
TQEL: Framework forQuery-Driven Linking of Top-K Entities in
Social Media Blogs

Abdulrahman Alsaudi

University of California, Irvine

alsaudia@uci.edu

Yasser Altowim

Saudi Data And Artificial Intelligence Authority

ytowim@nic.gov.sa

Sharad Mehrotra

University of California, Irvine

sharad@ics.uci.edu

Yaming Yu

University of California, Irvine

yamingy@uci.edu

ABSTRACT
Social media analysis over blogs (such as tweets) often requires

determining top-k mentions of a certain category (e.g., movies) in

a collection (e.g., tweets collected over a given day). Such queries

require entity linking (EL) function to be executed that is often

expensive. We propose TQEL, a framework that minimizes the joint

cost of EL calls and top-k query processing. The paper presents

two variants - TQEL-exact and TQEL-approximate that retrieve

the exact / approximate top-k results. TQEL-approximate, using a

weaker stopping condition, achieves significantly improved perfor-

mance (with the fraction of the cost of TQEL-exact) while providing

strong probabilistic guarantees (over 2 orders of magnitude lower

EL calls with 95% confidence threshold compared to TQEL-exact).

TQEL-exact itself is orders of magnitude better compared to a naive

approach that calls EL functions on the entire dataset.

PVLDB Reference Format:
Abdulrahman Alsaudi, Yasser Altowim, Sharad Mehrotra, and Yaming Yu.

TQEL: Framework for Query-Driven Linking of Top-K Entities in Social

Media Blogs. PVLDB, 14(11): 2642 - 2654, 2021.

doi:10.14778/3476249.3476309

1 INTRODUCTION
Social media blogs usually contain ambiguous mentions that could
potentially refer to real-world entities. In this paper, we study how

top-k queries in the context of social media blogs can efficiently be

evaluated. Given a collection of social media blogs T that contain

a number of mentions, the goal is to identify the top-k real-world

entities that are mentioned the most in T . Consider, for example, a

user creates a collection of tweets (by sampling the public Twitter

API and/or by running keyword/phrase queries using Twitter’s

query interface [24, 29]) and would like to characterize T based

on the top-k entities of a certain category – e.g., top-k "movies",

top-k "athletes", or top-k "locations". If the text/metadata in the

tweets explicitly identified real-world entities, we could lookup the

associated categories in knowledge bases such as DBpedia [5] or

Wikipedia [2] to appropriately tag the tweets with the correspond-

ing categories. Then, finding the top-k entities in T in the context

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476309

of the category of interest (e.g., movies, politicians, athletes) would

be straightforward; we would simply count the number of times an

entity corresponding to the category of interest is mentioned in T ,
and choose the 𝑘 entities with the highest counts.

However, entities are not explicitly associated with the tweets.

Instead, entity extraction and lookup functions [30] are used to

determine them. Such functions take as input the set of words, as

well as, metadata associated with the tweet, and return a set of a

sequence of words (referred to as a mention) that could correspond

to real-world entities [14, 30]. For instance, a lookup function ap-

plied to a tweet "Black Panther won an Oscar!" may identify two

mentions "Black Panther" and "Oscar". Such mentions rarely corre-

spond to a unique real-world entity. The study in [22] shows that

each mention, on an average, could correspond to 13.1 real world

entities, each of which is associated with different categories. For

instance, the "black panther" mention could either refer to a movie

or an animal corresponding to the "movies" or "animals" categories

respectively. Before the top-k entities within a given category can

be identified, we must first disambiguate such mentions.

Techniques to disambiguate entity mentions have been exten-

sively studied over the past decade. Such functions use a variety

of approaches including machine-learning techniques and super-

vised learning algorithms [16, 38], comparing mentions in tweets

bodies against an external knowledge base [13, 14, 19, 30, 31], (e.g.,

Wikipedia), or using the feedback of people as in crowdsourcing

[10]. Once mentions have been linked to the correct entities, the

top-k entities in the tweet collection within the category of interest

can be easily determined.

The challenge in implementing top-k queries arises since entity

linking functions are expensive. As such, applying it to the entire

collection requires significant computation, leading to long latency

in the results. Moreover, such computation is also wasteful since it

requires linking mentions that are simply not of interest, i.e., those

that are clearly not part of the top-k results. One strategy to over-

come the challenge is to simply associate the mention with every

possible entity rather than running the entity linking function. For

example, "black panther" in the above tweet will be associated with

the "movie" entity and the "animal" entity as well. Then we can

simply return the top-k set after aggregating the number of occur-

rences for each entity. For instance, for the tweets shown in Table

1 (represented in Figure 1), a query for top-2 movies will return

as a result: "Black Panther (2018 movie)" & "Black Panther (1977

movie)" since each of them has 4 occurrences. Clearly, the above

strategy results in erroneous answers since the right response in

2642

https://doi.org/10.14778/3476249.3476309
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476309

this example should have been "Black Panther (2018 movie)" &

"Beautiful Creatures" had we fully disambiguated all the mentions.

When adopting the same strategy for top-10 movies, top-10 politi-

cians and top-10 locations on our dataset, the average precision of

the results were 0.16 while the rank distance was 377.9! We explain

how to measure precision and rank distance in Section 6.

In this paper, we propose TQEL (Top-k Query processing using

Entity Linking), a framework that exploits the query semantics for

adaptive application of entity linking to only a subset of the men-

tions that are required to answer the query. The TQEL framework

can be invoked to answer the top-k query exactly. The resulting im-

plementation, referred to as TQEL-exact, improves upon the naive

strategy of fully linking all mentions (prior to query execution), to

linking only a small subset that could determine the top-k results.

TQEL-exact returns exactly the same answer as would be returned

by the naive strategy, though at a fraction of the expense. While

TQEL-exact improves upon the naive mechanism, it, nonetheless,

incurs overheads specially when there are a large number of en-

tities with possible frequency counts that are large and also close

to each other in value competing to be in the top-k spots. As such,

TQEL-exact is not suitable for queries that require faster responses.

The main contribution of the paper is an approximate approach

which we refer to as TQEL-approximate.

TQEL-approximate, instead of continuing to link entities until

it guarantees that it has found a top-k result, stops much earlier

as soon as it can establish that the entities in top-k result, it has

found so far, have a probability of being in the answer above a

user specified threshold 𝜏 . To achieve this, TQEL-approximate uses

two statistical models to efficiently deliver the answer. First, it

estimates the number of occurrences of each entity by applying

normal approximation statistics on the distribution of mentions

associated with a given entity where such an estimation can be

computed efficiently. Based on the normal approximation step,

TQEL-approximate then decides whether to link mentions further,

or whether it expects that a potential answer to the top-k query

has been found. It then invokes the validation step which uses

Monte-Carlo simulation technique that generates 𝑁 samples of the

possible worlds and then calculates the probability of each entity

being in the top-k using the 𝑁 samples. If verification fails, TQEL-

approximate performs more entity linkings until the verification

step’s stopping condition is met. Note that normal approximation

estimation provides a fast mechanism to predict that an answer has

been found, however, it is not used to verify answers but rather

the Monte-Carlo simulation is used for that purpose. Additionally,

TQEL doesn’t require the distribution of mentions’ linking prob-

abilities to be normally distributed although the filter works best

when they are. In effect, TQEL-approximate allows users to trade

quality with latency. Our results over different data sets show that

TQEL-approximate achieves an order of magnitude improvement

over TQEL-exact – it finds top-k answers with confidence as high

as 95% within 5-10 seconds, while an exact approach takes 100-300

seconds for the same query on the same machine.

In summary the main contributions of this paper are: (a) a
framework that uses entity linking to evaluate top-k queries effi-

ciently (Sections 2 & 3), (b) two heuristic approaches that return

an exact answer for the top-k queries (Section 4) (TQEL-exact),

(c) an approximate approach that relaxes the quality of the result

by returning a top-k answer with probabilistic guarantees (Sec-

tion 5). (TQEL-approximate), (d) Experimental evaluation of TQEL

extensively using three datasets. (Section 6).

2 PRELIMINARIES
In this section, we will present the needed preliminaries that form

the basis for the TQEL framework.

2.1 Dataset and Required Functions
Social Media Datasets. Let T be a collection of tweets 𝑡1, 𝑡2, ..., 𝑡𝑛 ,

𝑀 be the set of mentions in tweet 𝑡𝑖 ’s text𝑚
𝑖
1
,𝑚𝑖

2
, ...,𝑚𝑖

|𝑀 | ., 𝐸 be the

set of entities 𝑒1, 𝑒2, ..., 𝑒 |𝐸 | . and each entity 𝑒𝑥 is associated with

one or more category 𝑐1, 𝑐2, ..., 𝑐 |𝐶 | . Tweets, in general, contain the

text along with metadata about the tweeter and the tweet itself such

as username, timestamp and location of tweet. We identify a word

or sequence of words in the body of the text as a mention𝑚𝑖
𝑗
if it

could potentially be linked to real world entity 𝑒𝑥 . These entities

could be of any category such as movies, people or locations. At the

ingestion time, tweets will undergo a prepossessing step in order

to extract and normalize the text in the tweet. This is executed by

removing the unnecessary words in the body of the tweet such as

stop words and Twitter’s special notation (e.g., “rt”).

Query Model. We model our top-k query Q𝑘 where it is executed

on top of the tweets collection T . Each query Q𝑘 contains a cat-

egory filter 𝑐𝑔 such as people or locations. The main concept is

to find 𝑘 entities, that are associated with category 𝑐𝑔 , mentioned

the most in the tweets collection T . As an example, an editor who

is working for a magazine that rates and reviews movies is asked

to provide a list of the top-2 movies mentioned in a given tweet

collection T . The query Q2 is to find 2 entities mentioned in T
where entities are associated with the category movies and the

number of times they were mentioned in T is larger than the rest

of entities. This query can be evaluated using our query model.

Entity Extraction and Lookup. An entity extraction and lookup

function LU(𝑡𝑖) takes tweet 𝑡𝑖 and returns a set of 3-tuples {<𝑚𝑖
𝑗
,

𝑒𝑥 , 𝑝 (𝑚𝑖
𝑗
, 𝑒𝑥)>} where𝑚𝑖

𝑗
is the 𝑗𝑡ℎ mention in the tweet 𝑡𝑖 , 𝑒𝑥 is a

possible entity for the mention and 𝑝 (𝑚𝑖
𝑗
, 𝑒𝑥) is the probability𝑚𝑖

𝑗

links to 𝑒 𝑗 . The sum of all probabilities for a specific mention𝑚𝑖
1
is 1.

For example, let 𝑡1 be "Black Panther won an oscar!", LU(𝑡1) returns

<𝑚1

1
, Black Panther (2018)>, 0.74), <𝑚1

1
, Black Panther (Animal)>,

0.12>, <𝑚1

1
, Black Panther (1977)>, 0.10>, <𝑚1

1
, OTHER>, 0.02>.

where OTHER corresponds to linking𝑚1

1
to no entity.

This process is known as the candidate list generation for a

specific mention. Most of the approaches rely on name dictionary

based techniques [12, 14, 16, 31] which generates a map where keys

are a list of all possible mentions and values are a set of entities

that could potentially refer to the key. This limits the generation of

mentions to only the the ones that are stored in the map. Another

approach uses search engines [17, 27] as the vehicle for finding

candidate entities where they return the top hits for each mention.

Entity Linking. Given a tweet 𝑡𝑖 , mention𝑚𝑖
𝑗
and a linking func-

tion (EL), the entity linking function links mention𝑚𝑖
𝑗
in 𝑡𝑖 with a

real-world entity 𝑒𝑥 . For example, Given the tweet "Black Panther

won an oscar!", and the mention "Black Panther", EL will link the

mention "Black Panther" to Black Panther (2018) entity.

2643

Table 1: Sample of prepossessed tweets. Crossed sequence of words are dropped in the reprocessing step. Bolded sequence of
words represent a mention that links to an entity. Underlined mentions refers to an entity from movies category.

TweetID Tweeter Text Time Location
𝑡1 𝑢1 Black panther ℎ𝑎𝑠 finally grossed $700 million domestically! 𝑡𝑠1 𝑙1

𝑡2 𝑢2 Emmy Rossum in Beautiful Creatures is stunning 𝑡𝑠2 𝑙2
𝑡3 𝑢3 Pixar makes the best animated movies 𝑡𝑠3 𝑙3
𝑡4 𝑢4 La La Land best movie of all time! 𝑡𝑠4 𝑙4
𝑡5 𝑢5 Another live reading of a random book in my tbr pile, Beautiful Creatures 𝑡𝑠5 𝑙5
𝑡6 𝑢1 Black Panther won an oscar! 𝑡𝑠6 𝑙1
𝑡7 𝑢6 A lot of athlete will be in space jam 2 𝑡𝑠7 𝑙6

𝑡8 𝑢7 Gonna watch stardust and beautiful creatures 𝑡𝑠8 𝑙7
𝑡9 𝑢8 a black panther was photographed in Africa last week 𝑡𝑠9 𝑙8
𝑡10 𝑢3 Emma Stone was amazing in la la land 𝑡𝑠10 𝑙9
𝑡11 𝑢9 Marvel made michael jordan famous in black panther 𝑡𝑠1 𝑙10

The entity linking function is considered a cost-heavy function

that require complex computations to achieve the sought precision

when linking a mention in the text of a tweet with an entity. Some

entity linking functions might also require analyzing and linking

entities of the previous tweets from the same user along with any

tweets from the same location and time in order to accurately

pinpoint the mentioned entity [14]. Most of the techniques takes

advantage of linking the mentions to target entities in a known

knowledge base (e.g. Wikipedia) [13, 14, 31, 32] by leveraging the

Wikipedia topology and theWikipedia articles alongwith the text of

the tweet. Other techniques use a crowd sourcing approach in order

to link the identified mentions [10] to an entity. Other approaches

adopt a machine learning approach where supervised and semi-

supervised learning algorithms are run on top of annotated data

corpses to find best candidate entity for each mention [38].

Since the entity linking functions require complex computations

to get the best candidate, it is considered a bottleneck in any query

processing system that relies on entity linking to answer the asked

query. In our setup, we consider the functions LU(𝑡𝑖) and EL(𝑡𝑖 ,

𝑚𝑖
𝑗
) black box functions that could be replaced with any entity

extraction, lookup and linking functions.

2.2 Exact Top-k Definitions
Answer Semantics. Let 𝐸𝑐𝑔 be all the possible entities that are

associated with category 𝑐𝑔 and let 𝑐𝑜𝑢𝑛𝑡 (𝑒𝑥) be the number of

occurrences of 𝑒𝑥 in T as identified by the entity linking function.

Figure 1: Entity list representation of Table 1. Bolded men-
tions represent mentions that links to associated entity.
Faded mentions do not link to the associated entity.

Let 𝐴(Q𝑘) be the answer of applying Q𝑘 over T . We call 𝐴(Q𝑘) a
valid answer iff:

• 𝐴(Q𝑘) ⊂ 𝐸𝑐𝑔 .

• ∀ 𝑒𝑥 ∈ 𝐴(Q𝑘), 𝑒𝑥 appears only once in 𝐴(Q𝑘).
• ∀𝑒𝑥 ∈𝐴(Q𝑘) : 𝑒𝑦 ∈ (𝐸𝑐𝑔 -𝐴(Q𝑘)), s.t. 𝑐𝑜𝑢𝑛𝑡 (𝑒𝑦) > 𝑐𝑜𝑢𝑛𝑡 (𝑒𝑥)

Given a query Q2 looking for the top-2 movies in tweets in Table

1 and represented in Figure 1, answerA(Q𝑘) = {Black Panther (2018),
Beautiful Creatures (2013)} and answer A(Q𝑘) = {Black Panther

(2018), La La Land (2016)} are both valid.

ProblemDefinition.Given a top-k queryQ𝑘 on top of a collection

of tweetsT , an entity lookup function LU, an entity linking function
EL and a category 𝑐𝑔 , efficiently generate an answer 𝐴(Q𝑘) that
satisfies the answer semantics of the exact approach .

Standard Solution. To generate a valid answer forQ𝑘 over T for a

specified category 𝑐𝑔 , the standard solution first links each mention

in T . Entities that are associated with category 𝑐𝑔 are filtered then

the 𝑘 entities with largest number of mentions are returned.

This approach requires the query executor to call the linking

function on every mention in T which is inefficient. In Section 4,

we will describe more efficient algorithms to compute the top-k

answers that exploit query semantics to significantly reduce the

number of entity linking functions invoked.

2.3 Approximate Top-k Definitions
Possible Worlds. A possible world𝑤𝑎 in our context consists of

an assignment of each ambiguous mention to one of the possible

entities based on its linking probability. Thus, the probability of

the possible world p(𝑤𝑎) can be computed as a product of such

assignments. For example, world 𝑤1 can consist of the following

assignments based on Figure 1, {(𝑚11

3
: Black Panther (2018)), (𝑚6

1
:

Black Panther (2018)), (𝑚1

1
: Black Panther (1977)), (𝑚9

1
: OTHER),

(𝑚2

2
: Beautiful Creatures (2013)), (𝑚8

2
: Beautiful Creatures (2013)),

(𝑚5

1
: OTHER), (𝑚10

2
: La La Land (2016)), (𝑚4

1
: OTHER), (𝑚7

1
: Space

Jam 2 (2021)), (𝑚8

1
: Stardust (2007)), (𝑚6

2
: OTHER)}. p(𝑤1) ≈ 0.0022.

Probabilistic Top-k Evaluation. Given a possible world 𝑤𝑎 ∈
W, we evaluate the top-k query on the world𝑤𝑎 . Let 𝑎𝑛𝑠 (𝑤𝑎) be
the top-k answer set for 𝑤𝑎 , then 𝑝 (𝑒𝑥 ∈ top-k answers of (W)),

2644

abbreviated 𝑡𝑘𝑝 (𝑒𝑥), can be calculated using the following equation:

𝑡𝑘𝑝 (𝑒𝑥) =
|W |
𝑎=1

𝑝 (𝑤𝑎) · 𝐼 (𝑒𝑥 ,𝑤𝑎)

where 𝐼 (𝑒𝑥 ,𝑤𝑎) = 1 if 𝑒𝑥 ∈ 𝑎𝑛𝑠 (𝑤𝑎), otherwise 𝐼 (𝑒𝑥 ,𝑤𝑎) = 0

(1)

Answer Semantics. The approximate and the exact approaches

share the same semantics with the change of third criteria to:

• ∀ 𝑒𝑥 ∈ A(Q𝑘), tkp(e𝑥) > 𝜏 .

where 𝜏 is a user-defined confidence.

Our top-k query evaluation semantic is similar to PT-k [18]

where only entities that have a top-k probability higher than a

specific threshold will be included in the answer. The order among

the returned top-k answer is ignored in our settings. Given the same

query Q2 that looks for the top-2 movies in tweets in Table 1, A

possible answer for A(Q2) could be {Black Panther (2018), Beautiful
Creatures (2013)} after the EL function has been called on some

mentions. Note that there could be more than 𝑘 entities that satisfy

the answer semantics, however choosing any 𝑘 entities from the

full answer set is sufficient and correct.

Problem Definition. Given a top-k query Q𝑘 on top of tweets col-

lection T , an entity lookup function LU, an entity linking function

EL, a category 𝑐𝑔 and a threshold value 𝜏 , we efficiently provide an

approximate solution 𝐴(Q𝑘) for Q𝑘 that satisfies the approximate

approach answer semantics.

2.4 Top-k Example Solution
Following the exact top-k definition, Q2 for finding the exact top-
2 movies in Table 1, the EL function is called on the following

mentions set {𝑚11

3
,𝑚6

1
,𝑚2

2
,𝑚8

2
}. We can safely return the set {Black

Panther (2018), Beautiful Creatures} as the answer without linking

any more mentions as the answer satisfies the answer semantics.

To solve the same query using the approximate approach where 𝜏 =

0.9, the calculation of 𝑡𝑘𝑝 (𝑒𝑥) for all 𝑒𝑥 is required. In our example

the top-k probabilities are {(Black Panther (2018): 0.93), Beautiful

Creatures (2013): 0.84), La La Land (2016), Space Jam 2 (2021): 0.27),

(Stardust (2007): 0.16), (Black Panther (1977): 0.13), (Oscar (1991):

0.05)}. After calling the EL function on {𝑚2

2
}, the top-k probabilities

become {(Black Panther (2018): 0.93), Beautiful Creatures (2013):

0.91), ..}. Hence, we stop the execution and report the answer for

Q2 as {Black Panther (2018), Beautiful Creatures} since it satisfies

the approximate solution’s answer semantics.

3 TQEL OVERVIEW
Algorithm 1 describes the abstract description of the TQEL approach

for linking entities while evaluating top-k queries. We will in the

following sections refine the above abstraction to specify TQEL-

exact (that identifies the true top-k results), and TQEL-approximate

that identifies top-k results with probabilistic guarantees. TQEL

framework consists of multiple phases where the first phase acts

as a preparatory step for the mentions to be linked to entities. It

also consists of a thinking phase that generates the execution plan

for the current iteration and an act phase that executes the plan.

Algorithm 1 TQEL Approach

1: procedure GetTopK(Q𝑘 ,T , 𝐿𝑈 , 𝐸𝐿)

2: 𝐸_𝐿𝐼𝑆𝑇 ← {}
3: for each 𝑡 ∈ 𝑇 do
4: {(𝑚𝑖

𝑗
, 𝑒𝑥 , 𝑝)} ← LU(𝑡𝑖)

5: {(𝑚𝑖
𝑗
, 𝑒𝑥 , 𝑝)} ← filterCategories({(𝑚𝑖

𝑗
, 𝑒𝑥 , 𝑝)})

6: addToLists(𝐸_𝐿𝐼𝑆𝑇 , {(𝑚𝑖
𝑗
, 𝑒𝑥 , 𝑝)})

7: while !stoppingCondition(Q𝑘 , 𝐸_𝐿𝐼𝑆𝑇) do
8: 𝑚𝑖

𝑗
← selectMention(𝐸_𝐿𝐼𝑆𝑇)

9: 𝑒𝑥 ← EL(𝑚𝑖
𝑗
, 𝑡𝑖)

10: updateLists(𝑒𝑥 ,𝑚
𝑖
𝑗
, 𝐸_𝐿𝐼𝑆𝑇)

11: produceAnswer(Q𝑘 , 𝐸_𝐿𝐼𝑆𝑇)

3.1 Preparatory Phase
In order to prepare the mentions for the thinking and execution

phase, The algorithm iteratevely loops over every tweet 𝑡𝑖 in T and

calls the LU function on 𝑡𝑖 to return a list of mentions with their

possible entities and the linking probabilities. After that, the entities

are filtered based on the category of the query Q𝑘 . Entities that
are not associated with category 𝑐𝑔 are removed and their linking

probability are added to the OTHER probability for that mention.

The algorithm creates a list for every entity 𝑒𝑥 associated with

category 𝑐𝑔 . The entity list (𝑙𝑒𝑥) has an unresolved mention list

which holds pointers to the mentions that could refer to entity 𝑒𝑥
along with the linking probabilities. Mentions are sorted descend-

ingly based on their linking probability allowing for instant access

to mentions with highest & lowest probabilities if needed when

selecting a mention to link. Every entity list 𝑙𝑒𝑥 stores min & max

counters (𝑚𝑖𝑛(𝑙𝑒𝑥) & 𝑚𝑎𝑥 (𝑙𝑒𝑥)) corresponding to the number of

linked mentions and the maximum number of mentions that could

link to 𝑒𝑥 respectively. Entity lists are held in another list and are

sorted based on the max counter in a descending order as shown

in Figure 2. Additionally, every mention is represented as an object

where it has a list of pointers to all the possible entities it could refer

to. The probability that mention𝑚𝑖
𝑗
does not link to any possible

entity is (1 -

𝑦
𝑥=1

𝑝 (𝑚𝑖
𝑗
, 𝑒𝑥), where 𝑒𝑥 is an entity associated with

category 𝑐𝑔) and this is considered the OTHER probability.

Figure 2: TQEL data structures.

2645

3.2 Thinking & Execution Phase
Mention Selection. In order to save time in the query execution,

we need to intelligently select the mentions to link that will help

in reaching an answer the top-k query efficiently. The mention to

be selected in the next iteration for dismabiguation is influenced

by different factors (e.g. the current spot of the possible entities of

𝑚𝑖
𝑗
and the probability of linking mention𝑚𝑖

𝑗
to entity 𝑒𝑥 that is

currently in the top-k). This process will vary when answering the

query using the exact approach or the approximate approach and

will be discussed later.

Entity Linking and Updating Entity Lists. If mention 𝑚𝑖
𝑗
is

linked to entity 𝑒𝑥 , 𝑙𝑒𝑥 is updated accordingly. If mention 𝑚𝑖
𝑗
is

shared among different possible entities, this will result in updat-

ing all the entity lists that have mention 𝑚𝑖
𝑗
in their unresolved

mentions list as well. For example, in Figure 1,𝑚1

1
could refer to

Black Panther (2018) with probability 0.6, Black Panther (1977) with

probability 0.1 or OTHER with probability 0.3. After calling the EL

function on𝑚1

1
, we find that it refers to Black Panther (2018). When

updating the lists, it is added to the list of Black Panther (2018) and

deleted from the list of Black Panther (1977). After linking some

of the mentions, the min & max of the affected entity lists will

change causing the order of entity lists to be adjusted accordingly.

Stopping Condition. In this step, the algorithm checks if a solu-

tion for Q𝑘 is found and can be validated. This test is different for

the exact approach as well as the approximate approach and will

be discussed in detail in Sections 4 & 5.

4 TQEL-EXACT APPROACH
To discuss TQEL-exact, we specify how to implement stopping
condition and mention selection functions.

4.1 Stopping Condition
To check for the stopping condition, TQEL-exact maintains the min-

imum and maximum possible counts of mentions associated with

each entity list. The stopping condition simply checks to see if there

exists 𝑘 entity lists that have min counters ≥ max counters of the

rest of the entity lists. Since the entity lists are sorted in decreasing

according to their max counters, we can check for the stopping
condition by checking if the min values of the first 𝑘 lists are greater

than or equal to the max counter of 𝑘 + 1 entity list.

4.2 Mention Selection
Given entity lists sorted based on the max values, the mention
selection strategy could either (a) choose mentions from lists with

highest 𝑘 max values to resolve that have a high probability of

resolving to true in order to increase the min value of such lists, (b)

choose mentions from the remaining lists with low probability of

resolving to true in order to reduce the max value of those lists, or

(c) choose mentions using a cost based strategy that minimizes the

estimated cost of reaching the stopping condition.

Greedy Approach that greedily chooses the mention that has the

highest linking probability from the entity list with the highest max

counter. For example, in Figure 1, mention𝑚11

3
will be chosen. After

the mention is linked, the max and min counters of each list are

updated along with the list order based to the result of entity linking.

It will stop linking mentions from entity list 𝑒𝑖 when𝑚𝑖𝑛(𝑙𝑒𝑖) ≥
𝑚𝑎𝑥 (𝑙𝑒𝑘+1) given that all the entity lists are sorted.

Benefit-based Approach that estimates the number of calls to

entity linking needed (𝐸𝑁𝐿) to prove that the 𝑘 entities with the

highest max counter is the top-k result set. It may either choose

mentions from the first 𝑘 entities with the highest max-values (with

the hope this increases the min-values of those lists) or choose

entities from the other lists (with the hope that it helps decrease

their max-values). 𝐸𝑁𝐿 is calculated as follows:

𝐸𝑁𝐿 =

𝑘
𝑖=1

𝑚𝑎𝑥𝑜 𝑓 (𝑚𝑎𝑥 (𝑙𝑒𝑘+1) −𝑚𝑖𝑛(𝑙𝑒𝑖), 0) (2)

where maxof is a function that returns the max of two numbers.

Let 𝐸𝑁𝐿(𝑆) be the the expected number of calls to entity link-

ing function for the given current entity lists and 𝐸𝑁𝐿(𝑆𝑚
𝑖
𝑗
,𝑒𝑥) be

expected number of calls to entity linking function when𝑚𝑖
𝑗
links

to 𝑒𝑥 after calling the entity function on𝑚𝑖
𝑗
. Then we choose the

mention with the highest benefit function score (shown in Equation

3). If an entity list is guaranteed to be in the top-k answer set (i.e. it

has a min counter ≥𝑚𝑎𝑥 (𝑙𝑒𝑘+1)), then mentions that are associated

with such entity will not be considered for linking.

𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑚𝑖
𝑗) = 𝐸𝑁𝐿(𝑆) − (


𝑚𝑖

𝑗
∈𝑙𝑒𝑥

(𝑝 (𝑚𝑖
𝑗 , 𝑒𝑥)

× 𝐸𝑁𝐿(𝑆𝑚
𝑖
𝑗
,𝑒𝑥)) + 𝑝 (𝑚𝑖

𝑗 ,𝑂𝑇𝐻𝐸𝑅) × 𝐸𝑁𝐿(𝑆𝑚
𝑖
𝑗
,𝑂𝑇𝐻𝐸𝑅))

(3)

The benefit-based approach can be optimized by limiting the

calculation of the benefit function to be on mentions that indeed

will reduce the value of 𝐸𝑁𝐿 if linked. Such optimization can be

achieved by calculating mentions from the first 2× 𝑘 entities as they

are the only mentions that will reduce 𝐸𝑁𝐿 in the next iteration.

For example, using the benefit function for mentions in Figure

1, ENL(S) = 6 and mention𝑚11

3
has a benefit score of: 6 - (0.74 * 5

+ 0.08 * 5 + 0.18 * 6) = 0.82. On the other hand, mention𝑚6

2
has a

benefit score of: 6 - (0.2 * 6 + 0.8 * 6) = 0. Therefore, choosing𝑚11

3

is helpful, at this stage, while choosing𝑚6

2
is wasteful.

5 TQEL-APPROXIMATE APPROACH
We describe TQEL-approximate by specifying how we implement

the three main functions in Algorithm 1, viz., functions for checking

the stopping condition, select mention, and update lists. The latter
two are straightforward once we have developed our strategy for

checking the stopping condition. We, thus, focus the discussion to

checking the stopping condition and will briefly describe the select
mention and update lists functions at the end.

In TQEL-approximate, the stopping condition is weaker compared

to that for the exact approach. In particular, TQEL-approximate

stops early when it identifies 𝑘 entities whose 𝑡𝑘𝑝 is above a user

specified threshold 𝜏 . TQEL-approximate iteratively calls the entity

linking function to reduce uncertainty until the stopping condition is
reached. This, in return, causes uncertainty in the counts associated

with the entities to be reduced resulting in satisfying the stopping
condition early.

Checking the stopping condition in TQEL-approximate, however,

is complex. It requires the enumeration of all possible worlds based

2646

on the linking probability of each mention and computing the prob-

ability of a particular entity to be in top-k. Since the number of

such worlds is exponential, enumeration is not feasible. To address

the above, we use an estimation based on sampling the possible

worlds allowing us to check for the stopping condition (i.e., prob-

ability of all entities, in a result set, to be in the top-k is above 𝜏)

with high confidence, as discussed below. We note that while sev-

eral works have explored top-k queries in probabilistic databases

[9, 18, 34, 35, 39], as discussed in Section 7, none of the existing

approaches have addressed the specific top-k query over count

beyond using a sampling based approach we adopt.

5.1 Checking for the Stopping Condition
The stopping condition in TQEL-approximate uses Monte-Carlo

(MC) simulation similar to prior work on probabilistic query pro-

cessing [21], [28]. MC simulation relies on randomness to generate

a sample world𝑤𝑎 from the set of possible worldsW. To implement

MC simulation, we iteratively select a mention𝑚𝑖
𝑗
and assign an

entity to that mention based on the linking probability distribution

of all possible entities 𝑒𝑥 that could be referred to by𝑚𝑖
𝑗
(including

the probability of assigning mention𝑚𝑖
𝑗
to OTHER). After assigning

all the mentions, a sample world𝑤𝑎 is generated and the result of

the top-k query is computed. Given 𝑁 sample worlds, we can com-

pute the top-k answers to Q𝑘 in those worlds, the results of which

can be used to estimate the probability of an entity being in the

top-k by using normal approximation to the binomial distribution.

We compute 𝑝𝑖 as in Equation 4 and use it to find the confidence

interval for the entity’s probability of being in the top-k.

𝑝𝑖 =
number of times 𝑒𝑥 appears in top-k

𝑁

𝑙𝑐𝑏 = 𝑝𝑖 − 𝑧 ×


𝑝𝑖 × (1 − 𝑝𝑖)
𝑁

(4)

The 𝑧-score in the equation above is a critical value for defining

the confidence interval and is decided based on the user-defined 𝜏

using a 𝑧-score table and the lower confidence bound (𝑙𝑐𝑏), based

on a normal approximation to the binomial distribution, accounts

for the uncertainty due to the finite number of MC samples.

TQEL-approximate checks the stopping condition by checking 𝑙𝑐𝑏
against 𝜏 . If 𝑙𝑐𝑏 is above 𝜏 , the stopping condition has been reached

and the top-k answer can be returned. However, if 𝑙𝑐𝑏 is below 𝜏 ,

TQEL-approximate continues with linking additional mentions that

changes the uncertainty of entities associated with the mention.

With enough number of iterations, the stopping condition is guaran-

teed to be met (e.g., when all the mentions have been linked). The

time complexity of the above implementation is is O(𝑀𝑁), where

𝑀 is the number of mentions and 𝑁 is the number of MC samples.

The above implementation of MC simulation to check the stop-
ping condition suffers from two limitations. First, as specified, the

approach has to pay the overhead of running an MC simulation

(complexity order of 𝑂 (𝑀𝑁)) after each EL call. One could batch

multiple mentions to be linked into batches of size 𝑏 to reduce

overhead of running the MC simulation repeatedly after each EL

call. The size of the batch 𝑏 has to chosen carefully as sub-optimal

choices could result in overheads. For instance, if 𝑏 it is too large,

we will pay the overhead of executing additional EL operations

(which are also expensive) unnecessarily since calling the stopping
condition without linking all the entities in the batch might also

have met the required stopping condition. On the other hand, if we

select 𝑏 to be too small, we end up paying the overhead of the MC

simulation repeatedly. A more efficient algorithm would minimize

the number of EL calls performed prior to calling the stopping condi-
tion function while simultaneously guaranteeing that the stopping
condition is met when it is called. Such an approach would minimize

both the linking cost, as well as, the cost of MC simulations.

Another limitation is that each time the stopping condition is

called, a new set of 𝑁 samples are generated using the simula-

tion. Such an overhead can be partially mitigated by observing

that the samples obtained for different mentions assignments are

independent and that between any two iterations (i.e., calls to the

stopping condition) the probability values of only a small fraction

of mentions (i.e., the mentions selected for linking in the previous

batch) have changed. We can speed up the simulation by leveraging

the work done during previous iterations. We next describe ways

TQEL-approximate uses to overcome the above two limitations.

5.2 Exploiting Filters
To reduce the number of times we execute the expensive MC simu-

lations, we employ a cheaper/less expensive filter to estimate if the

stopping condition will be met by the MC simulations evaluation.

Our motivation of invoking such a filter is analogous to the way

blocking functions is used to reduce calls to the more expensive

entity resolution function in the data cleaning literature [4, 37], or

cheaper predicates (e.g., simple selections) are executed first prior

to calling more expensive tests in query processing literature [6]. In

our setting, if a filter fails (i.e., determines that the stopping condi-
tion will not be met by the MC simulation evaluation), we continue

linking mentions to reduce uncertainly. This process proceeds until

the filter condition is satisfied (i.e. determines that it is likely that

the results will meet the stopping criteria after the MC simulations).

If the filter succeeds the suggested results are fed into the MC sim-

ulation to check/validate if indeed the stopping condition has been

reached. If not, then additional cleaning is performed and the filter

is appropriately refined (i.e., made more conservative/tighter) in an

iterative fashion. The filter based algorithm is depicted in Figure 3.

Figure 3: Stopping condition checking flow diagram

Effectively, our modified approach substitutes the more expen-

sive MC simulation by a (much cheaper) filter until the algorithm

reaches the point where we can be fairly confident that the stop-
ping condition has been reached. To design an effective filter, we

apply normal approximation statistics on the linking probabilities

2647

of mentions associated with a specific entity 𝑒𝑥 to compute the pos-

sible range of values for a given z-score (i.e., the z-value confidence

interval, where 𝑧 is a parameter associated with the filter). The con-

fidence intervals can be computed efficiently while constructing

the entity lists by computing the mean (𝜇) & standard deviation

(𝜎) of 𝑒𝑥 , as shown in Equation 5. We treat the upper & lower

bounds of the confidence intervals (shown in Equation 7) as the

approximate max & min (𝐴𝑃𝑚𝑎𝑥 & 𝐴𝑃𝑚𝑖𝑛).

𝜇𝑙𝑒𝑥 =


𝑚𝑖
𝑗
∈𝑙𝑒𝑥

𝑝 (𝑚𝑖
𝑗 , 𝑒𝑥) (5)

𝜎2
𝑙𝑒𝑥

=


𝑚𝑖
𝑗
∈𝑙𝑒𝑥

𝑝 (𝑚𝑖
𝑗 , 𝑒𝑥) × (1 − 𝑝 (𝑚

𝑖
𝑗 , 𝑒𝑥)) (6)

𝐴𝑃𝑚𝑖𝑛 = 𝜇 − 𝑥𝜎, 𝐴𝑃𝑚𝑎𝑥 = 𝜇 + 𝑥𝜎 (7)

where 𝑥 is the 𝑧-score associated with the desired confidence

level. For example, for the confidence level of 95%, 𝑥 = 1.96, etc.

From the perspective of efficiency, the filter based on normal dis-

tribution assumption, takes roughly 1.7𝑚𝑠 to calculate the 𝐴𝑃𝑚𝑎𝑥

& 𝐴𝑃𝑚𝑖𝑛 for 10000 entities. In contrast, MC takes about 3.13𝑚𝑠

to generate only 1 world sample for 10000 mentions, which for a

sample size of say a 1000 would take approximately 3 seconds.

After calculating the 𝐴𝑃𝑚𝑎𝑥 & 𝐴𝑃𝑚𝑖𝑛 for all entity lists, the

filter checks if a solution is reached based on its calculated approx-

imation. Given that we sort the entity lists descendingly based

on their 𝐴𝑃𝑚𝑎𝑥 values, if there exists 𝑘 entity lists with 𝐴𝑃𝑚𝑖𝑛 ≥
𝐴𝑃𝑚𝑎𝑥 of the entity that is in the 𝑘 +1 position then the condition is

met and the suggested result is validated using the MC simulations.

5.2.1 Choosing the Confidence Intervals. Note that the choice of 𝑥
in Equation 7 does not influence the correctness of the approach

since, in our case, the filter is only used as a hint, andwe still perform

the MC simulation for validation of the top-k answer. However,

the value 𝑥 plays an important role in determining the number

of calls to entity linking functions and the cost of generating and

updating the MC simulation results. Smaller the value of 𝑥 , smaller

the confidence interval, and, lesser the number of calls to entity

linking function in order to meet the filter condition (i.e., there

exists 𝑘 entities such that their 𝐴𝑃𝑚𝑖𝑛 ≥ 𝐴𝑃𝑚𝑎𝑥 of the rest of the

possible entities). Conversely, larger the value of 𝑥 , more entity

linking functions will need to be called before the filter condition

is met. Thus, choice of 𝑥 plays the key role in determining the

number of entity linking functions called and the number of times

MC simulation is invoked. An optimal value 𝑥∗ would allow for

enough entity linking functions to be called such that the MC

simulations test succeeds when called for validation.

To find such an 𝑥∗, we first introduce an estimation of the number

of calls to the entity linking function in order to find a candidate top-

k answer (ENC(𝛼𝑥)) given that 𝑥 is the 𝑧-score for the confidence𝛼𝑥 .

Given uncertainty of linking function, estimating such a number

is complex. We use a heuristic estimation that greedily favours

mentions that are associated with the 𝑘 entities having the highest

𝐴𝑃𝑚𝑎𝑥 and estimate the number of mentions to be cleaned on

those lists in order to report them as a candidate top-k result. The

estimation is as follows:

𝐸𝑁𝐶 (𝛼𝑥) =
𝑘
𝑖=1

𝑚𝑎𝑥𝑜 𝑓 (𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒𝑘+1 , 𝑥) −𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖 , 𝑥), 0)
1 − 𝜇𝑒𝑖

𝑚𝑎𝑥 (𝑒𝑖)
(8)

Where 𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖 , 𝑥) is the 𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖) if 𝑥 is the 𝑧-value.

𝐸𝑁𝐶 (𝛼𝑥) estimates the number of EL calls needed to shift the 𝜇

of the first𝑘 entities, given they are sorted on their𝐴𝑃𝑚𝑎𝑥 values, so

that their𝐴𝑃𝑚𝑖𝑛 ≥ 𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒𝑘+1). Note that 𝐸𝑁𝐶 (𝛼𝑥) is monotonic

in 𝑥 , i.e. as 𝑥 value increases ENC(𝛼𝑥) also increases. To see this

note that 𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒𝑖 , 𝑥) increases and 𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖 , 𝑥) decreases as
value of 𝑥 increases. Thus, the numerator in Equation 8, increases

with the increase in 𝑥 while the denominator is a constant. Thus

the function is monotonic.

We, further, need to quantify the probability of success and fail-

ure if an arbitrary 𝑥 value is chosen. Using normal approximation,

let us say there are two entity lists 𝑙𝑒𝑖 & 𝑙𝑒 𝑗 such that 𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖)
≤ 𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒 𝑗). The probability that 𝑙𝑒𝑖 count is below 𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖)
= (1−𝛼

2
) if the mentions’ probabilities follow normal distribution.

Similarly the probability of the count of 𝑙𝑒 𝑗 to be above 𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒 𝑗)
is the same. We conservatively assume that when count of 𝑙𝑒𝑖 is

below𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖) or the count of 𝑙𝑒 𝑗 is greater than𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒 𝑗), the
filter test (𝐴𝑃𝑚𝑖𝑛 (𝑙𝑒𝑖) is ≥ 𝐴𝑃𝑚𝑎𝑥 (𝑙𝑒 𝑗) would fail during validation.

We, thus, estimate the probability of success at the validation stage,

given the success of the filter, to be: (1− 2× 1−𝛼
2
) = 𝛼 . Likewise, the

probability of the validation failing given the success of the filter is

(1- 𝛼).

We now calculate the cost of TQEL-approximate given an 𝑥

value as 𝑐𝑜𝑠𝑡 (𝛼𝑥), in the case that the validation step succeeds. Let

𝐶𝐸𝐿 be the cost of the entity linking function, 𝐶𝑀𝐶 be the cost of

generating 𝑁 MC simulations for one mention and𝐶𝑉 as the cost of

running top-k query on all 𝑁 worlds to verify the answer. 𝑐𝑜𝑠𝑡 (𝛼𝑥)
can be calculated as follows:

𝑐𝑜𝑠𝑡 (𝛼𝑥) = 𝐶𝐸𝐿 × 𝐸𝑁𝐶 (𝛼𝑥) +𝐶𝑀𝐶 (𝑀 − 𝐸𝑁𝐶 (𝛼𝑥)) +𝐶𝑉 (9)

We next consider the cost of TQEL-approximate for a given 𝑥

value if the validation step fails. In such a case, we need to clean

more mentions to get better results. We do that by using a higher

𝑥 value such that the confidence that the suggested top-k result

succeeds is higher. Such a scenario requires paying an overhead

of linking more mentions, updating their linking results in the

stored MC simulations and executing the verification process again.

Consider that we begin TQEL-approximate with a value of 𝑥 = 𝑥1,

that results in failure at validation which prompts the algorithm to

use 𝑥 = 𝑥2, which succeeds.We denote the cost of such an execution

by 𝑐𝑜𝑠𝑡 ([𝛼𝑥1 , 𝛼𝑥2]). We estimate C(𝛼𝑥1 , 𝛼𝑥2), which is the cost of

choosing a value 𝑥1 where the suggested top-k answer set based

on 𝑥1 estimation fails and we choose a higher value 𝑥2, as follows:

𝑐𝑜𝑠𝑡 ([𝛼𝑥1 , 𝛼𝑥2]) = 𝑐𝑜𝑠𝑡 (𝛼𝑥1)
+ (𝐶𝐸𝐿 +𝐶𝑀𝐶) (𝐸𝑁𝐶 (𝛼𝑥2) − 𝐸𝑁𝐶 (𝛼𝑥1)) +𝐶𝑉

(10)

In the equation above, note that the case when 𝛼𝑥2 = 1 (i.e., the

confidence interval covers the entire distribution) is special. In such

a case, to meet the filter condition, one will need to link all ambigu-

ous entities and there will be no uncertainty in the top-k results.

Thus, the process will not need to execute the final validation step.

In such a case, the cost would be:

𝑐𝑜𝑠𝑡 ([𝛼𝑥1 , 1]) = 𝑐𝑜𝑠𝑡 (𝛼𝑥1) +𝐶𝐸𝐿 (𝑀 − 𝐸𝑁𝐶 (𝛼𝑥1)) (11)

2648

Algorithm 2 Choosing the critical value

1: procedure ChoosingCriticalValue(𝑀,𝐶𝐸𝐿,𝐶𝑀𝐶 ,𝐶𝑉 ,

𝜏, 𝑏𝑢𝑑𝑔𝑒𝑡) 𝛼𝑥 ← 𝜏 , 𝛼𝑥 ‘ ← 1, 𝑏 ← 0

2:3: while 𝛼𝑥 < 𝛼𝑥 ‘ 𝐴𝑁𝐷 𝑏 < 𝑏𝑢𝑑𝑔𝑒𝑡 do
4: if 𝐸𝐶 ([𝛼𝑥 , 𝛼𝑥 ‘]) ≤ 𝐸𝐶 (𝛼𝑥 ‘) then
5: 𝛼𝑥 ‘ ← (𝛼𝑥 ‘ + 𝛼𝑥)/2, 𝑏 ← 𝑏 + 1
6: else
7: 𝛼𝑥 ← 𝛼𝑥 ‘, 𝛼𝑥 ‘ ← 1, 𝑏 ← 0

8: return 𝛼𝑥
9: =0

We next introduce a general equation for estimating the expected

cost (𝐸𝐶 ([𝛼𝑥1 , 𝛼𝑥2 , ..., 𝛼𝑥𝑛])) as follows:

𝐸𝐶 ([𝛼𝑥1 , 𝛼𝑥2 , ..., 𝛼𝑥𝑛]) = 𝛼𝑥1𝑐𝑜𝑠𝑡 (𝛼𝑥1) + (𝛼𝑥2 − 𝛼𝑥1)
𝑐𝑜𝑠𝑡 ([𝛼𝑥1 , 𝛼𝑥2]) + ... + (𝛼𝑥𝑛−1 − 𝛼𝑥𝑛)𝑐𝑜𝑠𝑡 ([𝛼𝑥1 , 𝛼𝑥2 , ...𝛼𝑥𝑛])
+ (1 − 𝛼𝑥𝑛)𝑐𝑜𝑠𝑡 ([𝛼𝑥1 , ..., 𝛼𝑥𝑛 , 1)

(12)

TQEL-approximate uses Algorithm 2 to find the optimal value of

𝑥 . The algorithm searches for an 𝑥 value such that EC(𝛼𝑥) ≤ EC(𝛼𝑥 ‘)
for any 𝑥 ‘ ≥ 𝑥 . The algorithm chooses an initial 𝑥 value such that

𝛼𝑥 = user-defined 𝜏 . The intuition is that we want to choose an 𝑥

such that the probability of success when validating top-k results

given the success of the filter ≥ user-defined 𝜏 . If we choose x < 𝜏 ,

even if the filter succeeds the chance that the validation using MC

simulation will fail is high. Given the monotonic nature of ENC(𝛼𝑥),

The algorithm performs a binary search to find a 𝑥 ‘ value such that

EC(𝛼𝑥 ‘) < EC(𝛼𝑥). If no such value 𝑥 ‘ is found before a searching

budget 𝑏 is exhausted, we choose 𝑥 as the critical value. However,

if an 𝑥 ‘ value is found before 𝑏 is exhausted, we choose 𝑥 ‘ as the

new value for 𝑥 and we rerun the algorithm.

5.2.2 Efficacy of Filter. The filter provides a cheaper mechanism

to estimate the outcome of the query without having to pay for the

overhead of the real test. While TQEL’s correctness is independent

of the filter, its effectiveness in reducing overhead of unnecessary

EL calls and expensive MC based verification depend upon how

effective the filter is. Therefore, we define a metric to measure how

well the filter performs on different queries, datasets and probabili-

ties distribution of the top-k entity lists.

The filter in TQELmay determine the stopping condition has been
reached or not. For each such case, either the MC simulation would

agree with the filter’s determination or would disagree resulting

in 4 possible cases corresponding to true positive (TP) when both

the filter and MC simulator determine that the stopping condition
has been reached, false positive (FP) when the filer determines

the stopping condition has been reached but the MC does not, true

negative (TN), when both agree the stopping condition is not reached,
and false negative (FN) when the filter does not determine that

stopping condition has reached, but MC, if it is executed would have

determined that the condition has been reached. Note that FP would

result in an unnecessary call to the expensive verification, and the

FN would result in an unnecessary call to the EL function.

In TQEL, TP is always 1 and FP corresponds to number of times

the filter test is satisfied but the validation using MC simulation is

not. FN can be calculated by subtracting (the necessary EL calls)

from the actual number of calls performed when using the filter,

while TP refers to the number of times the filter test accurately pre-

dicted the negative outcome. Given the above, we can measure the

quality of the filter using any of the metrics one uses for measuring

performance of binary classifiers (e.g., precision, recall, specificity,

miss rate, etc) [33, 36]. We choose accuracy defined as the ratio of

the sum of TP and TF divided by the total sum of TP, TN, FP and FN

since both false positives and negatives result in expensive calls to

MC simulation / EL function respectively. We report in experiment

7, a detailed accuracy evaluation.

5.3 Monte-Carlo Simulation Implementation
In order to efficiently access the previous MC simulations, we keep

the results of the previous runs in a vector of size 𝑁 inside the

mention object. For each value of the vector 𝑣1, 𝑣2, ..., 𝑣𝑁 , we store

the entity that is assigned to that mention for that specific sampled

world. We, further, store the number of occurrences of each entity

𝑒𝑥 in the 𝑁 sampled worlds in a vector of size 𝑁 where each value

𝑣𝑎 corresponds to the number of assigned mentions for 𝑒𝑥 in world

𝑤𝑎 as shown in Figure 2. We store such values to easily retrieve the

number of occurrences for that entity in each sampled world𝑤𝑎 .

We also store the minimum number of occurrences of all 𝑁 worlds

for each entity list.

In order to smartly generate MC samples for mentions in TQEL-

approximate, we start by generating the samples for mentions of

entity lists with the highest𝐴𝑃𝑚𝑎𝑥 value. We iterate over the entity

lists in a decreasing order of 𝐴𝑃𝑚𝑎𝑥 values in order to generate

samples for the mentions which are associated with entities that

are competing to be in the top-k answer. If 𝑘 entity lists were found

such that their minimum number of occurrences ≥𝑚𝑎𝑥 (𝑒 𝑗) such
that 𝑒 𝑗 is not an entity from the first 𝑘 entities, we do not perform

MC simulation process for 𝑒 𝑗 .

5.3.1 Answer Verification. We use Equation 4 to calculate the 𝑙𝑐𝑏

for the first 𝑘 entities given that they are sorted based on their

𝐴𝑃𝑚𝑎𝑥 values. If for every entity, 𝑙𝑐𝑏 > 𝜏 , we return the first 𝑘

entities as the answer to Q𝑘 . However, if this step fails, we continue
to link more mentions until the stopping condition is met.

5.4 Mention Selection
TQEL-approximate follows a benefit-based function approach simi-

lar to Equation 3 where 𝐸𝑁𝐿 is replaced by 𝐸𝑁𝐶 . We define 𝐸𝑁𝐶 (𝑆)
as the expected number of calls such that the filter test passes given

the current entity lists and 𝐸𝑁𝐶 (𝑆𝑚
𝑖
𝑗
,𝑒𝑥) as the expected number of

calls needed for the filter to pass when𝑚𝑖
𝑗
links to 𝑒𝑥 . The benefit

function finds a mention 𝑚𝑖
𝑗
such that if linked brings us closer

to the top-k answer result. Note that choosing the entity with the

highest linking probability, say 0.9, might not always be the best

answer since the reduction in uncertainty, if it links to the desired

entity, is quite low. Therefore, the benefit function takes into ac-

count the probability of success as well as the reduction in the

expected number of EL calls.

5.5 Updating Lists and Approximations
5.5.1 𝐴𝑃𝑚𝑖𝑛 and 𝐴𝑃𝑚𝑎𝑥 Maintenance. We can instantly calculate

and update the𝐴𝑃𝑚𝑖𝑛 & 𝐴𝑃𝑚𝑎𝑥 values based on the stored values

of 𝜇 & 𝜎 for every entity list. Values of 𝜇 & 𝜎 are updated by

2649

adding the probability value of new mention𝑚𝑖
𝑗
to 𝜇 and adding

p(𝑚𝑖
𝑗
)) * 1 - p(𝑚𝑖

𝑗
)) to 𝜎2. Moreover, whenever we link mention𝑚𝑖

𝑗

to an entity 𝑒𝑥 , for every entity that was associated with mention

𝑚𝑖
𝑗
we update the values of 𝜇 & 𝜎 accordingly. To update entity 𝑒𝑥

which is linked to mention𝑚𝑖
𝑗
we add (1 - p(𝑚𝑖

𝑗
)) to 𝜇 and subtract

p(𝑚𝑖
𝑗
)) * 1 - p(𝑚𝑖

𝑗
)) from 𝜎2. For the other entities we subtract p(𝑚𝑖

𝑗
))

from 𝜇 and subtract p(𝑚𝑖
𝑗
)) * 1 - p(𝑚𝑖

𝑗
)) from 𝜎2 as well.

5.5.2 Monte-Carlo Simulation Maintenance. In order to properly

maintain the samples of the Monte-Carlo simulation algorithm, we

store the results of the previous 𝑁 runs to use ,if needed, in later

stages. Whenever a mention𝑚𝑖
𝑗
is linked to entity 𝑒𝑥 , we update

the number of occurrences of all the entities that could be referred

to by𝑚𝑖
𝑗
. We remove𝑚𝑖

𝑗
from any entity that is not 𝑒𝑥 and add it to

𝑒𝑥 in all the runs too. If the mention𝑚𝑖
𝑗
is not linked to any entity,

then we remove𝑚𝑖
𝑗
in all 𝑁 runs of the possible entities.

6 EXPERIMENTS
6.1 Experimental Setup
Datasets. We used two tweets datasets that have been collected

from Twitter’s public API without any specification or focus on

certain keywords, locations or topics. All these tweets are Eng-

lish tweets. We ran the two heuristics of TQEL-exact & TQEL-

approximate on both datasets and have conducted multiple exper-

iments to evaluate such approaches with different settings. We

have also used a synthetic dataset that have been generated by

introducing a 10% uniform noise to the linking probability of every

mention-entity pair using the small dataset. This was done by mul-

tiplying a randomly generated real number between (0.9, 1.1) to

every mentions linking probabilities. Afterwards, we normalize the

probabilities in order to satisfy that the sum of probabilities equals

1. Our goal is to test the robustness of TQEL when the initial linking

probability of a mention-entity pair is erroneous and study how

TQEL-exact and TQEL-approximate perform in such circumstances.

For the TQEL-approximate we have chosen 10,000 to be the number

of runs for the MC simulation for all of our experiments.

• Small Dataset. The first dataset contains 101,486 tweets and has
been collected from April 6-April 7, 2018.

• Large Dataset. The second dataset contains 11,250,894 tweets

and has been collected from May 30-June 9, 2019.

Approaches: In our experiments we use 6 baselines to compare

them with TQEL-approximate approach and they are as follows:

• Random Approach (random). In this approach we iteratively

choose a random mention to link until a solution is found. We

enhance the efficiency of this algorithm by limiting the choice of

mentions from lists that are competing to be in the top-k answer.

• TQEL-exact (Benefit Function) Approach. Discussed in 4.2.

• TQEL-exact (Greedy) Approach. Discussed in 4.2.

• TQEL-approximate (Greedy) Approach. For this approach,
TQEL chooses the mention with the highest probability in the list

rather than using the mention selection technique discussed in 5.4.

• NOFILTER Approach. In this approach, TQEL does not use the

filter proposed in 5.2 but rather validates the query using MC Sim-

ulation after each EL call. This approach follows the same mention

selection technique for TQEL-approximate.

• MC-NOOPT Approach. In this approach, TQEL does not ap-

ply the optimizations discussed in 5.3 & 5.5 but rather runs the

Monte-Carlo simulation every time a validation is needed.

Knowledge Base: We have used Wikipedia [3] as the source of

our KB in this experiment by indexing the whole Wikipedia dump

using Apache Lucene [1] to make it easier to query titles, text

bodies and other metadata. We have also tagged each Wikipedia

article with categories fetched from DBpedia to be able to answer

the top-k query with the category filter. We have only indexed the

articles that are included in our queries and the indexing process

took around a day and 20 hours.

Queries: the queries that are used for the experiments are top-k

queries of different categories in DBpedia. We have used multiple

categories from different levels in the DBpedia category hierarchy

in order to control the selectivity of the query. The selectivity is

corresponding to the number of mentions in all the tweets. For

example, a 10% selectivity indicates that 90% of the mentions will

be discarded as they do not have any possible entity that is associ-

ated with the category 𝑐𝑔 . We also execute the query on different

k-values and confidence scores. The categories that are used in

the experiments have been selected from 3 different levels in the

category hierarchy and are as follows:

• Top-level categories: Agent, Work and Place. With an average

selectivity of 55%.

•Med-level categories: Person, Musicalwork and Organization.

The average selectivity is 31%.

• Low-level categories: Film, Song, Populatedplace, Artist, Ath-

lete and Politician. The average selectivity is 13%.

Entity Extraction & Lookup Function: In our experiment, we

use simple dictionary-based entity lookup function that parses the

tweet sequentially and identifies the largest sequence of words that

matches an article in the KB. When there is a match, LU generates

the possible candidates for the identified mention and give each

candidate a linking probability based on a score of different factors

(e.g. page view count). LU takes roughly 0.5 milliseconds per tweet.

Entity Linking Function: In order to disambiguate a mention-

entity pair we use TagMe API [13] that returns an entity for the

mention in the tweet text along with a probability of linking. In our

setting we use entity linking function as a determining function by

assigning such mention to the entity if the linking function returns

a probability of 0.5 or more and vice versa. The linking process

takes on average 44 milliseconds.

6.2 Experiments results
Experiment 1: Number of entity linking calls & execution
time for different K values. In this experiment we show the

effectiveness when using different strategies and the advantage

that the TQEL-approximate approach provides as a function of 𝑘 .

We average the query results based on the category used over the

hierarchy levels. Total execution time for TQEL-exact consists of

thinking time, benefit function calculation, and the time needed

to resolve the chosen mentions. Moreover, for TQEL-approximate

total execution time is calculated by adding critical factor choosing

time, mention selection time, time to run MC simulation and time

to validate the top-k result using the MC runs.

2650

2 4 6 8 10 12 14 16 18 20
k-values

0

5000

10000

15000

20000

25000

30000

35000

40000

nu
m

be
r o

f E
L

ca
lls

All categories

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

10000

20000

30000

40000

50000

60000

70000

nu
m

be
r o

f E
L

ca
lls

Categories: agent/work/place

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

10000

20000

30000

40000

50000

nu
m

be
r o

f E
L

ca
lls

Categories: person/organization/musicalwork

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

5000

10000

15000

20000

nu
m

be
r o

f c
al

ls
to

 E
L

Categories: film/song/populatedplace/athlete/artist/politician

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

Figure 4: Comparing number of calls to entity linking function vs different k-values for multiple categories

2 4 6 8 10 12 14 16 18 20
k-values

0

250

500

750

1000

1250

1500

1750

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

All categories

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

500

1000

1500

2000

2500

3000

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Categories: agent/work/place

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

500

1000

1500

2000

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Categories: person/organization/musicalwork

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

2 4 6 8 10 12 14 16 18 20
k-values

0

200

400

600

800

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Categories: film/song/populatedplace/athlete/artist/politician

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

Figure 5: Comparing total execution time (seconds) vs different k-values for multiple categories

95
%

90
%

85
%

80
%

75
%

70
%

Confidence level

0

100

200

300

400

500

600

700

800

nu
m

be
r o

f c
al

ls
to

 E
L

All categories

k = 5
k = 10
k = 20

95
%

90
%

85
%

80
%

75
%

70
%

Confidence level

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f m
en

tio
ns

 sa
m

pl
ed

All categories

k = 5
k = 10
k = 20

95
%

90
%

85
%

80
%

75
%

70
%

Confidence level

0

10

20

30

40

50

60

70

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

All categories

k = 5
k = 10
k = 20

Figure 6: Detailed performance analysis of TQEL-approximate using different confidence levels.

From Figures 4 & 5, we can see that TQEL-approximate is

showing promising results in terms of total of number of calls to

the entity linking function and total query execution time. We

noticed that in all the queries we are saving in term of calls to EL

function, which is a bottleneck for the query, due to the use of

approximate query answering techniques. This is due to the fact

that the variance in the number of occurrences of each entity in

the top-k is quite large and in order to find a top-k answer we only

perform a much smaller number of EL calls.

We also see another trend in TQEL-approximate approach where

the number of EL calls for 𝑘 = 𝑥 is higher compared to 𝑘 = 𝑥−1 and
𝑘 = 𝑥 + 1, this happens because of having two or more contenders

that have relatively comparable counts which in return forces more

calls to EL function for mentions in the competing entities.

We illustrate the fact that TQEL-exact (for both heuristics) out-

performs the random approach in general by a huge margin (130x

saving) by smartly selecting mentions to disambiguate in an iter-

ative fashion. The reason behind that is by focusing on proving

that the 𝑘-highest entities in terms of max values. We also see the

number of calls and total execution time is increasing whenever 𝑘

increases while in TQEL-approximate that is not the case. The rea-

son behind such results is that, if the approximation clearly shows

that the top-k result without any competition from the 𝑘 + 1 enti-
ties, then little work in terms of entity linking is needed regardless

of 𝑘 . However, for TQEL-exact, we need to pay the overhead of

performing such EL calls to make sure that the top-k result is valid.

In the experiments’ figures, we do not include the execution time

of the entity extraction and lookup function since it is shared by

all strategies. Additionally, this process could be executed on the

entire dataset during ingestion time since it is cheap. We also do not

include the numbers of the naive approach that requires cleaning

all tuples before running the query although it is clear that our

proposed strategies outperform such strategy. The naive approach

takes around 145,023 EL calls and around 1.8 hours to execute. We

do not report the naive approach numbers as it is the same over all

queries and stretches the figures making them less readable.

2651

Experiment 2: Detailed analysis of TQEL-approximate per-
formance. In this experiment we analyze the performance of

TQEL-approximate for different confidence levels that are given by

the query. We will focus on 3 factors that are of interest: number

of EL calls, number of mentions sampled using our MC technique

and total execution time of the query. We also report the average

of the query results over all categories for this experiment.

In the left sub-figure of Figure 6, we can see that the confidence

level heavily affects the number of entity linking calls that ends up

being executed. The number of calls to EL function is growing as

the confidence level rises. The number of calls to EL is also affected

by the 𝑘 value as it might cause a significant increase in EL calls

due to the competitiveness of entities for that rank based on the

number of occurrences.

We also report the difference in number of mentions required

for the MC simulation in order to generate a top-k answer set. The

middle sub-figure in Figure 6 illustrates the amount of savings that

are achieved by smartly limiting the generation of MC simulations

to mentions associated with competing entities as discussed in 5.3.

The number of sampled mentions also decreases when the number

of resolved mentions increases as we will not need to generate

samples for the linked mentions.

In the last sub-figure of Figure 6, we report the total execution

time of the queries which consists of (critical factor choosing time,

mention selection time, time to run MC simulation and validate top-

k answer set using the MC runs). In this experiment we illustrate

the fact that in general, choosing a lower 𝜏 leads to less number of

entity linking calls and therefore less overall execution time due to

the fact of less EL calls.

Experiment 3: Scalability of TQEL. This experiment illustrates

the impact of large datasets on TQEL-exact & TQEL-approximate

and that the amount of savings we are able to achieve using the

TQEL-approximate is noticeable. We have run the query on the

category "film" and reported the performance overmultiple𝑘 values.

The "film" category had roughly 10% selectivity in the large dataset.

From Figure 7, we see the same pattern or trend where the savings

by TQEL-exact approach in term of EL calls is more than 100x

for the calls needed to fully disambiguate all the mentions in the

tweets. TQEL-approximate results are also promising and are quite

similar to results that have been achieved on smaller dataset, even

though in the large dataset we are dealing with a large number

of tweets. This is due to the fact that the difference of number of

occurrences between entities that are in the top-k is quite large

which is allowing TQEL-approximate to return the result with

high confidence without much entity linking calls. This experiment

clearly shows that in real-world datasets differences in the number

of occurrences should be exploited by returning an answer with

high confidence using approximation techniques rather than paying

the huge overhead of reporting the exact answer.

Experiment 4: Score of TQEL-approximate results. In this ex-

periment wemeasure the accuracy for the results returned by TQEL-

approximate for different 𝜏 values. To evaluate the returned answer

set we have used two metrics:

• Precision: Represents the fraction of elements in the approxi-

mate answer set compared to the exact top-k set.

• Rank Distance: A modified version of the footrule distance to

compute the distance of the inaccurate entity 𝑒𝑖 in the approximate

answer set to their exact rank. To compute rank distance we com-

pute the following:
1

𝑘

𝑘
𝑖=1

𝑚𝑎𝑥𝑜 𝑓 (𝑒𝑥𝑎𝑐𝑡𝑒𝑖 −𝑘, 0) where 𝑒𝑥𝑎𝑐𝑡𝑒𝑖 is the
exact rank of 𝑒𝑖 . We modified the distance calculation since we only

report the top-k answer set without any order between the top-k

answer set.

In Table 2, we averaged the scores of each confidence levels over

all categories and over 𝑘 values (1 - 20). We see that rank distance

is heavily influenced by the chosen 𝜏 and the difference in EL calls.

Experiment 5: Robustness of TQEL. this experiment illustrates

the effect of introducing noise to the linking probability to study

its impact on the query execution time and answer quality.

Table 2: Evaluation metrics for different confidence levels

Confidence 95% 90% 85% 80% 75% 70%

Precision 0.95 0.93 0.92 0.92 0.91 0.90

Rank Distance 0.069 0.091 0.113 0.130 0.160 0.168

From Figure 8, TQEL-approximate approach is quite resilient

and dominates other approaches in terms of the number of EL calls.

However, the answer quality has dropped where the precision is

0.90 and rank distance is 0.089 for the confidence of 95%.

2 4 6 8 10 12 14 16 18 20
k-values

0.0

0.5

1.0

1.5

2.0

nu
m

be
r o

f E
L

ca
lls

1e6 Category: film (Large dataset)

Random
TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)

Figure 7: EL calls vs k-values
for large dataset.

2 4 6 8 10 12 14 16 18 20
k-values

0

5000

10000

15000

20000

25000

30000

35000

40000

nu
m

be
r o

f c
al

ls
to

 E
L

All categories (Noisy dataset)

TQEL-exact (benefit-based)
TQEL-exact (greedy)
TQEL-approximate (95% confidence)
Random

Figure 8: EL calls vs k-values
for noisy dataset.

Experiment 6: Comparing TQEL with other approximate
baselines. In this experiment we report the total execution time of

the query for different proposed baselines. In Figure 9, we illustrate

the execution time of the EL functions, denoted as [baseline] EL, in

a different color to show how different baselines perform. NOFIL-

TER approach was as expected the best in terms of EL function

time since we validate the query after each call resulting in not

executing any unnecessary EL calls. However, in terms of overall

execution of the query it performed the worst due to the extremely

high number of expensive verification overhead (factor of number

of EL calls). We stopped running the query after 5 minutes due

to the overhead caused by some baselines. MC-NOOPT approach

verification cost was also high compared to TQEL-approximate

since MC simulations will be run each time the validation step is

performed. This clearly shows the effectiveness of our proposedMC

optimizations. We see that TQEL-approximate performed better

than TQEL-approximate (Greedy), especially with the execution

time of the EL functions caused by the 9% increase of EL calls

compared to TQEL-approximate.

2652

Experiment 7: Evaluating Filter’s Efficacy. This experiment

shows the accuracy of TQEL-approximate, TQEL-approximate

(Greedy) and NOFILTER baselines. In order to calculate the ac-

curacy for the first two, we follow the measurement discussed in

Section 5.2.2. In the case of NOFILTER, since it never characterizes

data as negative (it always invokes the expensive MC simulation),

the values for TN and FN are 0 and the value of TP is 1, while the

value of FP are number of EL calls - 1. As a result, its accuracy is

very poor (below 1% for all categories) we do not show the results in

Figure 10. Figure 10 illustrates the accuracy of TQEL-approximate

& TQEL-approximate (Greedy) with a reported average of 83% and

64% accuracy, respectively, over all categories. In the experiment we

further analyzed and realized a correlation between the distribution

of the top-k entity lists mentions’ probabilities and the accuracy

of the result. For the agent category where the size of the top-20

entity lists is relatively large, we get an accuracy of 95%. For agent,

the average size of the top-20 lists was 149.75, the average 𝜎 based

on normal approximation was 4.68 and the average 𝜇 difference

between normal approximation and MC simulation was 0.1% (thus

normal approximation is a better estimate), we get an accuracy of

95%. On the other hand, the same numbers for the athlete cate-
gory were 47.56, 1.7 and 4.1% which effects the normal distribution

statistics to be inaccurate resulting in a lower filter accuracy.

5 10 20

k-values

0

50

100

150

200

250

300

To
ta

l E
xe

uc
tio

n
Ti

m
e

(s
)

Total Exeuction time for different baselines
TQEL-App. EL
TQEL-App. T
TQEL-App.
(Greedy) EL
TQEL-App.
(Greedy) T
NOFILTER EL
NOFILTER T
MC-NOOPT EL
MC-NOOPT T

Figure 9: Execution Time

pe
rs

on

po
pu

la
te

dp
la

ce

or
ga

ni
za

tio
n

po
lit

ici
an

at
hl

et
e

m
us

ica
lw

or
k

so
ng

ar
tis

t

fil
m

pl
ac

e

wo
rk

ag
en

t

Catogory

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy of Baselines

TQEL-Approximate
TQEL-Approximate
(Greedy)

Figure 10: Accuracy

7 RELATED WORKS
Probabilistic Top-k Evaluation. Based on the survey [20], the

top-k queries in probabilistic databases can be characterized into

top-k selection queries, top-k join queries and top-k aggregation

queries. Furthermore, top-k queries are evaluated under different

query semantics: U-Topk, U-kRanks [34, 35], Global-Topk [39] and

PT-k [18]. The query in TQEL corresponds to a top-k aggregation

query over count using a slightly modified version of PT-k [18]

semantics. As discussed clearly in [35], approaches to evaluate

top-k selection queries [20] cannot be applied to evaluate top-k

aggregation queries. Prior work on top-k aggregation [35] consid-

ers aggregate functions such as AVERAGE and SUM. While their

algorithm would work with top-k COUNT queries we study, it

would result in an exponential blowup making it hard to execute

the top-k query (we have implemented their strategy and ran out

of memory even for a small dataset when executing our query).

Moreover, as stated in [35], their approach incurs extra overhead

and might not be an efficient way for solving top-k aggregation

problems that follow our answer semantics. The algorithm based

on MC sampling we use, while simple, is likely the most practical

approach to implementing top-k aggregate count queries. Note that

the specific choice of the top-k evaluation algorithm is not our

major contribution but we rather focus on reducing the overhead

of entity linking using the query context.

Query-Time Data Cleaning. There have been emerging body of

work that studied problems related to query-time data cleaning

[4, 15, 15, 37] that focus on reducing the number cleaning steps

in order to efficiently answer queries and treat data cleaning al-

gorithms as black boxes. However, in [4, 15] they do not focus

on ranking queries such as top-k queries. Cleaning dirty data to

answer top-k aggregation queries have been studied previously in

[37] in the context of the entity resolution problem. They proposed

an interactive algorithm for Locality-Sensitive Hashing that essen-

tially exploits the top-k semantics to cut down the cost of blocking

only to clusters that are dense so that the blocking cost per tuple

on sparse areas of data are very small. Our approach, similar to

this work, also exploits semantics of the top-k operator to reduce

costs. However, the context and solutions are different. While their

work focused on top-k with clustering/grouping, our work exploits

semantics in the context of classification/lookup type of entity dis-

ambiguation in the terminology of [7]. While the intuition is shared,

the techniques are entirely different. In addition, in our settings,

simply exploiting top-k semantics deterministically does not offer

enough speedup, and thus, the main contribution of this paper is

an approximate version which the prior work did not explore. [7]

considers the problem of cleaning for top-k query in uncertain

databases. However, it only considered top-k selection queries and

hence not comparable to TQEL. Top-k queries in the context of

crowdsourcing [8, 11, 23, 25, 26] have also tried to minimize the

crowdsourced cleaning work. The model, however, is very different

from what we use in TQEL - e.g., in such work a human worker,

given 2 or more lists, provides ordering amongst the lists. Such is

not the case by calling a linking function in TQEL making their

solution inapplicable to our setting.

8 CONCLUSION
In this paper, we presented TQEL, a framework to support queries

that retrieve top-k entities belonging to a user-specified category

in a collection T . TQEL exploits the query semantics to reduce

the number of entity linking function calls for mentions in T . It
provides the option of answering the query exactly with determin-

istic guarantees or approximately with probabilistic guarantees.

The paper focuses on the approximate approach that uses an im-

plementation of Monte-Carlo technique to efficiently evaluate the

query with guarantees. To reduce the overhead of Monte-Carlo

simulations (which is expensive), TQEL-approximate uses normal

approximation to estimate the count of each entity as a filter. To

reduce the number of calls to the entity linking function, a benefit-

based function is used to select mentions to link. In future work, we

aim to explore the possibility of using such a filter-based approach

for different queries that require data cleaning (e.g. SPJ queries).

ACKNOWLEDGMENTS
This work was supported by NSF Grants 1527536, 1545071, 2032525,

1952247, 1528995, 2008993, 2044107, 2139103 and DARPA under

Agreement No. FA8750-16-2- 0021. Abdulrahman Alsaudi was sup-

ported by KSU’s Graduate Studies Scholarship.

2653

REFERENCES
[1] 2021. Apache Lucene. https://lucene.apache.org/.

[2] 2021. Wikipedia. https://www.wikipedia.org.

[3] 2021. Wikipedia:Database download. https://en.wikipedia.org/wiki/Wikipedia:

Database_download.

[4] Hotham Altwaijry, Sharad Mehrotra, and Dmitri V Kalashnikov. 2015. Query: A

framework for integrating entity resolution with query processing. Proceedings
of the VLDB Endowment 9, 3 (2015), 120–131.

[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[6] Ron Avnur and Joseph M Hellerstein. 2000. Eddies: Continuously adaptive query

processing. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. 261–272.

[7] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. 2003.

Robust and efficient fuzzy match for online data cleaning. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data. 313–324.

[8] Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi.

2015. Crowdsourcing for top-k query processing over uncertain data. IEEE
Transactions on Knowledge and Data Engineering 28, 1 (2015), 41–53.

[9] Graham Cormode, Feifei Li, and Ke Yi. 2009. Semantics of ranking queries for

probabilistic data and expected ranks. In 2009 IEEE 25th International Conference
on Data Engineering. IEEE, 305–316.

[10] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. 2012.

ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for

large-scale entity linking. In Proceedings of the 21st international conference on
World Wide Web. 469–478.

[11] Eyal Dushkin and Tova Milo. 2018. Top-k sorting under partial order information.

In Proceedings of the 2018 International Conference on Management of Data. 1007–
1019.

[12] MS Fabian, K Gjergji, WEIKUM Gerhard, et al. 2007. Yago: A core of semantic

knowledge unifying wordnet and wikipedia. In 16th International World Wide
Web Conference, WWW. 697–706.

[13] Paolo Ferragina and Ugo Scaiella. 2010. Tagme: on-the-fly annotation of short text

fragments (by wikipedia entities). In Proceedings of the 19th ACM international
conference on Information and knowledge management. 1625–1628.

[14] Abhishek Gattani, Digvijay S Lamba, Nikesh Garera, Mitul Tiwari, Xiaoyong

Chai, Sanjib Das, Sri Subramaniam, Anand Rajaraman, Venky Harinarayan, and

AnHai Doan. 2013. Entity extraction, linking, classification, and tagging for social

media: a wikipedia-based approach. Proceedings of the VLDB Endowment 6, 11
(2013), 1126–1137.

[15] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.

Cleaning Denial Constraint Violations through Relaxation. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 805–815.

[16] Stephen Guo, Ming-Wei Chang, and Emre Kiciman. 2013. To link or not to link?

a study on end-to-end tweet entity linking. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 1020–1030.

[17] Xianpei Han and Jun Zhao. 2009. NLPR_KBP in TAC 2009 KBP Track: A Two-

Stage Method to Entity Linking.. In TAC. Citeseer.
[18] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. 2008. Ranking queries on

uncertain data: a probabilistic threshold approach. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. 673–686.

[19] Wen Hua, Kai Zheng, and Xiaofang Zhou. 2015. Microblog entity linking with

social temporal context. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 1761–1775.

[20] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-k

query processing techniques in relational database systems. ACM Computing
Surveys (CSUR) 40, 4 (2008), 1–58.

[21] Ravi Jampani, Fei Xu, MingxiWu, Luis Leopoldo Perez, Christopher Jermaine, and

Peter J Haas. 2008. MCDB: a monte carlo approach to managing uncertain data.

In Proceedings of the 2008 ACM SIGMOD international conference on Management
of data. 687–700.

[22] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. 2010.

Overview of the TAC 2010 knowledge base population track. In Third text analysis
conference (TAC 2010), Vol. 3. 3–3.

[23] Jongwuk Lee, Dongwon Lee, and Seung-won Hwang. 2017. CrowdK: Answering

top-k queries with crowdsourcing. Information Sciences 399 (2017), 98–120.
[24] Rui Li, Shengjie Wang, and Kevin Chen-Chuan Chang. 2013. Towards social data

platform: Automatic topic-focused monitor for twitter stream. Proceedings of the
VLDB Endowment 6, 14 (2013), 1966–1977.

[25] Yan Li, Hao Wang, Ngai Meng Kou, Zhiguo Gong, et al. 2020. Crowdsourced

top-k queries by pairwise preference judgments with confidence and budget

control. The VLDB Journal (2020), 1–25.
[26] Xin Lin, Jianliang Xu, Haibo Hu, and Zhe Fan. 2017. Reducing Uncertainty of

Probabilistic Top-𝑘 Ranking via Pairwise Crowdsourcing. IEEE Transactions on
Knowledge and Data Engineering 29, 10 (2017), 2290–2303.

[27] Sean Monahan, John Lehmann, Timothy Nyberg, Jesse Plymale, and Arnold Jung.

2011. Cross-Lingual Cross-Document Coreference with Entity Linking.. In TAC.
[28] Christopher Re, Nilesh Dalvi, and Dan Suciu. 2007. Efficient top-k query evalu-

ation on probabilistic data. In 2007 IEEE 23rd International Conference on Data
Engineering. IEEE, 886–895.

[29] Mehdi Sadri, Sharad Mehrotra, and Yaming Yu. 2016. Online adaptive topic

focused tweet acquisition. In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management. 2353–2358.

[30] Wei Shen, JianyongWang, and Jiawei Han. 2014. Entity linking with a knowledge

base: Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data
Engineering 27, 2 (2014), 443–460.

[31] Wei Shen, JianyongWang, Ping Luo, and MinWang. 2012. Linden: linking named

entities with knowledge base via semantic knowledge. In Proceedings of the 21st
international conference on World Wide Web. 449–458.

[32] Wei Shen, JianyongWang, Ping Luo, andMinWang. 2013. Linking named entities

in tweets with knowledge base via user interest modeling. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 68–76.

[33] Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance

measures for classification tasks. Information processing & management 45, 4
(2009), 427–437.

[34] Mohamed A Soliman, Ihab F Ilyas, and Kevin Chen-Chuan Chang. 2007. Top-k

query processing in uncertain databases. In 2007 IEEE 23rd International Confer-
ence on Data Engineering. IEEE, 896–905.

[35] Mohamed A Soliman, Ihab F Ilyas, and Kevin Chen-Chuan Chang. 2008. Prob-

abilistic top-k and ranking-aggregate queries. ACM Transactions on Database
Systems (TODS) 33, 3 (2008), 1–54.

[36] Alaa Tharwat. 2020. Classification assessment methods. Applied Computing and
Informatics (2020).

[37] Vasilis Verroios and Hector Garcia-Molina. 2019. Top-k entity resolution with

adaptive locality-sensitive hashing. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1718–1721.

[38] Wei Zhang, Chew Lim Tan, Yan Chuan Sim, and Jian Su. 2010. NUS-I2R: Learning

a Combined System for Entity Linking.. In TAC.
[39] Xi Zhang and Jan Chomicki. 2009. Semantics and evaluation of top-k queries in

probabilistic databases. Distributed and parallel databases 26, 1 (2009), 67–126.

2654

https://lucene.apache.org/
https://www.wikipedia.org
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download

