ParaBit: Processing Parallel Bitwise Operations in NAND Flash
Memory based SSDs

Congming Gao' Xin Xin* Youyou Lu'

Youtao Zhang® Jun Yang* Jiwu Shu'

Department of Computer Science and Technology / BNRist, Tsinghua University', China
Department of Electrical and Computer Engineering, University of Pittsburgh*, USA
Department of Computer Science, University of Pittsburgh®, USA
shujw@tsinghua.edu.cn

ABSTRACT

Processing-in-memory (PIM) and in-storage-computing (ISC) archi-
tectures have been constructed to implement computation inside
memory and near storage, respectively. While effectively mitigating
the overhead of data movement from memory and storage to the
processor, due to the limited bandwidth of existing systems, these
architectures still suffer from the large data movement overhead
between storage and memory, in particular, if the amount of re-
quired data is large. It has become a major constraint for further
improving the computation efficiency in PIM and ISC architectures.

In this paper, we propose ParaBit, a scheme that enables Parallel
Bitwise operations in NAND flash storage where data reside. By
adjusting the latching circuit control and the sequence of sensing
operations, ParaBit enables in-flash bitwise operation with no or
little extra hardware, which effectively reduces the overhead of
data movement between storage and memory. We exploit the mas-
sive parallelism in NAND flash based SSDs to mitigate the long
latency of flash operations. Our experimental results show that the
proposed ParaBit design achieves significant performance improve-
ments over the state-of-the-art PIM and ISC architectures.

CCS CONCEPTS

+ Hardware — External storage; - Computer systems organi-
zation — Architectures.

KEYWORDS

flash memory, in-storage computing, near data processing, bitwise
operation

ACM Reference Format:

Congming Gao® Xin Xin* YouyouLu' Youtao Zhang® Jun Yang*
Jiwu Shu'. 2021. ParaBit: Processing Parallel Bitwise Operations in NAND
Flash Memory based SSDs. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’21), October 18-22, 2021,
Virtual Event, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3466752.3480078

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480078

59

1 INTRODUCTION

Memory wall remains a major performance bottleneck of modern
computing-centric systems [36]. Recent studies have proposed two
types of solutions — processing-in-memory (PIM) and in-storage
computing (ISC), to address the large data movement overhead
between memory/storage and processor. By exploiting the compu-
tation capability and high bandwidth of DRAM and NVM memory
technologies, PIM architectures integrate basic logic computation
in memory and offload computation to memory, which achieves
great bandwidth and performance improvement with low design
complexity and overhead [2, 47, 49, 56]. Alternatively, ISC archi-
tectures [43, 48] also offload computation to processors inside SSD
controller, near storage, which mitigates the data movement over-
head from storage to the main processor.

Most existing PIM and ISC techniques assume the data has been
loaded into memory before processing such that the data swapping
between memory and storage is negligible. However, this assump-
tion is too optimistic: due to the limited memory size, data-intensive
applications often have to store data in storage initially, and move
data from storage to memory before and during the processing. Our
preliminary study shows that PIM and ISC schemes exhibit 30x
and 60X data movement cost over bitwise operation cost while the
interconnection interface exhibits limited bandwidth, respectively.
Therefore, it is beneficial to enable computation inside storage (e.g.,
SSD) where data resides, thus reducing or avoiding significant data
movement from storage to memory.

To mitigate the data movement overhead between memory and
storage, we propose ParaBit, a scheme that conducts Parallel Bitwise
operations in NAND flash memory based SSDs. ParaBit exploits
the intrinsic computation capability of the control circuits in com-
modity SSD so that it can be implemented with firmware upgrade,
i.e, no extra hardware. ParaBit adjusts the sensing and transistor
controls to perform bitwise operations in latching circuit during
read operation. ParaBit supports seven common bitwise operations
(including AND, OR, XNOR, NAND, NOR, XOR and NOT) in NAND flash
based SSDs. While each bitwise operation in ParaBit takes longer
latency than that in PIM and ISC architectures, ParaBit exploits
massive parallelism of SSD or high scalability in all-flash array and
strives to achieve the overall efficiency. We then propose location-
free ParaBit to further improve the performance. Location-free
ParaBit facilitates bitwise operations with operands resided in flash
cells from different wordlines by integrating an extra inverter and
two control transistors to assist XOR and XNOR operations. To the
best of our knowledge, ParaBit is the first work that leverages the
intrinsic computation capability of flash memory’s circuits to re-
alize in-SSD data processing. We implement the ParaBit schemes

https://doi.org/10.1145/3466752.3480078
https://doi.org/10.1145/3466752.3480078
https://doi.org/10.1145/3466752.3480078

MICRO 21, October 18-22, 2021, Virtual Event, Greece

and evaluate them in three case studies. Our experimental results
show that ParaBit schemes, by performing computations inside
SSDs, significantly reduce the data movement overhead and thus
improve the system performance.

We summarized our contributions as follows. 1) We proposed
an in-flash-computing scheme, referred to as ParaBit, to realize
bitwise operations in NAND flash memory with no or little hard-
ware modification; 2) We constructed a ParaBit based SSD design,
which includes several additional components for implementing
ParaBit inside SSDs; 3) We evaluated the performance of ParaBit
in MLC SSD using a modified SSD simulator and compared it with
state-of-the-art PIM and ISC architectures. The reliability of ParaBit
also is verified in real flash chips.

In the rest of the paper, we briefly discuss the background and
related works in Section 2. We present the motivation in Section 3
and elaborate our design in Section 4. We analyze the experimental
results in Section 5 and get the conclusion in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 NAND Flash Memory based SSDs

Figure 1(a) shows the architecture of a typical planar MLC based
SSD. Inside SSD, there is a host interface, which is used to connect
SSD and host system. The flash controller contains several impor-
tant components, which are in charge of Garbage Collection (GC),
Data Allocation (DA), address mapping (Flash Translation Layer,
FTL), and some other functions, such as Wear Leveling (WL) and
cache [1]. Apart from these components, a flash chip controller
is equipped to connect flash chips and flash controller. To boost
the performance of SSDs, internal architecture is organized in four
levels of parallelism, from channel to chip, to die, and to plane
[15, 16]. Inside each die, multiple planes are maintained and each
plane contains a series of blocks. Each block contains several pages.

Figure 1(b) show the internal details of die and block. Inside
a die, two planes are engineered. Around planes, there are two
address decoders, determining the data access location. On the top
of planes, two registers, termed cache register and data register, are
engineered to transfer data to or from flash array. To speed up read
operation, data can be transferred from cache register to host while
concurrently moving data from flash array to data register. This
process is termed Cache Read, which has been widely supported
in modern flash memory [23, 39]. Inside the block, all flash cells
are organized as cell array. In the right of Figure 1(b), all cells in
horizontal direction are connected through a wordline (WL) and all
cells in vertical direction are stringed and selected by bitline (BL).
According to the number of bits stored in a cell, flash cells can be
divided into several types: Single Level Cell (SLC), Multi Level Cell
(MLQC), Triple Level Cell (TLC) and Quad Level Cell (QLC). Take
Figure 1(b) as an example, where each MLC cell stores a 2-bit value,
each bit of which belongs to different page. All MLC cells reside in
the same WL are grouped and used as two physical pages. Inside
SSDs, read and write are performed in page-based operation while
erase is processed in block-based operation.

2.2 Latching Circuit in Flash Memory

Given ParaBit relies on adjusting the control sequence of latch-
ing circuit, we next elaborate the baseline implementation in this

60

Congming Gao, et al.

FTL Other

’

H
4
7

Flash
Controller
Flash Chip
Controller

Channels

(Host I:ierface) K

(a) The architecture of SSD.

Die Internals

Block Internals

T ™~
Cache register SR gR St
at q | Strin
Data register » SSL SeleCk Line
N ~ | WL3 5
K S
8|||Plane0||Planel g|wrz - | Control
S (Cell Array) || (Cell Array) mt‘d WLI - Gates
g == round
A | Ground |
£ [GSL Select Line

Column Decoder FSource Line,

—————)
(b) The internal details about die and block.

Figure 1: The architecture of SSD and its internals.

section. As shown in Figure 2, data register and cache register are
implemented via two latches, which can buffer data derived from
sense amplifiers while outputting the cached data. In the discussion,
we represent the logic value at a location X as L(X)=x1x2x3x4,
where x1, x2, x3, and x4 indicate the logic value when the MLC
cell being sensed is in state E, S1,S2, and S3, respectively. Each
x;i(1<=i<=4) takes 0 or 1 indicating if location X has low or high
voltage, respectively.

Figure 2: Initialization of latching circuit.

Figure 2 illustrates how we initialize the latch circuit before
read operation. SO and EN1 signals are initially set to “high” (step
1 and step 2) and transistors Msp and M; are enabled to force the
voltage at C to ground so that L(C)=0000 (step 3). Consequently,
L(A)=L(C)=1111 (step 4). Then, SET signal is set to “high” (step 5)
so that L(OUT)=0000 (step 6) and L(B)=L(OUT)=1111 (step 7).

To differentiate four states in an MLC cell (E, S1, S2 and S3),
three reference voltages (VREaD1, VREAD2 and VR4 ps3) are used as
threshold voltages, as shown in the middle of Figure 3. By applying
different sensing voltages in a sequence of Single Read Operations
(SROs), we get the outputs by comparing the sensing voltages and
the current cell voltage. The comparison result is transferred to SO
node where the value may be 0 (if the cell voltage is lower than
sensing voltage) or 1 (if the cell voltage is higher). The value at
S0 is then moved and stored in the latches (L1 and L2). Since the
sensing circuit is independent of L2, SROs can be performed to

ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory based SSDs

< < <

= = = =

SR

o E © 51552583

i T ACAT

F LSB—»1 A : . H
..... @D-@D - &b - MsB—Y[1|Y[olyOlY]
MSB Read

11(; 0000y, 11111001 L2

.1
Figure 3: Latching circuit of reading LSB and MSB.
sense and store new value in L1 while previous sensed value has
been buffered in L2 and then be transferred out from node OUT
(referred to as “Cache Read”).

To read the LSB bit (least-significant-bit) from an MLC cell, the
controller applies a sensing voltage VRg Ap2, denoted as step 1 at
the top of Figure 3, which includes three sub steps. Depending on
the state of the cell, all possible outputs at SO are represented as
L(SO)=0011 (step 1.1) while the voltage of cell in E and S1 states
is lower than VRgap2 and voltage of cell in S2 and S3 states is
higher. The transistor M, is then enabled (step 1.2) and voltage
at A is forced to ground if SO has a sensed high voltage, e.g., L(A)
changes from 1 to 0 only when L(SO)=1 at step 1.3. As a result,
L(A)=L(A)oia N m:lloo, i.e., it is the same as the LSB bit value.
Step 2 transfers the sensed value to L2 to enable cache read.

The process to read MSB bit (most-significant-bit) (at the bottom
of Figure 3) is similar. The difference is that we employ two sensing
voltages VrReap1 and VRgpaps to sense data to L1. At step 1.1,
L(S0)=0111 when sensing voltage is applied at VRgap1. At step 1.2,
we then enable My and force the voltage at A to ground if L(SO)=1.
As aresult, L(A)=L(A),14 N L(SO)=1000 and L(C)=m:0111 at step
1.3 and step 1.4. After finishing step 1, My is disabled. At step 2.1,
sensing voltage VRgAps3 is applied and L(SO)=0001. Similarly, we
enable M; (step 2.2) so that L(C)=L(C)y1q N M:OIIO (step 2.3)
and L(A)=m:1001 (step 2.4), i.e., it is the same as the MSB bit.
Step 3 transfers the sensed value to L2 to enable cache read.

2.3 PIM and ISC

PIM: PIM typically exploits the intrinsic computation capability
inside DRAM or NVM technologies, which mitigate the data move-
ment overhead between memory and processor [41, 49, 56]. For
example, Ambit is a typical DRAM based PIM architecture that
exploits charge sharing for computation [49]. For example, to im-
plement AND operation in DRAM, Ambit activates three cells on
the same bitline so that, if at least two cells’ voltages are high, the
voltage on the bitline is above V;,/2 after charge sharing. Other-
wise, the voltage is lower than V;,;/2. The NOT operation in Ambit

61

MICRO 21, October 18-22, 2021, Virtual Event, Greece

is realized by attaching a dual-contact cell to the bitline so that the
negated value of the bitline’s output is sensed. Given the parallel
DRAM cells in a row, bulk bitwise operations can be realized.

PIM architectures usually assume that all operands have been
loaded into the memory. The data movement between storage and
memory is rarely studied in the literature.

ISC: ISC architectures were designed to offload computation to
the integrated computing units that reside in storage modules. By
sending only the results back to the processor, ISC effectively miti-
gates the data movement between storage and the main processor
[11, 31, 43, 48, 50]. Previous works adopt FPGA or embedded ARM
to implement computations so as to achieve good tradeoff between
programmability and computing capability, which potentially can
meet different computation requirements. While ISC architectures
can implement bulk bitwise operations, they face two shortcomings:
First, processing bitwise operation in an powerful computing unit
is not cost-effective. Take FPGA as an example, SRAM-based FPGA
requires additional power consumption to maintain operands in
SRAM, compromising the energy efficiency. Second, due to the lim-
ited memory capacity in SSD controller and low interconnection
bandwidth, the data movement overhead remains high.

Instead, this work exploits a new computing paradigm that of-
floads basic bitwise operations to flash memory and then further
reduce data movement overhead to and from the storage.

2.4 Other Related Works

In addition to DRAM-based PIMs [18, 49, 56], recent studies enabled
bitwise operations in different memory technologies, e.g., SRAM,
RRAM and MRAM. These works leverage electrical characteristics
[10, 33, 53] or stateful logic operation [5, 55, 58] to conduct simple
bitwise operations.

However, due to the poor density, high cost and immature pro-
cess technology, these new memory medium based PIM architec-
tures are still a long way from widespread use. For NDP (Near Data
Processing), Akin et al. proposed to place processing units near
main memory so that data can be processed without high data
movement cost [3]. NDP often introduces higher design overhead,
due to the demands for high-speed processor, more memory con-
trollers and I/O circuits [4]. For ISC, powerful computing units are
included in high-end SSDs to process the data before being moved
to the memory [11, 31, 48]. Although ISC achieves good perfor-
mance by bringing data near storage, designing a bitwise operation
dedicated ISC is not cost-effective.

3 MOTIVATION

We motivate our design by studying the data movement between
SSD and memory in PIM and ISC architectures, respectively. We
choose an image segmentation benchmark program [14] as the
example, which employs color recognition to realize region seg-
mentation. To determine whether one pixel belongs to a color range,
the program uses YUV color recognition and leverages bitwise op-
erations [6]. Assume the YUV color space is discretized to 10 levels
in each channel, the “orange” color can then be represented as:

Y_Class[1={0,1,1,1,1,1,1,1,1,1}

U_Class[1={0,0,0,0,0,0,0,1,1,1};

V_Class[]={0,0,0,0,0,0,0,1,1,13.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Given a pixel whose YUV value is (2,7,9), it falls into orange’s
color space if “Y_Class[2] AND U_Class[7] AND V_Class[9]”
is evaluated to be true. The color recognition can be concurrently
performed with multiple pixels and colors. In the experiment, the
number of images varies from 10,000 to 200,000, the resolution of
each image is set to 800x600, the YUV color space is discretized to
256 levels in each channel, and four types of colors are recognized.
Due to the limited memory size, image data need to be stored in
storage before processing — it takes 267.5GB space to store 200,000
images with each image occupying 1.37MB space. When writing
well-reconstructed images to storage, the program performs a light-
weight pre-processing that transforms YUV value into recognized
color based YUV classes, which reduces the per image space con-
sumption to 0.72MB (800x600x3 channelsx4 bits per channel), or
140GB for 200,000 images. Clearly, this data volume is still beyond
the memory capacity of a typical PIM/ISC system.

To evaluate the data movement overhead, we choose the Ambit
PIM architecture [49] with its latency of bitwise operation mea-
sured in H-spice[51], and Cosmos OpenSSD platform [13] as ISC
architecture, respectively. For the storage device, we use a Samsung
SSD 970 PRO with MLC flash memory and 512GB capacity [46].
Given current Cosmos OpenSSD platform’s bandwidth is out-dated
(about 2GB/s while modern SSDs’ bandwidth is often greater than
3GB/s), we attach Samsung SSD 970 PRO to the Cosmos OpenSSD
platform for moving data from flash memory to computing unit.
We remap all images’ logical addresses sequentially so as to exploit
SSD’s peak bandwidth [27]. More details about the evaluation can
be found in Section 5. Figure 4 summarizes the results. While it
actually triggers data swap between memory and SSD if the size of
data operands exceeds the DRAM or SRAM capacity in PIM and
ISC, respectively, we ignore result writeback and thus only account
for the time spent in moving data from SSD.

(a) The evaluation with PIM.

(b) The evaluation with ISC.
Figure 4: The execution time of data movement and bitwise

operations in PIM and ISC architectures.

From the figure, both PIM and ISC spend most of their execution
time on data movement while only a small portion of their execution
time on bitwise AND operations. PIM and ISC spend 43.9s and 41.8s,
respectively, on data movement, which are 30.7x and 60.2x longer
than the time on AND operations, respectively. In the experiment,
the PCle Gen3X 4 is used as the interconnection but remains a
performance bottleneck. To summarize, it can greatly improve the
system performance if the computation can be offloaded to SSD so
that only the computation results, i.e., a small amount of data, need
to be transferred from SSD to DRAM and/or FPGA.

4 THE DESIGN OF PARABIT

As a solution to address the issue in the preceding section, we pro-
pose to offload bitwise operations to SSD. We first present how to
perform such operations in NAND flash based SSDs, and then elab-
orate the implementation details, followed by additional discussion.

62

Congming Gao, et al.

4.1 Performing Bitwise in Latching Circuit

Intuitively, our latching circuit based bitwise operation is to com-
pute, e.g., Z; = X; AND Y; (i=0,1,2...), by first storing X; and Y; in
the LSB and MSB of the same MLC cell, and then having Z; com-
puted and buffered in the output latch (i.e., L2 latch in Figure 2). For
clarity, the truth table for the set of bitwise operations supported
by ParaBit is shown in Table 1.

Table 1: Truth table of bitwise operation.
[State[(LSB/MSB)ANDORXNORINANDINORXOR|NOT)|

E | (1/1) T 1] 1 0] 0] 0 [(00)
S1| (1/0) | 0 [1]| 0 1 | 0 | 1 [(0/1)
$2| (00) | 0 |0 1 1 1| 0 (1)
S3| (/1) [0 [1] o T [0 | 1|10

To conduct an AND operation, the output should be 1000 ac-
cording to the truth table and the state value notion used in Section
2.2, 1.e., the output is 1, 0, 0, and 0 when the MLC to be sensed is in
E, S1, S2, S3 state, respectively. Only when the cell is in E state
indicating both LSB and MSB are 1s, we have the output being 1.

As donated in Figure 5(a), AND operation can be achieved by
employing two-step latching circuit control. At first step, we de-
termine whether the cell being sensed is in state E by applying
the sensing voltage at VRgap and having L(SO)=0111 at step 1.1.
Then, at step 1.2, My is enabled to force node A to ground if SO has
a sensed high voltage. We have L(A)=L(A)1q A m:IOOO (step
1.3), where L(A),;4 is the initialized value 1111. For the second step,
the value of L(A) is transferred to L2 by enabling M3 (step 2.1) and
then L(OUT)=L(B)=1000 (step 2.3).

The process of performing AND operation is the same as reading
LSB bit illustrated in Figure 3, except for the applied sensing voltage.
That is, AND operation can be realized inside flash memory based
SSDs by leveraging the intrinsic bit read capability without extra
hardware modification.

To conduct an OR operation, the output should be 1101. We
take the three-step latching circuit control, which is the same as
reading MSB bit except for the applied sensing voltages. As shown
in Figure 5(b), at step 1.1, L(SO)=0011 while sensing voltage is
applied at VRgap2, and then we have L(A)=L(A) 14 A Mﬂwo
(step 1.3) and L(C)zm=0011 (step 1.4). At step 2.1, sensing voltage
is applied at VRgaps to have L(SO)=0001. Then, by enabling M;
(step 2.2), we have L(C)=L(C)y1q A L(50)=0010 (step 2.3), where
L(C),14=0011. Lastly, at step 2.4, L(A)=L(C)=1101, i.e., it is the same
as the result of OR operation. Again, step 3.1 enables M3 to transfer
the value to L2 for cache read and L(OUT)=1101 (step 3.3).

To conduct an XNOR operation, the output should be 1010
based on the truth table. In Figure 6, we take a new six-step latching
circuit control to determine whether the cell being sensed is in state
E or S2. Six steps are elaborated as follows:

Step 1.1 employs sensing voltage VRpap1 (step 1.1) and enables
M2 (step 1.2) so that L(A)=1000 (step 1.3) and L(C)=0111 (step 1.4);

Step 2.1 enables M3 to transfer the value in the preceding step
to OUT, i.e., LLOUT)=L(B)=L(B),;4 A L(A)=1000;

Step 3.1 employs sensing voltage VRgapo and enables My (step
3.2) to set L(A)=0000 (step 3.3) and have L(C)=1111 (step 3.4);

ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory based SSDs

2.1
0001
(b) Performing OR operation in latching circuit.
Figure 5: Latching circuit control for performing AND and OR
bitwise operations.

Step 4.1 employs sensing voltage Vrg4p2 and enables M; (step
4.2) so that L(C)=L(C) 14 A L(SO)=1111 A 0011=1100 (step 4.3) and
L(A)=L(C) =0011 (step 4.4);

Step 5.1 employs sensing voltage VRg4p3 and enables My (step
5.2) so that L(S0)=0001 and L(A)=L(A)y;4 A L(SO)=0011 A 0001
=0010 (step 5.3);

Step 6.1 enables M3 so that L(B)=L(B),14 AL(A)=0111A0010=0101
(step 6.2) and L(OUT)=m:1010 (step 6.3), e.g,. it is the same as
the result of XNOR operation.

1111 00007,

(b) The fourth, fifth and sixth steps of XNOR operation.
Figure 6: Latching circuit control for performing XNOR bit-

wise operation.

By adjusting the initial values, the sensing voltages, and the
control transistors, we may implement other bitwise operations,
e.g., NAND, NOR, XOR, and NOT, which are the inverted values of AND,
OR, XNOR, and LSB/MSB value. Before performing these bitwise
operations, values in latches should be re-initialized, of which the

63

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Figure 7: Initialization of latching circuit for performing
NAND, NOR, XOR and NOT bitwise operations.

value in L2 is the same as traditional one while the value in L1 is
inverted. In detail, as presented in Figure 7, SO and EN2 signals are
initially set to “high” and transistors Mg and M; are enabled to force
the voltage at A to ground so that L(A)=0000 and L(C):mzllll.
In the following discussion, we use the table representation to
elaborate the implementation.

For NAND operation, the last three rows in Table 2 indicate we
need one initialization, one sensing step and one transfer step. The
second and third columns of each row elaborate the control details
at each step. The second row indicates the initialization of latching
circuit. The third row indicates we use sensing voltage VRgap1
and enable My, thus the values at node C and A are changed. The
fourth row indicates we enable M3 and transfer value from L1 to L2,
and then we can have L(OUT)=L(B)=0111, e.g., it is the same as the
result of NAND operation.

Table 2: Performing NAND operation in latching circuit.

[Rows| NAND _ [L(SO)[My [L(C)[L(A)[L(B)[L(OUT)]
1 |Initialization] - [- [1111]0000]1111] 0000
2 VREAD1 111 | M; [1000|0111 1111[0000
3 LitoL2 - M3 | 1000|0111 |1000| 0111

For NOR operation, after initialization, we need two sensing
steps and one transfer step as shown in Table 3. The third row
indicates we use sensing voltage VrRpaps and enable M; to have
L(A)=m=0011. The fourth row indicates we use sensing voltage
VREAD3 and enable My to conduct L(A)=0010. The last row indicates
we enable M3 and transfer value from L1 to L2, and then we have
L(OUT):IE:OOIO, e.g., it is the same as the result of NOR operation.

Table 3: Performing NOR operation in latching circuit.

[Rows [NOR [L(SO) [M, [L(C) [L(A) [L(B) [L(OUT)]
1 |Initialization| - - |[1111/0000 [1111 | 0000
2 VREAD2 0011 | My | 1100|0011 [1111| 0000
3 VREAD3 0001 | M2 [1101|0010|1111| 0000
4 LitoL2 - M3 |1101|0010|1101| 0010

For XOR operation, we have M®N = MN +MN. The control se-
quence is illustrated in Table 4. For MN, it is true only when the cell
being sensed is in state $3. Thus, the third row implements MN by
using sensing voltage VREaps. And then, sensed value is transferred
and buffered at node OUT by enabling M3. For MN, we use sensing
voltage VReap1 and VReaps to determine whether the cell is in
state S1. But before implementing MN, the values at A and C should
be re-initialized at the fifth row. And then, sixth and seventh rows
indicate the implementation of MN. After seventh row’s control,
we have L(A)=MN. At the last step, we enable M3 to transfer value

from L1 to L2 so that we have L(OUT)= L(B)=L(B),1q N L(A)o14
=L(B)o1d + L(A)o1d =L(OUT)o14 + L(A)o1g =MN + MN.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Table 4: Performing XOR operation in latching circuit.

[Rows] XOR [L(SO)[My | L(C)[L(A)] L(B)[L(OUT)]
1 |[Initialization]| - | - |1111]0000]1111] 0000
2 VREAD3 | 0001 | My | 1110|0001 | 1111| 0000
3 LitoL2 -~ [M3 [11100001 1110| 0001
4 VREADO | 1111 | My [1111]0000 1110 0001
5 VrREAD1 | 0111 | M; [1000| 0111|1110 0001
6 VREAD2 | 0011 | My [1011|0100 | 1110 0001
7 LitoL2 -~ | M3 [1011[0100]1010| 0101

For NOT operation, Table 5 lists the controls to invert the LSB
and the MSB bits, respectively. The inversion is mainly achieved
by setting different initial values at A and C.

Table 5: Performing NOT operation in latching circuit.

[Rows[NOT-LSB [L(SO) [M, [L(C) [L(A)[L(B) [L(OUT)]
1 Initialization - - | 1111|0000 |1111| 0000
2 VREAD?2 0011 | Mq | 1100|0011 |1111| 0000
3 LitoL2 = [Ms [1100 [0011]1100| 0011

[Rows| NOT-MSB__ | L(SO)| My | L(C)| L(A)| L(B)| L(OUT)|
1 |Initialization| - - [1111 0000 | 1111| 0000
2 VREADI 0111 | My | 1000 | 0111 [1111| 0000
3 VrEAD3 | 0001 | Mg | 100101101111 | 0000
4 LitoL2 - M3 | 1001|0110 | 1001 | 0110

4.2 Location-free ParaBit

The basic ParaBit works when two operand bits share the same MLC.
When the operands are from different cells, ParaBit reallocates
them to the same cell, which incurs high reallocation overhead and
compromises the benefits of bitwise operations.

Given the aligned cells from the same bitline but different word-
lines share the same latch circuit, it is possible to devise two step
sensing strategy that senses one cell in the first step and an aligned
cell in the second step. By adjusting the sensing voltage and latch
circuit controls, we may have the bitwise operation of correspond-
ing bits generated and buffered at the output latch of the latching
circuit. This is referred to as location-free ParaBit in this paper.
Location-free ParaBit eliminates bit reallocation such that it can
effectively improve the in-storage computation performance.

To support location-free ParaBit, the intrinsic CACHE READ RANDOM
command in NAND flash memory is leveraged, which can employ
sensing voltages at random wordlines [23, 39]. In the following
discussion, for two operand bits to be computed, we assume that
one operand bit is stored in the LSB of one MLC cell while the other
bit in the MSB of an aligned MLC cell (i.e., from the same bitline
but different wordline).

Table 6: AND operation in location-free ParaBit.

[LSB[L(SO)] L(A) | L(B) | L(OUT) |
1 0 1001->1001|1111->0110 | 0000->1001
0 | 1 [1001->0000] 1111->1111 | 0000->0000

To conduct an AND operation, there are two steps after normal
initialization. First, VRgap1 and VrRgaps are employed to perform
MSB read operation, thus we can have L(A)=1001. Second, VRgAD2
is employed to sense LSB bit. As elaborated in Table 6, if L(SO)=0,
i.e, the value in LSB is 1, the output is determined by the sensed
value at A, i.e., the value in MSB. Thus, L(A):Im A L(A)14=0 A
1001=1001, which is the result of AND operation. After that the

64

Congming Gao, et al.

output is transferred to OUT. Otherwise, the output at OUT should be
0 while the value in LSB is 0. Thus, L(A)=L(A),14 A m=1001 A
1=0000 and L(OUT)=0000.

The AND operation takes place at A while the second operand is
sensed and stored at SO. But if the second operand is from MSB cell
and requires two sensing operations, the value in A will be override.
Therefore, AND operation in location-free ParaBit works only when
the second operand is stored in LSB. To be completely location-
free, one more latch and some transistors should be engineered to
store the second operand from MSB. Such a solution incurs more
hardware overhead, will be discussed in future work.

Table 7: OR operation in location-free ParaBit.

[ISB[L(SO)] L(A) | LB) | LOUT) |
1| 0 |[1111->1111]0110->00001001->1111
0 1 1111->0000 | 0110->0110 | 1001->1001

To conduct an OR operation, after normal initialization, the
value in MSB is sensed by employing VrRgap1 and VRgaps, and the
sensed value is transferred to B so as to have L(B)=0110. Then, LSB
read operation is performed to have L(A)=1100 after re-initializing
the latching circuit. As shown in Table 7, if L(A)=1, the output
should be 1 no matter what the value of MSB is, i.e., L(B)=L(B) 14 A
m:OOOO and L(OUT):m:llll. Otherwise, the output is deter-
mined by the value in MSB that has been stored in L2. Thus we
have L(OUT)=L(B)=1001.

The OR operation takes place at B while the second operand
stored at A is transferred to L2. Since L1 is independent with L2, L1
can be reset and then used to store the second operand from MSB
by employing two sensing operations.

Figure 8: Performing XOR operation in location-free ParaBit.

To conduct an XOR operation, it can be expressed as M ® N =
MN + MN, which can be performed by combining AND, OR and NOT
operations. Assume that M and N indicate the operands in MSB and
LSB bits, respectively. The XOR operation is performed by two steps,
as presented in Figure 8. At step 1, to compute MN, L1 is initialized
as Figure 7 to perform NOT operation and followed by reading and
storing MSB value at A, i.e., M. Then, the LSB bit is sensed and its
inverted value is stored at SO, i.e., N. By enabling My, we can have
L(A)=m A L(A)14, Where m is N and L(A),;4 is M. Then,
the output of MN is transferred to B. At step 2, to compute MN,
operand in MSB is read and stored in A firstly, and then the LSB bit
is sensed. To get the original value stored in LSB, additional inverter
is engineered between SO and Mgp. As shown in the right of Figure
8, the original value is got by enabling M7 and disabling M. Then, My
is enabled to compute MN. As a result, we have the result of MN
at A, and then OR operation is performed by transferring value from
A to B. Similar to AND operation, location-free ParaBit performs XOR
operation only when the second operand is from LSB.

ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory based SSDs

For NAND, NOR and XNOR operations, they can be realized by
inverting the initialized status of latching circuit firstly, and then
implementing similar sensing and transistor controls.

If there are multiple XOR operations with more than two operands,
the buffer inside SSD is used to store temporary result and then
reload the result and inverted result as the operands to A in latching
circuit. This process is the same as the data-load process in perform-
ing write operation [37]. But for AND and OR operations, since their
temporary results have been stored at A and B, following bitwise
operations can be performed by sensing operand to SO instead of
storing previous result to the buffer.

4.3 Implementation

Commodity SSDs already support these actions and allow selection
of sensing voltages for error tolerance purpose, e.g., read retry
or LDPC [42, 60]. Therefore, ParaBit is compatible with existing
technologies, which requires firmware upgrade rather than (or with
little) extra hardware modification. The following discussion will
reveal a sequence of host and device level actions.

= Operands ch-
58 ReAllocation| g 2; 2
=B Add New se S
5 & Result Bs T3 (8
& E[Batch0>CMD0 7 CMDI1 7 GMD2 /- gES|S
O|Batch1->CMDO0 / CMD1 / CMD?2 /- BOE|©

Figure 9: ParaBit implementation in SSD controller.

Figure 9 presents an overview of the ParaBit implementation in
the SSD controller. The left sub-figure shows the components that
deal with the implementation of ParaBit, and traditional compo-
nents are presented in the right sub-figure. First, after receiving the
commands for bitwise operation from the host system, CMD Parse
module parses the host commands, constructs device commands
and organizes them in a batch structure. Each batch is in charge of
one bitwise operation with two operands. Then, Operands ReAl-
location module prepares the data for each batch by reallocating
operands if necessary. Lastly, Parallel Read module performs dif-
ferent control sequences to accomplish the bitwise operations. If
there are multiple bitwise operations, after finishing two batches,
a new batch is added to further compute the result of previous
two batches. After finishing all bitwise operations, the controller
returns the result to the host system.

4.3.1 Command Reconstruction at Host and Device. The reserved
free bytes in NVMe read command is used to store the bitwise
operation semantic, including free bytes in DWord 2, 3 and 13, each
of which contains 4 reserved bytes [30, 35]. Assume that there is a
formula for calculating (M ? N) ! (M ? N) ! (M ? N), where (M ? N)
is defined as a bitwise batch, M and N indicate the first and second
operands in the batch, ? and ! indicate the types of intra- and extra-
batch bitwise operation. Thus, at least five semantics, including
intra bitwise type, operand tag, pointer, extra bitwise type
and batch order, are required while parsing the formula.

First, to distinguish whether the current command maintains the
first or second operand, the first reserved bit in DWord 13 of both
operand commands is used to store operand tag, denoted as “0” or
“1” in Figure 10; Second, intra-bitwise type takes three reserved bits
in DWord 13 of the first operand command, denoted as “i-t”, while
there are 8 types of bitwise operations; Third, to bind two operands

65

MICRO 21, October 18-22, 2021, Virtual Event, Greece

inside a batch, the reserved space (DWord 2 and DWord 3) in first
operand command is used to store the logical address of second
operand; Fourth, if there are multiple batches that are performed
sequentially, the reserved bits in DWord 13 are used to determine
the batch’s computation order; Fifth, 3 reserved bits in DWord 13
of the second operand command is used to record extra bitwise
type, denoted as “e-t”. Note that, if operand size exceeds flash page
size, the batch is partitioned into several sub-operations. To bind
sub-operations, the reserved DWord 2 and DWord 3 of the second
operand command in current sub-operation are used to record the
logical address of next sub-operation’s first operand. If operand (or
partitioned operand) size is smaller than flash page size, 8 reserved
bits in DWord 13 is used to store the offset address of operand in
flash page and operand’s size at the granularity of sector.

2 10
& LBA =l LBA |
|13| 0 | i-tlbas‘:h | offset I |13| 1 |e-t| baét:hl offset I

1st operand command 2nd operand command
Figure 10: NVMe ParaBit command reconstruction.

After receiving commands from system side, CMD Parse module
parses them and constructs device commands. For example, we
assume that host system implements three bitwise operations with
four operands and the size of each operand is twice of flash page size.
Thus, after CMD Parse module, each operand is partitioned into two
commands and totally eight device commands (denoted as CMD
in Figure 11) are constructed and organized in a batch structure.
Inside each batch, two sub-operations are contained and each sub-
operation includes two device commands at the granularity of flash
page. The commands belonging to different sub-operations are used
to read one operand, e.g., CMDO in first sub-operation and CMD2
in second sub-operation. To bind two operands in the same sub-
operation, CMD0 and CMD2 stores the physical addresses of CMD1
and CMD3 (e.g., denoted as PBA1in CMDO0), which can be obtained
after FTL. To bind two sub-operations, CMD1 stores the physical
address of CMD2 (denoted as PBA2 in CMD1). To distinguish two
operands, one bit is used to record the operand tag. Also, the intra-
and extra- batch bitwise types are recorded in CMD0 and CMDT1,
respectively. Note that, if operand (or partitioned operand) size is
smaller than flash page, the address offset and operand size are
recorded as well.

sub-operation sub-operation
A A

7 CMDO CMD1 \ / CMD2 CMD3
2 PBA1 —L PBA2 —L PBA3 —L PBA4
.3 PBAO PBAl PBA2 PBA3
A lofi-t] 1e-t] o] 1]
I-)Intra Bitwiselgg;éra Bitvvﬁ)ssETgPaend Tag
= W—LW—LW—LW
.3 PBA10 PBA1l PBA12 PBA13
A fofi-t] 1 o] 1

Figure 11: The structure of batch list.

4.3.2 Reallocating Operands. For ParaBit, after constructing de-
vice commands, Operands ReAllocation module is implemented if
necessary. Operands ReAllocation module is skipped only when

MICRO 21, October 18-22, 2021, Virtual Event, Greece

two operands reside in two aligned pages sharing the same MLCs.
Otherwise, it needs to reallocate operands to the same MLCs.

If there is more than one bitwise operation, the result of re-
allocated operands should be set as one of the operands for the
subsequent bitwise operation. Thus, a new device command is con-
structed to maintain its information. For example, in Figure 12, after
performing operand reallocation, data in PBA0 and PBA1 are reallo-
cated to the same MLCs, of which the physical addresses are PBA21
and PBA22. Since reallocated share the same wordline, only the
physical address of the first operand page (i.e. PBA21) is recorded in
new command. Totally, the computations in Figure 11 deliver four
new device commands, constructing a new batch (Batch2 in the bot-
tom of Figure 12). To implement bitwise operation in the new batch,
the intra-bitwise type of Batcho is recorded as previous-bitwise
type, denoted as p-t in Batch2. To perform bitwise operation in
the new batch, ParaBit is used to read the results of reallocated
operands firstly, and then Operands ReAllocation reallocates them
followed by Parallel Read module to get the result of new batch.

Yo _ PBAO PBAl PBA2 PBA3
SF e D i Tl
o 2 PBA?

i Ltts =
v_, _PBA10 PBAll PBAI2 PBA13
SF D)) e [
o PBA. \—%PBA 7

(]

A

o[PBA23 PBA25 PBA21

‘3 PBA21 —L PBA23 —L PBA25 —L PBA21
A lofi-t|p-1| 1 Jp o] 1|

Figure 12: The structure of new batch.
Inside SSDs, the scrambling function that mutates the original

data for reliability purpose [59] would complicate the use of Para-
Bit. To solve this problem, scrambling function is disabled when
operands are allocated or reallocated, and enabled when the results
are restored. Similarly, encryption function is also disabled when
operands are reallocated.

4.3.3 Operands Alignment. Given ParaBit operates on bits saved
in the same MLC cell, it requires operand alignment before opera-
tion. The operands may be pre-allocated to aligned locations if the
computation semantics can be predicted in advance, e.g., through
profiling. Otherwise, the operands get aligned at runtime, which is
achieved by reading data from old pages and writing to new pages
with offsets. The buffer inside SSD can be exploited to temporarily
store the first operand before alignment.

4.4 Discussion

4.4.1 Extending MLC to TLC/QLC. To simplify the discussion, we
choose MLC to elaborate how ParaBit works. MLC-based ParaBit
exhibits three advantages: (1) Choosing MLC introduces less write
amplification from pre-computation reallocation, which helps to
achieve better endurance. (2) MLC has better performance and thus
improves the operation efficiency. (3) Most bitwise operations are
binary, making it natural to adopt MLC.

In practice, the design principles of ParaBit are applicable to TLC
or QLC as well. For example, TLC encodes its eight states (from E,

66

Congming Gao, et al.

S1 to S7) as 111, 110, 100, 101, 001, 000, 010, and 011, respectively.
When conducting the AND operation, sensing voltage at VRgap1 is
applied to determine whether the TLC being sensed is in state E.

4.4.2 Scalability. Comparing to other storage medium, e.g., DRAM
or 3D XPoint, NAND flash memory based SSD is more cost-efficient,
has better parallelism and scalability. ParaBit can achieve better
computation efficiency for all-flash storage system that consists of
hundreds or thousands of SSDs [25]. Moreover, NAND flash mem-
ory based ParaBit also can be applied in NVDIMM based system
[45]. The latching circuit is independent of memory cells, thus it
can also be extended to other NVMs, such as PCM, STT-MRAM or
ReRAM, in which operand bits also can share the same cell. Com-
paring to NAND flash memory, low-latency NVMs exhibit lower
read and write latencies, thus achieving better performance.

4.4.3 Reliability and Errors. This is a common problem faced by
all bitwise-operation based PIMs (no matter using what kind of
memory medium, such as SRAM, DRAM and NVM [12, 19, 22, 33].),
because the traditional ECC is not compatible with bitwise logic
operation, except for XOR or XNOR. ParaBit accomplishes bitwise
operations after the sensing operations, which prevents the ECC
modules from detecting and correcting sensing errors. If the appli-
cation is less error-tolerant, we move two operand pages to new
MLCs before operation (even if the operand pages already share
the same physical page) to minimize the impact from error sources.
We will evaluate the impact of errors in the experimental section.

4.4.4 Overhead Analysis. ParaBit introduces space overhead due
to storing commands at the device side, which is around 5SMB when
exploiting the maximal parallelism at the plane level, Location-free
ParaBit requires hardware modifications including extra transistors
and inverters. The latching circuit and column decoder account for
9.9%~11.9% of the die area [24, 26, 32] while the latching circuit
takes up about 35% [37]. To summarize, the hardware overhead is
around 1.2% of the die area.

5 EVALUATION

5.1 Evaluation Setup

The PIM architecture: We adopt the Ambit [49] PIM architecture
as the baseline. We also construct Ambit with powerful configu-
ration, including 2 ranks, 16 banks, and 256 subarrays with 16KB
row buffer size (compared to 4~8KB in regular DRAM). The timing
parameters of trcp/tras/trp/tFAw are set to be 13.75/35/13.75/30
ns. The latency of bitwise operations is evaluated using H-spice[51]
while the maximum size of operands that can be processed in par-
allel is set to 16KB with the limitation of power constraint.

The ISC architecture: We adopt Cosmos OpenSSD platform
[13] as the ISC architecture, which implements SSD controller inside
Zynq-7000 FPGA, and then we attache a 512GB SSD [46] to the
platform in this work. The Zynq-7000 FPGA with 19.2 Mb BRAM,
437,200 Flip-Flops and 218,600 LUTs is used and its frequency is
100MHz. The LUT in the FPGA is configured as 6-input LUT so
that at most five bitwise operations can be processed at once.

The ParaBit architecture: The evaluated SSD is equipped with
128 chips and 4 planes per chip, and the size of flash page is set to
8KB. We used a 512GB SSD. The write latency is set to 640 us and

ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory based SSDs

each sensing latency is set to 25 us, which are typical for MLC based
flash memory [46]. Such a configuration enables SSD to perform a
parallel bitwise operation with two 8MB operands. In this work, a
widely studied SSD simulator [21] is used to track the duration of
bitwise operation in SSD, while Samsung 970 Pro SSD [46] is used
to collect the duration of moving results from SSD to DRAM. The
size of used DRAM is set to 64GB.

5.2 Latency of Bitwise Operation

We implemented six schemes: Ambit based PIM (denoted as PIM),
ISC (denoted as ISC), PIM with two 8MB operands (denoted as PIM
w/ 8MB), ISC with two 8MB operands (denoted as ISC w/ 8MB) and
ParaBit with and without pre-computation reallocation (denoted as
PIM and ParaBit-ReAlloc), respectively. Figure 13 compares the
latencies of bitwise operations in different schemes.

In Figure 13(a), the latencies of performing one bitwise operation
are presented. For PIM, the operation completes in ns level. The XNOR
and XOR operations are the most time-consuming ones, because
these operations are logical combinations of simpler AND, OR and NOT
operations. For ISC, bitwise operation is also performed at ns level
while only one process cycle is required. For ParaBit, since there is
no pre-computation reallocation, the XNOR and XOR operations take
100 ps to sense the result, which accounts for the overall latency.
For ParaBit-ReAlloc, the reallocation time before computation
dominates the overall latency of bitwise operation. Note that, NOT
operation can be performed without operand reallocation, but in
ParaBit-ReAlloc, operand reallocation time cost is considered.

jididdil

(a) The latencies of bitwise operation in PIM, ISC, ParaBit and ParaBit-ReAllocation.

= |

mjmjﬂiﬂjﬂjﬂimjm"jJ
ol /ol ol ol

(b) The latencies of bitwise operation in PIM w/ 8MB, ISC w/ 8MB, ParaBit w/ 8MB
and ParaBit-ReAllocation.

Figure 13: The latencies of bitwise operation.

To demonstrate the efficiency of ParaBit, we extended the operand
size to 8MB, the maximum size in ParaBit in the evaluated SSD, and
summarized its results in Figure 13(b) as well. For large operands,
comparing to other schemes, ISC w/ 8MB achieves the best per-
formance while five bitwise operations are computed in a LUT
simultaneously and there are hundreds of thousands of LUTs. PIM
partitions each pair of operands to 16KB-sized sub-operands and
sequentialize the computation. Therefore, PIM w/ 8MB is always
slower than ParaBit w/ 8MB but faster than ParaBit-ReAlloc.
For example, NOT-MSB in ParaBit-ReAlloc is 25.8 X slower than
that of PIM w/ 8MB. Such a latency gap can be filled by increasing
the parallelism of SSDs. While the size of each operand in ParaBit
is larger than 206.4MB, it can outperform PIM. For location-free
ParaBit, since the access latency on low-latency NVM cells is at ns

67

MICRO 21, October 18-22, 2021, Virtual Event, Greece

level, location-free ParaBit with two 8MB operands achieves the
similar results with ParaBit w/ 8MB, always outperforming PIM
architecture.

5.3 Case Studies

We studied three applications when moving different amount of
data from SSD to memory. For PIM and ISC, we moved all data to
memory and triggered bitwise operations in memory and FPGA. For
ParaBit, we processed data in SSD and moved results to memory.

5.3.1 Image Segmentation. In the evaluation, the configuration is
the same as that in Section 3. In the discussion, we represent the
color recognition result at pixel m as Re(m) = (C14, C1p, C1.,C1y)
AND (C24, C2p, C2., C24) AND (C34, C3p, C3¢, C34), where a, b, ¢
and d indicate four types of color, CX,4, CX}p, CX. and CX indicate
whether the value of X channel falls into the recognized color space.
To exploit the parallelism of bitwise operations, multiple pixels and
images can be grouped and computed at once.

Figure 14(a) summarizes the results, which include the total
execution time and its breakdown. We need 140GB space cost to
store 200,000 images. After performing AND operations among three
channels, we reduce the output size to one third of the original
size. As a result, comparing to PIM and ISC, ParaBit (with and with-
out pre-computation allocation) can significantly reduce the data
movement cost (Ope-Move-PIM/ISC indicates the time cost of mov-
ing operands from SSD to memory in PIM and ISC) to 33.3% and
35.0%, respectively. For the time cost of performing AND operation,
ParaBit-ReAlloc reallocates operands before performing each
bitwise operation, increasing AND operation time cost by 11.8 and
24.4 times over PIM and ISC, respectively. For ParaBit-ReAlloc,
the process of performing AND operation and results movement
are pipelined (denoted as ParaBit-ReAlloc+Res-Move), thus it
can further reduce the total execution time. Comparing to PIM
and ISC, ParaBit-ReAlloc+Res-Move reduces the total execution
time to 37.3% and 39.8%, respectively. Furthermore, to reduce bit-
wise time cost in ParaBit architecture, we pre-allocate operands
for the first bitwise operation, and then the result is reallocated
with another operand to accomplish the second bitwise operation.
Therefore, ParaBit reduces AND operation cost by 51.7% comparing
to ParaBit-ReAlloc. To summarize, the total execution time of
ParaBit+Res-Move is reduced to 32.3% and 34.4% of PIM and ISC.
Also, when total data volume fits in memory, such as image seg-
mentation with 10,000 images, ParaBit and ParaBit-ReAlloc still
outperform PIM while data movement time cost is largely reduced.

5.3.2 Bitmap Indices. Bitmap index is a program designed as a
analytic method for specific databases [8]. We assume to count the
number of users who were active every day for the past m months.
Thus, two types of operations are required: the AND operation and
the bitcount function. The former can be performed by either
PIM, ISC or ParaBit while the latter is done by the processor. In
the discussion, we represent the computation result of user y as
Res(y) = (V1,y) AND (Va,y)AND ...AND (Vy,) ..., where x indicates the
numbers of days, Vy, , indicates whether user y at day x is active.
We compute the results of multiple users simultaneously to fully
exploit the parallelism of bitwise operation. In the evaluation, we
set the number of users to 800 millions, and varied m from 12 to 1.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Congming Gao, et al.

(a) Image segmentation.

(b) Bitmap indices.

(c) Image encryption.

Figure 14: Execution time breakdown of PIM, ISC and ParaBit architectures in three case studies.

Figure 14(b) summarizes the evaluation results. From the figure,
PIM and ISC spend most of their execution time on moving data
from SSD to DRAM and FPGA and less than 2% time on computa-
tion. ParaBit effectively reduces the data movement overhead by
transferring only the computation results back to DRAM. When
m=12, the amount of operands reaches 33.99GB. Comparing to
PIM and ISC, ParaBit and ParaBit-ReAlloc reduce data move-
ment cost to around 0.3% as only 800 millions bits of results are
moved to DRAM. However, when comparing the AND operation
performance, PIM, ISC, ParaBit-ReAlloc and ParaBit take 353ms,
41ms, 6137ms and 3179ms, respectively. Therefore, performing bit-
wise operations in ParaBit and ParaBit-ReAlloc dominates the
total execution time. To summarize, the total execution time of
ParaBit-ReAlloc+Res-Move was reduced to 30.8% and 32.8% of
PIMand ISC while ParaBit+Res-Move reduces total execution time
to 15.9% and 17.0%.

5.3.3 Image Encryption. XOR operation is widely applied in image
encryption[20] and image feature extraction [57]. Take image en-
cryption as an example, where XOR operation is used to encrypt
or decrypt image data. The number of original images varies from
100,000 to 5,000 and the resolution of each image is set to 800x600,
each channel requires 8 bits. At most, we need 140GB space cost to
store 100,000 images. In the discussion, the encryption process can
be presented as Cipher(x) = Ori(x) XOR Key(x), where x indicates the
pixel’s location, Cipher(x) indicates the encrypted pixel and Key(x)
indicates the pixel of key image. By adopting ParaBit, images can
be encrypted inside SSD without data movement to memory.

Figure 14(c) summarizes the results. Take 100,000 images as
an example. For PIM and ISC, the data movement time cost still
dominates the total execution time while XOR operations take less
than 3.5% and 0.21%, respectively. To summarize, comparing to
PIM and ISC, ParaBit-ReAlloc reduces the execution time cost
to 23.3% and 25.3%, respectively. Since only one XOR operation is
performed to encrypt an image, ParaBit and ParaBit-ReAlloc
implement the same process: reading original image and writing
it to the same cells with the accompany of key image, thus two
ParaBit schemes achieve the same result.

5.3.4 Overall Impact on Application Performance. From the preced-
ing case studies, we find that the overall performance impact of
ParaBit on modern applications depends on two factors: one is the
amount of bitwise operations while the other is the data prepara-
tion cost. Clearly, the more bitwise operations the application has,
the better performance improvement it may achieve. Given mod-
ern applications becoming increasingly data intensive, there are

68

a number of applications that contain frequent bitwise operation,
making them particularly suitable for ParaBit acceleration.

o Deduplication Application. Modern deduplication applications
widely adopt XOR operation to differentiate two pages [9, 29].
Adopting ParaBit not only frees the system from allocating a
dedicated processor for deduplication computation, but also
eliminates the data movement overhead. The latter may occupy
80% or more of the system offchip memory bandwidth [54].

e Binary Neural Network. Modern CNNs demand a large number
of weights, e.g., 150GB in ImageNet [44]. While binary weight
based CNN algorithms [34, 52] achieve 32X space reduction,
i.e., saving one-bit instead of 32-bit weight parameters, the
required storage may still be more than the capacity of the
memory of many systems. ParaBit acceleration is suitable for
binary weighted neural networks due to their predominant
bitwise operations involved in the computation.

o Fast Data Scanning. Data-intensive applications often involve
frequent data scanning processing [11, 28]. Given the huge
size of database system [40], by leveraging XOR operation in
scanning process, ParaBit can improve the scanning efficiency
while the operations are performed inside SSDs.

The cost to prepare data for ParaBit operations also has a large
impact on the overall application performance. For example, it is
usually not beneficial to adopt ParaBit to accelerate dynamically
generated data as it would require writing the dynamic data into
flash before operation, making the data preparation cost too high.
Instead, adopting PIM or pipelined based PIM might achieve better
performance improvement. In summary, ParaBit is more suitable
for applications that apply bitwise operations on in-storage static
data, e.g., files that exist in SSDs before deduplication.

5.4 Endurance Impact

The pre-computation allocation in ParaBit tends to trigger more
GCs, shortening the SSD lifetime. We conducted the experiment to
evaluate this impact. For bitmap, image segmentation and image
encryption, when the tracking duration is set to 12 months and the
numbers of images are set to 200,000 and 100,000, their reallocated
operands’ sizes reach 67.79GB, 186.67GB and 140GB, respectively.
We set the maximal value of MLC based SSDs’ Terabytes Written
(TBW) to 600 [46], ParaBit reduces the TBW to 200.67, 257.51 and
300 assuming the SSD is dedicated to these applications exclusively.
However, a more applicable usage is to employ the SSD as both
storage and computing medium, the TBW value would be larger
than above values.

ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory based SSDs

5.5 Performance of Location-Free ParaBit

To evaluate the efficiency of location-free ParaBit, we compared
the performance of three types of ParaBit schemes and summarized
the results in Figure 15.

The left part of Figure 15 compares the latencies when per-
forming bitwise operations on two 8MB operands. As a result,
ParaBit-ReAlloc takes the longest latency due to high operand
reallocation cost. By adopting pre-computation allocation, ParaBit
achieves the smallest latency. As a tradeoff, ParaBit-LocFree re-
duces the time spent in operand reallocation as more sensing oper-
ations are employed comparing to ParaBit with pre-computation
allocation. But if there are multiple bitwise operations, ParaBit
with pre-computation allocation only works for the first bitwise op-
eration, thus suffers from reallocation overhead during performing
following bitwise operations.

F
Lhdlhdll
(Fiifiitd

Figure 15: Left: the latencies of bitwise operation; Right: to-
tal execution time.

The right part of Figure 15 summaries the execution time for
three case studies. We store all data in LSB bits of MLCs. For Image
Segmentation, since result movement overhead is the dominant
factor, ParaBit-LocFree and ParaBit achieve the similar perfor-
mance. For Bitmap, while the size of moved data is significantly
reduced, the performance of ParaBit depends mainly on the effi-
ciency of bitwise operations. Therefore, ParaBit-LocFree has the
smallest execution time while there is no operand reallocation —
ParaBit-LocFree reduces the execution time to 5.23% and 10.1%
of ParaBit-ReAlloc and ParaBit, respectively. For Image Encryp-
tion, ParaBit-LocFree performs XOR operation without operand
reallocation, thus reducing the execution time cost to 57.1% of
ParaBit-ReAlloc and ParaBit.

m_ b
1 111

5.6 Energy Consumption of ParaBit

We next evaluate the read/write energy consumption in ParaBit
and summarize the results in Figure 16. We use the NAND system
power calculator from Micron [38] to compare the per read/write
operation energy consumption in the baseline and ParaBit schemes.
We normalize the results to the read and write operations of MSB
pages, denoted as dashed lines, respectively.

In the figure, while ParaBit-ReAlloc is the scheme that con-
sumes the most energy, it consumes up to 2.65% more energy than
that of baseline write operation. ParaBit achieves the lowest en-
ergy consumption among all ParaBit variants — its energy con-
sumption is mostly comparable to that of the baseline MSB read. In
the worst case, it is about 2X of that of the baseline MSB read.

5.7 Compression in ParaBit

By default, PIM and ISC could have data stored in compressed for-
mat in storage while ParaBit stores the data in uncompressed format.
For image segmentation with 200,000 images, ParaBit-LocFree

69

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Figure 16: Energy consumption of ParaBit schemes.
breaks even with PIM when the data can be compressed to 30.1% or
lower. For bitmap, the total execution time taken by ParaBit-LocFree
is less than computation time cost of PIM, thus it always outper-
forms PIM while there still exists data movement overhead for
compression based PIM.

5.8 Error Tolerance

To alleviate the impact from bit errors, ECC module is triggered
during operand reallocation, thus only the impact from P/E cycle is
counted. In the evaluation, customer grade Intel MLC flash chips
with cache read are evaluated [23]. When the number of P/E cycles
is 5K, the average and maximal numbers of bit errors per WL after
seventh (for XOR operation) sensings are 0.945 and 5 while the page
size is 8KB, as shown in the left of Figure 17. Such a good reliability
comes from two aspects: First, MLC flash cells are engineered with
large state margin so as to tolerate significant voltage state shifts;
Second, voltage calibration read that can minimize the number of
bit errors is adopted to optimize the reliability of flash memory
[7, 17]. In the right part of Figure 17, we evaluate the percentages
of bit errors at application level. In worst case, the percentage of
bit errors only is 0.00149% for XOR-based image encryption.

Figure 17: The number of bit errors with the increase of P/E
cycles.

6 CONCLUSION

In this work, we proposed ParaBit, a processing-in-flash architec-
ture, to perform massive parallel bitwise operations in flash mem-
ory. ParaBit can be implemented within commodity SSDs with-
out (or with little) extra hardware, which can process data inside
SSDs and dramatically reduces the amount of data moved from
SSDs to DRAM or processor. ParaBit exhibits good scalability, good
cost-effectiveness, and great potentials for modern data-intensive
applications.

ACKNOWLEDGMENTS

We sincerely thank anonymous reviewers for their constructive
feedback. This work is partially supported by the National Key Re-
search and Development Program of China (No. 2018YFB1003301),
the National Natural Science Foundation of China (No. 61832011,
62022051, 61772300, 61877035), Zhejiang Lab (No. 2020KC0AB03),
the National Science Foundation (No. 2011146, 1738783, 1910413,
1718080) and the China Postdoctoral Science Foundation (No. 2020M
680568, 2021T140376).

MICRO 21, October 18-22, 2021, Virtual Event, Greece Congming Gao, et al.

REFERENCES (32

Seungjae Lee, Jin-yub Lee, Il-han Park, and et al. 2016. 7.5 A 128Gb 2b/cell NAND

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark S Man- flash memory in 14nm technology with tPROG= 640us and 800MB/s I/O rate. In
asse, and Rina Panigrahy. 2008. Design tradeoffs for SSD performance.. In ATC. ISSCC. IEEE.
USENIX. [33] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, and et al. 2015. A scalable Pinatubo: A processing-in-memory architecture for bulk bitwise operations in

emerging non-volatile memories. In DAC. ACM.

processing-in-memory accelerator for parallel graph processing. In ISCA. ACM. ! h :)
[34] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convolu-

[3] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data reorganization in

memory using 3D-stacked DRAM. In CAN. ACM. tional neural network. arXiv preprint arXiv:1711.11294.
[4] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim. [35] Kevin Marks. 2013. An nvm express tutorial. In Flash Memory Summit.
2016. Chameleon: Versatile and practical near-DRAM acceleration architecture [36] Sally A McKee. 2004. Reflections on the memory wall. In CF.

[37] Rino Micheloni, Luca Crippa, and Alessia Marelli. 2010. Inside NAND flash
memories. Springer Science & Business Media.

[38] Micron. [n.d.]. Parallel NAND System Power Calculator. https://www.micron.
com/support/tools-and-utilities/nand-system-power-calculator.

[39] Micron 2018. NAND MLC Flash Memory Datasheet. Micron.

[40] Kimberly Mlitz. [n.d.]. Data center storage capacity worldwide from 2016

for large memory systems. In MICRO. IEEE.

[5] Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua Yang, Duncan R
Stewart, and R Stanley Williams. 2010. ‘Memristive’switches enable ‘stateful’logic
operations via material implication. In Nature. Nature Publishing Group.

[6] James Bruce, Tucker Balch, and Manuela Veloso. 2000. Fast and inexpensive color
image segmentation for interactive robots. In IROS. IEEE.

[7] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. 2017. Error to 2021. https://www.statista.com/statistics/638593/worldwide- data- center-
characterization, mitigation, and recovery in flash-memory-based solid-state storage- capacity- cloud-vs-traditional/ :
drives. In Proceedings of the IEEE. IEEE. [41] Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarung-

[8] Chee-Yong Chan and Yannis E Ioannidis. 1998. Bitmap index design and evalua- nirun. 2020. A Modern Primer on Processing in Memory. In arXiv preprint
tion. In SIGMOD. ACM. QVX1V12012~03112-])) . 4

[9] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A Content-Aware [42] Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur

Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid Mutlu. 2020. Reducing Solid State Drive Read Latency by Optimizing Read-Retry.
State Drives. Fast. In ASPLOS. ACM. o

[10] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu [43] Zhenyu§n Ruan, Tong He, and'Jason'Cong. 2019. INSIDER: Designing In-Storage
Wang, and Yuan Xie. 2016. Prime: A novel processing-in-memory architecture Computing System .for Emerging High-Performance Drive. In ATC. USENI?(-
for neural network computation in reram-based main memory. In ISCA. ACM. [44] Olga Russakovsky, Jia Deng, Hao Su, and et al. 2015. Imagenet large scale visual

[11] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park, recognition Fhallenge. In [FCV. Springer. i
and David] DeWitt. 2013. Query processing on smart ssds: Opportunities and [45] Arthur Samm 2016. NVDIMM: changes are here so what’s next. In Memory
challenges. In SIGMOD. ACM. Computing Summit. '

[12] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, [46] Sgn{sgng. [n.d.]. Samsung 970 Pro. https://www.samsung.com/semiconductor/
Dennis Sylvester, David Blaaauw, and Reetuparna Das. 2018. Neural cache: mmls1te/ssd/product/consumer/970pfo/4)
Bit-serial in-cache acceleration of deep neural networks. In ISCA. IEEE. [47] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos

[13] ENC. [n.d.]. Cosmos OpenSSD Platform. http://www.openssd-project.org/wiki/ Eleftheriou. 2020. Memory devices anq aPphcatlons for in-memory computing.
Cosmos_OpenSSD_Platform. In Nature nanotechnology. Nature Publishing Group.

[14] Chiou-Shann Fuh, Shun-Wen Cho, and Kai Essig. 2000. Hierarchical color image [48] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, and et al. 2014. Willow:

A User-Programmable SSD. In OSDI. USENIX.
[49] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, and et al. 2017. Ambit: In-
memory accelerator for bulk bitwise operations using commodity DRAM tech-

region segmentation for content-based image retrieval system. In TIP. IEEE.

[15] Congming Gao, Liang Shi, Chun Jason Xue, Cheng Ji, Jun Yang, and Youtao
Zhang. 2019. Parallel all the time: Plane level parallelism exploration for high
performance SSDs. In MSST. IEEE. nology. In MICRO. IEEE. . .

[16] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie Wu, and [50] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-Soo Kim. 2014. Cosmos
Edwin H-M Sha. 2014. Exploiting parallelism in /O scheduling for access conflict openSSD: A PCle-based open source SSD platform. In Flash Memory Summit.
minimization in flash-based solid state drives. In MSST. IEEE. [51] SynAopsysA [n.d]. H-spice. thps://wwwsynopsys.com/A . .

[17] Congming Gao, Min Ye, Qiao Li, Chun Jason Xue, Youtao Zhang, Liang Shi, and [52] Wei Tang, Gang Hua, and Liang Wang. 2017. How to train a compact binary

Jun Yang. 2019. Constructing large, durable and fast SSD system via reprogram- neural' networlf with high accuracy? .AAAI'
ming 3D TLC flash memory. In MICRO. IEEE. [53] Hossein Valavi, Peter] Ramadge, Eric Nestler, and Naveen Verma. 2019. A 64-

tile 2.4-Mb in-memory-computing CNN accelerator employing charge-domain

[18] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. Computedram:
compute. In JSSC. IEEE.

In-memory compute using off-the-shelf drams. In MICRO. IEEE.

[19] Saransh Gupta, Mohsen Imani, and Tajana Rosing. 2018. Felix: Fast and energy- [54] Grant Wallace, Fred Douglis, Hangwei Qian, and et al. 2012. Characteristics of
efficient logic in memory. In ICCAD. IEEE. backup workloads in production systems.. In FAST. USENIX.

[20] JongWook Han, Choon-Sik Park, Dae-Hyun Ryu, and Eun-Soo Kim. 1999. Optical (5] Zhuo-Ru1‘Wang, Yu-Ting Su, Yi Li, Ya-Xlong ZhOIf’ Tian-Jian Chu, Ku?n—Changg
image encryption based on XOR operations. In Optical Engineering. International Chang, Ting-Chang Chang, Tsung-Ming Tsai, Simon M Sze, and Xiang-Shui
Society for Optics and Photonics. Miao. 2016. Functionally complete Boolean logic in 1T1R resistive random access

[21] Yang Hu, Hong Jiang, Dan Feng, and et al. 2012. Exploring and exploiting the memory. In EDL. IEEE.

o
2

multilevel parallelism inside SSDs for improved performance and endurance. In X?n Xi“’ Youta('> Zhang, an}d J‘f“ Yang. 2020. ELP2IM: Efficient and Low Power
TC. IEEE. Bitwise Operation Processing in DRAM. In HPCA. IEEE.

[57] Ching-Nung Yang and Dao-Shun Wang. 2013. Property analysis of XOR-based
visual cryptography. In TCSVT. IEEE.

[22] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim:
In-memory acceleration of deep neural network training with high precision. In

ISCA. TEEE. [58] He Zhang, Wang Kang, Bi Wu, Peng Ouyang, Erya Deng, Youguang Zhang, and
(23] Intel 2015. Intel 64M25 Compute NAND Flash Memory Datasheet. Intel. Weisheng Zhao. 2019. Spintronic processing unit within voltage-gated spin hall
[24] Woopyo Jeong, Jae-woo Im, Doo-Hyun Kim, and et al. 2015. A 128 Gb 3b/cell effect MRAMs. In TN. IEEE. .

V-NAND flash memory with 1 Gb/s /O rate. In JSSC. IEEE. [59] Li Zhang, Shen gang Hao,‘]un Zheng, Yl{ an Tan, Quan xin Zhang, apd Ygan
[25] Young Tack Jin, Sungjoon Ahn, and Sungjin Lee. 2018. Performance analysis of zhang Li. 2015. D eAsc‘rambhngAdatzAa on solid-state disks by reverse-engineering

nvme ssd-based all-flash array systems. In ISPASS. IEEE. thg firmware. In Digital Investlgafwn. . .
[26] Dongku Kang, Woopyo Jeong, Chulbum Kim, and et al. 2016. 256 Gb 3 b/cell [60] Kai Zhao, Wenzhe Zha'o, Hongbin Sun, and ?t al. ?013' J“DPC'IH'SSD: Making

V-NAND flash memory with 48 stacked WL layers. JSSC. advanced error correction codes work effectively in solid state drives. In FAST.

[27] Hyukjoong Kim, Dongkun Shin, Yun Ho Jeong, and Kyung Ho Kim. 2017. SHRD: USENIX.

Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host

and Randomizing in Device. In FAST. USENIX, 271-284.

Sungchan Kim, Hyunok Oh, Chanik Park, and et al. 2011. Fast, energy efficient

scan inside flash memory SSDs. ADMS.

[29] Ricardo Koller and Raju Rangaswami. 2010. I/O deduplication: Utilizing content
similarity to improve I/O performance. In TOS. ACM.

[30] Gunjae Koo, Kiran Kumar Matam, I Te, and et al. 2017. Summarizer: trading
communication with computing near storage. In MICRO. IEEE.

[31] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, and et al. 2020. SmartSSD: FPGA
Accelerated Near-Storage Data Analytics on SSD. CAL.

[28

70

http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Platform
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Platform
https://www.micron.com/support/tools-and-utilities/nand-system-power-calculator
https://www.micron.com/support/tools-and-utilities/nand-system-power-calculator
https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional//
https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional//
https://www.samsung.com/ semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/ semiconductor/minisite/ssd/product/consumer/970pro/
https://www.synopsys.com/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 NAND Flash Memory based SSDs
	2.2 Latching Circuit in Flash Memory
	2.3 PIM and ISC
	2.4 Other Related Works

	3 Motivation
	4 The Design of ParaBit
	4.1 Performing Bitwise in Latching Circuit
	4.2 Location-free ParaBit
	4.3 Implementation
	4.4 Discussion

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Latency of Bitwise Operation
	5.3 Case Studies
	5.4 Endurance Impact
	5.5 Performance of Location-Free ParaBit
	5.6 Energy Consumption of ParaBit
	5.7 Compression in ParaBit
	5.8 Error Tolerance

	6 Conclusion
	Acknowledgments
	References

