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ABSTRACT

WiFi connectivity events, generated when a mobile device connects
to WiFi access points can serve as a robust, passive, (almost) zero-
cost indoor localization technology. The challenge is the coarse
level localization it offers that limits its usefulness. We recently
developed a novel data cleaning based approach, LOCATER, that
exploits patterns in the network data to achieve accuracy as high
as 90% at room level granularity making it possible to use network
data to support a much larger class of applications. In this paper,
we demonstrate one such application to help organizations track
levels of occupancy, and potential exposure of the inhabitants of
the buildings to others possibly infected on their premises. The
system, entitled T-Cove, is in operational use at over 20 buildings
at UCI and has now become part of the reopening procedure of the
schools. The demonstration will highlight T-Cove functionalities
over both live data and data captured in the past.
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1 INTRODUCTION

This paper explores data cleaning challenges that arise in using
WiFi connectivity data to support location-based applications such
as exposure tracing. WiFi connectivity data consists of sporadic
connections between devices and nearby WiFi access points (APs),
each of which may cover a relatively large area within a building.
Our recent work LOCATER [7] studies the concept of semantic lo-
calization based on such connectivity logs; here, we associate a
person’s location to a semantically meaningful spatial domain such
as a floor, region, or a room. WiFi connectivity data is vital and
unique for indoor sensing due to the following crucial properties.
First, since WiFi connectivity is ubiquitous in modern buildings,
using this infrastructure for semantic localization does not incur
any additional hardware costs or time to deploy either to users or
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to the built infrastructure owner. This is a significant benefit, unlike
other solutions, e.g., if we were to retrofit buildings with technolo-
gies such as RFID, ultra wideband (UWB), bluetooth, camera, etc.
Besides being (almost) zero cost, a second feature, arising from the
ubiquity of WiFi networks and an organization-based approach, is
that such a solution has wide applicability to all types of buildings
and organizations- airports, residences, office spaces, university
campuses, government buildings, etc. Finally, localization using
WiFi connectivity can be performed passively without requiring
users to either install new applications on their smartphones, or to
actively participate in the localization process.

However, as shown in [7], WiFi connectivity data is dirty, intro-
ducing several data cleaning challenges. For instance, devices might
get disconnected from the network even when the users carrying
them are still within the space. Depending on the specific device,
connectivity events might occur only sporadically and at different
periodicity, making prediction more complex. These leads to a miss-
ing values challenge. APs cover large regions within a building that
might involve multiple rooms and hence simply knowing which
AP a device is connected to may not offer room-level localization.
Finally, the volume of WiFi data can be very large - for instance, in
the UCI campus, with over 200 buildings and 2,000 APs, we generate
several million WiFi connectivity tuples in one day on average.

The purpose of this demonstration is to show that data cleaning
technology exploited in LOCATER can enable WiFi connectivity
data to be used effectively in several location-based applications
such as exposure tracing, space density estimation to prevent spread
of infectious diseases, etc.

We demonstrate this by building a system, entitled T-COVE, that
uses LOCATER to build capabilities to trace contact amongst indi-
viduals within buildings and to estimate occupancy of buildings at
different granularities including rooms/regions. In recent months,
exposure tracing technology as emerged as a key mitigation strat-
egy for COVID-19 [8]. Several systems based on technologies rang-
ing from bluetooth [1], GPS, and WiFi [5] have been developed
and widely adopted world wide. Success of such technology, how-
ever, depends upon participation by a large segment of population
(some estimates suggest > 80% [2]), while several studies [4] have
shown that adoption rate of existing technologies remains much
lower, limiting their effectiveness. While WiFiTrace [9] considers
the same data set, connectivity logs, they assume data is clean
without resolving data cleaning challenges. In contrast to exposure
tracing systems such as above that either require users to download
apps/install new version of software or OS (e.g., so as to enable
GAEN protocol), and trust third party with their location/proximity
data, T-COVE is passive (does not require users to actively partici-
pate in the protocol), does not capture any additional information
about individuals other than what is already captured by WiFi
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networks, and targets the technology at the organizational level.
While T-Cove is designed to support organization level mitigation
of COVID-19, the underlying technology can be used for several
distinct applications including smart occupancy-based HVAC con-
trol, estimating occupancy during disasters for evacuation planning,
understanding individual’s behaviour as related to space, etc.

Specific contributions of this demo paper are as follows. First,
we demonstrate that WiFi connectivity data together with data
cleaning techniques, implemented in LOCATER, can support many
location-based applications effectively. We next propose an efficient
query-driven cleaning mechanism to clean only those data items that
will affect the answer of queries to ensure best efficiency. Finally,
we illustrate the utility of LOCATER by developing a T-COVE
system to support exposure tracing and occupancy estimation at
the campus scale. T-COVE is designed as a easy to deploy (almost)
zero cost technology that can exploit existing organizational WiFi
infrastructure to address a problem of great relevance to the society
plagued with pandemics such as COVID-19.

2 CLEANING FOR EXPOSURE TRACING

In this section we first briefly discuss the LOCATER that cleans
WiFi connectivity data to support location-based applications in
Section 2.1. We then describe the exposure tracing in Section 2.2, and
our implementation of T-COVE based on LOCATER in Section 2.3.

2.1 LOCATER

LOCATER [7] studies the challenge of cleaning connectivity data
collected by WiFi infrastructures to support semantic localization
inside buildings. By semantic localization we refer to the problem of
associating a person’s location to a semantically meaningful
spatial domain such as a floor, region, or a room. LOCATER
takes as its input WiFi connectivity data, and postulates semantic
localization as a series of data cleaning tasks. First, it treats the
problem of determining the AP to which a device is connected
between any two of its connection events as a missing value de-
tection and repair problem. Second, it associates the device with
the semantic subregion (e.g., a conference room in the region) by
postulating it as a location disambiguation problem. To address the
above challenges, LOCATER uses an iterative classification method
that leverages temporal features in the WiFi connectivity data to
repair the missing values. Then, spatial and temporal relationships
between entities are used in a probabilistic model to disambiguate
the possible rooms in which the device may be. LOCATER cleans
the WiFi connectivity data in a dynamic setting where it cleans
objects on demand in the context of queries.

Given a query asking for the location of a user(i.e. the device
carried by a user) at given time instance, LOCATER will first predict
its coarse location (coarse localization), i.e., the region (the area
covered by its connected WiFi AP), and then disambiguate the
rooms inside this region to give a prediction of the room location of
this user (fine localization). Our evaluation indicates that LOCATER
can answer this query effectively, taking around half second on
average, while achieving near 87% accuracy. Note, however, that
fine localization algorithm is computationally more expensive than
the coarse localization. In general, LOCATER is designed to be
flexible enough to select the adequate level of localization needed
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select * from WiFi
where macAddress = ‘9867312b6133ba7e9832f2ce3c74236ed4be16fc’
macAddress timeStamp ~ WIFiAP

9867312b6133ba7e9832f2ce3c74236ed4be16fc 2019-04-26 15:03:02 3142-clwa-2099

9867312b6133ba7e9832f2ce3c74236ed4be16ic 2019-04-26 15:07:13 3142-clwa-2059
9867312b6133ba7e9832f2ce3c74236ed4be16fc 2019-04-26 15:09:22 3142-clwa-2059

a) Raw WiFi connectivity Data

select * from Presence
where macAddress = ‘9867312b6133ba7e9832f2ce3c74236ed4be16fc’

b) Presence Data

Figure 1: Data Set in Contact Exposure System.
for the application at hand - paying the additional overhead of fine
grained localization only if needed.

2.2 Exposure Tracing

Before we discuss exposure tracing, let us first specify how we
model exposure. Different countries have different protocols for
defining contact. For instance, in the USA in the context of COVID-
19, contact is defined as being within 6 feet of an affected person for
a cumulative total of 15 minutes or more over a 24-hour period [8].
We define contact as the user and the affected person being in the
same room for a cumulative total of r; minutes or more over a 72-
hour period. Although two people in the same room might not be
within 6 feet (false negatives), our definition does not introduce false
positives and it is easy to be used for practical deployments where
several follow-up steps are normally taken to ascertain exposure.
Given the above definition of exposure model, we capture the
essence of exposure tracing through the following three queries:
ReportQuery (Qr = {mac, st, et}): that given a mac address mac
(possibly of the device belonging to an affected user), determines
locations (i.e. regions/rooms) and times the person visited those
locations. CheckQuery (Qc = {mac, st, et}): that allows a user with
a device (with mac address mac) to check if he/she came in contact
with/was exposed to any affected users during a given time interval
{[st, et)}. ContactQuery (Qr = {st,et}): that returns the set of
people who have been exposed to any affected user during the time
interval {[st, et)}. The queries above taken together form the basic
exposure tracing application that we have built using LOCATER.

2.3 T-COVE Implementation

In the system implemented, raw WiFi connectivity data arrives as a
data stream to the database and is stored as a WiFi table. In Figure 1-
a), each tuple in WiFi logs the mac address of the device, the time
stamp at which the user’s device connected to the WiFi AP. Let
us consider a database system that dynamically tracks individuals’
location over time using a semantic localization technology such
as LOCATER. Let us further assume that the system has associ-
ated with it a Presence relation as shown in Figure 1-b). The table
stores information about the person (identified by their device’s
mac address, location (region and room), and the interval of time
they were in the room (startTime, endTime). As will become clear,
since materializing the Presence table fully would be prohibitively
expensive (takes about XX millisecond per WiFi connection event)
it is dynamically computed on only a very small part of the data,
just enough, to answer the query.

To process a a user-specified query (i.e., one of Report, Check,
Contact queries), it is first routed through state management module
that maintains information about data that has been cleaned before
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Figure 2: T-COVE Components and Interactions.

in the form of a State relation with the schema {macAddress, start-
Time, endTime} . Each tuple {mac, st, et} in the relation denotes that
the location data of the device with mac has already been cleaned
during the time interval [st, et) based on prior queries. T-COVE gen-
erates SQL calls to the WiFi table to retrieve WiFi events that need
to be processed to answer (that is, are included in the time interval
of interest to the query) that (based on state management) have
not yet been processed into location data using LOCATER and is
hence still textit dirty/ For the ReportQuery, Qr = {mac, st, et}, and
CheckQuery, Q¢ = {mac, st, et}, the translated query corresponds
to the following SQL call:

SELECT * FROM WiFi WHERE WiFi.macAddress = mac AND
WiFi.timestamp BETWEEN (s¢, et) AND NOT EXISTS (SELECT *
FROM WHERE State.macAddress = mac AND WiFi.timeStamp
BETWEEN State.startTime AND State.endTime )

As for the ContactQuery, Q7 = {st, et} to retrieve all users who

have come in contact with an affected person, it requires the whole
WiFi relation during the interval. Since such a result set can be very
large even when portions of data already cleaned are removed, we
use several optimizations which will be clear later to specially deal
with ContactQuery.
Transformation from WiFi to Presence: As a next step, the
requested raw data is transformed to Presence table. In Figure 1,
for each tuple in WiFi, we first associate it with a validity interval
which expands the exact time point to a short interval around it.
Observing the first tuple in two relations with red box, such interval
is one minute before and after the time stamp in this example. For
the portions of time between two consecutive intervals in which no
connectivity event is valid, we create a tuple to represent it, such
as the tuples with green box in Figure 1-b). The region in presence
table corresponds to the area covered by its connected WiFi AP, and
the room denotes the room location inside the region. The translated
Presence table would be sent to query processor. If the submitted
query is ReportQuery, query processor calls LOCATER to clean all
missing values and stores the cleaned data in the database. We build
index on the clean affected people data, denoted by AffectedPeople.
Index: For each distinct WiFi AP ap (correspond to region), we
create a list each entry of which corresponds to a tuple whose
connected AP is ap. The entries are sorted by their start time stamp
in the ascending order.

When the user submits CheckQuery Q¢ = {mac, st, et}, Query
Processor joins the Presence and AffectedPerson in clean data to
find out if the user carrying device with mac address mac has come
in contact with any affected person in time interval [st, et). We call
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a tuple to be dirty if it contains missing values. Specifically, for
each dirty tuple p whose region is missing, € Presence table, we
first apply the cheap coarse localization in LOCATER to predict
its region. We call a dirty tuple p; € Presence as a candidate tuple
if there exists a tuple p; € AffectedPerson such that their regions
are same and their time intervals overlap. We can search all such
candidate tuples using index. This step takes O(logn), where n is
the average size of the lists in index. Finally we call fine localization
in LOCATER to predict the room location for each candidate tuple
until these two devices satisfy the contact definition or all candidate
intervals are clean.

As for ContactQuery which returns all the people who have
contacted with the affected person, we maintain a neighbor set N
of the affected people, which is a by-product of LOCATER. Two
people are neighbors if they connect to the same WiFi AP once
in a given time interval. Instead of joining with User, we restrict
the search space to N, which is significantly less than the size of
Presence. For each neighbor we repeat the same procedure as in the
CheckQuery until all qualified users are returned. Lastly, every time
we finished query processing, we update the state management by
inserting the log of the user/affected person we have cleaned as
well as the corresponding time interval.

3 DEMONSTRATION SCENARIO

We will demonstrate two of the capabilities of T-COVE: cexposure
tracing and real-time occupancy of spaces at different granularities
(building, floor, regiions, room) that highlight the data cleaning
technology of LOCATER. T-COVE’s occupancy estimation capa-
bility has been deployed at the UCI campus (and is operational
and part of the campus reopening plan for over 20 buildings). It is
currently being deployed at two other campuses (Ball State Univ.
and UC, San Diego).

Scenario 1: Exposure Tracing This demonstration will focus
on demonstrating exposure tracing discussed above using data
captured from our DBH building (with 64 WiFi AP each covering
approx. 11 rooms, 300+ rooms, average number of people in building
> 1000) prior to the campus lockdown which started in March 2020.
The dataset (in the following DBH-WIFI) contains 10 months of
data, from Sep. 3rd, 2019 to July 8th, 2020, comprising 38, 670, 714
connectivity events for 66, 717 different devices. As this system has
not yet been officially deployed in the campus, for the purpose of
demonstration, we randomly select devices to mimic the affected
people and the others are normal users. Specifically, we first filter
out the passer-bys whose connection frequency is low. Next we will
randomly pick 100 devices as affected people, and the others form
the normal users.

In Figure 3, we show the demonstration of ReportQuery, Check-
Query and ContactQuery. ReportQuery: An affected user report
herself in the time interval from "2020-01-17 10:00:00" to "2020-01-17
12:00:00". The left graph data visualizes the relationships between
the affected person (pink node) and intervals (yellow nodes) she
is in. We can see the detailed properties of the nodes by clicking
them in graph, which can alternatively be represented in the right
table data. ContactQuery: The green User nodes are the answer
of query Q7 who have come in contact with any affected person,
and we also show the affected person (pink nodes) they contact



ReportQuery: Qr={'11d58fd604e31332d0e061f9e445058af',’2020~01-17 10:00:00’, “’2020~11-17 12:00:00} ‘

|ContactQuery: Qr={2020-01-17 10:00:00', 2020-01-17 12:00:00°)

Graph Data Table Data

MacAddress: 11d58{d604e31332d0e0619e445058afb

N

inteal) endTime: 2020-01-18 10:53:56.0 intervallD: Interval17
regionLabel: 3142-clwa-2099 roomLabel: 2099
startTime: 2020-01-18 10:43:56.0

Figure 3: T-COVE.

with in the graph. In our video [6], we show CheckQuery which is
an simpler case of ContactQuery, as well as the edge information
in the graph, which is the set of intervals where they contact with
each other.

Scenario 2: Occupancy: T-COVE also supports occupancy com-
putation at different spatial granularity based on LOCATER that
further accounts for errors in estimation due to user’s carrying
multiple devices, fixed devices such as printers that may artificially
increase occupancy counts, and percentage of users who do not
carry devices. The occupancy estimation functionality of T-COVE
has been deployed and in operation in UCI campus in over 20
buildings as part the campus reopening strategy. As shown in Fig-
ure 4, T-COVE supports occupancy based on user-defined label:
high/medium/low at different floors of different buildings. We also
show the other granularity of occupancy with exact numbers in
the video [6], such as building and regions where region could
correspond to any user-defined semantic areas (E.g., meeting room,
classroom,etc). Users can customize the time range and refresh-
ing frequency of displaying occupancy. This application ingests
the streaming WiFi connectivity data collected in UCI campus and
computes the real-time occupancy for all the space of interests.

Evaluation. We evaluate the expected misclassification rate of
occupancy application for three classes (i.e., low/medium/high )
based on occupancy thresholds 6; and 6 provided to us by UCI
administrators who use the system. The dashboard based on the
classification in use at UCI buildings is shown in Figure 4. Instead
of sharp thresholds, our algorithm classifies based on a tolerance
@, - thus objects O € [0,0]), O € [0],0;), and [6, %), where
0] = 01 — ap and 6, = 02 — a,, with the goal of making the classi-
fier more conservative (i.e., reduce the false negatives). Assuming
LOCATER accuracy of 0.9. (Accuracy of LOCATER of 0.9 is based
on real experiments in [7].), we report the the expected percent-
age of misclassified labels over our live system on three classes,
low/medium/high, as 0.0001, 0.0048,0.0161, and that of the over-
all method is 0.0002. Our goal in this evaluation is to study how
uncertainly in LOCATER impacts the application’s quality. As can
be seen, LOCATER based localization provides adequate quality
for the dashboard. To study impact of LOCATER’s uncertainty on
exposure tracing, we fixed the contact time threshold to be 15 min-
utes (with tolerance a, = 2 minutes). That is, if LOCATER predicts
contact of > 13 minutes, we report it as a contact, else, the classifier
counts it as no contact. As before, weakening of the classifier is
performed to reduce number of false negatives, FN (at the cost of
increased false positives, FP). We measured estimated FP/FN on
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Graph Data

@¢MacAddress: 9867312b6133ba7e9832f2ce3c74236ed

MacAddress: 1bb16e6e140dfac7c5d0f223¢35d5dc9
Figure 4: Occupancy.

real data for one month and the resulting expected precision and
recall were 0.974 and 0.91 respectively. We could further improve
recall (at the cost of precision) by increasing the tolerance and the
demo will explore the above tradeoff. The expected precision and
recall are 0.955 and 0.947 when «, = 3.

4 DISCUSSION ON PRIVACY ISSUES

While privacy is not the focus of our demonstration, we note that
building systems such as T-COVE opens significant privacy con-
cerns. To address the privacy issues, we have designed a crypto-
graphic protocol entitled QUEST [3], that allows user’s data to be
stored encrypted such that only the subject/user has the ability
to decrypt the data. Organizations need explicit permission from
subjects (through an opt-in mechanism) to access subject’s data.
We refer interested readers to QUEST paper [3] for details about the
protocol. Our goal in the demo will focus on exploiting LOCATER
and the ability to use it for exposure tracing and accurate occupancy
analysis.
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