
19

PrioDeX: A Data Exchange Middleware for Efficient Event

Prioritization in SDN-Based IoT Systems

GEORGIOS BOULOUKAKIS, SAMOVAR, Télécom SudParis, IP Paris, France

KYLE BENSON, RTI, USA

LUCA SCALZOTTO, Injenia S.r.l., Bologna, Italy

PAOLO BELLAVISTA, Univ. of Bologna, Italy

CASEY GRANT, NFPA, USA

VALÉRIE ISSARNY, INRIA Paris, France

SHARAD MEHROTRA, UC Irvine, USA

IOANNIS MOSCHOLIOS, Univ. of Peloponnese, Greece

NALINI VENKATASUBRAMANIAN, UC Irvine, USA

Real-time event detection and targeted decision making for emerging mission-critical applications require

systems that extract and process relevant data from IoT sources in smart spaces. Oftentimes, this data is

heterogeneous in size, relevance, and urgency, which creates a challenge when considering that different

groups of stakeholders (e.g., first responders, medical staff, government officials, etc.) require such data to

be delivered in a reliable and timely manner. Furthermore, in mission-critical settings, networks can become

constrained due to lossy channels and failed components, which ultimately add to the complexity of the

problem. In this article, we propose PrioDeX, a cross-layer middleware system that enables timely and re-

liable delivery of mission-critical data from IoT sources to relevant consumers through the prioritization of

messages. It integrates parameters at the application, network, and middleware layers into a data exchange

service that accurately estimates end-to-end performance metrics through a queueing analytical model. Pri-

oDeX proposes novel algorithms that utilize the results of this analysis to tune data exchange configurations

(event priorities and dropping policies), which is necessary for satisfying situational awareness requirements

and resource constraints. PrioDeX leverages Software-Defined Networking (SDN) methodologies to enforce

these configurations in the IoT network infrastructure. We evaluate our approach using both simulated and

prototype-based experiments in a smart building fire response scenario. Our application-aware prioritization

algorithm improves the value of exchanged information by 36% when compared with no prioritization; the

addition of our network-aware drop rate policies improves this performance by 42% over priorities only and

by 94% over no prioritization.

This work was supported by NSF award CNS 1450768, DARPA agreement # FA8750-16-2-0021, the Inria@SiliconValley

International Lab and the research associate team MINES.

Authors’ addresses: G. Bouloukakis, SAMOVAR, Télécom SudParis, IP Paris, France; email: georgios.bouloukakis@telecom-

sudparis.eu; K. Benson, RTI, USA; email: kebenson@ics.uci.edu; L. Scalzotto, Injenia S.r.l., Bologna, Italy; email:

luca.scalzotto@studio.unibo.it; P. Bellavista, Univ. of Bologna, Italy; email: paolo.bellavista@unibo.it; C. Grant, NFPA, USA;

email: cgrant@nfpa.org; V. Issarny, INRIA Paris, France; email: valerie.issarny@inria.fr; S. Mehrotra, UC Irvine, USA; email:

sharad@ics.uci.edu; I. Moscholios, Univ. of Peloponnese, Greece; email: idm@uop.gr; N. Venkatasubramanian, UC Irvine,

USA; email: nalini@uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2577-6207/2021/07-ART19 $15.00

https://doi.org/10.1145/3456301

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3456301

19:2 G. Bouloukakis et al.

CCS Concepts: •Networks→ Programming interfaces;Network performance analysis; •Computer sys-

tems organization→ Reliability;

Additional Key Words and Phrases: Publish/subscribe middleware, event prioritization, utility functions,

queueing networks, SDN

ACM Reference format:

Georgios Bouloukakis, Kyle Benson, Luca Scalzotto, Paolo Bellavista, Casey Grant, Valérie Issarny, Sharad

Mehrotra, IoannisMoscholios, and Nalini Venkatasubramanian. 2021. PrioDeX: AData ExchangeMiddleware

for Efficient Event Prioritization in SDN-Based IoT Systems. ACM Trans. Internet Things 2, 3, Article 19 (July

2021), 32 pages.

https://doi.org/10.1145/3456301

1 INTRODUCTION

The integration of the Internet of Things (IoT) into daily life promises to revolutionize societal-
scale operations. It integrates pervasive sensing/actuation, dynamic data analytics, and commu-
nications, which encourages domains such as transportation, home automation, health care, and
emergency response to become increasingly IoT enabled. Smart spaces such as office buildings
tend to increase the deployment of novel networking infrastructures along with state-of-the-art
IoT devices; this provides data-driven insights to improve the situational awareness of a space.
This is particularly useful in mission-critical applications for enabling timely and reliable com-
munication in smart spaces. Recent smart city efforts such as the SmartAmerica and Global City
Teams Challenges have showcased the integration of IoT into a variety of application domains [9,
11, 35, 61].
A distributed data exchange system that manages relevant data flows to/from IoT devices

and individuals (data producers and consumers) is a critical centerpiece of IoT deployments. In
smart spaces, such devices are deployed at the Edge (closer to individuals), and thus, data ex-
change systems must support a flexible Edge networking infrastructure to manage data flows
with varying quality levels. Producers of data correspond to IoT sensors, events to data pro-
duced/consumed, and consumers of data to interested entities (i.e., human stakeholders or other
IoT devices and services). The data exchange system routes information to actuators (e.g.,
alarms) or human stakeholders. In mission-critical emergency scenarios, IoT devices can forward
raw sensor data to interested recipients (e.g., first responders, medical staff, public safety offi-
cers, government officials, etc.) through data exchange systems to help coordinate the response
effort.
Key challenges arise for enabling timely data exchange to a diverse set of recipients, includ-

ing (1) managing heterogeneous information with varying size, format, relevance, and urgency;
(2) seamless dynamic integration of new IoT data sources with pre-existing sources and informa-
tion; and (3) supporting reliable and timely communication over constrained networks—e.g., due
to lossy channels and failed components. For instance, during a structural fire, firefighters require
timely reception of up-to-date situational awareness information. Given the heterogeneity of this
information and the limited networking resources for delivering notifications, we believe event
prioritization is necessary in such mission-critical settings. Existing data exchange systems [6, 38,
50, 54, 58, 65] provide mechanisms for event prioritization either by manually assigning priori-
ties to specific data flows or by dynamically assigning them based on the application-level data
flows/types (e.g., video data) or even QoS-specific requirements (e.g., delay-sensitive apps). How-
ever, such systems cannot be customized to support mission-critical applications with dynamic

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

https://doi.org/10.1145/3456301

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:3

changes of the app requirements, interested data recipients, data flows/types, and networking con-
ditions.
In this article we propose PrioDeX, an integration middleware that enables timely and reliable

delivery of the most critical data to relevant data recipients despite challenging network con-
ditions. PrioDeX unifies smartspace IoT data and edge infrastructures with programmable net-
work infrastructures and domain-specific applications (e.g., smart firefighting). It leverages Edge
computing (i.e., publish/subscribe brokers at the network edge) and Software-Defined Networking

(SDN) to bridge critical application requirements with the network state. The main contribution
of PrioDeX is the capability of configuring the SDN-enabled physical network to prioritize events
according to the situational awareness app requirements and network resource constraints. We
model the Edge infrastructure using priority queues to estimate performance metrics (response
times, delivery success rates) based on the system workload. These are given as input to PrioDeX
algorithms to assign priorities and carefully tune packet drop rates (for bandwidth allocation) to
active subscriptions.
The PrioDeX middleware combines several novel capabilities and design features. This article

expands upon our previous work [10] to include experiments and experiences with our prototype
implementation as well as the formal proof of our new analytical model and derivations of our
priority assignment and drop rate policies. The key contributions of this article are:

—Introducing a cross-layer approach (application, middleware, network) to prioritize
mission-critical data exchange in IoT-enhanced smart spaces with SDN-enabled infrastruc-
tures (Section 2).

—Providing an analytical model using queueing theory that estimates performance metrics
for cross-layer IoT interactions. This model includes our new multi-class priority queueing
model. We use it here to represent an SDN switch, but it is generally suitable for use in
other queueing networks (Section 3).

—Developing novel algorithms that leverage the above queueing model to explore the config-
uration parameter space for IoT event prioritization and delivery/delay tuning (Section 4).

—Implementing the PrioDeX prototype that integrates the above algorithms and an
OpenFlow-enabled controller to configure the SDN-based underlying infrastructure (Sec-
tion 5).

—Evaluating the PrioDeX middleware by describing our experimental framework that relies
on both simulation and prototype (enriched with an emulated network) implementations
for configuring and running experiments; evaluating our middleware’s approach; compar-
ing the proposed algorithms’ performance; and validating our proposed analytical model
(Section 6).

We conclude this article in Section 8 with lessons learned and a look toward future work in this
area.

2 OVERVIEW

In this section, we describe an IoT-enhanced structural fire scenario where efficient data exchange
is necessary for satisfying situational awareness requirements of first responders. Then, we pro-
pose a cross-layer middleware approach to address these requirements via the efficient delivery of
mission-critical data from IoT sources to relevant consumers.

2.1 Motivating Use Case Scenario

To motivate the need for timely IoT data exchange and highlight the challenges involved, we be-
gin with an IoT-enhanced fire scenario. During a structural fire, an occupant or automated system

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:4 G. Bouloukakis et al.

Fig. 1. The PrioDeX cross-layer middleware.

activates an emergency dispatch process, which then notifies a local fire department. After some
time, a team of Fire Fighters (FFs) along with an Incident Commander (IC) arrive; the IC is respon-
sible for coordinating the effort from an Incident Command Post (ICP) set up on-site. To effectively
manage the dynamic response and minimize casualties, injuries, and property damage, the IC re-
quires up-to-date situational awareness information from the building. Today, the IC still derives
much of this information from non-digital sources (e.g., human-initiated reports via voice or radio,
paper records, etc.). However, sensorized smartspaces (equipped with IoT devices) enable access
to live data feeds that can generate actionable information in real time via proper filtering, pri-
oritizing, and analysis. Maintaining up-to-date situational awareness for Smart Fire Fighting (SFF)
requires the integration and enrichment of static and dynamic data from buildings and IoT in-
frastructure. Static information such as building floor plans, inspection histories, and presence of
hazardous material can be gathered a priori. For example, an emergency operations center may
monitor third-party data streams (e.g., weather, social media) and forward relevant information to
the ICP. Dynamic information published by IoT devices (in the building and brought by Fire Fight-
ers (FFs)) must be delivered to relevant stakeholders and combined with contextual knowledge to
generate situational awareness. Such information includes motion sensing, location, occupancy,
activity tracking, smoke levels, air flow rate, audiovisual feeds, and so forth. Different data types
vary in importance depending on the situation (e.g., “smoke” > “water pressure”) and the stake-
holders’ (e.g., IC, FFs, residents) data requests. Then, stakeholders visualize or act based on the
received information. For instance, an IC may use a tablet running a situational awareness dash-
board to monitor the situation and coordinate the response effort. FFs may use some less intrusive
interface (e.g., a heads-up display on their glasses) to receive similar non-voice commands from
the IC. A key challenge for SFF is the delivery of mission-critical data for “timely, targeted decision
making” in an unreliable, partially available, and congested network environment [30].

2.2 Enabling Efficient Prioritization at the Edge

We now provide an overview on how the PrioDeX middleware is designed to address the require-
ments and challenges of the above the structural fire scenario. We frame our discussions in terms
of the three layers depicted in Figure 1: (1) mission-critical applications, (2) abstractions repre-
senting the physical network infrastructure, and (3) the data exchange middleware bridging these
two layers. Our proposed solution aids in managing the overall system configuration and flow of

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:5

information. PrioDeX integrates other state-of-the-art technologies: data APIs for interfacing with
IoT data (e.g., from Edge devices in the building), a local pub/sub broker (or network of brokers),
a thin client middleware running on each subscribing IoT device, and SDN APIs for managing
the network infrastructure. It implements novel algorithms and provides middleware APIs for
our data prioritization and network management approach. To ensure delivery of the most im-
portant events despite network resource constraints (e.g., failures, poor signal strength, limited
bandwidth), it prioritizes events and allocates available network bandwidth according to
application requirements.
Application Layer. PrioDeX subscriber devices run a client middleware to establish broker con-

nections, retrieve a list of event topics, and subscribe to relevant ones. Since different data vary
by importance, we propose prioritizing events according to their relative importance to the emer-
gency response effort. To configure this, subscribers register utility functionswith their PrioDeX
subscriptions (see Figure 1). These functions capture a quantifiedmeasure of value for varying rates
of event delivery performance. Our proposed algorithms consider these utility functions when
configuring the data exchange and network to maximize the users’ situational awareness.
Data Exchange Layer. PrioDeX prioritizes subscriptions according to their subscriber-specified

utility functions. It leverages the theoretic analysis we present in Section 3 to estimate system per-
formance under given configurations. This analysis drives the algorithms presented in Section 4
that assign discrete priority classes and allocate available network bandwidth. PrioDeX connects
publishers (e.g., Edge devices) and subscribers (e.g., IC, FFs) with the data exchange broker, which
performs the actual routing of events. While some existing data exchange implementations and
protocols support priorities, configuring them requires specific APIs [47]. Furthermore, many pop-
ular options (e.g., the MQTT [43] protocol and associated broker implementations) do not support
priorities and so require equal treatment of all events transmitted to the same subscriber. To decou-
ple PrioDeX from the underlying pub/sub broker, which may be specific to the site’s Edge devices,
we do not employ app-layer (i.e., in-broker) prioritization. Rather, we propose enforcing priori-
ties at the network layer through unified APIs provided by SDN. This approach accounts for both
app-level requirements (e.g., utility functions) and network-level state information (e.g., available
bandwidth) without mandating (or extensively modifying) specific broker technologies. Hence,
PrioDeX essentially extends the data exchange broker/protocol with network and application-
aware prioritization.
Network Layer. PrioDeX manages the network infrastructure through APIs provided by an SDN

controller that likely runs alongside the Edge. It gathers network state information to derive re-
source constraints. This is combined with the subscribers’ information requirements to drive its
management algorithms. Zhang and Jacobsen previously advocated for a similar approach [62]
of a centrally gathered global view of pub/sub systems’ state to simplify its management. They
refer to this central control approach as SDN-like because it separates the pub/sub control and
data plane. They further propose integrating SDN with the data exchange middleware, which this
centralization cleanly enables. We advocate for this approach in IoT settings when offloading de-
vice management and data processing from constrained devices leads to centralized (e.g., cloud-
centric) designs. For simplicity of discussion, we consider the big switchmodel shown in Figure 1
that abstracts the entire local physical network into a single virtual SDN switch. This provides a
simplified single-network view of the whole distributed system that may span multiple physical
heterogeneous networks (e.g., Wi-Fi or local cellular) and different locations.
To enforce event priorities at the network layer, PrioDeX leverages SDN APIs. It configures

priority queueing disciplines for packets matching the different subscriptions. However, for the
network to distinguish the data exchange-layer concept of subscriptions, we must first translate
it to a network-level concept. As shown in Figure 2, we accomplish this through the SDN concept

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:6 G. Bouloukakis et al.

Fig. 2. PrioDeX prioritizes subscriptions at the SDN layer using multiple connections per subscriber.

of network flows. SDN switches match incoming packets of a particular network flow accord-
ing to header information. For example, OpenFlow considers OSI Layer 2-4 fields such as IP/MAC
address, UDP/TCP port, VLAN, and so forth. To differentiate subscriptions belonging to different
network flows, a PrioDeX subscriber maintains multiple network connectionswith the pub/sub
broker (e.g., over different OSI Layer 4 port numbers). This may represent different applications
running on the same device and/or one application opening multiple connections. The latter case
enables the network to distinguish and manage individual groups of subscriptions based on their
assigned connection. The data exchange layer dictates this assignment of (possibly multiple) sub-
scriptions to one network connection and its corresponding unique network flow. Subscribers
initiate multiple connections and then register each subscription to avoid directly configuring the
underlying data exchange broker. PrioDeX also assigns each network flow a priority level by con-
sidering subscriber requirements. It configures the SDN switches to forward packets matching
these network flows through the proper priority queue. To manage available network resources,
PrioDeX also allocates bandwidth to each network flow. It applies preemptive packet drop rates

that consider the utility of each network flow’s subscriptions. We propose dropping lower-priority
packets before switch buffers fill up to prevent high delays and dropping of higher-priority pack-
ets. Section 4.3 discusses this concept further and proposes our optimization-based algorithm for
setting these drop rates. Our proposal leverages discrete priority classes to drive priority queueing
disciplines and defines the best priority assignments rather than assuming them as a given input.

3 PRIODEX FORMAL MODEL

To enable timely and reliable data exchange in IoT systems, existing solutions propose creating
performance models that can be leveraged for system tuning. Such models must consider all three
layers’ characteristics and their effects on each other. Existing efforts typically focus on each layer
in isolation to model the performance of middleware systems [14, 36, 49], network infrastruc-
tures [7, 29], and more recently SDN infrastructures [23, 55]. In this article, we model cross-layer
interactions by composing and extending previous work [14, 15] at each layer through the uni-
fied framework of queueing theory [31, 52]. PrioDeX combines queueing theoretic approaches from
both the middleware and network layers to construct the representative and extensible three-layer
queueing network shown in Figure 3. At themiddleware layer, M/M/1 queues are used tomodel the
subscription matching process and the delivery of events to subscribers. At the networking layer,
M/M/1, multi-class and priority-class queues are used to model packet processing, transmission,
and prioritization. When increasing the number of brokers, subscribers, and switches, the number
of queues leveraged are increased as well. The data exchange middleware bridges the network
infrastructure and application layers to enable a novel cross-layer end-to-end performance model.
We derive this analytical model to estimate a particular configuration’s expected performance.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:7

Fig. 3. PrioDeX queueing network model.

Table 1. Notations of the Parameters in Our Cross-Layer Data Exchange Model

Notation Description

Application Layer

vj ∈ V event topics

si ∈ S subscribers

r j ∈ R subscriptions

pi ∈ P publishers

λ
pub
pi ,vj

topic vj ’s pub rate

λsubrj
r j ’s delivery rate

Ξrj r j ’s success rate

Δrj r j ’s end-to-end
response time

Notation Description

Data Exchange Layer

bk ∈ B brokers

λ
notif y

bk ,rj
r j ’s notification rate

Ψ : R �→ F network flow for a subscription

Φ : F �→ Y priority for a network flow

Ω : F �→ [0, 1] packet drop rate for a network flow

Network Layer

xk ∈ X SDN switches

hj ∈ H , H = P ∪ S ∪ B network hosts

wxk ,hj
∈W , wxk ,hj

∈ N bandwidth between xk and hj

Gvj ∈ Z>0 serialized packet size for topic vj

zhj ,hi ∈ Z , zhj ,hi ∈ [0, 1] packet error rate

Γ : N × H × H �→ N transforms event departure to arrival rates (e.g.,
packet errors)

fj ∈ F network flows

yj ∈ Y unique priority classes

3.1 Queueing Network Performance Modeling

Refer to Table 1 for the notations used throughout this section.
Application Modeling. Each publisher pi publishes to a set of topics Vpi ⊆ V (e.g., “smoke”). Let

λ
pub
pi ,vj be the publication rate of events with topic vj published by pi per unit time.

Assumption 1. λ
pub
pi ,vj is based on a Poisson process.

We define each subscription as a tuple r j = (si ,vj ,Ur j) where the utility functionUr j quantifies
the information value for subscriber si receiving events with topic vj . Let Rsi = {r j ∈ R : si ∈ r j }

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:8 G. Bouloukakis et al.

be the set of prioritized information requests (i.e., subscriptions) for each subscriber si . Let λ
sub
r j

be

the incoming rate of events matching subscription r j received per unit time by subscriber si .

Let Ξr j be the success rate of delivering λ
sub
r j

, which can be estimated as follows:

E[Ξr j] =
λsubr j∑

pi ∈P λ
pub
pi ,vj

, (1)

where the denominator aggregates events produced from publishers for topic vj (Assumption 1).
Let Δr j be the average end-to-end response time of events matching subscription r j = (si ,vj ,Ur j)

from the moment they are published until si receives them; this is a function of event processing,
queueing, transmission, and propagation delays (defined later in this section).
Data Exchange Modeling. The data exchange layer represents a network of broker nodes B . We

assume that each publisher pi connects to its home broker bpi , which we define as the broker
to which pi publishes events. A home broker bsi is defined analogously for each subscriber si .
Furthermore, we define the set of publishers connected with bk as Pbk = {pi ∈ P : bk = bpi }, the set
of subscribers connected with bk as Sbk = {si ∈ S : bk = bsi }, and the set of subscriptions handled

by bk as Rbk = ∪si ∈Sbk Rsi . A broker bk forwards events with rate λ
f wd

bk ,bi
to another broker bi ∈ B

for event delivery to bi ’s subscribers. As depicted in Figure 3, we model each broker bk using a
single inbound M/M/1 queue Q in

bk
and multiple outbound M/M/1 queues Qout

bk ,si
. By Assumption 1

and the exponentially distributed service rate of Q in
bi
,∀bi ∈ B − {bk }, we know that λ

f wd

bk ,bi
follows

a Poisson distribution. Hence, we can define the arrival rate of events at Q in
bk

as the sum of all

(post-network transformation) event publication/forwarding rates over all publishers/brokers:

λinbk =
∑

pi ∈Pbk

∑
vj ∈Vpi

Γ
(
λ
pub
pi ,vj ,pi ,bk

)
+

∑
bi ∈B,bi�bk

Γ
(
λ
f wd

bi ,bk
,bi ,bk

)
, (2)

where Γ, which we define later in this section, represents network-layer traffic shaping due to
error rates, administrative policies, and so forth.
Forwarding, replication, or dropping of events based on current subscriptions occurs at the exit

of Q in
bk
. Let μin

bk
be Q in

bk
’s service rate for analyzing an incoming event and determining where to

forward it (e.g., based on a topic routing tree). We assume μin
bk

is constant (or averaged) across

all topics and independent of current subscriptions. Events not matching subscriptions Rbk are

dropped with rate λnosub
bk

. For each subscriber si ∈ Sbk , bk forwards events matching a subscrip-

tion r j ∈ Rsi to Qout
bk ,si

with rate λthru
bk ,si

for transmission to si . Recall that each broker maintains

multiple connections (i.e., network flows) with each subscriber. Let μout
bk ,r j

be the service rate at

Qout
bk ,si

that captures the time it takes to map an event matching subscription r j to the correspond-

ing connection of si . It forwards these publications into the network layer with rate λ
notif y

bk ,r j
. Hence,

we define the per-subscriber forwarding rate as:

λ
notif y

bk ,si
=
∑

r j ∈Rsi

λ
notif y

bk ,r j
. (3)

PrioDeX Configuration Parameters. The data exchange layer also represents the PrioDeX configu-
ration service. PrioDeX associates each subscription with one of the network flows fj ∈ F in order
to manage subscription traffic in a network-aware manner. Recall from Section 2 that network
flows represent multiple connections between a subscriber and its home broker. We define the set
of network flows for a particular subscriber si as Fsi ⊆ F . Additionally PrioDeX defines a set of

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:9

unique priority classes yj ∈ Y to which each network flow is assigned; this enables network traffic
to be managed in an application-aware manner. Note that yj has higher priority than yk for j < k ,
i.e., y0 is the highest priority. To configure the end-to-end data exchange interactions across all
three layers, PrioDeX employs the following functions:

Ψ : R �→ F is the function that maps subscriptions (i.e., events matching them) to the corre-
sponding subscribers’ network flows. Note that we denote Ψ(si ,vj) = Ψ(r j) as the network flow
for subscription r j = (si ,vj ,Ur j) and so Ψ : S ×V �→ F . As described in Section 2, this mapping al-
lows the SDN data plane to distinguish packets containing events from each other, based on their
subscriptions.
Φ : F �→ Y is the function mapping network flows to priority classes. This defines which priority

class (i.e., priority queue) the SDN infrastructure uses for a packet transmitted on network flow
fj . This packet contains event(s) matching subscriber si ’s subscription r j where fj = Ψ(r j). Hence
Φ ◦ Ψ(r j) is subscription r j ’s priority.

Ω : F �→ [0, 1] is the function mapping network flows to preemptive packet drop probabilities.
By dropping some packets on a network flow, PrioDeX tunes the data exchange configurationmore
accurately than through priority assignment alone. Somewhat akin to network traffic policing, this
technique lowers the bandwidth usage of a network flow so that the aggregate bandwidth needs of
all flows does not exceed that which is available. By dropping packets in the lower-priority flows,
this prevents switch buffers from filling up and dropping higher-priority packets.
Network Modeling. Publications forwarded to the network layer are encapsulated in packets for

transmission by the SDN infrastructure. To simplify our analysis, we leverage the following:

Assumption 2. The data exchange and applications encapsulate each event in a single packet for

transmission through the network.

LetX be the set of SDN switches that connect with the various hostsH . A host hj may have mul-
tiple physical network interfaces/connections to one or more switches, and packets between two
hosts may traverse multiple routes. However, SDN abstractions support the following assumption
that simplifies our analysis:

Assumption 3. We consider multiple switches/routes between two hosts as aggregated into a single

virtual SDN switch/link that captures the underlying physical network topology and characteristics.

By Assumption 3, we need only to model a single big switch serving a publisher or subscriber.
Hence, we refer to xsi as the PrioDeX-managed SDN switch that controls traffic between bsi and
si . We refer to xpi as the unmanaged SDN switch that exposes the network characteristics (de-
fined below) of the network channel between bpi and pi . Note that PrioDeX does not manage the
latter switch because this might conflict with deployment-specific IoT device configurations. To
model multiple hosts sharing the same network medium (e.g., a wireless channel), we apply As-
sumption 3 and model such a channel as one switch serving multiple hosts. Therefore, we define
the set of subscribers served by switch xk as Sxk = {si ∈ S : xsi = xk }, all of their subscriptions as
Rxk = {∪si ∈Sxk Rsi }, and all of their network flows as Fxk . Similarly, let Pxk = {pi ∈ P : xpi = xk } be
the set of publishers served by xk .
LetQum

xi
be the queue modeling the unmanaged switch xi that encompasses a publisher-broker or

broker-broker link. ByAssumption 2, we have the packet arrival rate for publications and forwarded

events at switch xi as λ
pub
pi ,vj and λ

f wd

bk ,bi ,vj
, respectively.WemodelQum

xi
as amulti-class queue, which

enables us to define the average transmission delay of a packet (Δtx
r j
) based on its size. Each class

corresponds to the topic of an event encapsulated within a packet. Hence, we define the expected
serialized size (e.g., in bytes) of a packet that, by Assumption 2, contains a single event published to
topic vj asGvj ∈ Z>0. Using Assumption 3, we havewxk ,hj as the bottleneck bandwidth available

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:10 G. Bouloukakis et al.

between two hosts (i.e., from the switch xk serving them to the destination host hj). Therefore, we
can define a per-topic packet transmission rate as

μumxi ,vj =
wxi ,bk

Gvj

. (4)

Equation (4) is used to estimate the average transmission delay Δumxi (see Equation (15)). We
apply Γ to packets departing the switch queue Qum

xi
in order to transform event departure rates

from a host hj to event arrival rates at the destination host hi . To simplify our analysis, we leave
retransmission of packets for future work and instead consider only packet error rates. Let zhj ,hi ∈
[0, 1] be this packet error rate that allows us to model packet drops at the single switch between
these hosts. We have the arrival rate of publications (on topic vj from publisher pi at broker bk) as

Γ
(
λ
pub
pi ,vj ,pi ,bk

)
=
(
1 − zpi ,bk

)
λ
pub
pi ,vj . (5)

We define the transformed arrival rate of events forwarded from broker bi to bk similarly.
We model each managed SDN switch encompassing a broker-subscriber link as two different

queues: (1) an M/M/1 queue Q in
xk

that feeds into (2) our newly proposed queueing model: a non-

preemptive priority and multi-class queue Qout
xk

. By Assumption 2, we therefore have the arrival

rate at switch xk of event-encapsulating packets within a network flow fj as λ
in
xk ,fj

.Q in
xk

processes

each incoming packet by matching its header contents to a corresponding network flow fj and
determining the assigned priority (i.e., Φ(fj)). Let μ

in
xk

be the service rate at Q in
xk

that captures
the time required to perform this matching (e.g., an SDN switch TCAM lookup), assign the given
priority, and route the packet to the appropriate output port. Note that this might actually capture
delays from forwarding packets along a multi-switch route. Before enqueueing the packet at the
correct output port, we have the per-subscription arrival rate at Qout

xk
as

λthruxk ,r j
= (1 − Ω ◦ Ψ(r j)) λnotif ybk ,r j

, (6)

where the switch first applies the dropping policy to each flow (i.e., Ψ(r j)) according to the
PrioDeX-computed function Ω .
Multi-class priority queue Qout

xk
separates the departure rates of each packet according to its

serialized size and the switch’s available bandwidth. Note that the assigned priority class affects the
response time but not the departure rates of these packets. By Assumption 2, we have the service
(i.e., transmission) rate of packets encapsulating events that match subscription r j = (si ,vj ,Ur j)
from SDN switch xk to subscriber si as

μoutxk ,r j
=
wxk ,si

Gvj

. (7)

We have the departure rate from Qout
xk

as

λoutxk ,r j
= λthruxk ,r j

.

We then apply Assumption 2 and Γ to packets departing switch queueQout
xk

. Considering packet
error rates, we have the arrival rate of events at subscriber si matching subscription r j = (si ,vj ,Ur j)
as

Γ
(
λoutxk ,r j

,bsi , si
)
= λsubr j

=
(
1 − zbsi ,si

)
λoutxk ,r j

. (8)

3.2 End-to-End Analytical Model

We now leverage our queueing network to derive theoretical performance results. This analysis,
the accuracy of which we validate in Section 6.4, enables PrioDeX to tune the data exchange per-
formance characteristics of end-to-end event response time and delivery success rate. To define
Δr j , the end-to-end response time of events for subscription r j , we define the propagation and

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:11

queueing delays at each layer. Note that the queueing delay in our model captures the real-world
processing and network transmission delays.
To simplify our analysis, we exploit the local nature of our target scenario and consider only

a single broker (bk) for the remainder of this section. Future work will explore relaxing this as-
sumption and extending this analysis to include the more general scenario of a distributed broker
network enabled by our queueing network model above. By the above assumption, we must define
the per-subscription end-to-end response time metric denoted by Δr j , which is the expected delay
from any such publisher to broker bk considering both the queueing delay at the intermediate
switch xpi and heterogenous propagation delays. Therefore, we have

E
[
Δ
prop

pi ,bk
+ Δumxpi

]
=

∑
{pi ∈Pbk :vj ∈Vpi }

Δ
prop

pi ,bk
+ Δumxpi

|P (pi ,vj) |
, (9)

where Δ
prop

pi ,bk
is the propagation delay (i.e., physical network latency) between a publisher pi ∈ Pbk

and the broker bk , |P (pi ,vj) | is the number of maximum publishers producing events on topic
vj (i.e., |{pi ∈ Pbk : vj ∈ Vpi }|), and Δumxpi is the transmission delay of packets passing through the

switch. Then, by using Equation (9), we complete the calculation of Δr j as follows:

Δr j = E
[
Δ
prop

pi ,bk
+ Δumxpi

]
+ Δbk + Δ

prop

bk ,si
+ Δxsi

, (10)

where Δbk is the processing delay of events passing through bk , Δ
prop

bk ,si
is the propagation delay

between the broker and the subscriber si , and Δxsi
is the transmission delay of packets passing

through xsi . The average response time of Equation (10) includes queueing delays at each layer
of PrioDeX. Based on the queueing network representing PrioDeX (see Figure 3), we identify the
type of each queueing model and their arrival/processing/transmission rates.
At the data exchange layer we useM/M/1 queues. Based on standard solutions forM/M/1 queues

(see page 62, Equation 2.26 in [27]), the time that an event remains in the system (i.e., queueing
time + service time; also called average delay) is given by

ΔQmm1 (μ, λ) =
1

(μ − λ)
. (11)

At the network layer, we use three different types of queueing models: (1) the M/M/1 queue
(Q in

xk
), (2) the multi-class queue (Qum

xi
, unmanaged switch queue), and (3) the non-preemptive pri-

ority andmulti-class queue (Qout
xk

, SDN switch queue). Note that each class corresponds to the topic
of an event encapsulated within a packet. Based on standard queueing theoretic solutions [37], the
average delay for events matching a particular subscription rk is given by

ΔQmcl
(μ, λ, rk) =

1

μrk − μrk
∑

r j ∈R λr j /μr j
, (12)

where λ = {λr j : r j ∈ R } and μ = {μr j : r j ∈ R }.
Finally, the SDN switch is modeled using the non-preemptive priority and multi-class queue

(Qxk). Hence, the average delay of packets for rk assigned with yj is given by

ΔQmclpr
(μ, λ, rk) =

Lrk (λ, μ)

λrk
, (13)

where λ = {λr j : r j ∈ R }, μ = {μr j : r j ∈ R }, and Lrk is the number of events matching subscription
rk with assigned priority yc (where Φ ◦ Ψ(rk) = yc) in the system (queue + server) of Qmclpr . See
Appendix A for our proof of Equation (13).

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:12 G. Bouloukakis et al.

By relying on the above analytical models, we define the average delay of events for any sub-
scription r j at each node and layer of the PrioDeX queueing network according to Equation (10).
Data Exchange. At this layer, the average delay at bk (Δbk) is given by calculating the queueing

delay of events matching r j at both inbound (Q in
bk
) and outbound (Qout

bk ,si
) queues, i.e., Δbk = ΔQ in

bk

+

ΔQout
bk ,si

. Both queues are of M/M/1 type. ForQ in
bk
, the incoming rate of events is λin

bk
and its service

rate is μin
bk
; forQout

bk ,si
, the incoming rate of events is λthru

bk ,si
and the service rate is μout

bk ,r j
. Hence, we

apply Equation (11) to determine

Δbk = ΔQmm1

(
μinbk , λ

in
bk

)
+ ΔQmm1

(
μoutbk ,r j

, λthrubk ,si

)
. (14)

Network. At this layer, the average delay (Δumxi) at the unmanaged switch xi (publishers-broker
link) is given by calculating the queueing delay of packets matching rk at the multi-class Qum

xi
queue. Hence, using the analytical model of Equation (12), such a delay is given by

Δumxi = ΔQmcl

(
{μumxi ,vj : vj ∈ V}, {λ

pub
pi ,vj : pi ∈ Pxi ,vj ∈ Vpi }, rk

)
. (15)

At the SDN switch xk (broker-subscribers link), the average delay (Δxk) is given by estimating
the queueing delay for packets matching r j at both the inbound (Q

in
xk
) and outbound (Qout

xk
) queues,

i.e., Δxk = ΔQ in
xk
+ ΔQout

xk
. In the M/M/1 queue Q in

xk
, packets arrive at a per-flow rate λin

xk ,fj
and are

served with rate μinxk . Hence, by applying Equation (11), ΔQ in
xk
= ΔQmm1

(
μinxk , λ

in
xk ,fj

)
.

The outbound queue (Qout
xk

), a multi-class and non-preemptive priority queue, has a per-

subscription packet arrival rate λthruxk ,r j
. Its service rates μoutxk ,r j

capture the specific event/packet

size of the corresponding rk = (si ,vj ,Ur j). Hence, we apply Equation (13) to find

ΔQout
xk
= ΔQmclpr

(
{μoutxk ,r j

: r j ∈ Rxk }, {λ
thru
xk ,r j

: r j ∈ Rxk }, rk
)
. (16)

According to Figure 3 and Equation (10), to estimate the average response time for events match-
ing subscription r j of a single subscriber, we must consider the propagation and queueing delays
for events passing through one broker and two switches. In particular, we have (1) one multi-class
queue in the publishers-broker switch (15), (2) two M/M/1 queues in the broker (Equation (14)), and
(3) one M/M/1 queue and one multi-priority queue in the broker-subscriber switch (Equations (11)
and (16)). The time required to determine the average response time using Equation (10) is typi-
cally in the order of a few milliseconds. The time complexity of Equation (10) increases linearly
as the number of switches increases (which is proportional to the queues in the network). This
is because we must consider the queueing and propagation delays for the events passing via the
additional publisher -broker and broker -subscriber switches.

4 DATA EXCHANGE CONFIGURATION ALGORITHMS

The core algorithms of PrioDeX leverage the above analytical model to configure the SDN-enabled
data exchange. Considering current system state and information requirements, they assign prior-
ities and preemptive drop rates to subscriptions (i.e., viaΦ ◦ Ψ, Ω) in order to maximize subscriber-
defined utility functions.

4.1 Utility Functions

To capture the relative value of information for different subscriptions, we propose using utility

functions. Subscribers include a utility function with their subscriptions. Utility functions directly

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:13

affect the rate of successful event delivery Ξr j and response time Δr j . The overall utility for a
subscriber depends on each of its subscriptions’ utilities and is defined as

Usi =
∑

r j ∈Rsi

Ur j (Ξr j). (17)

Let Ûr j be a subscription’s maximum achievable utility: delivering the maximum number of
events under ideal network conditions (i.e., no loss, minimal latency, no other traffic).
To further capture the relative value of information between each subscriber, we consider an

overall utility of all subscribing first responders. Each subscriber may define different utility func-
tions to capture the fact that each of their needs vary (e.g., the IC may require more situational
awareness than individual firefighters). We define the overall utility of the configuration for all
subscribers as a sum over each individual subscriber’s utility:

U =
∑
si ∈S

Usi . (18)

To model heterogeneous information requirements in our experiments, we generate different
utility functions for each subscription. We define the base utility function as

Ur j (Ξr j) = αr j log(1 + Ξr j), (19)

where the utility weight αr j is varied for each subscription.

4.2 Priority Assignment Algorithm

PrioDeX leverages the above quantified utility metrics to assign priorities for each data flow in
a manner that aims to maximize the overall system utility. We decouple the assignment of pri-
orities from that of drop rates for two reasons. Prioritization ensures the most important events
get through first, but it does not necessarily provide guarantees about how much data is deliv-
ered. Hence, we first assign the priorities and then optimally set the preemptive drop rates to tune
bandwidth usage for the network flows in each priority class. Second, this decoupling allows us
to explore different policies in these two spaces independently.
Greedy Split. Because the assignment of discrete priorities for maximizing the utility is non-

trivial, we propose a heuristic to approximate a solution. It first ranks subscriptions according to

their maximum utility Ûr j scaled by the corresponding required bandwidth. This measures infor-
mation value per unit bandwidth and lets PrioDeX consider that some high-value subscriptions
may consume a lot of network resources. We define this utility weight as follows:

αr j =
Ûr j

Gvjλ
notif y

bk ,r j

. (20)

We provide a solution to the priority-assignment problem through the following greedy ap-
proach:

(1) Sort the subscriptions r j ∈ Rsi by Equation (20).
(2) Split this list into |Fsi | sub-lists of approximately equal size.
(3) Assign Ψ(r j) = Fsi (k) for each r j ∈ sub-list number k .
(4) Split the list of flows Fsi∀si ∈ S into approximately |Y | sub-lists of approximately equal

size.
(5) Assign Φ(fj) = yk for each fj ∈ sub-list number k .

Note that this splitting up of lists handles unequally sized splits by preferring higher priorities
first.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:14 G. Bouloukakis et al.

Cluster Split.We also propose the following cluster approach. It consists of the same first three
steps as the greedy approach, then:

(4) Split the list of flows Fsi∀si ∈ S into |Y | sub-groups leveraging the k-means clustering
method and the following utility weight (per network flow) to evaluate each data point:

αfj =
∑
r j ∈fj

αr j . (21)

(5) Assign Φ(fj) = yk for each fj that belongs to the group with priority yk .

The main difference between the two approaches is that the greedy split has fixed group size,
while the cluster split groups different network flows depending only on their information value
(i.e., Equation (21)). Both priority assignments ensure delivery of the highest-priority events if
possible. However, an overloaded system will fill switch buffers and lead to high delay and loss of
lower-priority events. Hence, we apply preemptive drop rates to avoid such a case.

4.3 Ensuring Queue Stability via Preemptive Drop Rates

Given a priority assignment, subscription utility functions, and the current network state (e.g.,
bandwidth constraints), PrioDeX further fine-tunes the subscriptions’ successful notification rate
Ξr j by applying a packet dropping policy. This improves the overall utility of the system’s con-
figuration by allocating available bandwidth to the network flows. In addition, this bandwidth
allocation also ensures queue stability throughout the network. That is, if packets arrive at the
switches’ inbound queues too quickly, the forwarding queues will grow in size until the buffers fill
up and packets are dropped. To prevent the dropping of high-value events, PrioDeX preemptively
drops lower-priority packets. The algorithms presented in this section determine the probability
with which packets of each network flow should be dropped (Ω(fj)). Here, the goal is to satisfy the
situational awareness requirements and the conditions necessary for our analytical model’s results
to be accurate, while also ensuring queue stability and improving the overall system performance.

Let ρQ =
λ
μ
be the server utilization (i.e., the probability that the server is busy) of the corre-

sponding queue (e.g., Qout
xk

). By [27], the system remains unsaturated (i.e., queue stability is en-

sured) when ρQ < 1. For PrioDeX’s M/M/1 queues (i.e., Q in
bk
, Qout

bk ,si
, Q in

xk
), we define ρQ in

bk

=
λin
bk

μ in
bk

,

ρQout
bk ,si
=

λthru
bk ,si

μout
bk ,rj

, and ρQ in
xk
=

λin
xk , fj

μ inxk
. PrioDeX’s multi-class queuesQum

xi
andQout

xk
have per-topic and

per-subscription arrival and service rates, respectively. Thus, we can estimate the per-class server
utilization as well as the overall server utilization for each queue as

ρQum
xi
=
∑
Pxi

∑
vj ∈Vpi

λ
pub
pi ,vj

μumxi ,vj
. (22)

ρQout
xk
=
∑

r j ∈Rxk

λthruxk ,r j

μoutxk ,r j

(23)

To improve the successful delivery rate while ensuring queue stability, we propose several algo-
rithms of increasing sophistication below. Note that these algorithmic formulations currently only
consider the outbound queue of the SDN switches for this constraint, as tuning the drop rates only
affects ρQout

xk
. Also recall that this queue captures the bottleneck bandwidth of the network route

from broker to subscriber. Future work will explore simultaneously balancing the load across data
exchange brokers to also ensure stability of their queues within our model.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:15

Each algorithmmakes use of a parameter ρ̃ in tuning the system’s tolerance to approaching (but
never exceeding) the queue saturation point of ρQout

xk
= 1. Clearly, to satisfy the strict inequality

ρQout
xk
< 1,we must have ρ̃ > 0. Increasing ρ̃ provides ample buffer within the SDN switch queues

for resilience against temporary notification rate spikes that might otherwise lead to queue sat-
uration. However, even if this condition is just barely satisfied (e.g., ρ̃ = 10−10), queues will still
grow quite large and thereby cause high delay. Therefore, the following drop rate policies set Ω
such that

ρQout
xk
= 1 − ρ̃ . (24)

Flat drop rates: this simple naive policy sets all drop rates equal to satisfy Equation (24) by
solving Equation (23) for a parameter β such that

Ω(fj) = β . (25)

Linear drop rates: this value-aware policy sets the drop rates for each network flow according
to its assigned priority level. It solves Equation (23) for a parameter β that satisfies Equation (24)
with drop rates set to

Ω(fj) = βΦ(fj). (26)

Exponential drop rates: similar to Linear, this policy sets drop rates according to priority level.
It solves Equation (23) for a parameter β that satisfies Equation (24) with drop rates set to

Ω(fj) = 1 − β−Φ(fj) . (27)

To compute the parameter β in Equations (25), (26), and (27), we use the analytical solutions pre-
sented in Appendix B, i.e., Equation (47) for Flat, Equation (48) for Linear, and Equation (54) for
Exponential drop rates.
Optimized drop rates: the following convex optimization formulation assigns drop rates to max-

imize overall utility (see Equation (18)). Given the assigned priorities to network flows as input,
PrioDeX assigns drop rates by solving the following:

maximize U

subject to Ω(fj) ∈ [0, 1],∀fj ∈ F
ρQout

xk
≤ 1 − ρ̃ , ∀xk ∈ X

. (28)

Note that the first constraint defines the feasible domain of assigned drop rates for each network
flow fj , and the second constraint ensures that available bandwidth constraints are met (i.e., queue
stability) according to the ρ̃ parameter for each SDN switch xk . As long as the chosen utility
functions are concave (e.g., logarithm such as Equation (19)), then Equation (28) can be expressed
as a convex optimization problem and efficiently solved.We used CVXPY [2, 22] that solves convex
optimization problems to assign drop rates to PrioDeX network flows.

5 PROTOTYPE IMPLEMENTATION

We now present the PrioDeX prototype, which implements the cross-layer architecture (Figure 1
in Section 2), the underpinning theoretical model (Section 3), and the algorithms (Section 4). The
main software components developed and technologies used are shown in Figure 4. Among these
components, the PrioDeXCoordinator Service (PCS) is a part of the data exchange layer and provides
configuration parameters to the network infrastructure through SDN. It runs the algorithms to
compute priorities and drop rate policies, which are enforced via an SDN controller that configures
SDN switches. The PrioDeX source code and the detailed documentation are provided at https://
github.com/boulouk/priodex.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

https://github.com/boulouk/priodex
https://github.com/boulouk/priodex

19:16 G. Bouloukakis et al.

Fig. 4. The PrioDeX cross-layer prototype implementation.

5.1 Cross-Layer Prototype Implementation

Application Layer. The MQTT Paho library [20] is used from any PrioDeX publisher to create an
MQTT connection with the data exchange broker. Publishers produce events according to one of
two methods: (1) by using probability distributions (e.g., Exponential or Deterministic) or (2) by
using traces created with data coming from real IoT deployments. Subscribers connect to the bro-
ker by specifying a topic name and its corresponding utility function to receive relevant events.
Each subscriber establishes multiple MQTT-SN connections to the broker with a client library
[19]; these allow the network layer to distinguish between different event types (e.g., more/less
relevant). Hence, different queueing priority disciplines and event dropping policies can be ap-
plied as indicated by the PCS. To establish the subscribers’ connections, MQTT-SN is used instead
of MQTT because it is implemented over UDP rather than TCP. TCP’s re-transmission mechanism
interferes with our preemptive packet dropping approach that tolerates losses of less important
data due to the constrained bandwidth. However, since UDP does not support fragmentation and
reassembly of application-layer events, we assume that events are never fragmented. We addition-
ally limit the event size to 256 bytes (before packet headers) due to the limitations of the MQTT-SN
library. The PCS workflow with respect to subscribers consists of three steps. First, the subscribers
coordinate with the PCS as depicted in Figure 5. Then, the PCS determines the port number of the
connection to be used for each subscription. Finally, subscribers open the connections specified by
the PCS to the broker and subscribe to each topic through its corresponding connection.
Data Exchange Layer. In this layer, we follow the publish/subscribe paradigm for event dis-

semination using the following components:
Data Exchange Broker. Publishers and subscribers interact with each other via an MQTT-
based [43] message broker. While PrioDeX supports any MQTT broker implementation (e.g.,
EMQ, RabbitMQ), we deployed Moquette [16] because it is lightweight, embeddable, open source,
and easy to configure. We also deploy an MQTT-SN gateway [26, 34] co-located with the MQTT
broker to translate events from MQTT over TCP (publishers’ protocol) to MQTT-SN over UDP
(subscribers’ protocol).
PrioDeX Coordinator Service. The PCS is the “brain” of PrioDeX. It manages user subscriptions
by assigning priorities and drop rates as described in Section 4. We implemented the PCS as a
REST service using the Python library Flask [25]. Subscribers indicate their topics of interest and
the corresponding utility functions to the PCS through an HTTP request (i.e., subscription intent).
Then, the PCS computes priorities and drop rates for the subscriber’s network flows, provides to

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:17

Fig. 5. Subscribers and PCS interaction workflow.

the subscribers the mapping of subscriptions to connections (i.e., network flows), and configures
the network layer to enforce the assignment of priorities and dropping policies to network flows.
Network Layer. The network layer enforces the event prioritization and drop rate policies

indicated by the PCS using the OpenFlow [40] protocol. This is performed from the Ryu SDN
controller that configures the SDN switches via the following SDN network applications:

(1) The Topology Applicationmonitors network traffic to create an internal graph representa-
tion (using the NetworkX library [28]) of the network topology. The topology is used to
route packets from source to destination.

(2) The PrioDeX Flow Application populates the switches’ flow and group tables. This applica-
tion implements different prioritization policies and thus can be used to tune the network-
ing infrastructure in the case of an emergency (e.g., earthquake, water contamination, etc.).

Based on the scenario described in Section 2, we implement the FireDeX flow application to
enforce priority and drop rate policies in the switches’ flows and group tables. To identify a
subscriber’s data flows, the FireDeX flow application matches the packet’s header with the net-
work flow information received by the PCS, i.e., the subscriber’s IP address and the connec-
tion’s/network flow’s transport layer port number. To set the drop rates, we use the SELECT option
of the OpenFlow group tables. In particular, we set the forwarding and drop probabilities by defin-
ing two weighted “buckets” (i.e., options of a group rule); the first bucket represents the actions
taken to forward a packet normally and the second bucket represents the actions taken to drop the
packet. For example, the rules shown in Listing 1 match packets for the subscriber with IP address
10.0.0.1 and an MQTT-SN connection on UDP port 8888. The forwarding bucket applies priority
class 2 (i.e., queue number), while the drop bucket applies a 10% drop rate.

FLOW TABLE RULE: ip_address = 10.0.0.1, udp_port = 8888,
action = (group_identifier, 1)

GROUP TABLE RULE: group_identifier = 1,
buckets [

(weight = 90, action = (queue = 2, output_port = 3)),
(weight = 10, action = drop)

]

Listing 1. Example rules in flow and group tables.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:18 G. Bouloukakis et al.

We configure the priority queues in the switches via Linux TC [5] because OpenFlow does not
provide an API to support this. Furthermore, PrioDeX must enforce a random per-packet selection
of the buckets option to apply the drop rate rather than the typical approach of hashing packet
header fields. This is implemented by leveraging a modified Open vSwitch (OVS) version [45].

5.2 Implementation Challenges

We faced the following challenges and overcame themwhile implementing the PrioDeX prototype:

• Differentiating events at the network layer for policy enforcement.We used SDNnetwork
flows to distinguish subscriptions served by different connections. This was necessary be-
cause the OVS switches can only inspect a packet’s header (i.e., OSI Layers 2-4), and not
the payload. Hence, we needed to bring the concept of subscription topics from OSI Layer
7 (app layer) down to OSI Layers 2-4 for our in-network policy enforcement.

• Enforcing packet drop rates via SDN required us to use the modified OVS version de-
scribed above. As a result, we implemented the drop rate policies through a weighted per-
packet selection of bucket options (i.e., drop vs. forward with priority).

• SDN controller choice: We moved from ONOS to Ryu because the former does not sup-
port group rules for specifying the enqueue action as required by our flow rules shown in
Listing 1.

• The UDP protocol was used over the TCP protocol when subscribers receive events. Ap-
plying drop policies to events over a TCP connection triggers its re-transmissionmechanism
because the sender does not receive an acknowledgment when the corresponding event is
dropped. Hence, subscribers employ the MQTT-SN (over UDP) protocol.

• Clock-synchronization issues between publishers and subscribers for gathering accu-
rate performance metrics. To overcome this challenge we run our experiments on a single
machine using Mininet—all applications shared the same system clock.

• Our experimental network topology requires additional “dummy” switches for con-
structing priority queues that are shared across all subscribers. This is due to the fact that
each host has its own Ethernet interface connecting it with a switch. Therefore, enqueueing
prioritized events may result in one set of priority queues for each subscriber rather than a
shared queue across all subscribers as our version accomplishes.

Despite the fact that we have tackled the above challenges, the MQTT-SN control events (e.g.,
subscription, unsubscription, ACK) are sent to the same UDP port (or network flow) in which
we apply the drop rate policies. Therefore, some of the control events may be dropped. To better
understand the situation, let us consider the events exchanged between a broker and a subscriber
through the SDN infrastructure. The first event sent from the broker to the subscriber (i.e., the sub-
scription’s acknowledgment) triggers the creation of the flow/group rules (see Listing 1) associated
with the network flow to which the subscription belongs. Subsequently, when the subscriber sub-
scribes to another topic on the same network flow, the second subscription’s acknowledgmentmay
be dropped because of the drop rate policy applied. This can delay the subscription process con-
siderably if the assigned drop rate to that network flow is high. One possible solution to overcome
the aforementioned problem requires changing the interaction protocol between subscribers and
the PCS. In particular, each subscriber notifies the PCS of its intention to subscribe/unsubscribe
to/from a topic. Then, the PCS temporarily disables the priority and drop rate policies to allow the
subscriber to use its network flows and modify its subscriptions. Once the subscriber finishes the
subscribing/unsubscribing process, the PCS instructs the SDN controller to re-apply the policies.
Note that applying this solution enables us to support policy reconfiguration and manage dynamic
conditions (e.g., subscriber churn).

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:19

Table 2. Default Parameters for Our Experimental Configurations

Network Layer

Parameter Sim Prototype

#subscribers (|S |) 10 10

#publishers (|P |) 160 10

#flows (|Fsi |) 9 7

#priorities (|Y |) 9 7

bandwidth (wsi) 80 Mbps 320 Kbps

ρ tolerance (ρ̃) 0.1 0.1

Data Exchange Layer

Sim Sim Prototype

Parameter Tel. data Async. events Async. events

#topics (|V |) 140 60 7

pub rate (λ
pub
pi ,vj

) 6 ∈ [4,7] 4 ∈ [3,5] 1

event size (Gvj) 110 ∈ [90,500] 800 ∈
[500,1100]

100

#subscriptions (|Rsi |) 70 42 70

utility weight (αrj) 2 ∈ [0.01,2] 1 ∈ [0.1,4] 5 ∈ [0.01,100]

6 EXPERIMENTAL RESULTS

PrioDeX uses the analytical model given in Section 3.2 to estimate end-to-end response times and
success rates for event notifications to interested subscribers. We use this model to evaluate the
PrioDeX approach for a given configuration. In particular, we compare our approach’s efficacy
with that of an unprioritized system and evaluate the trade-off between response times and suc-
cess rates. We use our proposed greedy-split priority-assignment algorithm and the exponential

drop rate policy. Subsequently, we utilize the analytical model to compare the ability of different
algorithms to maximize the overall value of information captured. Then, we validate the PrioDeX
theoretical model, which includes a multi-class priority queue that represents the prioritization,
dropping, and transmission of packets in the SDN network infrastructure. We developed an ex-
perimental framework that uses both an extended open source queueing simulator and the imple-
mented prototype to represent our real-world scenario. We compare the subscribers’ end-to-end
response times given by the analytical model with those given by the simulation and the proto-
type. Note that we omit trivial results for validating success rates. In order to improve the figures’
legibility, we did not include error bars in our plots as the simulation results’ confidence intervals
are very small (less than two orders of magnitude from the corresponding mean values presented
in the plots). We further validate the model’s accuracy under larger numbers of subscribers.

6.1 Experimental Setup

We developed a Python-based experimental framework that models the real-world scenario de-
scribed in Section 2 to provide input data for our experiments. The inputs to this framework are
the parameters given in Table 2, which will generate configurations for every publisher, subscriber,
broker, and the network. We consider two classes of topics that represent events produced from
publishers: (1) sensor telemetry readings published periodically from FFs or IoT devices deployed
in the building and (2) asynchronously published notifications that indicate real-world phenomena
detected from analysis of raw sensor readings. Subscribers correspond to stakeholders such as the
IC, FFs, and building occupants that subscribe to situational awareness information with varying
importance (e.g., “smoke” > “water pressure” for FFs). The parameters in Table 2 represent the av-
erage expected value of an exponential distribution. For example, a publication rate or packet size
is selected from the given range of values. The actual topics published and subscribed are chosen
uniformly at random from those available. Note that we bound these values to maintain realistic
parameters by reproducing a new one if it lies outside the given range.We parameterize a saturated
system with high publication rates, overloaded buffers, and constrained bandwidth capacity.
PrioDeX ensures low response times and high delivery success rates by using the model

presented in Section 3, which generically captures a wide range of scenarios and system

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:20 G. Bouloukakis et al.

configurations. To reduce the number of variables we explore in our experiments, we only simulate
a single (i.e., last-hop) SDN switch between the broker and subscribers. Recall that this represents
the bottleneck bandwidth that may cause high transmission delays. Also note that propagation
delay and error rates are typically modeled as constant values. Hence, we ignore them for these
experiments to focus on analyzing the variable delays that our model aims to capture.
Queueing Network Simulator. After generating these configuration parameters for a single

instance of a scenario, our Python-based framework feeds them into a simulator. That is, these
parameters correspond to the expected values of the probability distributions from which the
simulator draws the actual individual publications’ arrival times and packet sizes. Note that we
use exponential distributions in order to maintain our assumption of Poisson arrival/service rates.
This simulator extends JINQS [24], a Java simulation library for multi-class queueing networks.
JINQS provides a suite of primitives that allow developers to rapidly build simulations for a wide
range of queueing networks.We leverage this power and extend JINQS in order to (1) represent the
queueing network introduced in Figure 3, (2) implement our new multi-class and non-preemptive
priority queueing model, and (3) simulate pub/sub interactions using a set of configuration
parameters provided by our Python-based framework. To evaluate PrioDeX, we generate param-
eters and record the average of 10 runs for each configuration. Each run generates approximately
6,500,000 publications in order to accurately calculate per-subscription response times and success
rates. Furthermore, we consider nine priority classes due to practical limitations of many existing
network traffic and data exchange management systems. For example, Linux TC [5] and AMQP
0.9.1 [1] only support 8 and 10 priority queues (one queue per priority class), respectively.
Prototype Emulator. Instead of feeding the generated configuration parameters into a simu-

lator, we use our prototype that implements a pub/sub system with an emulated network using
Mininet [41]. This uses OVS [57] to create a virtual network topology of SDN-enabled switches
(in a real Linux networking stack) with realistic delays, bandwidth limits, and link loss rates. It
connects these switches together as well as to virtual hosts, which are implemented as network
namespace-isolated processes. Then, we run our prototype implementation described in Section 5.
OVS switches connect via the SDN southbound protocol OpenFlow [40] to the distributed SDN
controller platform Ryu [21] running on the same machine. The publisher/subscriber hosts pro-
duce output files from which we calculate the experimental results. The experimental framework
configures the managed SDN switches to create a number of priority queues. Because OpenFlow
does not support a unified API for creating these queues, we currently perform this using Linux
TC [5] that supports up to eight queues. However, the highest-priority queue is used to send the
default traffic. Since this would affect the results for that priority queue, we route default traf-
fic through the highest-priority queue and prioritized traffic through the remaining queues. This
limits the number of priority queues that we can actually use to prioritize the network traffic to
seven.

6.2 Evaluating the PrioDeX Approach

We now compare our approach’s efficacy with that of an unprioritized system and a system with-
out preemptive packet drops; this evaluates the trade-off between response times and success rates.
We will first discuss the concept of network switch buffers and their limited capacity within the
context of PrioDeX in more detail. Recall from Section 4.3 that we apply drop rates in order to
prevent these buffers from filling up, which leads to high queuing delays as well as dropped high-
priority packets. Recall also from that discussion that we tune the parameter ρ̃ in order to keep
these buffers from growing indefinitely. We set ρ̃ = 0.1 to prevent our system from being saturated
while also ensuring low response times and high delivery success rates. This is used throughout
our experiments and adopted as the default in our prototype.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:21

Fig. 6. Success rates vs. response times for no priorities, priorities only, and an added drop policy.

While ρ̃ keeps buffers at a finite size, we must also consider real-world constraints of physical
switches: limited buffer capacity. Hence, we now consider applying a buffer capacity of k packets
for the simulator’s SDN switch outbound queue. This models a real-world switch dropping packet
when the buffer fills up. It drops the incoming packet if its priority class is less than or equal to
the lowest-priority class of those in the buffer. Otherwise, it evicts lower-priority packets to make
space in the buffer. We set k = 2,000 based on reported buffer sizes of various real-world SDN
switches [48]. Additionally, we configure this queue in three different ways:

(i) No priority assignment or drop policy features (i.e., a simple switch that treats all packets
identically and only drops incoming ones when its buffer has filled up)

(ii) Priority assignment only (i.e., no drop rates)
(iii) Both priorities and drop rates (i.e., the complete PrioDeX approach)

These experiments use the parameters given in Table 2. Figures 6(a) and 6(b) show the success
rates and end-to-end response times for each priority class, respectively. Note that priority classes
are represented numerically (x-axis), where a lower number has higher priority. Configuration (i)
results in a 58% success rate and 0.9 sec response time regardless of assigned priority. Configura-
tion (ii) uses the greedy-split algorithm for assigning priorities to each network flow (i.e., to their
contained subscriptions and associated packets). The results demonstrate that priority assignment
significantly improves both response times and success rates for higher-priority subscriptions. In
particular, subscriptions with priorities 0-4 have a response time less than 4 ms and 100% suc-
cess rate. However, the success rate of lower-priority subscriptions suddenly decreases while the
response time increases to the order of seconds. For instance, those with priority 6 have a 45%
success rate and 11 sec response time. Additionally, subscriptions with priorities 7 and 8 have very
low success rates (almost all packets dropped), while those events successfully delivered have a
high response time of 20 sec.
The results for configuration (iii) demonstrate how applying drop rates further improves re-

sponse time to the order of milliseconds. Specifically, priority 0-6 subscriptions have a response
time under 6 ms, whereas those with priority 8 have a response time of 647 ms. The most impor-
tant subscriptions (i.e., priority 0) have a 100% success rate. The PrioDeX exponential drop rate
policy smoothly decreases the success rate proportional to the priority level. This demonstrates
our approach to controlling the success rate based on a subscriber’s available bandwidth in or-
der to achieve lower response times. Next, we compare the level of overall utility achieved using
the various priority assignment and drop rate algorithms that base their configurations on the
subscriptions’ utility functions.

6.3 Comparing Prioritization and Drop Rate Algorithms for Situational Awareness

We now compare our proposed priority-assignment algorithms’ ability to group similar network
flows into priority classes. Each group contains one or more network flows with the same priority

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:22 G. Bouloukakis et al.

class. We define the within-class (wtc) and between-class (btc) variances denoted by σ 2
wtc and σ

2
btc

,
respectively, in order to measure the similarity/dissimilarity of the grouped network flows. We
then compare our proposed algorithms’ ability to maximize the value of information captured for
a given configuration. We measure this as the achieved utility rate: the ratio of a subscription’s

max utility (Ûr j) to achieved utility, averaged over all subscriptions.

6.3.1 Priority Algorithms Comparison. We first introduce the metrics used to compare our al-
gorithms. The within-class variance per priority represents the spread of each network flow utility
(see Equation (21)) with respect to the mean utility value of the grouped network flows with the
same priority class. This is defined as follows:

σ 2
yk
=

∑
fj :Φ(fj)=yk

(αfj − E[αfj : Φ(fj) = yk])2nyk , (29)

where E[αfj : Φ(fj) = yk] is the average value of network flow utilities with the sameyk and nyk =
|fj ∈F :Φ(fj)=yk |

|F | is the number of network flows with the same yk divided to the overall number of

network flows. We then estimate the total within-class variance for all priority classes as follows:

σ 2
wtc =

∑
yk ∈Y

σ 2
yk
. (30)

The second metric, between-class variance, represents the spread of the mean utility value of the
grouped network flows with the same priority class with respect to the mean utility value of all
network flows. This is defined as follows:

σ 2
btc =

∑
yk ∈Y

(E[αfj : fj ∈ F] − E[αfj : Φ(fj) = yk])2nyk , (31)

where E[αfj : fj ∈ F] is the average utility value of all network flows.
To summarize, within-class variance measures the similarity/dissimilarity of each network flow

in a group (with the same priority class), while between-class variance measures the similar-
ity/dissimilarity of each group of network flows (grouped per priority class) for all priority classes.
The main purpose of our approach is to assign similar network flows in a group; hence, we aim
to minimize the within-class variance. On the other hand, we want dissimilar groups of network
flows, and thus, we aim to maximize the between-class variance.
Figures 7(a), 7(b), and 7(c) show themeasured variances according to assigned number of priority

classes where priorities were assigned using the random, the greedy-split, and the cluster-split
algorithms, respectively. In our experimental setup, we consider 70 network flows assigned with
random values. We run each experiment 100,000 times and average across the results. As expected,
the random algorithm demonstrates the worst behavior (i.e., within-class variance values are very
high) than the other algorithms for all priorities. This is because it does not consider the utility
values (αfj) of network flows. By leveraging the networking characteristics in the network utility
definition (see Equation (21)) when assigning priorities using the greedy and cluster approaches,
the within-class variance decreases very rapidly.
Although these two approaches perform very similar with regard to their ability to grouping

similar utility values of network flows, their execution time is different. As shown in Figure 7(d),
cluster one becomes significantly less efficient as the number of priority classes increases.

6.3.2 Drop Rate Algorithms Comparison. We compare the four drop-rate-assignment algo-
rithms outlined in Section 4.3 (Flat, Linear, Exponential, Optimized). Note that these algorithms
assume that priority classes have been already assigned to network flows; we leverage the greedy-
split algorithm,which is themost efficient. To demonstrate PrioDeX’s ability to improve situational

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:23

Fig. 7. Comparing priority-assignment algorithm policies using wtc/btc variances and their execution time.

Fig. 8. Comparing drop rate policies and their execution time.

awareness for heterogeneous data and information requirements, our experiments varied the load
of the network (ρ) by increasing the number of subscriptions. The x-axis in Figure 8(a) shows the
different ρ values used throughout the experiments, while the y-axis represents the achieved utility
rate. Figure 8(b) shows the execution time of each algorithm with ρ = 1.7 (i.e., overloaded network
conditions). As shown in Figures 8(a) and 8(b), while the optimization-based algorithm captures
the highest overall utility rate (i.e., it maximizes situational awareness), it is the least efficient in
terms of execution time. The linear and exponential algorithms demonstrate similar utility rates
and execution times.

6.4 Validating the PrioDeX Models

To prove the accuracy of the theoretical analysis (presented in Section 3.2), we now compare the
estimated performance metrics with those from the simulator and the prototype implementation.

6.4.1 Simulation-Based Validation. Recall that the SDN switch’s outbound queue (see Figure 3)
captures the bottleneck bandwidth of the network route from broker to subscriber. PrioDeX
uses the corresponding server utilization (ρQout

xk
) to decide the bandwidth tuning by assigning

drop rates. Therefore, we parameterize the simulated queueing network to vary the traffic load:
(a)medium-load conditions (ρQout

xk
= 0.6), (b) high-load conditions (i.e., close to saturation: ρQout

xk
=

0.95); and (c) overloaded conditions (i.e., saturated: ρQout
xk
= 1.7). Note that the saturated case (third)

corresponds to the default parameters in Table 2. To achieve the medium-load (first) and high-load
(second) cases, we set the number of subscriptions for each topic class respectively: (i) 21,15 and
(ii) 42,24.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:24 G. Bouloukakis et al.

Fig. 9. Analytical vs. simulation end-to-end response times.

Figure 9(a) shows the results of these experiments according to assigned number of priority
classes and averaged across all topics, subscribers, and so forth. Comparing the curves of both the
simulated measurements and the analytical results obtained by Equation (10) reveals our model’s
high accuracy. We notice small differences for events with lower priority levels. In particular, note
priority level 8’s differences: 0.35 ms in Figure 9(aa), 13.98 ms in Figure 9(ab), and 8.24 ms in
Figure 9(ac). Because the system approaches saturation in Figures 9(ab) and 9(ac), we deem these
results acceptable. In Figure 9(ac), PrioDeX uses our drop policy mechanism to drop packets at the
SDN switch and return the system to below saturation (i.e., ρQout

xk
= 0.9 by using ρ̃ = 0.1).

We now validate our analytical model’s accuracy under varying numbers of subscribers: |S | =
1, 10, 20, 50, 100. Among the simulation parameters defined in Table 2, we select to scale up the
number of subscribers because this significantly increases the system traffic load; the broker must
duplicate events to match the increased number of subscriptions. Additionally, the prioritization
and droppingmechanisms are enforced at the broker-subscriber link and thus are highly important
to extensively evaluate this part of our system. To maintain the same degree of system saturation
(i.e., ρQout

xk
= 1.7), we increase the simulation bandwidth proportional to the number of subscribers:

wxk ,si = 8Mbps . We keep all other simulation parameters according to Table 2. According to these
parameters, we measure the simulated mean response times and plot them vs. those calculated
using Equation (10) in Figure 9(b). Note the curve for each number of subscribers that shows
response time increasing with the priority class. From this comparison, we see that the absolute
deviation between the two curves does not exceed 10 ms across all priority levels. Therefore, our
model remains accurate even with higher numbers of subscribers.

6.4.2 Prototype-Based Validation. We further validate our analytical model by comparing its
estimated response times with the ones derived from a prototype implementation configured un-
der realistic settings. Similar to the simulation-based validation, we first show the results obtained
for different traffic loads and then scale up the number of subscribers. We modify the experiments’
configuration parameters used in the simulation (see Table 2, Prototype column) to overcome prac-
tical issues imposed by Mininet and challenges described in Section 5.2. In particular, we use one
subscription per network flow and we reduce the number of priority classes to seven because of
Linux TC limitations. Note that we use a fixed publication rate and event size; if we vary the pub-
lication rate and event size, it takes longer to converge to the expected values of the probability

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:25

Fig. 10. Analytical vs. simulation vs. prototype end-to-end response times.

distributions and thus the execution time of each real experiment. Because the analytical model
assumes exponential distributions, we also calculate response times using the queueing simulator
with realistic parameters introduced from the prototype implementation and its emulated network
through Mininet. In particular, we only use asynchronously published events and we set the SDN
output queue’s service rate as deterministic rather than exponential. This represents the concept
of a switch’s bandwidth, which essentially has a constant service rate measured in bytes/second.
Again, we parameterize and deploy PrioDeX under different network load conditions:

(a) medium load (ρQout
xk
= 0.5); (b) high load (ρQout

xk
= 0.9); and (c) overloaded (ρQout

xk
= 1.7).

Figure 10(a) shows the end-to-end response times obtained using 10 subscribers and the afore-
mentioned load conditions; these closely match the response times calculated from both the simu-
lation and the analytical model. The differences observed are due to the following reasons: (1) the
analytical model assumes exponential service rates while the simulation applies deterministic ser-
vice rates to match the constant service rate (bytes/second) in the switch of the prototype, and
(2) Mininet lacks the ability to emulate proper queueing delay when transmitting packets and thus
there is a significant difference between the response times of the simulation and the prototype.
This is because Linux TC (used by Mininet to apply queueing disciplines to any network interface)
can emulate bandwidth limitations, packet loss, and network delay. The bandwidth limitation con-
strains the volume of traffic (i.e., number of bytes) that can be sent per unit of time. However, it

does not simulate the actual packet transmission delay (
Gvj

wsi
) due to the available bandwidth. Hence,

Linux TC sends packets at the same speed regardless of packet size (i.e., the transmission delay is
constant), which in turn affects the perceived queueing delay. That is, if the available bandwidth
is enough to empty the queues, the queued packets do not experience the queueing delay due to
the transmission of previous packets.
As described in the simulation-based validation (Section 6.4.1), the lowest-priority events expe-

rience the highest response time difference under saturated conditions. Here, we notice constant
response time differences across all priority classes in the unsaturated setting (Figure 10(aa)). For
the saturated and overloaded conditions (Figures 10(ab) and 10(ac)), we observe larger differences
for lower priorities due to the Linux TC packet transmission limitations. Because these pack-
ets wait in the queues for a longer period, this difference is compounded further by the lack of
transmission delay for each queued packet in front of it. Hence, we expect to see a gap between
the analytical model and the simulated/emulated results. We then scale up the number of sub-
scribers as shown in Figure 10(b). We parameterize and deploy the system with the following
number of subscribers: |S | = 10, 20, 50, 80, 100. To maintain the same degree of system saturation

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:26 G. Bouloukakis et al.

Table 3. Comparison of PrioDeX with Related Work

App-Layer
Requirements

Methodology Used
Technologies and

Tools
Prototype

QoS Metric
Improvement

Zhang et al. [65]
Prioritized data
classes

Bandwidth
allocation to
prioritized data
flows

Apache HTTP &
Squid cache servers

� Response time

Saghian and
Ravanmehr [50]

Data flows
importance

Priority queues OMNet++ simulator ✗ Response time

Yu et al. [60]
Delay- and
bandwidth-sensitive
apps

DPI and Laplacian
SVM

SDN, OpenFlow ✗
Network resource
utilization

Li et al. [38] App data types
C4.5 decision tree,
priority queues

SDN, OpenFlow � Response time,
throughput

An et al. [6]
Delay-sensitive and
delay-tolerant traffic

Priority-adjustment
algorithms

NS-2 simulator ✗
Real-time
requirement
satisfaction

Shi et al. [54]
Delay requirements,
data semantics

Priority queues
based on semantics

SDN, OpenFlow,
LDAP

� Response time

Bröring et al. [17]
Video QoS
constraints

Bandwidth
allocation

DNode-RED, SDN,
OpenFlow, MQTT

� Response time,
delivery success rate

Nguyen et al. [42] Utility functions

Bandwidth
allocation to
prioritized data
flows

Java simulator ✗
Response time,
network resource
utilization

PrioDeX Utility functions

Priority queues,
analytical models,
heuristic and
optimization-based
algorithms

SDN, OpenFlow,
MQTT, MQTT-SN

�

Response time,
network resource
utilization,
maximizing user’s
utility

(i.e., ρQout
xk
= 1.7), we increase the bandwidth proportional to the number of subscribers. As shown

in Figure 10(b), the implementation produces again accurate results that closely match the simu-
lated and analytical ones.

7 RELATEDWORK

In this section, we compare PrioDeX against other related data exchange systems for enabling reli-
able and timely data exchange. We summarize the principal solutions in Table 3 with regard to the
considered app layer requirements (if any), the methodology used to improve the system’s perfor-
mance, the technologies and tools leveraged to implement the prototype or perform experiments,
and the improvement in terms of QoS metrics. To enable reliable and timely data exchange, exist-
ing solutions manipulate data at both the middleware and network layers. Early middleware-based
solutions [18, 39, 65] support prioritization or bandwidth allocation based on the available system
capacity, data relevance, and data importance. More recent middleware solutions assign priorities
based on validity span of published data and subscriptions [50] or based on delay and reliability
requirements [58]. Currently, standardized message brokers such as RabbitMQ, ActiveMQ, and so
forth support the assignment of priorities at the publisher side prior to the emission of a message.
With the advent of novel networking technologies (e.g., OpenFlow [40], P4 [13]), advanced ca-

pabilities are provided to system designers to customize the underlying network infrastructure.
SDN-based approaches [33] have been used for improving network resiliency [3] and handover
latency in 5G network environments [4]. Other research into SDN-enabled 5G cellular architec-
tures [56] supports the potential for such interfaces that connect emergency responder devices to

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:27

the building’s internal network. SDN provides a variety of abstractions to represent the underlying
physical network. Yu et al. [60] leverage SDN to apply deep packet inspection (DPI) and Laplacian

SVM techniques for identifying applications with delay or bandwidth requirements, which are
then used to improve the overall network resource utilization. Also, SDN has been leveraged for
priority assignment and bandwidth allocation to network flows to satisfy app-specific require-
ments. These include authorized access to directly manage physical switches, control over virtual
(software-based) switches [46] (e.g., running alongside the broker), network virtualization [12] to
reserve “slices” of the physical infrastructure, and so forth. Li et al. [38] introduce a middleware
solution that assigns priority levels to network flows based on three different classes of data: expe-
dited forwarding, assured forwarding and best effort. Similarly, An et al. [6] assign priorities based
on the type of data traffic (i.e., delay-sensitive or delay-tolerant traffic), and Shi et al. [54] assign
priorities based on the semantics of data. Finally, Bröring et al [17] allocate bandwidth to SDN net-
work flows based on video-specific application-level QoS constraints (e.g., min/max frame rate).
While the above approaches manage network flows in SDN switches based on application data
flows/types, IoT devices in buildings/structures (e.g., sensors, cameras) produce data that varies
in size, frequency (periodic samples vs. asynchronous alerts), type, and importance to individual
subscribers [8, 51, 63, 64]. Research on Network Utility Maximization (NUM) [59] aims to tune the
underlying network according to application-level requirements. NUM configures a network (e.g.,
assigns bandwidth) to serve nodes in a manner that maximizes utility functions to capture a user’s
degree of satisfaction with the network’s performance. However, few prior researchers have inves-
tigated discrete priority classes, which we leverage in our approach, within the context of NUM.
The authors of [42] propose assigning more bandwidth to users (i.e., via weighting their requests
higher) based on their requested priority levels.
Our cross-layer approach and consideration of utility functions set apart our work from most

related SDN research referenced above. Utility functions enable a more flexible configuration
of application-level requirements (e.g., information needs) including mission-critical ones. In
addition, PrioDeX leverages SDN to manage networking at the Edge for IoT deployments by
offloading network configuration tasks from constrained devices and network hardware.

8 CONCLUSION

In this article we presented PrioDeX, an extensible middleware for timely and reliable IoT
data exchange. Our proposed SDN-enabled three-layer approach bridges application-specified
information requirements, generic data exchange capabilities, and physical network character-
istics for efficient delivery of mission-critical data from IoT sources to relevant consumers. We
design a cross-layer queueing analytical model for estimating system performance metrics. These
metrics are used as input to the PrioDeX algorithms for assigning priorities to subscriptions and
tune their bandwidth allocation (via packet drop rates) to maximize overall situational awareness.
Our experimental results show that our approach greatly improves the performance in terms of
information value captured as well as end-to-end delays. PrioDeX can inspire system designers to
build the next generation of Smart Firefighting systems with support for proper filtering, priori-
tizing, and analysis. In addition, application developers can leverage PrioDeX to define the situa-
tional awareness information of any emergency response (e.g., active shooter) and QoS-dependent
scenarios (e.g., traffic estimation). Research scientists can leverage and further extend PrioDeX’s
theoretic-grounded models for the QoS evaluation of IoT-enabled smart spaces at runtime so as to
support their adaptation in relation with the evolving operating environment.
The modular design of our theoretical model supports the composition of alternative queue-

ing models. Hence, it lays the groundwork for many potential extensions and alterations, some
of which we will address in future work. In particular, we aim to consider non-Poisson arrival

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:28 G. Bouloukakis et al.

and service rates by using, e.g., G/G/1 queues; convert larger events into many packets (or many
events into one packet) by applying the queueing theoretic concept of batch arrivals [53]; and
configure an entire broker network rather than just the local broker at the Edge. In addition, we
plan to extend our prototype to include managing dynamic conditions such as failing publisher
devices and varying network bandwidth/error rates; accurately and efficiently estimating publi-
cation rates; considering SDN overhead (e.g., flow table space required, delay for configuration
changes and statistics collection); and supporting alternative formulations of tunable bandwidth
allocation (e.g., traffic policing). Finally, we will build on the PrioDeX prototype to explore further
IoT middleware challenges in emergency response settings.

APPENDICES

A MULTI-CLASS PRIORITY QUEUE ANALYTICAL MODEL

We now prove the analytical model that estimates the average response time of events matching
subscription rk in the system (queue+server) of Qmclpr . This is a non-preemptive multi-class pri-

ority queueing system where each subscription (r j ∈ R) corresponds to a class and one or more
subscriptions can be mapped to priority level yj ∈ Y .
Based on Equation (13), to estimate ΔQmclpr

for a given rk , we accept as input the set of arrival

(λsub) and processing (μsub) rates:

λsub = {λr j : r j ∈ R } (32)

μsub = {μr j : r j ∈ R }. (33)

As previously discussed, a given subscription (rk) is mapped to a priority (yc) as given by

yc = Φ ◦ Ψ(rk). (34)

Let λpr io be the set of arrival rates and μpr io be the set of processing rates per yj :

λpr io = {λyj : yj ∈ Y } (35)

μpr io = {μyj : yj ∈ Y }. (36)

Because one or more r j can be mapped to a yc , by Equation (34) we can estimate the arrival rate
λyc of events with assigned priority yc as follows:

λyc =
∑

{r j ∈R :yc=Φ◦Ψ(r j) }
λr j . (37)

Similarly, the processing rate μyc is estimated as follows:

μyc =
⎡⎢⎢⎢⎢⎣

∑
{r j ∈R :yc=Φ◦Ψ(r j) }

λr j
λyc

1

μr j

⎤⎥⎥⎥⎥⎦
−1

. (38)

Similarly, we can estimate arrival and processing rates for any priority yj . We now rely on
Equations (37) and (38) and the analysis in Section 3.4.2 of [27] to estimate the waiting time (delay
only in the queue) Δ

yc
q for a given yc as follows:

Δ
yc
q =

∑
yj ∈Y

ρyj
μyj

(1 − σyc−1) (1 − σyc)
, (39)

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:29

where ρyj = λyj / μyj and σyc =
∑c

i=0 ρyi (i.e., the sum of ρyi for all priority classesyi whose priority

is higher than or equal to yc). Let L
yc
q be the average number of priority-yc events in the queue.

From Equation (39), Little’s law then gives

L
yc
q = Δ

yc
q λyc . (40)

Finally, let Δyc be the average response time of priority-yc events in the system (queue+server).
This is estimated as follows:

Δyc = Δ
yc
q +

1

μyc
. (41)

Let Lrkq be the average number of events in the queue matching subscription rk with priority yc .
Using Equations (37) and (40), this can be estimated by

Lrkq =
λrk
λyc

L
yc
q , (42)

and the average number of priority-yc events in the system matching subscription rk is given by

Lrk = Lrkq
λrk
μrk
. (43)

Finally, by relying on Little’s law and Equation (43), the average response time of events match-
ing a given subscription rk in the multi-class priority queueing system (Qmclpr) is given by

ΔQmclpr
=

Lrk

λrk
. (44)

B EFFICIENTLY COMPUTING DROP RATE POLICIES

We now detail efficiently computing drop rate policies for the PrioDeX middleware by solving
Equation (23) for the flat, linear, and exponential drop rate policies. Considering Equations (23)
and (24), we aim to find

ρQout
xk
=
∑

r j ∈Rxk

λthruxk ,r j

μoutxk ,r j

= 1 − ρ̃ . (45)

We can expand the denominator to rewrite the previous equation considering Equations (6) and
(7):

ρQout
xk
=
∑

r j ∈Rxk

λ
notif y

bk ,r j
Gvj (1 − Ω ◦ Ψ(r j))

wxk ,si

= 1 − ρ̃ , (46)

where Ω ◦ Ψ
(
r j
)
represents the drop rate for the subscription r j . Equation (46) is the starting point

for each of the following derivations.
We omit the proof for the Flat and the Linear drop rate policies, since it is very similar to the

Exponential. We just present the final results.

Flat :β = 1 −
∑

si ∈Sxk wxk ,si (1 − ρ̃)
∑

r j ∈Rxk
λ
notif y

bk ,r j
Gvj

(47)

Linear :β =

∑
r j ∈Rxk

λ
notif y

bk ,r j
Gvj −

∑
si ∈Sxk

wxk ,si (1 − ρ̃)
∑

r j ∈Rxk λ
notif y

bk ,r j
GvjΦ(fj)

(48)

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

19:30 G. Bouloukakis et al.

Exponential Drop Rate Policy. This policy sets each network flow’s drop rate according to its
assigned priority level. The drop rate for subscription r j is equal to the drop rate assigned to its
network flow fj . Hence, considering Equation (27), we have

Ω ◦ Ψ
(
r j
)
= Ω(fj) = 1 − β−Φ(fj) . (49)

Substituting Equation (49) into (46), we obtain

∑
r j ∈Rxk

λ
notif y

bk ,r j
Gvj (1 − (1 − β−Φ(fj)))

wxk ,si

= 1 − ρ̃ . (50)

We isolate the constant term β :
∑

r j ∈Rxk

λ
notif y

bk ,r j
Gvj

(
1 −
(
1 − β−Φ(fj)

))
=
∑

si ∈Sxk

wxk ,si (1 − ρ̃) (51)

∑
r j ∈Rxk

λ
notif y

bk ,r j
Gvj β

−Φ(fj) =
∑

si ∈Sxk

wxk ,si (1 − ρ̃). (52)

Since Φ(fj) ∈ Y ∀fj ∈ F where Y = {0, 1, . . . ,N − 1}, we have

∑
y∈Y

β−y
���

∑
r j ∈Rxk ,Φ(fj)=y

λ
notif y

bk ,r j
Gvj

���� −
∑

si ∈Sxk

wxk ,si (1 − ρ̃) = 0. (53)

Note that we can express this as a polynomial. Substituting α = β−1, we get

∑
y∈Y

αy
���

∑
r j ∈Rxk ,Φ(fj)=y

λ
notif y

bk ,r j
Gvj

���� −
∑

si ∈Sxk

wxk ,si (1 − ρ̃) = 0. (54)

We can therefore solve the (N-1)-order polynomial given in Equation (54) to efficiently compute
the exponential drop rates. We can solve this polynomial using the algorithm described in [32]. It
relies on computing the eigenvalues of the companionmatrix. The commonly used NumPy Python
library [44] implements this algorithm.

REFERENCES

[1] AMQP Working Group 0-9-1. 2008. http://www.amqp.org/specification/0-9-1/amqp-org-download.

[2] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. 2018. A rewriting system for convex optimization problems.

Journal of Control and Decision 5, 1 (2018), 42–60.

[3] J. Ai, H. Chen, Z. Guo, G. Cheng, and T. Baker. 2019. Improving resiliency of software-defined networks with network

coding-based multipath routing. In IEEE Symposium on Computers and Communications (ISCC’19). 1–6.

[4] A. S. D. Alfoudi, S. Newaz, R. Ramlie, G. M. Lee, and T. Baker. 2019. Seamless mobility management in heterogeneous

5G networks: A coordination approach among distributed SDN controllers. In IEEE 89th Vehicular Technology Conf.

(VTC’19-Spring). 1–6.

[5] W. Almesberger et al. 1999. Linux network traffic control-implementation overview.

[6] N. An, T. Ha, K. J. Park, and H. Lim. 2016. Dynamic priority-adjustment for real-time flows in software-defined

networks. In 17th Intl. Telecommunications Network Strategy and Planning Symposium (Networks’16). IEEE, 144–149.

[7] C. C. Beard and V. S. Frost. 2004. Prioritization of emergency network traffic using ticket servers: A performance

analysis. Simulation 80, 6 (2004), 289–299.

[8] S. Behnel, L. Fiege, and G. Muhl. 2006. On quality-of-service and publish-subscribe. In ICDCS Workshops. IEEE.

[9] K. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. D’arcy, D. Hoffman, M. Makai, J. Stamatakis, and N.

Venkatasubramanian. 2015. SCALE: Safe community awareness and alerting leveraging the Internet of Things. IEEE

Communications Magazine 53, 12 (2015), 27–34.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

http://www.amqp.org/specification/0-9-1/amqp-org-download

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 19:31

[10] K. E. Benson, G. Bouloukakis, C. Grant, V. Issarny, S. Mehrotra, I. Moscholios, and N. Venkatasubramanian. 2018.

FireDeX: A prioritized IoT data exchange middleware for emergency response. ACM/IFIP/USENIX Intl. Middleware

Conf., 279–292.

[11] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y. Kim. 2018. Ride: A resilient IoT data exchange middleware

leveraging SDN and edge cloud resources. In 2018 IEEE/ACM 3rd Intl. Conf. on Internet-of-Things Design and Imple-

mentation (IoTDI’18). 72–83.

[12] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. 2015. Survey on network virtualization hypervisors for software

defined networking. CoRR abs/1506.07275 (2015). arXiv:1506.07275. http://arxiv.org/abs/1506.07275.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,

and D.Walker. 2014. P4: Programming protocol-independent packet processors. SIGCOMMComputer Communication

Review 44, 3 (July 2014), 87–95.

[14] G. Bouloukakis, N. Georgantas, A. Kattepur, and V. Issarny. 2017. Timeliness evaluation of intermittent mobile con-

nectivity over pub/sub systems. In Proceedings of the 8th ACM/SPEC on Intl. Conf. on Performance Engineering. 275–286.

[15] G. Bouloukakis, I. Moscholios, N. Georgantas, and V. Issarny. 2017. Performance modeling of the middleware overlay

infrastructure of mobile things. In IEEE Intl. Conf. on Communications.

[16] Moquette Broker. 2014. https://github.com/andsel/moquette/.

[17] A. Bröring, J. Seeger, M. Papoutsakis, K. Fysarakis, and A. Caracalli. 2020. Networking-aware IoT application devel-

opment. Sensors 20, 3 (2020), 897.

[18] S. Chakravarthy and N. Vontella. 2004. A publish/subscribe based architecture of an alert server to support prioritized

and persistent alerts. In Intl. Conf. on Distributed Computing and Internet Technology. Springer, 106–116.

[19] MQTT-SN UDP client. 2016. https://github.com/jsaak/mqtt-sn-gateway.

[20] Paho Java Client. 2008. https://www.eclipse.org/paho/clients/java/.

[21] Ryu SDN Controller. 2011. https://osrg.github.io/ryu/.

[22] S. Diamond and S. Boyd. 2016. CVXPY: A Python-embedded modeling language for convex optimization. Journal of

Machine Learning Research 17, 83 (2016), 1–5.

[23] G. Faraci, A. Lombardo, and G. Schembra. 2017. A building block to model an SDN/NFV network. In 2017 IEEE Intl.

Conf. on Communications (ICC’17). 1–7.

[24] T. Field. 2006. JINQS: An extensible library for simulating multiclass queueing networks, v1. 0 user guide.

[25] Flask Web Framework. 2010. http://flask.pocoo.org/.

[26] MQTT-SN Transparent Gateway. 2016. https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/.

[27] D. Gross, J. Shortle, J. Thompson, and C. Harris. 2008. Fundamentals of Queueing Theory. 4th ed. John Wiley & Sons.

[28] D. A. Schult, and P. J. Swart. 2008. Exploring network structure, dynamics, and function using NetworkX. In Proceed-

ings of the 7th Python in science conferences (SciPy’08). Pasadena, CA, 11–16.

[29] H. Halabian, I. Lambadaris, and C.-H. Lung. 2010. Network capacity region of multi-queue multi-server queueing

system with time varying connectivities. In 2010 IEEE Intl. Symposium on Information Theory. IEEE, 1803–1807.

[30] A. Hamins, C. Grant, N. Bryner, A. Jones, and G. Koepke. 2015. NIST Special Publication 1191 Research Roadmap for

Smart Fire Fighting. National Institute Of Standards and Technology.

[31] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. 2007. Formal analysis of publish-subscribe systems by probabilistic timed

automata. In Intl. Conf. on Formal Techniques for Networked and Distributed Systems. 247–262.

[32] R. A. Horn and C. R. Johnson. 2012. Matrix Analysis. Cambridge, UK: Cambridge University Press.

[33] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan. 2018. Multi-controller based software-defined networking: A survey. IEEE

Access 6 (2018), 15980–15996.

[34] IBM 2013. MQTT for Sensor Networks (MQTT-SN). IBM.

[35] M. Inoue, Y. Owada, K. Hamaguti, and R. Miura. 2014. Nerve Net: A regional-area network for resilient local infor-

mation sharing and communications. In Proceedings of the 2014 2nd Intl. Symposium on Computing and Networking

(CANDAR’14). IEEE Computer Society, Washington, DC, 3–6.

[36] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. 2008. A methodology for performance modeling of distributed

event-based systems. In 11th IEEE Intl. Symposium on Object Oriented Real-Time Distributed Computing (ISORC’08).

13–22.

[37] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik. 1984. Quantitative System Performance: Computer System Analysis

Using Queueing Network Models. Prentice-Hall, Inc.

[38] F. Li, J. Cao, X. Wang, and Y. Sun. 2017. A QoS guaranteed technique for cloud applications based on software defined

networking. IEEE Access 5 (2017), 21229–21241.

[39] P. Maheshwari, H. Tang, and R. Liang. 2004. Enhancing web services with message-oriented middleware. In Proceed-

ings of the Intl. Conf. on Web Services,. IEEE, 524–531.

[40] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. 2008.

OpenFlow: Enabling innovation in campus networks. SIGCOMMComputer Communication Review 38, 2 (March 2008),

69–74.

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

http://arxiv.org/abs/1506.07275
https://github.com/andsel/moquette/
https://github.com/jsaak/mqtt-sn-gateway
https://www.eclipse.org/paho/clients/java/
https://osrg.github.io/ryu/
http://flask.pocoo.org/
https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/

19:32 G. Bouloukakis et al.

[41] Mininet. 2016. Mininet: An Instant Virtual Network on Your Laptop (or Other PC). http://mininet.org/

[42] H. A. Nguyen, T. V. Nguyen, andD. Choi. 2009. How tomaximize user satisfaction degree inmulti-service IP networks.

In 2009 1st Asian Conf. on Intelligent Information and Database Systems. 471–476.

[43] OASIS. 2014. MQTT Version 3.1.1. OASIS.

[44] T. E. Oliphant. 2006. A Guide to NumPy. Vol. 1. Trelgol Publishing USA.

[45] Stochastic OVS. 2014. https://github.com/saeenali/openvswitch/wiki/.

[46] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, et al. 2015. The design and implementation of open vSwitch. In

12th Symposium on Networked Systems Design and Implementation (NSDI’15).

[47] RabbitMQ. 2018. https://www.rabbitmq.com/.

[48] Buffer Requirements. 2008. https://people.ucsc.edu/ warner/buffer.html.

[49] K. Sachs, S. Kounev, and A. Buchmann. 2013. Performance modeling and analysis of message-oriented event-driven

systems. Software & Systems Modeling 12, 4 (2013), 705–729.

[50] M. Saghian and R. Ravanmehr. 2015. Publish/subscribe middleware for resource discovery in MANET. In 2015 15th

IEEE/ACM Intl. Symposium on Cluster, Cloud and Grid Computing. IEEE, 1205–1208.

[51] P. Salehi, K. Zhang, and H. Jacobsen. 2017. PopSub: Improving resource utilization in distributed content-based pub-

lish/subscribe systems. In Distributed Event-Based Systems (DEBS’17). ACM, 88–99.

[52] A. Schröter, G. Mühl, S. Kounev, H. Parzyjegla, and J. Richling. 2010. Stochastic performance analysis and capacity

planning of publish/subscribe systems. In Distributed Event-Based Systems (DEBS’10). ACM, 258–269.

[53] D. N. Shanbhag. 1966. On infinite server queues with batch arrivals. Journal of Applied Probability 3, 1 (1966), 274–279.

[54] Y. Shi, Y. Zhang, H.-A. Jacobsen, L. Tang, G. Elliott, G. Zhang, X. Chen, and J. Chen. 2019. Using machine learning

to provide reliable differentiated services for IoT in SDN-like publish/subscribe middleware. Sensors 19, 6 (2019),

1449.

[55] D. Singh, B. Ng, Y. Lai, Y. Lin, and W. K. G. Seah. 2017. Modelling software-defined networking: Switch design with

finite buffer and priority queueing. In 2017 IEEE 42nd Conf. on Local Computer Networks (LCN’17). IEEE, 567–570.

[56] S. Khan Tayyaba and M. A. Shah. 2019. Resource allocation in SDN based 5G cellular networks. Peer-to-Peer Network-

ing and Applications 12, 2 (2019), 514–538.

[57] Open vSwitch. 2016. http://openvswitch.org/.

[58] Y. Wang, Y. Zhang, and J. Chen. 2017. Pursuing differentiated services in a SDN-based IoT-oriented pub/sub system.

In 24th International Conference on Web Services. IEEE, 906–909.

[59] Y. Yi and M. Chiang. 2008. Stochastic network utility maximisation – A tribute to Kelly’s paper published in this

journal a decade ago. European Transactions on Telecommunications 19, 4 (2008), 421–442.

[60] C. Yu, J. Lan, Z. Guo, Y. Hu, and T. Baker. 2019. An adaptive and lightweight update mechanism for SDN. IEEE Access

7 (2019), 12914–12927.

[61] P. J. Mosterman, T. Padir, Y. Wan, J. Zander, and S. Fu. 2015. Cyber-physical systems can make emergency response

smart. Procedia Engineering 107 (2015), 312–318.

[62] K. Zhang and H. Jacobsen. 2013. SDN-like: The next generation of pub/sub. CoRR abs/1308.0056 (2013). http://arxiv.

org/abs/1308.0056.

[63] K. Zhang, V. Muthusamy, M. Sadoghi, and H. Jacobsen. 2017. Subscription covering for relevance-based filtering in

content-based publish/subscribe systems. In IEEE 37th ICDCS. IEEE, 2039–2044.

[64] K. Zhang, M. Sadoghi, V. Muthusamy, and H. Jacobsen. 2017. Efficient covering for top-k filtering in content-based

publish/subscribe systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conf.174–184.

[65] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. 2002. Controlware: A middleware architecture for feedback

control of software performance. In Proceedings 22nd Intl. Conf. on Distributed Computing Systems. IEEE, 301–310.

Received November 2019; revised December 2020; accepted March 2021

ACM Transactions on Internet of Things, Vol. 2, No. 3, Article 19. Publication date: July 2021.

http://mininet.org/
https://github.com/saeenali/openvswitch/wiki/
https://www.rabbitmq.com/
https://people.ucsc.edu/ warner/buffer.html
http://openvswitch.org/
http://arxiv.org/abs/1308.0056
http://arxiv.org/abs/1308.0056

