.7. Every extreme set of the input graph G is a (proper) subtree of tree T returned by the second phase of the extreme
sets algorithm, and vice-versa.

2.2 Correctness of the Algorithm We now establish the correctness of the algorithm by proving Lemma 2.6 and
Lemma 2.7 that respectively establish correctness for the first and second phases of the algorithm.

In order to prove Lemma 2.6, we show that the following more general property holds for any recursive step of the
algorithm:

LEMMA 2.8. Let G&" be the input graph in a recursive step of the algorithm. Then, every extreme set of G&" under edge
weights w is a subtree of tree T(G&™") returned by the recursive algorithm.

Note that Lemma 2.6 follows from Lemma 2.8 when the latter is applied to the first step of the algorithm, i.e., G&" = G.
Recall that X = V \ ct(s, ¢p), where s is a randomly chosen vertex and ¢ = A(s,t) for a randomly chosen vertex

t € V\ {s}. The two recursive subproblems are on graphs Gien and G‘g;?n\x. To prove Lemma 2.8, we first relate the
gen

extreme sets in G)g(e " and Gvgm\  to the extreme sets in G&". We show the following general property that holds for any
graph G&" = (V& E&M) vertex s € V&, and threshold ¢ > 0:
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LEMMA 2.9. Let G&" = (V& E8™) be an undirected graph, and for any vertex s € V& and threshold ¢ > 0, let
X = V& \ ct(s, ¢) for Cur THRESHOLD ct(s, ¢) in GE" under edge weights w’. Let Gf;(en and Gé;fn\x be graphs obtained
from G&" by contracting X and V& \ X respectively. Then, every extreme set in G5™ under edge weights w is an extreme set

L. gen gen .
in either G5, or Gvgen\x under edge weights w.

Proof. First, note that by Lemma 2.5, every extreme set in G&" under edge weights w is also an extreme set under edge
weights w’. Therefore, by applying Lemma 2.2 on G5 with edge weights w’, we can claim that the extreme sets Y c V&
under edge weights w are of one of the following types: (a) Y € X or (b) X € Y or (c) X N Y = @. Extreme sets Y of type

(a) are also extreme sets in G%,egfn\x since the value of §(Y) and that of §(Z) for any Z C Y are identical between G&" and

Gf,eg?n\x. Similarly, extreme sets Y of type (c) are also extreme sets in G)g; " since the value of §(Y) and that of §(Z) for any

Z C Y are identical between G&" and G;g(en. For extreme sets Y of type (b), note that every proper subset of Y in Gien is
also a proper subset of Y in G8", and has the same cut value. Then, if §(Zgeen) > 5(Y) for all proper subsets Zggen C Y in
G&" | then it must be that (5(ZG§(en) > §(Y) for all proper subsets ZG;g(en CYin Gien. Therefore, an extreme set of type (b)

% - (Note that because of this last case, it is possible that there are extreme sets in G)g:n
that are not extreme sets in G8".) 0

. . . en
in GE" is also an extreme set in G®

This now allows us to prove Lemma 2.8:

Proof. [Proof of Lemma 2.8] First, note that the correctness of the base case follows from the correctness of the Benczir-

Karger algorithm [4]. Thus, we consider the inductive case. Inductively, we assume that T(G)g(e ") and T(G%i?n\ ) contain
gen

Veen\ x under edge weights w. Therefore, by Lemma 2.9, every extreme set in

G&™ under edge weights w is a subtree of either T(G;g(en) or T(Géegl:n\x). Now, note that any subtree Y eliminated by the

algorithm that combines T(Gég(e ™) and T(G‘g/eg?n\ ) into T(G#") has the property that Y contains the entire set V& \ X and

a proper subset of X. But, by Lemma 2.2, such a set Y cannot be an extreme set in G&". Therefore, all the extreme sets in
G&" under edge weights w are subtrees in T(G&™"). 0

as subtrees all extreme sets of Gf(e "and G

Next, we establish correctness of the second phase of the algorithm, i.e., prove Lemma 2.7. We will need the following
property of extreme sets:

LEmMMA 2.10. Let G = (V,E) be an undirected graph, and let Y C V be a set of vertices that is not an extreme set. Then, there
exists a set Z C Y such that Z is an extreme set and 5(Z) < 5(Y).

Proof. Let & be the minimum cut value among all proper subset of Y, ie., £ := min{6(W) : W c Y}. Since Y
is not an extreme set, it must be that & < §(Y). Now, consider the smallest set Z C Y such that §(Z) = ¢, ie,
Z = argmin{|W| : W c Z,6(W) = &}. Now, for any non-empty proper subset R C Z, we have: (a) §(R) > & by
definition of £, and (b) §(R) # £ by definition of Z. Therefore, §(R) > & for all non-empty proper subsets R C Z. Hence, Z
is an extreme set. O

We are now ready to prove Lemma 2.7:

Proof. [Proof of Lemma 2.7] Recall that for any node y in T, V(y) € V denotes the set of leaves in the subtree under
y. Now, if y is removed by the algorithm in the second phase from T, it must be that there is a child z of y such that
8(V(z)) < 8(V(y)). Since each node in T has at least two children, it must be that V(z) is a proper subset of V(y), and
hence V(y) is not an extreme set. This implies that the second phase of the algorithm does not remove any extreme set
from being a subtree of T.

It remains to show that this phase does remove all subtrees that are not extreme sets. Suppose y is a node in T after
the first phase of the algorithm such that V(y) is not an extreme set in G. Consider the stage when the postorder traversal
of T in the second phase reaches y. We need to argue that there is a child x of y such that §(V(x)) < §(V(y)). Inductively,
we assume that at this stage, the subtree under y exactly represents the extreme sets that are proper subsets of V(y). Then,
by Lemma 2.10, there is a descendant z of y such that §(V(z)) < §(V(y)). But, note that in any extreme sets tree, the cut
value of a parent subtree is strictly smaller than that of a child subtree, since the child subtree represents a proper subset
of the parent subtree. Thus, if x is the child of y that is also an ancestor of z, then §(V(x)) < §(V(z)) < §(V(y)). Since
0(V(x)) < 8(V(y)) and x is a child of y, the node y will be discarded from T when the postorder traversal reaches y.
|

This concludes the proof of correctness of the extreme sets algorithm.
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2.3 Running Time Analysis of the Algorithm We analyze the running times of the first and second phases of the
algorithm separately. It follows from Theorem 2.2 that the running time T; (m, n) of the first phase can be written as:

(2.8) T(m,n) = T(my, n1) + T(ma, nz) + O(m) + polylog(n) - F(m, n),

where ny + n; = n+ 2 and my + my = m + d(X), where d(X) is the number of edges that have exactly one endpoint in X.

Note that all other steps, i.e., generating edge weights w’, creating the graphs G)g; " and G%,e;:n\ > and recombining the trees

T(G)g:n) and T(G%;::n\ ) to obtain the overall tree T(G&"), can be done in O(m) time. Thus, the running time is dominated
by the time taken in the CuT THRESHOLD algorithm in Theorem 2.2.

First, we bound the depth of the recursion tree:

LEMMA 2.11. The depth of the recursion tree in the first phase of the extreme sets algorithm is O(log n).

Proof. Note that Equation (2.7) ensures that in every recursive step, we have:

15 [veen
max{|X]|, |[VE"\ X|} < %

Therefore, in each recursive subproblem, the number of vertices is < +1< since |V&"| > 32. The lemma

follows. O

15-[veen | 31.|veen|
16 32

Lemma 2.11 is sufficient to bound the total cost of the base cases of the algorithm:

LEMMA 2.12. The total running time of the invocations of the Bencziir-Karger algorithm for the base cases is O(n).

Proof. First, consider the base cases of constant size: |V8"| < 32. Since the other base case truncates the recursion
whenever U™ = @, it must be that V8" contains at least one uncontracted vertex in each invocation of this base case.
Now, since each uncontracted vertex is assigned to exactly one of the two subproblems by the recursive algorithm, it
follows that each uncontracted vertex can be in only one base case. Therefore, the total number of these bases cases is
< n. Since each base case is on a graph of O(1) size, the total running time of the Benczur-Karger algorithm over these
base cases is O(n).

Next, we consider the other base case: U™ = @. Since the depth of the recursion tree is O(logn) by Lemma 2.11,
and each branch of the recursion adds a single contracted vertex in each step, the total number of contracted vertices in
any instance is O(logn). Thus, the Benczir-Karger algorithm has a running time of O(log® n - polylog(log n)) for each
instance of this base case. To count the total number of these instances, we note that the parent subproblem of any base
case must contain at least one uncontracted vertex. Since the depth of the recursion tree is O(log n) and an uncontracted
vertex can be in only one subproblem at any layer of recursion, it follows that the total number of instances of this base
case is O(nlog n). Therefore, the cumulative running time of all the base cases of this type is O(n). d

The rest of the proof will focus on bounding the cumulative running time of the recursive instances of the algorithm.
Our first step is to show that the expected number of iterations in any subproblem before we obtain an X that satisfies
Equation (2.7) is a constant:

LEMMA 2.13. Suppose s, t are vertices chosen uniformly at random from V&P, and let ¢ := A(s, t) be the s — t connectivity in
G8". Then, X = V& \ ct(s, @) satisfies Equation (2.7) with probability > 1/32.

To show this, we first need to establish some properties of the random transformation that changes edge weights from w
to w’. First, we establish uniqueness of the minimum s — ¢ cut for any vertex pair s, t € V under w’. We need the Isolation
Lemma for this purpose:

LEmMMA 2.14. (IsoLATION LEMMA [17]) Let m and N be positive integers and let 7 be a collection of subsets of {1,2,...,m}.
Suppose each element x € {1,2, ..., m} receives a random number r(x) uniformly and independently from{1,2,..., N}. Then,
with probability > 1 — m/N, there is a unique set S € ¥ that minimizes ), c5 r(x).

We choose N = m - n for some constant d > 0. (Note that this increases the edge weights from w to w’ by a poly(n)
factor only, thereby ensuring that the efficiency of elementary operations is not affected.) Then, we can apply the Isolation
Lemma to prove the following property:
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LEMMA 2.15. Fix any vertex s € V& For every vertext € V8" \ {s}, the minimum s —t cut under edge weights w’ is unique
with probability > 1 — 1/n?. Moreover, let t,t’ € V& \ {s}. With probability at least > 1 — 1/n%, one of the following must
hold: (a) A(s,t) # A(s,t"), or (b) the unique minimum s — t cut is identical to the unique minimums — t’ cut in G&".

Proof. We first establish the uniqueness of the minimum s—t cut. Note that by Lemma 2.5, the only candidates for minimum
s —t cut under w’ are the minimum s — ¢ cuts under w. For any two such cuts X, Y c V8", we have §,,(X) = §,,(Y), i.e.,
mN - 6,,(X) = mN - 6,,(Y). Therefore, the s — t minimum cuts under w’ are those minimum s — ¢ cuts X under w that
have the minimum value of r(X), which is defined as the sum of r(u, v) over all edges (u,v) with exactly one endpoint in
X. The uniqueness of the minimum s — ¢ cut under edge weights w’ now follows from Lemma 2.14 by setting ¥ to the
collection of subsets of edges that form the minimum s — ¢ cuts under edge weights w.

Next, consider two vertices t,t" € V\{s}. If A(s, ) # A(s, t") under edge weights w, assume wlog that A(s, ) < A(s,t’).
This implies that for every s — ¢’ cut Y, we have §,,(Y) > 6,,(X), where X is a minimum s — ¢ cut under edge weights
w. But then, by Lemma 2.5, we have §,,(Y) > §,,(X). This implies that A(s,t) # A(s,t’) under edge weights w’. In this
case, we are in case (a). Next, suppose A(s, t) = A(s, ") under edge weights w. Apply Lemma 2.14 by setting F to be the
collection of subsets of edges where each subset forms a minimum s — ¢ cut or a minimum s — ¢’ cut under edge weights
w. With probability > 1 — 1/n%, we get a unique minimum cut among these cuts under edge weights w’. If this unique
minimum is a cut that separates both ¢, ¢’ from s, then we are in case (b), while if it only separates one of t or ¢’ from s,
then we are in case (a). 0

Using d > 3, and applying a union bound over all choices of s, ¢,¢’, we can assume that Lemma 2.15 holds for all
choices of vertices s, ¢, ¢’. (This holds with high probability, which is sufficient for our purpose because our algorithm is
Monte Carlo.)

We also need the following lemma due to Abboud et al. [1]:

LEMMA 2.16. (ABBOUD ET AL. [1]) Let G = (V, E) be an undirected graph. If s is a vertex chosen uniformly at random from
V, then with probability > 1/2, there are > |V|/4 verticest € V \ {s} such that the t-minimal minimum s —t cut has < |V|/2
vertices on the side of t.

Here, t-minimal refers to the minimum s — ¢ cut where the side containing ¢ is minimized. But, for our purposes, we do
not need this qualification since by Lemma 2.15, the minimum s — ¢ cut in G5 is unique under edge weights w’.

Now, for any vertex s, let A(s) denote the sequence of vertices t € V8" \ {s} in non-increasing order of the value of
A(s, t). IfA(s, t) = A(s, t’), then the relative order of t, ¢’ in A(s) is arbitrary.) We define a run in this sequence as a maximal
subsequence of consecutive vertices that have an identical value of A(s, t). Combining Lemma 2.15 and Lemma 2.16, we
make the following claim:

LEMMA 2.17. Let s be a vertex chosen uniformly at random from V&". Then, with probability > 1/2, the longest run in A(s)

; 3|VEen|
is of length < =——.

Proof. First, note that all vertices ¢ in a run share the same unique minimum s — ¢ cut (and not just the value of A(s, t)) by

Lemma 2.15. Thus, if there is a run in A(s) has > 3VE vertices, then for all these vertices , the unique minimum s — ¢

1
cut has > % vertices on the side of ¢. It follows that there are < Yol vertices ¢ that have < | vertices on the side
of t in the (unique) minimum s — ¢ cut. The lemma now follows by observing that this can only happens with probability

< 1/2 by Lemma 2.16 since s is a vertex chosen uniformly at random from V&, |

Lemma 2.17 now allows us to derive the probability of choosing vertices s and ¢ such that Equation (2.7) is satisfied:

Proof. [Proof of Lemma 2.13] By Lemma 2.17, the longest run in A(s) is of length < 3|V4gen| with probability > 1/2. Next,
7|veEen| 15|veen
= and — ¢

the index of t in A(s) is between | with probability 1/16 since t is chosen uniformly at random. If this
happens, then we immediately get |V&" \ X| = |ct(s, ¢)| > |V1g;"| Whge;ge ¢ = g/}n(s, t). Tgl;l:s is because the suffix of A(s)
starting at t is in ct(s, ¢). But, we also have |V&" \ X| = |ct(s, ¢)| < lVS L+ 3|V4 | = 7|V8 l

3 IVgEl’l ‘
has < 7y

since the longest run in A(s)

vertices, and all vertices before the start of the run containing ¢ are not in ct(s, ¢). The lemma follows. 0
Next, we bound the total number of vertices and edges at any level of the recursion tree:

LEMMA 2.18. The total number of vertices and edges in all the recursive subproblems at any level of the recursion tree in the
first phase of the extreme sets algorithm is O(nlogn) and O(m + nlog® n) respectively.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Proof. Since each step of the recursion adds one contracted vertex to each of the two subproblems, it follows from
Lemma 2.11 that any subproblem in the recursion tree has at most O(log n) contracted vertices, i.e., |C8"| = O(logn).
Next, note that every uncontracted vertex belongs to exactly one subproblem at any level of the recursion tree. Conversely,
because of the base case for U8" = @, every recursive subproblem contains at least one uncontracted vertices. Therefore,
the recursive subproblems at any level of the recursion tree contain < n uncontracted vertices and O(nlogn) contracted
vertices in total.

The edges in a subproblem are in three categories: (a) edges between two uncontracted vertices, i.e., {(u,v) € E&8" :
u,v € Ut™"} (b) edges between contracted and uncontracted vertices, i.e., {(u,0) € ES" : u € C&",v € US"} and (c)
edges between two contracted vertices, i.e., {(u,0) € E&" : u,u € C&"}. Edges in (a) are distinct between subproblems
at any level of the recursion tree since the sets of uncontracted vertices U8 in these subproblems are disjoint. An
edge (u,v) € E can appear in at most two subproblems as a category (b) edge, namely the subproblems containing the
uncontracted vertices u and v respectively. As a result, there are O(m) edges of category (a) and (b) in total across all
the subproblems at a single level of the recursion tree. Finally, since the number of contracted vertices is O(log n) in any
single subproblem, there are at most O(log? ) edges of category (c) in any subproblem. Since each recursive subproblem
contains at least one uncontracted vertex, the total number of subproblems in a single layer of the recursion tree is < n.
Consequently, the total number of edges in category (c) across all subproblems at a single level of the recursion tree is
O(nlog®n). 0

This lemma allows us to bound the running time of the first phase of the algorithm:

LEMMA 2.19. The expected running time of the first phase of the algorithm is O(m) + polylog(n) - F(m, n), where F(m, n) is
the running time of a max-flow algorithm on an undirected graph of n vertices and m edges.

Proof. We have already shown a bound of O(n) on the base cases in Lemma 2.12. So, we focus on the recursive
subproblems. Cumulatively, over the recursive subproblems at a single level, Lemma 2.18 asserts that the total number
of vertices and edges is O(n) and O(m) respectively. (Note that we can assume w.lo.g. that G is a connected graph and
therefore O(nlog? n) = O(m). If G is not connected, we run the algorithm on each connected component separately.) Now,
since O(m) + F(m, n) = Q(m), the total time at a single level of the recursion tree is maximized when there are polylog(n)
subproblems containing n vertices and m edges each. This gives a total running time bound of O(m) +polylog(n) - F(m, n)
on the subproblems at a single level. (Note that by Lemma 2.13, the expected number of choices of s, t before Equation (2.7)
is satisfied is a constant.) The lemma now follows by Lemma 2.11 which says that the number of levels of the recursion
tree is O(log n). O

Next, we analyze the running time of the second phase of the algorithm. To implement the second phase, we need to
find the value of §(X) for all subtrees of T. We use a dynamic tree data structure for this purpose. Initialize cnt[X] := 0
for all subtrees X. For every edge (u,0) € E, we make the following changes to cnt:

« Increase cnt[z] by w(u,v) for all ancestors z of u and v in T.
« Decrease cnt[z] by 2w(u, v) for all ancestors z of Ica(u,v) in T.

Clearly, the value of cnt at the end of these updates is equal to §(X) for every subtree X. Recall that during the postorder
traversal for subtree X, we declare it to be an extreme set if and only if the value cnt[X] is strictly smaller than that of
each of its children subtrees.

This implementation of the second phase of the algorithm gives the following:

LEMMA 2.20. The second phase of the extreme sets algorithm takes O(m) time.

Proof. First, note that the size of the tree T output by the first phase is O(n) since the leaves exactly correspond to the
vertices of G. Thus, the number of subtrees of T is also O(n). The initialization of the dynamic tree data structure takes
O(n) time. Then, each dynamic tree update takes O(log n) time, and there are O(m) such updates. So, the overall time for
dynamic tree operations is O(m). Finally, the time spent at a node of T during postorder traversal is proportional to the
number of its children, which adds to a total time of O(n) for postorder traversal of T. ]

3 Augmentation on Extreme Sets

In this section, we present our algorithm for degree-constrained edge connectivity augmentation (DECA) that uses extreme
sets as a subroutine. Our goal is to prove Theorem 1.5, restated below.
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THEOREM 3.1. Given an input graph and its extreme set tree, there is an O(m) time algorithm that solves the degree-constrained
edge connectivity problem.

Throughout, we specify a DECA instance by a tuple (G, 7, f§), indicating the graph G, the connectivity requirement z,
and the (weighted) degree constraints (v) > 0 for each vertex v.

3.1 The Benczur-Karger Algorithm for DECA As mentioned before, our algorithm is essentially a speedup of the
Benczir-Karger algorithm for DECA [4] from O(n?) time to O(m) given the extreme sets tree. We first describe the
Benczur-Karger algorithm and then describe our improvements.

The algorithm consists of 3 phases.

1. Using external augmentation, transform the degree constraints f(v) to tight degree constraints b(v) for allv € V.
2. Repeatedly add an augmentation chain to increase connectivity to at least 7 — 1.
3. Add a matching defined on the min-cut cactus if the connectivity does not reach 7.

We first describe the external augmentation problem and an algorithm (from [4]) to optimally solve it.

External augmentation. The problem is defined as follows: Given a DECA instance (G, 7, f§), insert a new node
s, and find an edge set F C {s} X V with minimum total weight such that VU c V, 8¢(U) + 6p(U) > r, and
Vo € V,dp(v) < B(v), where dp(v) = 3,y wr(u,v) is the (weighted) degree of v in edges F.

The external augmentation problem can be solved using the following algorithm (from [4]): Let b(v) denote the degree
of v in new edges. For any set X C V, let b(X) := 3, cx b(0v). Initially, b(v) = 0 for all v € V. We do a postorder traversal
on the extreme sets tree. When visiting an extreme set X that is still deficient, i.e., b(X) < dem(X) := max(z — d5(X), 0),
we add edges from vertices v € X with b(v) < f(v) to s until b(X) = dem(X). When we fail to find a vertex v € X such
that b(v) < f(v), the DECA instance is infeasible since we have §(X) + f(X) < r. This algorithm can be implemented in
O(n) time using a linked list to keep track of vertices v with b(v) < f(v) in a subtree, merging these lists as we move up
the tree in the postorder traversal and removing vertices once b(v) = f(v).

LEMMA 3.1. (LEMMA 3.4 AND 3.6 OF [4]) The algorithm described above outputs an optimal solution for the external augmen-
tation problem.

The next lemma (from [4]) relates optimal solutions of the external augmentation and DECA problem instances:

LEmMA 3.2. (LEMMA 2.6 OF [4]) If the optimal solution of the external augmentation instance has total weight w, then the
optimal solution of DECA instance has value [w/2].

After external augmentation, we have w = b(V). If w is odd, we claim there is at least one vertex with f(v) > b(v) +1,
else the instance is infeasible. Lemma 3.2 claims that the optimal solution of the DECA instance has weight (w+1)/2, i.e.,
the sum of degrees is w + 1. Now, if f(v) = b(v) for all vertices v € V, then Yoy f(v) = b(V) = w. This shows that the
instance is infeasible. If the instance is feasible, we add 1 to b(v) for an arbitrary vertex v € V such that (v) > b(v) + 1.

By Lemma 3.2, the optimal solution of DECA problem has b(V)/2 edges. Now, note that if we had used b instead of
B as our degree constraints, we would still get the same external augmentation solution and consequently the same value
of w. Therefore, we call b the tight degree constraints. The DECA problem is now equivalent to splitting off the vertex
s on the external augmentation solution H = (V + s, E U Es) where E; is the set of weighted edges incident on s where
w(v,s) = b(v). We denote this splitting off instance (H, 7, ).

The Benczur-Karger algorithm [4] provides an iterative greedy solution for splitting off s by using partial solutions.
Given a splitting off instance (H = (V +s,E U E;), 7, s) where w(v,s) = b(v) for all v € V, define a partial solution as an
edge set F defined on V satisfying the following three properties:

1. For all vertices v € V, the (weighted) degree of v in edges F, denoted dr(v) := 3,y Wr(u,0), satisfies dr(v) < b(v).

2. For all edges (u,v) € F, no extreme set can contain both u and v. (Note that an extreme set is a proper subset of V,
and hence V is not an extreme set by definition.)

3. Any extreme set in (V, E W F) is also extreme in G. (For two weighted edge sets X, Y defined on V, we use X ¥ Y
to denote their union where the weights of parallel edges are added.) That is, adding F to G does not create new
extreme sets (but some extreme sets may no longer be extreme).
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The next lemma shows the optimality of iteratively adding partial solutions for the splitting off problem:

LEMMA 3.3. (LEMMA 4.1 OF [4]) Suppose we are given a splitting off instance (H = (V +s, EU Ey), 7, s) and a partial solution
F where dp(v) := Xy cy wr(u,v) is the degree of vertexv € V in F. Now, suppose F’ is a solution for the splitting off instance
(H' = (V +s,E' UE}), 1, s) where the weight of edges in E’ and E are respectively given by w’(u,v) = w(u,v) + wr(u,v) for
u,0 € Vandw'(v,s) := w(v,s) —dp(v) forv € V. Then, FW F’ is a solution for the splitting-off instance (G = (V +5s,E), 1, 5).

By equivalence between the splitting off problem and edge augmentation with tight degree constraints b(v), we get
the following equivalent lemma for the DECA problem:

LEMMA 3.4. Given a DECA instance (G, t, b) with tight degree constraints b and given a partial solution F, if F" is an optimal
solution for DECA instance (G, t,b’) where b’(v) = b(v) — dr(v), then F W F’ is an optimal solution for the original instance.

For an extreme set X of a graph G, define its demand as demg(X) = 7 — §5(X). Note that if each extreme set has
demand at most 0, then the graph has connectivity at least z; this is because there exists a side of a global min-cut (in
particular, any minimal vertex set that is a side of a global min-cut) which is an extreme set.

Consider all maximal extreme sets X satisfying dem(X) > 2. List them out as Xj,...,X,, where the ordering is
such that X; and X, have the two smallest values of dg(X;) among Xi,...,X,. An augmentation chain is an edge set
{(aj, @i+1) | i € [r — 1]} such that for each i € [r — 1],

1. a; € X; and @41 € Xji1, i.e., edge (a;, di+1) connects adjacent sets X; and Xj41, and

2. b(a;) = dp(a;) and b(a;) > dr(d;) (we say a; and g; still has vacant degree). Note that dr(a;) = 1if a; # a; (or if
either a; or a; is undefined), and dr(a;) = 2 if a; = a;.

The significance of an augmentation chain is that it is always a partial solution. The lemma below is proved in Section 4.2
of [4] and is one of the main technical contributions of that paper.

LEMMA 3.5. An augmentation chain is a partial solution.

Benczir and Karger’s algorithm repeatedly constructs augmentation chains until there are no extreme sets with
demand at least 2 in the current graph. By applying Lemma 3.4 after each iteration, any optimal solution to the instance
after that iteration can be augmented to an optimal solution to the instance before that iteration. At the end, only extreme
sets with demand 1 remain in the instance, at which point Benczur and Karger use an algorithm of Naor et al. [19] that
runs in O(n) time given the min-cut cactus representation of G. Using the O(m)-time min-cut cactus algorithm of Karger
and Panigrahi [11], this last step takes O(m) time.

On each iteration, Benczir and Karger compute an augmentation chain from scratch given the current extreme sets
tree, which takes O(n) time, and then augment with that chain for as long as it is feasible. In particular, they repeatedly
augment until some vertex uses up its vacant degree, or the list Xj, ..., X; changes, which can happen in any of the
following ways:

1. Some vertex u in the chain has no more vacant degree.
2. Some X;’s demand decreases to below 2, in which case it is removed from the list.

3. Some X; is no longer extreme, in which case we replace X; with the maximal extreme sets in the subtree rooted at
X; of the (original) extreme set tree.

4. X; and X, are no longer the two extreme sets with smallest cut value in the current graph. Since X; and X, have
their cut values increased by 1 on each augmentation while the other extreme sets X3, . . ., X;—; have their cut values
increased by 2, this can never happen on its own. In particular, it can only happen alongside cases (2) and (3).

The algorithm therefore computes the minimum number of times ¢(F) that an augmentation F (i.e., a chain) can be added

to the current graph. We can compute t(F) as min{t; (F), t;(F), t3(F)} where each t;(F) is the time of violation of the
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respective case above. In particular,

t;(F) = min { b(w) J .

uev dF(u)
| r=6(X)
t(F) = min {WJ '
e 5(Y) = 8(X;)
B = i {mw

where desc(U) is the set of descendants of U (excluding U) in the (original) extreme sets tree. Note that dr(u) and §r(U)
can be either 1 or 2, and dr(X;) > Sp(Y) for all Y € desc(U). Also, if the denominator of any of the above fractions is 0,
then we can ignore that expression in the minimum computation.

3.2 Improved Algorithm We now speed up the Benczir-Karger algorithm so that it takes O(nlogn) time given the
extreme sets tree of the input graph (except the last step that uses a min-cut cactus and takes O(m) time). Our main insight
is the following: rather than computing each new augmentation chain from scratch, we want to reuse as many edges from
the previous chain as possible. We show that any changes that must be made can be amortized to a total of O(nlogn)
time with the help of data structures. Our speedup changes can be summarized as follows:

« We maintain t; (F), t2(F), t3(F) using data structures so that ¢(F) can be computed quickly at each iteration, and

« Instead of adding each augmentation chain explicitly to the graph in O(n) time, we add it implicitly with the help
of “lazy” tags on each edge.

3.2.1 Data Structure For t;(F) = min, | b(u)/dr(u) |, we only need to consider vertices u € {a;, d;4+1 } for some i, since
those are the only vertices with dr(u) > 0. Since only dr(u) € {1, 2} is possible for such u, we use two priority queues
maintaining b(u) for dr(u) = 1 and dr(u) = 2. Modifying dr(u) can be handled by deleting u from one queue and insert it
to the other. Other (single element) operations can be handled by normal priority queue operations in O(log n) time. Call
this data structure the dual priority queue. Let Q; be the dual priority queue used to maintain # (F), and let Q;[1] and
Q1[2] be the two priority queues responsible for drp(u) = 1 and dp(u) = 2, respectively. Similarly, ,(F) can be maintained
by a dual priority queue Q, since 5r(X;) € {1,2} for all i € [r], and define Q,[1] and Q,[2] as before. Maintaining #;(F)
is more involved, so we defer its discussion to later.

We maintain the edges (a;, di+1) € F and the list Xy, ..., X, explicitly. The function b is implicitly maintained by Q;,
and values 6(Y) are implicitly maintained by Q, and R(X;). To maintain these implicitly, we keep a global “timer” tyj,pa1
that starts at 0 and increases by t(F) every time we add the current augmentation chain F to the graph. Every time some
edge e is added to F, we maintain the edge’s “birth” time #;;,,(e) which we set to the current global timer ty;opq;. At any
later point in time, if edge e is still in F, then its weight is implicitly set to tyopar — tpirsn(e). The moment an edge e is
removed from F, we explicitly add an edge e of weight ty;0pa1 — tpirsn (€) to the current graph. Similarly, every time a vertex
u has an incident edge added or removed from F, we set its birth time #;;,+,(u) to the current tgopar.

We now discuss how to implicitly maintain b and § in the dual priority queues Qs, Q. Every time we add or delete
an edge e in F, we update Q; as follows. For each endpoint u of e whose value dr(u) after the modification is positive, we
add u to the priority queue of Q; [dr(u)] and set its value to b(u) — dp(u) - tpiren(u). (If u already existed in Qq before, then
delete it before inserting it again.) This way, we maintain the invariant that at any later time y,p41, the true value of b(u)
is exactly u’s value in Q; plus dr(u) - tgopar- The key observation is that for a given tyopa and a given i € {1,2}, the true
values b(u) for each vertex v in Q[i] are off from their Q; values by the same additive i - ty;opq;. Therefore, by querying
the minimum in Q [i] for i € {1, 2}, we can recover the correct minimum ¢; (F) = miny, | b(u)/dr(u)|.

Similarly for Q,, every time we add/delete an edge in F that connects X; and X;,1, we move each X € {Xj, Xj41} to
Q2[6r(X)] and set its value to be its old value minus tp;,44(e) in the case of addition, and its old value plus typq in the
case of deletion. After deletion, the edge e has been explicitly added with weight tgiopar — tpiren (€), which is exactly the net
contribution over the insertion and deletion. Once again, for a given #y0p. and a given i € {1, 2}, the true values §r(X;)
in Q,[i] are off from their Q, values by the same additive i - Zjopas, S0 querying the minimum in Q,[i] for i € {1, 2} lets us
recover tp(F) = min;er) [ (7 — 8(X;))/0r(X3)].
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5(Y) - 6(Xi)
Or(X;) = 5p(Y)
current list Xy, ..., X,. The value t;3(F, X;) is first computed when we add a new X; to the list, and it is updated whenever
we add or remove an edge in §(X;), or we swap X; in the ordering (in particular, when a different extreme set becomes
X1 or X;). From the values t5(F, X;), we can easily maintain t3(F) = min;¢[,] t3(F, X;) using a priority queue whose values
are the t3(F, X;).

To maintain the values #3(F, X;), we use a (static) tree data structure that maintains a real number at each vertex of
the tree and supports the following operations, which can be implemented in O(log n) amortized time by, e.g., a top tree
(see Section 6 of [10]).

We now discuss how to maintain ¢3(F). We maintain values #3(F, X;) = énirg : { } for each X; in the
Y edesc(X;

« ADDPATH(u, v, x): add real number x to all vertices on the u — v path in the tree,
« MINPATH(u, 0): return the minimum value of all vertices on the u — v path in the tree, and
o MINSUBTREE(u): return the minimum value of all vertices in the subtree rooted at v.

Our static tree is just the original extreme set tree itself, whose nodes are the extreme sets of the original graph. For
each extreme set X in the original graph, we implicitly maintain the value §(X) at node X in the tree. Every time an
edge (u,v) of weight w is explicitly added to the graph (i.e., when it is removed from F), we explicitly update the values
d(X). Let Y be the lowest common ancestor of extreme sets {u} and {0} in the tree. The extreme sets that contain edge
(u, v) are precisely those on the {u}-to-{v} path in the tree, excluding Y. We can therefore call AbpPaTH({u}, {v}, w) and
AppPATH(Y, Y, —w) to explicitly update the values §(X).

Of course, to compute #3(F), we also need to consider the edges implicitly added to the graph, i.e., the edges currently
in F. We first assume that 1 < i < r. For each such Xj, let ¥; be the lowest common ancestor of extreme sets {a;} and {d;}.
Then, observe that

+ The extreme sets Y € desc(X;) with 5p(Y) = 2 are precisely those on the path from Y; to X;, excluding X;,
« The extreme sets Y € desc(X;) with dp(Y) = 1 are precisely those on the path from {a;} to {d;}, excluding Y;, and
« All other extreme sets Y € desc(X;) satisfy dp(Y) = 0.

We compute the minimum §(Y) conditioned on §r(Y) = 0, 1, 2 separately. We first call ADDPATH(Xj, X;, M) for alarge value
M > 0 so that X; is no longer the minimum in any of our MINPATH queries. For §p(Y) = 2, we call MinPATH({Y;}, {X;})
and add the implicit weights of the edges incident to a; and G; in F. For §p(Y) = 1, we call MiNPATH({q;}, Y;) and
add the implicit weight of the edge incident to g; in F, then call MINPATH({d;}, Y;) and add the implicit weight of the
edge incident to G; in F, and finally take the minimum of the two. For §r(Y) = 0, we call AbpPATH({Y;}, {X;}, M) and
AppPatH({a;}, {d;}, M) to exclude those extreme sets from the minimum computation, and then call MINSUBTREE(X).
Finally, we reverse all the ADDPATH queries by calling them again with —M instead of M. The case i € {1,r} is handled
similarly.

With the help of the tree data structure, we can also compute the new list Xj, ..., X, whenever a set X; is removed
from it, i.e., when case (2) or (3) happens. Whenever a set X; is removed, we traverse down the subtree rooted at X; to
determine the maximal extreme sets in the subtree with demand at least 2. To determine whether a set Y is still extreme,
we compute miny’egesc(v) 6(Y’) by casing on the value of §(Y’) € {0,1,2} in the same way as above, and comparing its
value to §(Y). Whenever we find an extreme set Y with demand at least 2, we stop traversing down the subtree at Y and
look elsewhere.

3.2.2 Running Time We claim that the running time of our algorithm is O(nlogn) given the original extreme sets
tree. Recall that each iteration stops when one of the following occurs.

1. Some vertex u has no more vacant degree. In this case, we replace the edges incident to u in F, which is at most 2
edges. This takes O(log n) time, and this case can happen at most n times, once per vertex.

2. Some X;’s demand decreases to below 2, or some X; is no longer extreme. In this case, we remove X; from the list
and add the maximal extreme sets with demand at least 2 in the subtree rooted at X; in the original extreme set tree.
The algorithm traverses down the subtree rooted at X; to look for the new extreme sets to add to the list. Here, the
key observation is that each extreme set in the original extreme set tree is visited at most once. Once it is visited
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in one of these traversals, it is either verified to be extreme with demand at least 2, in which case it is added to the
list, or not, in which case it is never visited again. Therefore, the total number of extreme sets to be verified is O(n)
over the iterations. Each verification takes O(log n) time for a total of O(nlogn).

As for edge modifications, there are at most 2 edge modifications each time some X; is added or removed from the
list. Each extreme set is added and removed at most once, for a total of O(n) modifications over the iterations.
We only explicitly add edges to the graph after each such modification, and updating the data structures on each
addition takes O(log n) time for a total of O(nlogn).

Including the last step that uses the min-cut cactus and takes O(m) time, the total running time is O(m), which concludes
Theorem 1.5.
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