TQEL: Framework for Query-Driven Linking of Top-K Entities in
Social Media Blogs

Abdulrahman Alsaudi
University of California, Irvine
alsaudia@uci.edu

Sharad Mehrotra
University of California, Irvine
sharad@ics.uci.edu

ABSTRACT

Social media analysis over blogs (such as tweets) often requires
determining top-k mentions of a certain category (e.g., movies) in
a collection (e.g., tweets collected over a given day). Such queries
require entity linking (EL) function to be executed that is often
expensive. We propose TQEL, a framework that minimizes the joint
cost of EL calls and top-k query processing. The paper presents
two variants - TQEL-exact and TQEL-approximate that retrieve
the exact / approximate top-k results. TQEL-approximate, using a
weaker stopping condition, achieves significantly improved perfor-
mance (with the fraction of the cost of TQEL-exact) while providing
strong probabilistic guarantees (over 2 orders of magnitude lower
EL calls with 95% confidence threshold compared to TQEL-exact).
TQEL-exact itself is orders of magnitude better compared to a naive
approach that calls EL functions on the entire dataset.

PVLDB Reference Format:

Abdulrahman Alsaudi, Yasser Altowim, Sharad Mehrotra, and Yaming Yu.
TQEL: Framework for Query-Driven Linking of Top-K Entities in Social
Media Blogs. PVLDB, 14(11): 2642 - 2654, 2021.
doi:10.14778/3476249.3476309

1 INTRODUCTION

Social media blogs usually contain ambiguous mentions that could
potentially refer to real-world entities. In this paper, we study how
top-k queries in the context of social media blogs can efficiently be
evaluated. Given a collection of social media blogs 7 that contain
a number of mentions, the goal is to identify the top-k real-world
entities that are mentioned the most in 7. Consider, for example, a
user creates a collection of tweets (by sampling the public Twitter
API and/or by running keyword/phrase queries using Twitter’s
query interface [24, 29]) and would like to characterize 7 based
on the top-k entities of a certain category — e.g., top-k "movies”,
top-k "athletes"”, or top-k "locations". If the text/metadata in the
tweets explicitly identified real-world entities, we could lookup the
associated categories in knowledge bases such as DBpedia [5] or
Wikipedia [2] to appropriately tag the tweets with the correspond-
ing categories. Then, finding the top-k entities in 7~ in the context

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476309

2642

Yasser Altowim
Saudi Data And Artificial Intelligence Authority
ytowim@nic.gov.sa

Yaming Yu
University of California, Irvine
yamingy@uci.edu

of the category of interest (e.g., movies, politicians, athletes) would
be straightforward; we would simply count the number of times an
entity corresponding to the category of interest is mentioned in 7,
and choose the k entities with the highest counts.

However, entities are not explicitly associated with the tweets.
Instead, entity extraction and lookup functions [30] are used to
determine them. Such functions take as input the set of words, as
well as, metadata associated with the tweet, and return a set of a
sequence of words (referred to as a mention) that could correspond
to real-world entities [14, 30]. For instance, a lookup function ap-
plied to a tweet "Black Panther won an Oscar!" may identify two
mentions "Black Panther" and "Oscar". Such mentions rarely corre-
spond to a unique real-world entity. The study in [22] shows that
each mention, on an average, could correspond to 13.1 real world
entities, each of which is associated with different categories. For
instance, the "black panther" mention could either refer to a movie
or an animal corresponding to the "movies" or "animals" categories
respectively. Before the top-k entities within a given category can
be identified, we must first disambiguate such mentions.

Techniques to disambiguate entity mentions have been exten-
sively studied over the past decade. Such functions use a variety
of approaches including machine-learning techniques and super-
vised learning algorithms [16, 38], comparing mentions in tweets
bodies against an external knowledge base [13, 14, 19, 30, 31], (e.g.,
Wikipedia), or using the feedback of people as in crowdsourcing
[10]. Once mentions have been linked to the correct entities, the
top-k entities in the tweet collection within the category of interest
can be easily determined.

The challenge in implementing top-k queries arises since entity
linking functions are expensive. As such, applying it to the entire
collection requires significant computation, leading to long latency
in the results. Moreover, such computation is also wasteful since it
requires linking mentions that are simply not of interest, i.e., those
that are clearly not part of the top-k results. One strategy to over-
come the challenge is to simply associate the mention with every
possible entity rather than running the entity linking function. For
example, "black panther" in the above tweet will be associated with
the "movie" entity and the "animal" entity as well. Then we can
simply return the top-k set after aggregating the number of occur-
rences for each entity. For instance, for the tweets shown in Table
1 (represented in Figure 1), a query for top-2 movies will return
as a result: "Black Panther (2018 movie)" & "Black Panther (1977
movie)" since each of them has 4 occurrences. Clearly, the above
strategy results in erroneous answers since the right response in

https://doi.org/10.14778/3476249.3476309
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476309

this example should have been "Black Panther (2018 movie)" &
"Beautiful Creatures" had we fully disambiguated all the mentions.
When adopting the same strategy for top-10 movies, top-10 politi-
cians and top-10 locations on our dataset, the average precision of
the results were 0.16 while the rank distance was 377.9! We explain
how to measure precision and rank distance in Section 6.

In this paper, we propose TQEL (Top-k Query processing using
Entity Linking), a framework that exploits the query semantics for
adaptive application of entity linking to only a subset of the men-
tions that are required to answer the query. The TQEL framework
can be invoked to answer the top-k query exactly. The resulting im-
plementation, referred to as TQEL-exact, improves upon the naive
strategy of fully linking all mentions (prior to query execution), to
linking only a small subset that could determine the top-k results.
TQEL-exact returns exactly the same answer as would be returned
by the naive strategy, though at a fraction of the expense. While
TQEL-exact improves upon the naive mechanism, it, nonetheless,
incurs overheads specially when there are a large number of en-
tities with possible frequency counts that are large and also close
to each other in value competing to be in the top-k spots. As such,
TQEL-exact is not suitable for queries that require faster responses.
The main contribution of the paper is an approximate approach
which we refer to as TQEL-approximate.

TQEL-approximate, instead of continuing to link entities until
it guarantees that it has found a top-k result, stops much earlier
as soon as it can establish that the entities in top-k result, it has
found so far, have a probability of being in the answer above a
user specified threshold 7. To achieve this, TQEL-approximate uses
two statistical models to efficiently deliver the answer. First, it
estimates the number of occurrences of each entity by applying
normal approximation statistics on the distribution of mentions
associated with a given entity where such an estimation can be
computed efficiently. Based on the normal approximation step,
TQEL-approximate then decides whether to link mentions further,
or whether it expects that a potential answer to the top-k query
has been found. It then invokes the validation step which uses
Monte-Carlo simulation technique that generates N samples of the
possible worlds and then calculates the probability of each entity
being in the top-k using the N samples. If verification fails, TQEL-
approximate performs more entity linkings until the verification
step’s stopping condition is met. Note that normal approximation
estimation provides a fast mechanism to predict that an answer has
been found, however, it is not used to verify answers but rather
the Monte-Carlo simulation is used for that purpose. Additionally,
TQEL doesn’t require the distribution of mentions’ linking prob-
abilities to be normally distributed although the filter works best
when they are. In effect, TQEL-approximate allows users to trade
quality with latency. Our results over different data sets show that
TQEL-approximate achieves an order of magnitude improvement
over TQEL-exact — it finds top-k answers with confidence as high
as 95% within 5-10 seconds, while an exact approach takes 100-300
seconds for the same query on the same machine.

In summary the main contributions of this paper are: (a) a
framework that uses entity linking to evaluate top-k queries effi-
ciently (Sections 2 & 3), (b) two heuristic approaches that return
an exact answer for the top-k queries (Section 4) (TQEL-exact),
(c) an approximate approach that relaxes the quality of the result

2643

by returning a top-k answer with probabilistic guarantees (Sec-
tion 5). (TQEL-approximate), (d) Experimental evaluation of TQEL
extensively using three datasets. (Section 6).

2 PRELIMINARIES

In this section, we will present the needed preliminaries that form
the basis for the TQEL framework.

2.1 Dataset and Required Functions

Social Media Datasets. Let 7 be a collection of tweets t1, tz, ..., tn,
M be the set of mentions in tweet ¢;’s text m’i, mé, . mTM‘ ., Ebe the
set of entities ey, ey, ..., ¢|g|. and each entity ey is associated with
one or more category ¢y, ¢z, ..., c|cl|- Tweets, in general, contain the
text along with metadata about the tweeter and the tweet itself such
as username, timestamp and location of tweet. We identify a word
or sequence of words in the body of the text as a mention mj. if it
could potentially be linked to real world entity ex. These entities
could be of any category such as movies, people or locations. At the
ingestion time, tweets will undergo a prepossessing step in order
to extract and normalize the text in the tweet. This is executed by
removing the unnecessary words in the body of the tweet such as
stop words and Twitter’s special notation (e.g., “rt”).

Query Model. We model our top-k query Q¥ where it is executed
on top of the tweets collection 7. Each query Q¥ contains a cat-
egory filter ¢, such as people or locations. The main concept is
to find k entities, that are associated with category cgs mentioned
the most in the tweets collection 7. As an example, an editor who
is working for a magazine that rates and reviews movies is asked
to provide a list of the top-2 movies mentioned in a given tweet
collection 7. The query Q? is to find 2 entities mentioned in 7~
where entities are associated with the category movies and the
number of times they were mentioned in 7 is larger than the rest
of entities. This query can be evaluated using our query model.

Entity Extraction and Lookup. An entity extraction and lookup
function LU(#;) takes tweet t; and returns a set of 3-tuples {<m;
ex, p(mj., ex)>} where mj. is the j,;, mention in the tweet t;, ex is a
possible entity for the mention and p(mj., ex) is the probability m;'.
links to e;. The sum of all probabilities for a specific mention mi is 1.
For example, let #; be "Black Panther won an oscar!", LU(t;) returns
<m%, Black Panther (2018)>, 0.74), <m%, Black Panther (Animal)>,
0.12>, <mj, Black Panther (1977)>, 0.10>, <m}, OTHER>, 0.02>.
where OTHER corresponds to linking m% to no entity.

This process is known as the candidate list generation for a
specific mention. Most of the approaches rely on name dictionary
based techniques [12, 14, 16, 31] which generates a map where keys
are a list of all possible mentions and values are a set of entities
that could potentially refer to the key. This limits the generation of
mentions to only the the ones that are stored in the map. Another
approach uses search engines [17, 27] as the vehicle for finding
candidate entities where they return the top hits for each mention.

Entity Linking. Given a tweet t;, mention mj. and a linking func-
tion (EL), the entity linking function links mention m’ in t; with a
real-world entity ey. For example, Given the tweet "Black Panther

won an oscar!", and the mention "Black Panther", EL will link the
mention "Black Panther" to Black Panther (2018) entity.

Table 1: Sample of prepossessed tweets. Crossed sequence of words are dropped in the reprocessing step. Bolded sequence of
words represent a mention that links to an entity. Underlined mentions refers to an entity from movies category.

TweetID Tweeter Text Time Location
1 Uy Black panther has finally grossed $700 million domestically! ts1 I
ty us Emmy Rossum ix Beautiful Creatures is stunning tsy Iy
t3 us Pixar makes the best animated movies ts3 I3
tyq Uy La La Land best movie of-all time! ts4 Iy
t5 us Another live reading ef-a random book in-my-tbr pile, Beautiful Creatures tss I5
te U1 Black Panther won an oscar! tsg I
t7 Ug Adet-of athlete will be-in space jam 2 tsy ls
ts uy Gonna watch stardust and beautiful creatures tsg I;
ty ug a black panther was photographed i Africa last week ts9 I3
to us Emma Stone was amazing in la la land ts10 Io
t11 Uy Marvel made michael jordan famous ir black panther ts1 ho

The entity linking function is considered a cost-heavy function
that require complex computations to achieve the sought precision
when linking a mention in the text of a tweet with an entity. Some
entity linking functions might also require analyzing and linking
entities of the previous tweets from the same user along with any
tweets from the same location and time in order to accurately
pinpoint the mentioned entity [14]. Most of the techniques takes
advantage of linking the mentions to target entities in a known
knowledge base (e.g. Wikipedia) [13, 14, 31, 32] by leveraging the
Wikipedia topology and the Wikipedia articles along with the text of
the tweet. Other techniques use a crowd sourcing approach in order
to link the identified mentions [10] to an entity. Other approaches
adopt a machine learning approach where supervised and semi-
supervised learning algorithms are run on top of annotated data
corpses to find best candidate entity for each mention [38].

Since the entity linking functions require complex computations
to get the best candidate, it is considered a bottleneck in any query
processing system that relies on entity linking to answer the asked
query. In our setup, we consider the functions LU(¢;) and EL(t;,
mi.) black box functions that could be replaced with any entity
extraction, lookup and linking functions.

2.2 Exact Top-k Definitions

Answer Semantics. Let Ec, be all the possible entities that are
associated with category ¢y and let count(ex) be the number of
occurrences of ey in 7~ as identified by the entity linking function.

(" Black \ / Black \ (Beautiful \ /7 R £ D N 0\
Panther Panther Creatures La(;‘; 1‘;’“’ S"?;‘;;f)'“ 2 S(‘;(;g;?’ Oscar (1991)
(2018) (1977) (2013)
11 2 10 7 8

my' | 074 m | o8 my | 082 mi |1 m§ | os
6 8 @

m§ | 074 m} | oes m} | os
1

m} | os

\ | J X\ J X J X .
Min: 0 Min: 0 Min: 0 Min: 0 Min: 1 Min: 0 Min: 0
Max: 4 Max: 4 Max: 3 Max: 2 Max: 1 Max: 1 Max: 1

Figure 1: Entity list representation of Table 1. Bolded men-
tions represent mentions that links to associated entity.
Faded mentions do not link to the associated entity.

2644

Let A(QF) be the answer of applying Q¥ over 7". We call A(Q¥) a
valid answer iff:

o AQ") CE,.
o Ve, € AQF), ex appears only once in A(Q).
o Ve, c A(QK): jﬂey € (E, -AQF)), st count(ey) > count (ex)

Given a query Q? looking for the top-2 movies in tweets in Table
1 and represented in Figure 1, answer A(Qk) = {Black Panther (2018),
Beautiful Creatures (2013)} and answer A@F) = {Black Panther
(2018), La La Land (2016)} are both valid.

Problem Definition. Given a top-k query QX on top of a collection
of tweets 77, an entity lookup function LU, an entity linking function
EL and a category c, efficiently generate an answer A(QF) that
satisfies the answer semantics of the exact approach .

Standard Solution. To generate a valid answer for Q¥ over 7 for a
specified category cy, the standard solution first links each mention
in 7. Entities that are associated with category ¢ are filtered then
the k entities with largest number of mentions are returned.

This approach requires the query executor to call the linking
function on every mention in 7 which is inefficient. In Section 4,
we will describe more efficient algorithms to compute the top-k
answers that exploit query semantics to significantly reduce the
number of entity linking functions invoked.

2.3 Approximate Top-k Definitions

Possible Worlds. A possible world w, in our context consists of
an assignment of each ambiguous mention to one of the possible
entities based on its linking probability. Thus, the probability of
the possible world p(wg) can be computed as a product of such
assignments. For example, world w; can consist of the following
assignments based on Figure 1, {(m%lz Black Panther (2018)), (m?:
Black Panther (2018)), (mi: Black Panther (1977)), (m?: OTHER),
(mgz Beautiful Creatures (2013)), (mgz Beautiful Creatures (2013)),
(m?: OTHER), (m%oz La La Land (2016)), (m‘f: OTHER), (mZ: Space
Jam 2 (2021)), (m?: Stardust (2007)), (mg: OTHER)}. p(w1) = 0.0022.

Probabilistic Top-k Evaluation. Given a possible world w, €
W, we evaluate the top-k query on the world w,. Let ans(wg) be
the top-k answer set for wg, then p(ex € top-k answers of (‘W)),

abbreviated tkp(ex), can be calculated using the following equation:

W]
thp(ex) =), p(wa) - I(ex, wa) W
a=1

where I(ex, wq) = 1if ex € ans(wg), otherwise I(ex, wg) = 0

Answer Semantics. The approximate and the exact approaches
share the same semantics with the change of third criteria to:

o Ve, € AQF) tkp(eyx) > 7.

where 7 is a user-defined confidence.

Our top-k query evaluation semantic is similar to PT-k [18]
where only entities that have a top-k probability higher than a
specific threshold will be included in the answer. The order among
the returned top-k answer is ignored in our settings. Given the same
query Q? that looks for the top-2 movies in tweets in Table 1, A
possible answer for A(@Q?) could be {Black Panther (2018), Beautiful
Creatures (2013)} after the EL function has been called on some
mentions. Note that there could be more than k entities that satisfy
the answer semantics, however choosing any k entities from the
full answer set is sufficient and correct.

Problem Definition. Given a top-k query QX on top of tweets col-
lection 77, an entity lookup function LU, an entity linking function
EL, a category ¢4 and a threshold value 7, we efficiently provide an
approximate solution A(QF) for QF that satisfies the approximate
approach answer semantics.

2.4 Top-k Example Solution

Following the exact top-k definition, Q? for finding the exact top-
2 movies in Table 1, the EL function is called on the following
mentions set {m%l, m‘i’, mg, mg} We can safely return the set {Black
Panther (2018), Beautiful Creatures} as the answer without linking
any more mentions as the answer satisfies the answer semantics.
To solve the same query using the approximate approach where 7 =
0.9, the calculation of tkp(ey) for all ey is required. In our example
the top-k probabilities are {(Black Panther (2018): 0.93), Beautiful
Creatures (2013): 0.84), La La Land (2016), Space Jam 2 (2021): 0.27),
(Stardust (2007): 0.16), (Black Panther (1977): 0.13), (Oscar (1991):
0.05)}. After calling the EL function on {m%}, the top-k probabilities
become {(Black Panther (2018): 0.93), Beautiful Creatures (2013):
0.91), ..}. Hence, we stop the execution and report the answer for
@2 as {Black Panther (2018), Beautiful Creatures} since it satisfies
the approximate solution’s answer semantics.

3 TQEL OVERVIEW

Algorithm 1 describes the abstract description of the TQEL approach
for linking entities while evaluating top-k queries. We will in the
following sections refine the above abstraction to specify TQEL-
exact (that identifies the true top-k results), and TQEL-approximate
that identifies top-k results with probabilistic guarantees. TQEL
framework consists of multiple phases where the first phase acts
as a preparatory step for the mentions to be linked to entities. It
also consists of a thinking phase that generates the execution plan
for the current iteration and an act phase that executes the plan.

2645

Algorithm 1 TQEL Approach

1: procedure GETTorK(QF, 7, LU, EL)
20 E_LIST « {}
3: for eacht € T do

i {(mf, ex.p)} LU()

5 {(m;., ex, p)} « filterCategories({ (m;., ex,P)})
6: addToLists(E_LIST, {(m;., exsp)})

7 while IstoppingCondition(Q¥, E_LIST) do

8: m;. « selectMention(E_LIST)

9: ex «— EL(m;., t;)

10: updateLists(ey, m;., E_LIST)

11: produceAnswer(QX, E_LIST)

3.1 Preparatory Phase

In order to prepare the mentions for the thinking and execution
phase, The algorithm iteratevely loops over every tweet t; in 7 and
calls the LU function on t; to return a list of mentions with their
possible entities and the linking probabilities. After that, the entities
are filtered based on the category of the query QX. Entities that
are not associated with category c,; are removed and their linking
probability are added to the OTHER probability for that mention.
The algorithm creates a list for every entity ey associated with
category cg4. The entity list (l,) has an unresolved mention list
which holds pointers to the mentions that could refer to entity ey
along with the linking probabilities. Mentions are sorted descend-
ingly based on their linking probability allowing for instant access
to mentions with highest & lowest probabilities if needed when
selecting a mention to link. Every entity list [, stores min & max
counters (min(le,) & max(le,)) corresponding to the number of
linked mentions and the maximum number of mentions that could
link to ey respectively. Entity lists are held in another list and are
sorted based on the max counter in a descending order as shown
in Figure 2. Additionally, every mention is represented as an object
where it has a list of pointers to all the possible entities it could refer
to. The probability that mention m; does not link to any possible

y .
entity is (1 -)] p(m}, ex), where ey is an entity associated with
x=1

category cg) and this is considered the OTHER probability.

t |e1

1 ml
- — Unresolved mentions
t, Possible entities] BT 1:1-]
M M
MC worlds count Entities
(4] 5]5]6]6[4] lists
Min ™ ordered by

max/AP

| counters
e2

Figure 2: TQEL data structures.

3.2 Thinking & Execution Phase

Mention Selection. In order to save time in the query execution,
we need to intelligently select the mentions to link that will help
in reaching an answer the top-k query efficiently. The mention to
be selected in the next iteration for dismabiguation is influenced
by different factors (e.g. the current spot of the possible entities of
m; and the probability of linking mention m§ to entity ey that is
currently in the top-k). This process will vary when answering the
query using the exact approach or the approximate approach and
will be discussed later.
1

Entity Linking and Updating Entity Lists. If mention m . is

linked to entity ey, I, is updated accordingly. If mention m’ is
shared among different possible entities, this will result in updat-
ing all the entity lists that have mention mj. in their unresolved

mentions list as well. For example, in Figure 1, m% could refer to
Black Panther (2018) with probability 0.6, Black Panther (1977) with
probability 0.1 or OTHER with probability 0.3. After calling the EL
function on m%, we find that it refers to Black Panther (2018). When
updating the lists, it is added to the list of Black Panther (2018) and
deleted from the list of Black Panther (1977). After linking some
of the mentions, the min & max of the affected entity lists will

change causing the order of entity lists to be adjusted accordingly.

Stopping Condition. In this step, the algorithm checks if a solu-
tion for QF is found and can be validated. This test is different for
the exact approach as well as the approximate approach and will
be discussed in detail in Sections 4 & 5.

4 TQEL-EXACT APPROACH

To discuss TQEL-exact, we specify how to implement stopping
condition and mention selection functions.

4.1 Stopping Condition

To check for the stopping condition, TQEL-exact maintains the min-
imum and maximum possible counts of mentions associated with
each entity list. The stopping condition simply checks to see if there
exists k entity lists that have min counters > max counters of the
rest of the entity lists. Since the entity lists are sorted in decreasing
according to their max counters, we can check for the stopping
condition by checking if the min values of the first k lists are greater
than or equal to the max counter of k + 1 entity list.

4.2 Mention Selection

Given entity lists sorted based on the max values, the mention
selection strategy could either (a) choose mentions from lists with
highest k max values to resolve that have a high probability of
resolving to true in order to increase the min value of such lists, (b)
choose mentions from the remaining lists with low probability of
resolving to true in order to reduce the max value of those lists, or
(c) choose mentions using a cost based strategy that minimizes the
estimated cost of reaching the stopping condition.

Greedy Approach that greedily chooses the mention that has the
highest linking probability from the entity list with the highest max
counter. For example, in Figure 1, mention m%l will be chosen. After
the mention is linked, the max and min counters of each list are

2646

updated along with the list order based to the result of entity linking.
It will stop linking mentions from entity list e; when min(l,,;) >
max (le,,,) given that all the entity lists are sorted.

Benefit-based Approach that estimates the number of calls to
entity linking needed (ENL) to prove that the k entities with the
highest max counter is the top-k result set. It may either choose
mentions from the first k entities with the highest max-values (with
the hope this increases the min-values of those lists) or choose
entities from the other lists (with the hope that it helps decrease
their max-values). ENL is calculated as follows:

k
ENL = Z maxof (max(l,,,) — min(l,), 0) @)
i=1
where maxof is a function that returns the max of two numbers.
Let ENL(S) be the the expected number of calls to entity link-

ing function for the given current entity lists and EN. L(Sm}’e") be
expected number of calls to entity linking function when m;. links

to ey after calling the entity function on m’. Then we choose the
mention with the highest benefit function score (shown in Equation
3). If an entity list is guaranteed to be in the top-k answer set (i.e. it
has a min counter > max(l,,,,)), then mentions that are associated
with such entity will not be considered for linking.

Benefit(m}) = ENL(S) - (Z (p(mt, ex)

m€le, 3)

x ENL(S"™7%)) + p(m’, OTHER) x ENL(s"™CTHFR))

The benefit-based approach can be optimized by limiting the
calculation of the benefit function to be on mentions that indeed
will reduce the value of ENL if linked. Such optimization can be
achieved by calculating mentions from the first 2 X k entities as they
are the only mentions that will reduce ENL in the next iteration.

For example, using the benefit function for mentions in Figure
1, ENL(S) = 6 and mention mél has a benefit score of: 6 - (0.74 * 5
+0.08 * 5+ 0.18 * 6) = 0.82. On the other hand, mention mg has a
benefit score of: 6 - (0.2 * 6 + 0.8 * 6) = 0. Therefore, choosing mél
is helpful, at this stage, while choosing mg is wasteful.

5 TQEL-APPROXIMATE APPROACH

We describe TQEL-approximate by specifying how we implement
the three main functions in Algorithm 1, viz., functions for checking
the stopping condition, select mention, and update lists. The latter
two are straightforward once we have developed our strategy for
checking the stopping condition. We, thus, focus the discussion to
checking the stopping condition and will briefly describe the select
mention and update lists functions at the end.

In TQEL-approximate, the stopping condition is weaker compared
to that for the exact approach. In particular, TQEL-approximate
stops early when it identifies k entities whose tkp is above a user
specified threshold 7. TQEL-approximate iteratively calls the entity
linking function to reduce uncertainty until the stopping condition is
reached. This, in return, causes uncertainty in the counts associated
with the entities to be reduced resulting in satisfying the stopping
condition early.

Checking the stopping condition in TQEL-approximate, however,
is complex. It requires the enumeration of all possible worlds based

on the linking probability of each mention and computing the prob-
ability of a particular entity to be in top-k. Since the number of
such worlds is exponential, enumeration is not feasible. To address
the above, we use an estimation based on sampling the possible
worlds allowing us to check for the stopping condition (i.e., prob-
ability of all entities, in a result set, to be in the top-k is above 7)
with high confidence, as discussed below. We note that while sev-
eral works have explored top-k queries in probabilistic databases
[9, 18, 34, 35, 39], as discussed in Section 7, none of the existing
approaches have addressed the specific top-k query over count
beyond using a sampling based approach we adopt.

5.1 Checking for the Stopping Condition

The stopping condition in TQEL-approximate uses Monte-Carlo
(MC) simulation similar to prior work on probabilistic query pro-
cessing [21], [28]. MC simulation relies on randomness to generate
a sample world w, from the set of possible worlds W. To implement
MC simulation, we iteratively select a mention m’ and assign an
entity to that mention based on the linking probability distribution
of all possible entities ey that could be referred to by mz. (including
the probability of assigning mention m§. to OTHER). After assigning
all the mentions, a sample world wy is generated and the result of
the top-k query is computed. Given N sample worlds, we can com-
pute the top-k answers to Q in those worlds, the results of which
can be used to estimate the probability of an entity being in the
top-k by using normal approximation to the binomial distribution.
We compute p; as in Equation 4 and use it to find the confidence
interval for the entity’s probability of being in the top-k.

number of times ey appears in top-k

i ol @)
. i X (1 - p;
Ieb =p;i —z % w

The z-score in the equation above is a critical value for defining
the confidence interval and is decided based on the user-defined =
using a z-score table and the lower confidence bound (Icb), based
on a normal approximation to the binomial distribution, accounts
for the uncertainty due to the finite number of MC samples.

TQEL-approximate checks the stopping condition by checking Icb
against 7. If Icb is above 7, the stopping condition has been reached
and the top-k answer can be returned. However, if Icb is below 7,
TQEL-approximate continues with linking additional mentions that
changes the uncertainty of entities associated with the mention.
With enough number of iterations, the stopping condition is guaran-
teed to be met (e.g., when all the mentions have been linked). The
time complexity of the above implementation is is O(MN), where
M is the number of mentions and N is the number of MC samples.

The above implementation of MC simulation to check the stop-
ping condition suffers from two limitations. First, as specified, the
approach has to pay the overhead of running an MC simulation
(complexity order of O(MN)) after each EL call. One could batch
multiple mentions to be linked into batches of size b to reduce
overhead of running the MC simulation repeatedly after each EL
call. The size of the batch b has to chosen carefully as sub-optimal
choices could result in overheads. For instance, if b it is too large,

2647

we will pay the overhead of executing additional EL operations
(which are also expensive) unnecessarily since calling the stopping
condition without linking all the entities in the batch might also
have met the required stopping condition. On the other hand, if we
select b to be too small, we end up paying the overhead of the MC
simulation repeatedly. A more efficient algorithm would minimize
the number of EL calls performed prior to calling the stopping condi-
tion function while simultaneously guaranteeing that the stopping
condition is met when it is called. Such an approach would minimize
both the linking cost, as well as, the cost of MC simulations.
Another limitation is that each time the stopping condition is
called, a new set of N samples are generated using the simula-
tion. Such an overhead can be partially mitigated by observing
that the samples obtained for different mentions assignments are
independent and that between any two iterations (i.e., calls to the
stopping condition) the probability values of only a small fraction
of mentions (i.e., the mentions selected for linking in the previous
batch) have changed. We can speed up the simulation by leveraging
the work done during previous iterations. We next describe ways
TQEL-approximate uses to overcome the above two limitations.

5.2 Exploiting Filters

To reduce the number of times we execute the expensive MC simu-
lations, we employ a cheaper/less expensive filter to estimate if the
stopping condition will be met by the MC simulations evaluation.
Our motivation of invoking such a filter is analogous to the way
blocking functions is used to reduce calls to the more expensive
entity resolution function in the data cleaning literature [4, 37], or
cheaper predicates (e.g., simple selections) are executed first prior
to calling more expensive tests in query processing literature [6]. In
our setting, if a filter fails (i.e., determines that the stopping condi-
tion will not be met by the MC simulation evaluation), we continue
linking mentions to reduce uncertainly. This process proceeds until
the filter condition is satisfied (i.e. determines that it is likely that
the results will meet the stopping criteria after the MC simulations).
If the filter succeeds the suggested results are fed into the MC sim-
ulation to check/validate if indeed the stopping condition has been
reached. If not, then additional cleaning is performed and the filter
is appropriately refined (i.e., made more conservative/tighter) in an
iterative fashion. The filter based algorithm is depicted in Figure 3.

Choose Critical Value Update
For Normal Approx. Entity Lists

No| | Pick & Clean
Yes Mention

Generate /
Modify MC

Figure 3: Stopping condition checking flow diagram

Effectively, our modified approach substitutes the more expen-
sive MC simulation by a (much cheaper) filter until the algorithm
reaches the point where we can be fairly confident that the stop-
ping condition has been reached. To design an effective filter, we
apply normal approximation statistics on the linking probabilities

of mentions associated with a specific entity ey to compute the pos-
sible range of values for a given z-score (i.e., the z-value confidence
interval, where z is a parameter associated with the filter). The con-
fidence intervals can be computed efficiently while constructing
the entity lists by computing the mean (1) & standard deviation
(o) of ey, as shown in Equation 5. We treat the upper & lower
bounds of the confidence intervals (shown in Equation 7) as the
approximate max & min (APmax & APmin).

M, = Y, plmhe))
mtel,
J X

"zzex = Z p(m’, ex) X (1= p(ml, ex)) (6)
m;elex

APpin = p - xo, APpmax = 1 + x0 (7)

where x is the z-score associated with the desired confidence
level. For example, for the confidence level of 95%, x = 1.96, etc.

From the perspective of efficiency, the filter based on normal dis-
tribution assumption, takes roughly 1.7 ms to calculate the APp,4x
& APp,in for 10000 entities. In contrast, MC takes about 3.13 ms
to generate only 1 world sample for 10000 mentions, which for a
sample size of say a 1000 would take approximately 3 seconds.

After calculating the AP 5y & APpipn for all entity lists, the
filter checks if a solution is reached based on its calculated approx-
imation. Given that we sort the entity lists descendingly based
on their APp,,x values, if there exists k entity lists with APp,ip >
APpmax of the entity that is in the k+1 position then the condition is
met and the suggested result is validated using the MC simulations.

5.2.1 Choosing the Confidence Intervals. Note that the choice of x
in Equation 7 does not influence the correctness of the approach
since, in our case, the filter is only used as a hint, and we still perform
the MC simulation for validation of the top-k answer. However,
the value x plays an important role in determining the number
of calls to entity linking functions and the cost of generating and
updating the MC simulation results. Smaller the value of x, smaller
the confidence interval, and, lesser the number of calls to entity
linking function in order to meet the filter condition (i.e., there
exists k entities such that their APy, > APpax of the rest of the
possible entities). Conversely, larger the value of x, more entity
linking functions will need to be called before the filter condition
is met. Thus, choice of x plays the key role in determining the
number of entity linking functions called and the number of times
MC simulation is invoked. An optimal value x* would allow for
enough entity linking functions to be called such that the MC
simulations test succeeds when called for validation.

To find such an x*, we first introduce an estimation of the number
of calls to the entity linking function in order to find a candidate top-
k answer (ENC(ay)) given that x is the z-score for the confidence ay.
Given uncertainty of linking function, estimating such a number
is complex. We use a heuristic estimation that greedily favours
mentions that are associated with the k entities having the highest
APpax and estimate the number of mentions to be cleaned on
those lists in order to report them as a candidate top-k result. The
estimation is as follows:

2648

maxof(APmax(lekﬂa x) — APpin (le,-, x), 0)
He;
max(e;)

k
ENC(ay) = Z

i=1 1-

Where APmin(le;, x) is the APmin(le,) if x is the z-value.

ENC(ay) estimates the number of EL calls needed to shift the p
of the first k entities, given they are sorted on their APy;,4x values, so
that their APmin > APmax (le,,,). Note that ENC(ay) is monotonic
in x, i.e. as x value increases ENC(ay) also increases. To see this
note that APp,qx (l;, x) increases and APpin(le;, x) decreases as
value of x increases. Thus, the numerator in Equation 8, increases
with the increase in x while the denominator is a constant. Thus
the function is monotonic.

We, further, need to quantify the probability of success and fail-
ure if an arbitrary x value is chosen. Using normal approximation,
let us say there are two entity lists [o, & I g such that APin(le;)
< APmax (le;). The probability that le; count is below APpmin (e;)
= (177“) if the mentions’ probabilities follow normal distribution.
Similarly the probability of the count of l¢; to be above APmax (le;)
is the same. We conservatively assume that when count of [, is
below APpin (le;) or the count of le; is greater than APpqx (lej), the
filter test (APmin(le;) is > APmax (le;) would fail during validation.
We, thus, estimate the probability of success at the validation stage,
given the success of the filter, to be: (1-2X I_T"‘) = a. Likewise, the
probability of the validation failing given the success of the filter is
(1- @).

We now calculate the cost of TQEL-approximate given an x
value as cost(ay), in the case that the validation step succeeds. Let
Cgr, be the cost of the entity linking function, Cysc be the cost of
generating N MC simulations for one mention and Cy as the cost of
running top-k query on all N worlds to verify the answer. cost(ax)
can be calculated as follows:

cost(ayx) = Cg, X ENC(ay) + Cppc(M — ENC(ax)) +Cy (9)

We next consider the cost of TQEL-approximate for a given x
value if the validation step fails. In such a case, we need to clean
more mentions to get better results. We do that by using a higher
x value such that the confidence that the suggested top-k result
succeeds is higher. Such a scenario requires paying an overhead
of linking more mentions, updating their linking results in the
stored MC simulations and executing the verification process again.
Consider that we begin TQEL-approximate with a value of x = x1,
that results in failure at validation which prompts the algorithm to
use x = x9, which succeeds. We denote the cost of such an execution
by cost([ax,, ax,]). We estimate C(ay,, ax,), which is the cost of
choosing a value x; where the suggested top-k answer set based
on x; estimation fails and we choose a higher value x3, as follows:

cost([atx,, ax,]) = cost(ax,)

+ (Co + Cue) (ENClaw,) — ENC(ay)) + Oy 0

In the equation above, note that the case when ay, =1 (i.e., the
confidence interval covers the entire distribution) is special. In such
a case, to meet the filter condition, one will need to link all ambigu-
ous entities and there will be no uncertainty in the top-k results.
Thus, the process will not need to execute the final validation step.
In such a case, the cost would be:

cost([ax,, 1]) = cost(ayx,) + CeL(M — ENC(ay,)) (11)

Algorithm 2 Choosing the critical value

1: procedure CHOOSINGCRITICALVALUE(M, Cgr, Cpmc, Cys

r,budget) ax — T, — 1,b 0
3 while ayx < a,- AND b < budget do
4: if EC([ax, ay<]) < EC(a,-) then
5 Ayt — (A +ax)/2,b —b+1
6: else
7: Qx ¢ Ay, Oy — 1,0 0
8: return ay
9: =0

We next introduce a general equation for estimating the expected
cost (EC([ax,, Ax,; --» @x,,])) as follows:

EC([ox,, Oy, - Ax,]) = axycost(ax,) + (x, — ax,)
cost([ax,, ax,]) + ... + (Qx,,_; — x,)cost([Qxy, Ay, -0x, 1) (12)

+ (1 - ax,)cost([ax,, .. Ox,, 1)

TQEL-approximate uses Algorithm 2 to find the optimal value of
x. The algorithm searches for an x value such that EC(ay) < EC(ar)
for any x* > x. The algorithm chooses an initial x value such that
ay = user-defined 7. The intuition is that we want to choose an x
such that the probability of success when validating top-k results
given the success of the filter > user-defined 7. If we choose x < 1,
even if the filter succeeds the chance that the validation using MC
simulation will fail is high. Given the monotonic nature of ENC(ay),
The algorithm performs a binary search to find a x° value such that
EC(a,¢) < EC(ay). If no such value x° is found before a searching
budget b is exhausted, we choose x as the critical value. However,
if an x* value is found before b is exhausted, we choose x‘ as the
new value for x and we rerun the algorithm.

5.2.2 Efficacy of Filter. The filter provides a cheaper mechanism
to estimate the outcome of the query without having to pay for the
overhead of the real test. While TQEL’s correctness is independent
of the filter, its effectiveness in reducing overhead of unnecessary
EL calls and expensive MC based verification depend upon how
effective the filter is. Therefore, we define a metric to measure how
well the filter performs on different queries, datasets and probabili-
ties distribution of the top-k entity lists.

The filter in TQEL may determine the stopping condition has been
reached or not. For each such case, either the MC simulation would
agree with the filter’s determination or would disagree resulting
in 4 possible cases corresponding to true positive (TP) when both
the filter and MC simulator determine that the stopping condition
has been reached, false positive (FP) when the filer determines
the stopping condition has been reached but the MC does not, true
negative (TN), when both agree the stopping condition is not reached,
and false negative (FN) when the filter does not determine that
stopping condition has reached, but MC, if it is executed would have
determined that the condition has been reached. Note that FP would
result in an unnecessary call to the expensive verification, and the
FN would result in an unnecessary call to the EL function.

In TQEL, TP is always 1 and FP corresponds to number of times
the filter test is satisfied but the validation using MC simulation is
not. FN can be calculated by subtracting (the necessary EL calls)

2649

from the actual number of calls performed when using the filter,
while TP refers to the number of times the filter test accurately pre-
dicted the negative outcome. Given the above, we can measure the
quality of the filter using any of the metrics one uses for measuring
performance of binary classifiers (e.g., precision, recall, specificity,
miss rate, etc) [33, 36]. We choose accuracy defined as the ratio of
the sum of TP and TF divided by the total sum of TP, TN, FP and FN
since both false positives and negatives result in expensive calls to
MC simulation / EL function respectively. We report in experiment
7, a detailed accuracy evaluation.

5.3 Monte-Carlo Simulation Implementation

In order to efficiently access the previous MC simulations, we keep
the results of the previous runs in a vector of size N inside the
mention object. For each value of the vector v1, vy, ..., 0N, We store
the entity that is assigned to that mention for that specific sampled
world. We, further, store the number of occurrences of each entity
ex in the N sampled worlds in a vector of size N where each value
vq corresponds to the number of assigned mentions for ey in world
wg as shown in Figure 2. We store such values to easily retrieve the
number of occurrences for that entity in each sampled world w,.
We also store the minimum number of occurrences of all N worlds
for each entity list.

In order to smartly generate MC samples for mentions in TQEL-
approximate, we start by generating the samples for mentions of
entity lists with the highest APy,qx value. We iterate over the entity
lists in a decreasing order of APy, values in order to generate
samples for the mentions which are associated with entities that
are competing to be in the top-k answer. If k entity lists were found
such that their minimum number of occurrences > max(e;) such
that e; is not an entity from the first k entities, we do not perform
MC simulation process for e;.

5.3.1 Answer Verification. We use Equation 4 to calculate the Icb
for the first k entities given that they are sorted based on their
APp,qx values. If for every entity, Icb > 7, we return the first k
entities as the answer to QX. However, if this step fails, we continue
to link more mentions until the stopping condition is met.

5.4 Mention Selection

TQEL-approximate follows a benefit-based function approach simi-
lar to Equation 3 where ENL is replaced by ENC. We define ENC(S)
as the expected number of calls such that the filter test passes given

the current entity lists and ENC(S m; *x) as the expected number of
calls needed for the filter to pass when m; links to ex. The benefit
function finds a mention m’. such that if linked brings us closer
to the top-k answer result. Note that choosing the entity with the
highest linking probability, say 0.9, might not always be the best
answer since the reduction in uncertainty, if it links to the desired
entity, is quite low. Therefore, the benefit function takes into ac-
count the probability of success as well as the reduction in the
expected number of EL calls.

5.5 Updating Lists and Approximations

5.5.1 APmin and APmax Maintenance. We can instantly calculate
and update the APp,in, & APmax values based on the stored values
of p & o for every entity list. Values of 4 & o are updated by

adding the probability value of new mention m; to y and adding
p(m;'.)) *1- p(mj.)) to o2. Moreover, whenever we link mention mj.

to an entity ey, for every entity that was associated with mention
m; we update the values of 1 & o accordingly. To update entity ey

which is linked to mention mj. we add (1 - p(m;)) to y and subtract

p(mj.)) *1- p(mj.)) from o?. For the other entities we subtract p(m;))

2

from p and subtract p(mé)) *1- p(m;)) from o“ as well.

5.5.2 Monte-Carlo Simulation Maintenance. In order to properly
maintain the samples of the Monte-Carlo simulation algorithm, we
store the results of the previous N runs to use ,if needed, in later
stages. Whenever a mention m. is linked to entity ey, we update
the number of occurrences of all the entities that could be referred
to by mj We remove mj. from any entity that is not ex and add it to

ey in all the runs too. If the mention m; is not linked to any entity,

then we remove mj in all N runs of the possible entities.

6 EXPERIMENTS
6.1 Experimental Setup

Datasets. We used two tweets datasets that have been collected
from Twitter’s public API without any specification or focus on
certain keywords, locations or topics. All these tweets are Eng-
lish tweets. We ran the two heuristics of TQEL-exact & TQEL-
approximate on both datasets and have conducted multiple exper-
iments to evaluate such approaches with different settings. We
have also used a synthetic dataset that have been generated by
introducing a 10% uniform noise to the linking probability of every
mention-entity pair using the small dataset. This was done by mul-
tiplying a randomly generated real number between (0.9, 1.1) to
every mentions linking probabilities. Afterwards, we normalize the
probabilities in order to satisfy that the sum of probabilities equals
1. Our goal is to test the robustness of TQEL when the initial linking
probability of a mention-entity pair is erroneous and study how
TQEL-exact and TQEL-approximate perform in such circumstances.
For the TQEL-approximate we have chosen 10,000 to be the number
of runs for the MC simulation for all of our experiments.

o Small Dataset. The first dataset contains 101,486 tweets and has
been collected from April 6-April 7, 2018.

o Large Dataset. The second dataset contains 11,250,894 tweets
and has been collected from May 30-June 9, 2019.

Approaches: In our experiments we use 6 baselines to compare
them with TQEL-approximate approach and they are as follows:

e Random Approach (random). In this approach we iteratively
choose a random mention to link until a solution is found. We
enhance the efficiency of this algorithm by limiting the choice of
mentions from lists that are competing to be in the top-k answer.
o TQEL-exact (Benefit Function) Approach. Discussed in 4.2.
e TQEL-exact (Greedy) Approach. Discussed in 4.2.

e TQEL-approximate (Greedy) Approach. For this approach,
TQEL chooses the mention with the highest probability in the list
rather than using the mention selection technique discussed in 5.4.
o NOFILTER Approach. In this approach, TQEL does not use the
filter proposed in 5.2 but rather validates the query using MC Sim-
ulation after each EL call. This approach follows the same mention
selection technique for TQEL-approximate.

2650

e MC-NOOPT Approach. In this approach, TQEL does not ap-
ply the optimizations discussed in 5.3 & 5.5 but rather runs the
Monte-Carlo simulation every time a validation is needed.
Knowledge Base: We have used Wikipedia [3] as the source of
our KB in this experiment by indexing the whole Wikipedia dump
using Apache Lucene [1] to make it easier to query titles, text
bodies and other metadata. We have also tagged each Wikipedia
article with categories fetched from DBpedia to be able to answer
the top-k query with the category filter. We have only indexed the
articles that are included in our queries and the indexing process
took around a day and 20 hours.

Queries: the queries that are used for the experiments are top-k
queries of different categories in DBpedia. We have used multiple
categories from different levels in the DBpedia category hierarchy
in order to control the selectivity of the query. The selectivity is
corresponding to the number of mentions in all the tweets. For
example, a 10% selectivity indicates that 90% of the mentions will
be discarded as they do not have any possible entity that is associ-
ated with the category c4. We also execute the query on different
k-values and confidence scores. The categories that are used in
the experiments have been selected from 3 different levels in the
category hierarchy and are as follows:

o Top-level categories: Agent, Work and Place. With an average
selectivity of 55%.

e Med-level categories: Person, Musicalwork and Organization.
The average selectivity is 31%.

o Low-level categories: Film, Song, Populatedplace, Artist, Ath-
lete and Politician. The average selectivity is 13%.

Entity Extraction & Lookup Function: In our experiment, we
use simple dictionary-based entity lookup function that parses the
tweet sequentially and identifies the largest sequence of words that
matches an article in the KB. When there is a match, LU generates
the possible candidates for the identified mention and give each
candidate a linking probability based on a score of different factors
(e.g. page view count). LU takes roughly 0.5 milliseconds per tweet.

Entity Linking Function: In order to disambiguate a mention-
entity pair we use TagMe API [13] that returns an entity for the
mention in the tweet text along with a probability of linking. In our
setting we use entity linking function as a determining function by
assigning such mention to the entity if the linking function returns
a probability of 0.5 or more and vice versa. The linking process
takes on average 44 milliseconds.

6.2 Experiments results

Experiment 1: Number of entity linking calls & execution
time for different K values. In this experiment we show the
effectiveness when using different strategies and the advantage
that the TQEL-approximate approach provides as a function of k.
We average the query results based on the category used over the
hierarchy levels. Total execution time for TQEL-exact consists of
thinking time, benefit function calculation, and the time needed
to resolve the chosen mentions. Moreover, for TQEL-approximate
total execution time is calculated by adding critical factor choosing
time, mention selection time, time to run MC simulation and time
to validate the top-k result using the MC runs.

Al categories

Categories: agent/work/place

Categories: person/organization/musicalwork

40000
35000
30000

25000

—— Random
TQEL-exact (benefit-based)
—— TQEL-exact (greedy)
—— TQEL-approximate (95% confidence)

15000
5

mber of EL calls
N
S
8
S
S

n

10000
5000

0

10 12
k-values

60000

50000

40000

30000

number of EL calls

20000

10000

—— Random
TQEL-exact (benefit-based)
—— TQEL-exact (greedy)
—— TQEL-approximate (95% confidence)

50000

40000

30000

20000

number of EL calls

10000

—— Random
TQEL-exact (benefit-based)

—— TQEL-exact (greedy)

—— TQEL-approximate (95% confidence)

10
k-values

12

10 12
k-values

Categories:

20000

15000
—— Random

TQEL-exact (benefit-based)
—— TQEL-exact (greedy)
—— TQEL-approximate (95% confidence) ., _|

10000

number of calls to EL

5000

e~

[S ——

2 4 6 8 10 12

k-values

14 16 18 20

Figure 4: Comparing number of calls to entity linking function vs different k-values for multiple categories

All categories

Categories: agent/work/place

2000

1500

1000

Categories:

Categories:

—— Random
TQEL-exact (benefit-based)
—— TQEL-exact (greedy)
—— TQEL-approximate (95% confidence)

@
3
S

2
3
3

—— Random
TQEL-exact (benefit-based)

—— TQEL-exact (greedy)

—— TQEL-approximate (95% confidence) __. . |

.
38
S

total execution time (s)

«
3
3

N

S

S

J——

01 01

1750 ELT R ——
1500 2500
3 1250 < 2
2000
£ —— Random £ —— Random £
< 1000 . <€ 3
s TQEL-exact (benefit-based) § 1500 TQEL-exact (benefit-based) 5
3 750{ — TQEL-exact (greedy) g —— TQEL-exact (greedy)]
% —— TQEL-approximate (95% confidence) H 1000 | — TQEL-approximate (95% confidence) %
T 500 5 5
e] 4 5
250 //-,_Jr 500 T
01 of
2 4 6 8 10 12 14 16 18 20 2 a 6 8 10 12 14 16 18 20

k-values k-values

10 12
k-values

2 4 6 8 10 12 14 16 18 20 2 4 6 8 14 16 18 20

k-values

Figure 5: Comparing total execution time (seconds) vs different k-values for multiple categories

All categories

All cate

egories All categories

16000
14000
12000
10000
8000
6000

number of calls to EL

4000

Number of mentions sampled

2000

B X

90%
5
0

75%

70%

95%

90%

X
in
o

© ©
Confidence level

R

5

©
Confide

Noow A
o o© o

total execution time (s)

=
o

o

X
=)

75%
70%

X
in
@

75%
70%
95%
90%

X
=)
@

©
nce level Confidence level

Figure 6: Detailed performance analysis of TQEL-approximate using different confidence levels.

From Figures 4 & 5, we can see that TQEL-approximate is
showing promising results in terms of total of number of calls to
the entity linking function and total query execution time. We
noticed that in all the queries we are saving in term of calls to EL
function, which is a bottleneck for the query, due to the use of
approximate query answering techniques. This is due to the fact
that the variance in the number of occurrences of each entity in
the top-k is quite large and in order to find a top-k answer we only
perform a much smaller number of EL calls.

We also see another trend in TQEL-approximate approach where
the number of EL calls for k = x is higher compared to k = x—1and
k = x + 1, this happens because of having two or more contenders
that have relatively comparable counts which in return forces more
calls to EL function for mentions in the competing entities.

We illustrate the fact that TQEL-exact (for both heuristics) out-
performs the random approach in general by a huge margin (130x
saving) by smartly selecting mentions to disambiguate in an iter-
ative fashion. The reason behind that is by focusing on proving
that the k-highest entities in terms of max values. We also see the

2651

number of calls and total execution time is increasing whenever k
increases while in TQEL-approximate that is not the case. The rea-
son behind such results is that, if the approximation clearly shows
that the top-k result without any competition from the k + 1 enti-
ties, then little work in terms of entity linking is needed regardless
of k. However, for TQEL-exact, we need to pay the overhead of
performing such EL calls to make sure that the top-k result is valid.
In the experiments’ figures, we do not include the execution time
of the entity extraction and lookup function since it is shared by
all strategies. Additionally, this process could be executed on the
entire dataset during ingestion time since it is cheap. We also do not
include the numbers of the naive approach that requires cleaning
all tuples before running the query although it is clear that our
proposed strategies outperform such strategy. The naive approach
takes around 145,023 EL calls and around 1.8 hours to execute. We
do not report the naive approach numbers as it is the same over all
queries and stretches the figures making them less readable.

Experiment 2: Detailed analysis of TQEL-approximate per-
formance. In this experiment we analyze the performance of
TQEL-approximate for different confidence levels that are given by
the query. We will focus on 3 factors that are of interest: number
of EL calls, number of mentions sampled using our MC technique
and total execution time of the query. We also report the average
of the query results over all categories for this experiment.

In the left sub-figure of Figure 6, we can see that the confidence
level heavily affects the number of entity linking calls that ends up
being executed. The number of calls to EL function is growing as
the confidence level rises. The number of calls to EL is also affected
by the k value as it might cause a significant increase in EL calls
due to the competitiveness of entities for that rank based on the
number of occurrences.

We also report the difference in number of mentions required
for the MC simulation in order to generate a top-k answer set. The
middle sub-figure in Figure 6 illustrates the amount of savings that
are achieved by smartly limiting the generation of MC simulations
to mentions associated with competing entities as discussed in 5.3.
The number of sampled mentions also decreases when the number
of resolved mentions increases as we will not need to generate
samples for the linked mentions.

In the last sub-figure of Figure 6, we report the total execution
time of the queries which consists of (critical factor choosing time,
mention selection time, time to run MC simulation and validate top-
k answer set using the MC runs). In this experiment we illustrate
the fact that in general, choosing a lower 7 leads to less number of
entity linking calls and therefore less overall execution time due to
the fact of less EL calls.

Experiment 3: Scalability of TQEL. This experiment illustrates
the impact of large datasets on TQEL-exact & TQEL-approximate
and that the amount of savings we are able to achieve using the
TQEL-approximate is noticeable. We have run the query on the
category "film" and reported the performance over multiple k values.
The "film" category had roughly 10% selectivity in the large dataset.
From Figure 7, we see the same pattern or trend where the savings
by TQEL-exact approach in term of EL calls is more than 100x
for the calls needed to fully disambiguate all the mentions in the
tweets. TQEL-approximate results are also promising and are quite
similar to results that have been achieved on smaller dataset, even
though in the large dataset we are dealing with a large number
of tweets. This is due to the fact that the difference of number of
occurrences between entities that are in the top-k is quite large
which is allowing TQEL-approximate to return the result with
high confidence without much entity linking calls. This experiment
clearly shows that in real-world datasets differences in the number
of occurrences should be exploited by returning an answer with
high confidence using approximation techniques rather than paying
the huge overhead of reporting the exact answer.

Experiment 4: Score of TQEL-approximate results. In this ex-
periment we measure the accuracy for the results returned by TQEL-
approximate for different 7 values. To evaluate the returned answer
set we have used two metrics:

o Precision: Represents the fraction of elements in the approxi-
mate answer set compared to the exact top-k set.

e Rank Distance: A modified version of the footrule distance to

2652

compute the distance of the inaccurate entity e; in the approximate
answer set to their exact rank. To compute rank distance we com-

k
pute the following: % 2. maxof (exacte; —k, 0) where exact,, is the
i=1

exact rank of e;. We modified the distance calculation since we only
report the top-k answer set without any order between the top-k
answer set.

In Table 2, we averaged the scores of each confidence levels over
all categories and over k values (1 - 20). We see that rank distance
is heavily influenced by the chosen 7 and the difference in EL calls.

Experiment 5: Robustness of TQEL. this experiment illustrates
the effect of introducing noise to the linking probability to study
its impact on the query execution time and answer quality.

Table 2: Evaluation metrics for different confidence levels

H Confidence H 95% 90% 85% 80% 75% 70%
Precision 095 093 092 092 091 090

|

Rank Distance || 0.069 0.091 0.113 0.130 0.160 0.168

From Figure 8, TQEL-approximate approach is quite resilient
and dominates other approaches in terms of the number of EL calls.
However, the answer quality has dropped where the precision is
0.90 and rank distance is 0.089 for the confidence of 95%.

1e6 Category: film (Large dataset) All categories (Noisy dataset)

40000 -

N
°

35000

i 30000

—— TQEL-exact (benefit-based)
TQEL-exact (greedy)

—— TQEL-approximate (95% confidence)

8 15000 —— Random

—— Random 2 25000
TQEL-exact (benefit-based) 8

—— TQEL-exact (greedy)

—— TQEL-approximate (95% confidence)

T
< 20000
5

°

number of EL calls

2 10000 e ——

°

| 5000

— J— o R —

°
°

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
k-values k-values

Figure 7: EL calls vs k-values Figure 8: EL calls vs k-values
for large dataset. for noisy dataset.

Experiment 6: Comparing TQEL with other approximate
baselines. In this experiment we report the total execution time of
the query for different proposed baselines. In Figure 9, we illustrate
the execution time of the EL functions, denoted as [baseline] EL, in
a different color to show how different baselines perform. NOFIL-
TER approach was as expected the best in terms of EL function
time since we validate the query after each call resulting in not
executing any unnecessary EL calls. However, in terms of overall
execution of the query it performed the worst due to the extremely
high number of expensive verification overhead (factor of number
of EL calls). We stopped running the query after 5 minutes due
to the overhead caused by some baselines. MC-NOOPT approach
verification cost was also high compared to TQEL-approximate
since MC simulations will be run each time the validation step is
performed. This clearly shows the effectiveness of our proposed MC
optimizations. We see that TQEL-approximate performed better
than TQEL-approximate (Greedy), especially with the execution
time of the EL functions caused by the 9% increase of EL calls
compared to TQEL-approximate.

Experiment 7: Evaluating Filter’s Efficacy. This experiment
shows the accuracy of TQEL-approximate, TQEL-approximate
(Greedy) and NOFILTER baselines. In order to calculate the ac-
curacy for the first two, we follow the measurement discussed in
Section 5.2.2. In the case of NOFILTER, since it never characterizes
data as negative (it always invokes the expensive MC simulation),
the values for TN and FN are 0 and the value of TP is 1, while the
value of FP are number of EL calls - 1. As a result, its accuracy is
very poor (below 1% for all categories) we do not show the results in
Figure 10. Figure 10 illustrates the accuracy of TQEL-approximate
& TQEL-approximate (Greedy) with a reported average of 83% and
64% accuracy, respectively, over all categories. In the experiment we
further analyzed and realized a correlation between the distribution
of the top-k entity lists mentions’ probabilities and the accuracy
of the result. For the agent category where the size of the top-20
entity lists is relatively large, we get an accuracy of 95%. For agent,
the average size of the top-20 lists was 149.75, the average o based
on normal approximation was 4.68 and the average p difference
between normal approximation and MC simulation was 0.1% (thus
normal approximation is a better estimate), we get an accuracy of
95%. On the other hand, the same numbers for the athlete cate-
gory were 47.56, 1.7 and 4.1% which effects the normal distribution
statistics to be inaccurate resulting in a lower filter accuracy.
e

g
k:f
a

mmm TQEL-Approximate

TQEL-Approximate
(Greedy)

Total Exeuction time for different baselines

300
'I ll
n o

k-values

Accuracy of Baselines

o

m== TQEL-App. EL
W TQEL-App. T

°
®

250
TQEL-App.
(Greedy) EL

>

200

o o

Accuracy

TQEL-App.

B (Greedy) T

= NOFILTER EL
NOFILTER T

IS

°
N

I = MC-NOOPT EL

Il = MC-NOOPT T 0.0

]

film

Total Exeuction Time (s)
person
athlete

song

artist

populatedplace | EEEEE—
organization | EEEEEE—
politician | ——

musicalwork

0

Catogory

Figure 9: Execution Time Figure 10: Accuracy

7 RELATED WORKS

Probabilistic Top-k Evaluation. Based on the survey [20], the
top-k queries in probabilistic databases can be characterized into
top-k selection queries, top-k join queries and top-k aggregation
queries. Furthermore, top-k queries are evaluated under different
query semantics: U-Topk, U-kRanks [34, 35], Global-Topk [39] and
PT-k [18]. The query in TQEL corresponds to a top-k aggregation
query over count using a slightly modified version of PT-k [18]
semantics. As discussed clearly in [35], approaches to evaluate
top-k selection queries [20] cannot be applied to evaluate top-k
aggregation queries. Prior work on top-k aggregation [35] consid-
ers aggregate functions such as AVERAGE and SUM. While their
algorithm would work with top-k COUNT queries we study, it
would result in an exponential blowup making it hard to execute
the top-k query (we have implemented their strategy and ran out
of memory even for a small dataset when executing our query).
Moreover, as stated in [35], their approach incurs extra overhead
and might not be an efficient way for solving top-k aggregation
problems that follow our answer semantics. The algorithm based
on MC sampling we use, while simple, is likely the most practical
approach to implementing top-k aggregate count queries. Note that

2653

the specific choice of the top-k evaluation algorithm is not our
major contribution but we rather focus on reducing the overhead
of entity linking using the query context.

Query-Time Data Cleaning. There have been emerging body of
work that studied problems related to query-time data cleaning
[4, 15, 15, 37] that focus on reducing the number cleaning steps
in order to efficiently answer queries and treat data cleaning al-
gorithms as black boxes. However, in [4, 15] they do not focus
on ranking queries such as top-k queries. Cleaning dirty data to
answer top-k aggregation queries have been studied previously in
[37] in the context of the entity resolution problem. They proposed
an interactive algorithm for Locality-Sensitive Hashing that essen-
tially exploits the top-k semantics to cut down the cost of blocking
only to clusters that are dense so that the blocking cost per tuple
on sparse areas of data are very small. Our approach, similar to
this work, also exploits semantics of the top-k operator to reduce
costs. However, the context and solutions are different. While their
work focused on top-k with clustering/grouping, our work exploits
semantics in the context of classification/lookup type of entity dis-
ambiguation in the terminology of [7]. While the intuition is shared,
the techniques are entirely different. In addition, in our settings,
simply exploiting top-k semantics deterministically does not offer
enough speedup, and thus, the main contribution of this paper is
an approximate version which the prior work did not explore. [7]
considers the problem of cleaning for top-k query in uncertain
databases. However, it only considered top-k selection queries and
hence not comparable to TQEL. Top-k queries in the context of
crowdsourcing [8, 11, 23, 25, 26] have also tried to minimize the
crowdsourced cleaning work. The model, however, is very different
from what we use in TQEL - e.g., in such work a human worker,
given 2 or more lists, provides ordering amongst the lists. Such is
not the case by calling a linking function in TQEL making their
solution inapplicable to our setting.

8 CONCLUSION

In this paper, we presented TQEL, a framework to support queries
that retrieve top-k entities belonging to a user-specified category
in a collection 7. TQEL exploits the query semantics to reduce
the number of entity linking function calls for mentions in 7. It
provides the option of answering the query exactly with determin-
istic guarantees or approximately with probabilistic guarantees.
The paper focuses on the approximate approach that uses an im-
plementation of Monte-Carlo technique to efficiently evaluate the
query with guarantees. To reduce the overhead of Monte-Carlo
simulations (which is expensive), TQEL-approximate uses normal
approximation to estimate the count of each entity as a filter. To
reduce the number of calls to the entity linking function, a benefit-
based function is used to select mentions to link. In future work, we
aim to explore the possibility of using such a filter-based approach
for different queries that require data cleaning (e.g. SPJ queries).

ACKNOWLEDGMENTS

This work was supported by NSF Grants 1527536, 1545071, 2032525,
1952247, 1528995, 2008993, 2044107, 2139103 and DARPA under
Agreement No. FA8750-16-2- 0021. Abdulrahman Alsaudi was sup-
ported by KSU’s Graduate Studies Scholarship.

REFERENCES

[10]

[11]

[12]

[13]

[14

[17]

(18]

[19]

2021. Apache Lucene. https://lucene.apache.org/.

2021. Wikipedia. https://www.wikipedia.org.

2021. Wikipedia:Database download. https://en.wikipedia.org/wiki/Wikipedia:
Database_download.

Hotham Altwaijry, Sharad Mehrotra, and Dmitri V Kalashnikov. 2015. Query: A
framework for integrating entity resolution with query processing. Proceedings
of the VLDB Endowment 9, 3 (2015), 120-131.

Séren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722-735.

Ron Avnur and Joseph M Hellerstein. 2000. Eddies: Continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. 261-272.

Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. 2003.
Robust and efficient fuzzy match for online data cleaning. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data. 313-324.
Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi.
2015. Crowdsourcing for top-k query processing over uncertain data. IEEE
Transactions on Knowledge and Data Engineering 28, 1 (2015), 41-53.

Graham Cormode, Feifei Li, and Ke Yi. 2009. Semantics of ranking queries for
probabilistic data and expected ranks. In 2009 IEEE 25th International Conference
on Data Engineering. IEEE, 305-316.

Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. 2012.
ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for
large-scale entity linking. In Proceedings of the 21st international conference on
World Wide Web. 469-478.

Eyal Dushkin and Tova Milo. 2018. Top-k sorting under partial order information.
In Proceedings of the 2018 International Conference on Management of Data. 1007—
1019.

MS Fabian, K Gjergji, WEIKUM Gerhard, et al. 2007. Yago: A core of semantic
knowledge unifying wordnet and wikipedia. In 16th International World Wide
Web Conference, WWW. 697-706.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme: on-the-fly annotation of short text
fragments (by wikipedia entities). In Proceedings of the 19th ACM international
conference on Information and knowledge management. 1625-1628.

Abhishek Gattani, Digvijay S Lamba, Nikesh Garera, Mitul Tiwari, Xiaoyong
Chai, Sanjib Das, Sri Subramaniam, Anand Rajaraman, Venky Harinarayan, and
AnHai Doan. 2013. Entity extraction, linking, classification, and tagging for social
media: a wikipedia-based approach. Proceedings of the VLDB Endowment 6, 11
(2013), 1126-1137.

Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning Denial Constraint Violations through Relaxation. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 805-815.
Stephen Guo, Ming-Wei Chang, and Emre Kiciman. 2013. To link or not to link?
a study on end-to-end tweet entity linking. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 1020-1030.

Xianpei Han and Jun Zhao. 2009. NLPR_KBP in TAC 2009 KBP Track: A Two-
Stage Method to Entity Linking.. In TAC. Citeseer.

Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. 2008. Ranking queries on
uncertain data: a probabilistic threshold approach. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. 673-686.

Wen Hua, Kai Zheng, and Xiaofang Zhou. 2015. Microblog entity linking with
social temporal context. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 1761-1775.

2654

[20

[21

[22

(23]

[24

[25]

[26]

[27]

[28

[29]

[30]

(31]

(32]

[33

[34

@
2

(36]

[37

[38

[39

Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-k
query processing techniques in relational database systems. ACM Computing
Surveys (CSUR) 40, 4 (2008), 1-58.

Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine, and
Peter] Haas. 2008. MCDB: a monte carlo approach to managing uncertain data.
In Proceedings of the 2008 ACM SIGMOD international conference on Management
of data. 687-700.

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. 2010.
Overview of the TAC 2010 knowledge base population track. In Third text analysis
conference (TAC 2010), Vol. 3. 3-3.

Jongwuk Lee, Dongwon Lee, and Seung-won Hwang. 2017. CrowdK: Answering
top-k queries with crowdsourcing. Information Sciences 399 (2017), 98-120.

Rui Li, Shengjie Wang, and Kevin Chen-Chuan Chang. 2013. Towards social data
platform: Automatic topic-focused monitor for twitter stream. Proceedings of the
VLDB Endowment 6, 14 (2013), 1966—1977.

Yan Li, Hao Wang, Ngai Meng Kou, Zhiguo Gong, et al. 2020. Crowdsourced
top-k queries by pairwise preference judgments with confidence and budget
control. The VLDB Journal (2020), 1-25.

Xin Lin, Jianliang Xu, Haibo Hu, and Zhe Fan. 2017. Reducing Uncertainty of
Probabilistic Top-k Ranking via Pairwise Crowdsourcing. IEEE Transactions on
Knowledge and Data Engineering 29, 10 (2017), 2290-2303.

Sean Monahan, John Leflgmann, Timothy Nyberg, Jesse Plymale, and Arnold Jung.
2011. Cross-Lingual Cross-Document Coreference with Entity Linking.. In TAC.
Christopher Re, Nilesh Dalvi, and Dan Suciu. 2007. Efficient top-k query evalu-
ation on probabilistic data. In 2007 IEEE 23rd International Conference on Data
Engineering. IEEE, 886-895.

Mehdi Sadri, Sharad Mehrotra, and Yaming Yu. 2016. Online adaptive topic
focused tweet acquisition. In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management. 2353-2358.

Wei Shen, Jianyong Wang, and Jiawei Han. 2014. Entity linking with a knowledge
base: Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data
Engineering 27, 2 (2014), 443-460.

Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. 2012. Linden: linking named
entities with knowledge base via semantic knowledge. In Proceedings of the 21st
international conference on World Wide Web. 449-458.

Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. 2013. Linking named entities
in tweets with knowledge base via user interest modeling. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 68-76.

Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance
measures for classification tasks. Information processing & management 45, 4
(2009), 427-437.

Mohamed A Soliman, Thab F Ilyas, and Kevin Chen-Chuan Chang. 2007. Top-k
query processing in uncertain databases. In 2007 IEEE 23rd International Confer-
ence on Data Engineering. IEEE, 896-905.

Mohamed A Soliman, Thab F Ilyas, and Kevin Chen-Chuan Chang. 2008. Prob-
abilistic top-k and ranking-aggregate queries. ACM Transactions on Database
Systems (TODS) 33, 3 (2008), 1-54.

Alaa Tharwat. 2020. Classification assessment methods. Applied Computing and
Informatics (2020).

Vasilis Verroios and Hector Garcia-Molina. 2019. Top-k entity resolution with
adaptive locality-sensitive hashing. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1718-1721.

Wei Zhang, Chew Lim Tan, Yan Chuan Sim, and Jian Su. 2010. NUS-I2R: Learning
a Combined System for Entity Linking.. In TAC.

Xi Zhang and Jan Chomicki. 2009. Semantics and evaluation of top-k queries in
probabilistic databases. Distributed and parallel databases 26, 1 (2009), 67-126.

https://lucene.apache.org/
https://www.wikipedia.org
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download

