
SAM: Accelerating Strided Memory Accesses
Xin Xin

Electrical and Computer Engineering Department,
University of Pittsburgh

USA
xix59@pitt.edu

Yanan Guo
Electrical and Computer Engineering Department,

University of Pittsburgh
USA

yag45@pitt.edu

Youtao Zhang
Department of Computer Science, University of Pittsburgh

USA
zhangyt@cs.pitt.edu

Jun Yang
Electrical and Computer Engineering Department,

University of Pittsburgh
USA

juy9@pitt.edu

ABSTRACT
Strided memory accesses are an important type of operations for
In-Memory Databases (IMDB) applications. Strided memory ac-
cesses often demand data at word granularity with fixed strides.
Hence, they tend to produce sub-optimal performance on DRAM
memory (the de facto standard memory in modern computer sys-
tems) that accesses data at cacheline granularity. Recently proposed
optimizations either introduce significant reliability degradation or
are limited to non-volatile crossbar memory structures.

In this paper, we propose a low-cost DRAM-based optimization
scheme SAM for accelerating strided memory accesses. SAM con-
sists of several designs. The primary design, termed SAM-IO, is to
exploit under-utilized I/O resources in commodity DRAM chips to
support high-performance strided memory accesses with near-zero
hardware overhead. Based on SAM-IO, an enhanced design, termed
SAM-en, is further proposed by combining several innovations to
achieve overall efficiency on energy and area. Our evaluation of the
proposed designs shows that SAM not only achieves high perfor-
mance improvement (up to ∼ 4.2×) but also maintains high-level
reliability protection for server systems.

CCS CONCEPTS
• Hardware→ Dynamic memory; • Computer systems orga-
nization → Special purpose systems.

KEYWORDS
DRAM, strided access, main memory

ACM Reference Format:
Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang. 2021. SAM: Acceler-
ating Strided Memory Accesses. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’21), October 18–22,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480091

2021, Virtual Event, Greece. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3466752.3480091

1 INTRODUCTION
Strided memory accesses have become an important type of opera-
tions in IMDB applications, e.g., accessing one field of data from a
list of multi-field records in a database. Strided memory accesses
are often at word granularity with fixed strides. This exhibits low
spatial locality and thus, high access overhead on DRAMmemories,
the de facto standardmemory inmodern computer systems. Figure 1
depicts an example of an array of records saved in an in-memory
database: each memory row stores n records, each cacheline (64B)
contains one record, and each record contains eight fields. To pro-
cess a query that summarizes field f 1 from all records, we generate
consecutive memory accesses but each returned line provides only
one field and there is no intra-cacheline data reuse.

A simple software based approach can speed up strided accesses
by saving two data copies: one in row-wise while the other in
column-wise. This leads to 100% storage overhead, as well as syn-
chronization overhead between the two copies. Simple hardware
based techniques, e.g., those reducing memory access granularities
AGMS [52], DGMS [53], subchannel [7], and FGDRAM [35], divide
the original rank (bank) into multiple sub-ranks (sub-banks) and
let one memory access fetch a fraction of the data from one sub-
rank (sub-bank), thereby supporting multiple accesses sharing the
bandwidth simultaneously. While they speed up random accesses
from different sub-ranks (sub-banks), they are ineffective for strided
memory accesses whose data tend to reside in the same sub-rank
(sub-bank).

Two recent studies proposed hardware support that can effec-
tively improve the efficiency of strided accesses. Seshadri et al. [40]
proposed GS-DRAM to distribute aligned data fields from differ-
ent rows to different chips. They then enhanced the address bus
such that one memory access drives different rows from different
chips with each chip returning one requested field data. GS-DRAM
can achieve significant memory performance improvement, e.g.,
the same number of memory requests return 8× useful data for
a memory rank with eight chips. However, GS-DRAM faces one
major limitation, i.e., it cannot effectively support error-checking
and correcting (ECC) during memory accesses, which restricts its
adoption in systems that demand reliability, e.g., the servers in data
centers.

324

https://doi.org/10.1145/3466752.3480091
https://doi.org/10.1145/3466752.3480091
https://doi.org/10.1145/3466752.3480091

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang

Figure 1: Strided memory accesses exhibit low spatial local-
ity and low data reuse.

Wang et al. [48] proposed RC-NVM for supporting strided mem-
ory accesses on crossbar based non-volatile memories. RC-NVM
exploits dual addressing to enable memory accesses in both row-
wise and column-wise directions. Given RC-NVM leverages the
symmetry of WLs (wordlines) and BLs (bitlines) in a crossbar, it is
applicable only to crossbar structures. In addition, RC-NVM tends
to introduce large hardware overhead. It duplicates peripheral cir-
cuit for the crossbar array, representing 33% area overhead. The
complex layout in RC-NVM also demands two extra metal layers
for the memory die, a large overhead for typical RRAM chips that
have four metal layers [24].

In this paper, we propose a low-cost architectural scheme to ac-
celerate strided memory (SAM) accesses for DRAM based memories.
There are two design goals of SAM. The first one is to maintain
high level data reliability protection for DRAM based computer
systems, in particular, servers in data centers that adopt chipkill
technology [2, 11, 16, 17] to prevent chip level failures. The sec-
ond one is to minimize the hardware cost for DRAM chips, whose
internals are highly optimized and thereby sensitive to hardware
modifications. For these purposes, SAM mostly exploits the under-
utilized resources in commodity DRAM chips to support strided
memory accesses. SAM achieves chipkill compatibility by keeping
the fine-grained accessed data consistent with chipkill codeword.
In particular, SAM consists of three designs. SAM-sub utilizes the
subarray organization to enable data aggregation in either column-
or row- wise directions for supporting both strided accesses and
traditional row accesses respectively. SAM-IO leverages the under-
utilized I/O resources in commodity DRAM chips to support high-
performance strided memory accesses. SAM-en combines SAM-sub
and SAM-IO to achieve the overall efficiency on energy and area.
Our evaluation of the proposed designs shows that SAM not only
achieves high performance strided accesses but also maintains high
reliability protection for server systems.

For the rest of the paper, we briefly discuss the background and
motivation in Section 2 and Section 3, respectively. We elaborate
the SAM design in Section 4 and its system support in Section 5.
We present the evaluation results in Section 6. We conclude the
paper in Section 7.

2 BACKGROUND
2.1 DRAM Basics
Figure 2 illustrates the DRAM basics, ranging from channel con-
nection (Figure 2(a)) to cell array organization (Figure 2(d)). Each
DRAM channel consists of multiple ranks while each rank consists
of multiple chips. The choice of the number of chips depends on
the computing environment, the channel width, and the chip I/O

width. For servers in data centers, a typical channel configuration
consists of 18 ×4 chips with 16 data chips and two parity chips
(Figure 2(a)). Each chip has four pins such that a total of 64 bits
from data chips can be communicated in one transfer, referred as
one beat. Transferring a typical cacheline (64B) requires eight beats.

Figure 2: The DRAM (DDR4) hierarchical structure: (a) rank,
(b) chip, (c) bank, and (d) mat.

Each DRAM chip consists of multiple banks. In modern DRAM,
e.g., DDR4/DDR5 [19, 20], the banks are grouped as bank groups
with each bank group typically having four banks and an indepen-
dent GIO bus connecting to the I/O port (Figure 2(b)). Bank groups
maintain semi-independent control logic such that the timing pa-
rameters for consecutive operations from different bank groups are
shorter than those from the same bank group. Each bank contains
multiple subarrays that are connected by global bitlines (BLs) and
column select lines (CSLs) (Figure 2(c)). Each subarray consists of
multiple mats with each mat being a 2D cell array (Figure 2(d)).
Inside a mat, the cells are vertically connected by local BLs to local
SAs, referred to as row buffers, and horizontally connected by local
wordlines (WLs) [32, 54].

2.2 I/O Interface
I/O Buffer1. Recent technology advances achieve significant im-
provements on the I/O bus frequency, e.g., up to 1600 MHz in DDR3
and 3200 MHz in DDR4, but little reduction on the operation la-
tency of DRAM arrays, i.e., banks and subarrays. To bridge the gap
between I/O bus and inner arrays, modern DRAM chips augment
the I/O buffer size to save all the data to be transferred in one burst
(8 beats). For example, for the ×4 DRAM chip, a 32b I/O buffer is
shared by four pins (DQs) so that the data gets transmitted to I/O
bus in eight beats, as shown in Figure 3.

CommonDie Design.Modern computer systems often employ
16, 8, and 4 data chips to construct a memory rank for servers,
desktop, and embedded systems, respectively [45], so that each
chip transmits 4, 8, and 16 bits per beat, referred to as ×4, ×8,
×16 configurations, respectively. A naive design thereby demands
different I/O buffers for chips in different configurations, e.g., a ×4
configuration demands a 32-bit I/O buffer while a ×16 configuration
demands a 128-bit buffer.

To mitigate the cost of design, DRAM manufacturers adopt the
common die design for different I/O configurations [5, 13, 15, 27,
31, 41, 42], that is, the maximum of 128-bit I/O buffer (8-bit for
each of the 16 pins) is integrated in all DRAM chips. The desired
configuration is implemented by cutting electric fuses after passing
tests for a specific I/O mode, as shown in Figure 3. For example, a
1Other articles may term it as FIFO, Read/Write Buffer, or In/Out Buffer

325

SAM: Accelerating Strided Memory Accesses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 3: DRAM (DDR4) operation under different I/O mode (×4, ×8, ×16). Note that DRAM port contains a read path and a
write path in separate. For simplicity, the figure shows an abstract diagram with one path.

×4 configuration activates one 32-bit I/O buffer to save 32-bit data
fetched from DRAM arrays. A ×8 configuration activates two 32-bit
I/O buffers (equal to one 64-bit buffer) to save 64-bit fetched data.
The common die design not only mitigates the design, verification,
and tooling costs, but also adapts better to market uncertainty. Of
course, it leaves a subset of I/O buffers unused under ×4 and ×8
configurations.

Figure 4: Three ECC schemes: (a) SEC-DED, (b) SSC, (c) SSC-
variant

2.3 ECC for Servers
To improve the reliability of memory system, a DRAM rank usually
integrates one or multiple ECC chips to detect and correct DRAM
errors at runtime. Figure 4(a) illustrates the SEC-DED (single-bit er-
ror correction and double-bit error detection) scheme that is widely
adopted for desktop computers. SEC-DED needs eight redundant
bits for every 64 data bits to form a 72b codeword. Therefore, it
integrates one extra parity chip for ×8 configuration, and two parity
chips for ×4 configuration.

The server computers in data centers, to meet the high reliability
demands from their applications, often adopt more advanced ECC
schemes, i.e., chipkill ECC [44], to prevent system crashes under
more errors. In particular, for ×4 configuration, an SSC (single
symbol correction) chipkill ECC [16, 17] (Figure 4(b)) treats the eight
data bits (in two beats) from each chip as a symbol and, with a total
of 18 symbols (per every two beats), correct one symbol error, i.e.,
one DRAM chip is defective. Correspondingly, a codeword (144b)
in SSC is the 18 symbols. To support multiple symbol detecting, e.g.,

Single Symbol Correcting-Double Symbol Detecting (SSC-DSD), a
widely adopted strategy [1] is to double the channel width with 36
×4 chips. Then, SSC-DSD treats the four bits (in one beat) from each
chip as a symbol and, with a total of 36 symbols, correct (detect)
one (two) chip fault. In this paper, we assume the baseline server
computers adopt the SSC or SSC-DSD chipkill.

Different chipkill schemes have been proposed in the literature
to achieve tradeoffs among performance, hardware overhead, and
reliability factors [22, 23, 26]. Figure 4(c) shows a variant of SSC
that treats the eight bits from each DQ as a data symbol. When
being adopted for ×4 configuration, one burst (in the length of eight
beats) returns a total of 4 SSC codewords, consisting of 72 symbols,
which enables the detection and correction of up to four symbol
errors, i.e., when all DQs from one chip fail.

Prior study [26] further extends this SSC variant and constructs
a large codeword (512b) containing 72 8-bit symbols to provide
even stronger protections, at the expense of decoding complexity
and latency.

3 MOTIVATION
3.1 Strided Memory Accesses
In this paper, we elaborate our discussion by accelerating strided
memory accesses from In-MemoryDataBases (IMDBs).While IMDB
is a typical application that requires a large number of strided mem-
ory accesses, our design is not bound to IMDB and is applicable to
other application domains.

There are two types of workloads in IMDB: OLTP (on-line trans-
actional processing) and OLAP (on-line analytical processing) [3, 4].
OLTP is a transactional system for querying specific records and
generally characterized by the simple queries that insert, update,
and delete information from the database. On the other hand, OLAP
is a data retrieving and analysis system, which is characterized by
complex queries that extract data from multiple transactions for
analyzing.

The data in relational database are organized in a two-dimensional
table. In the table with row-oriented layout, records (or tuples) are
consecutively stored, which is generally preferred by OLTP. On
the contrary, column-oriented layout, where fields are consecu-
tively stored, generally works better on OLAP. However, neither
row-oriented layout nor column-oriented layout can efficiently
serve a mixed workload with both OLTP and OLAP, known as
hybrid transaction-analytical processing (HTAP). Because modern
memory is organized in a single dimension, the other dimensional
accesses required by HTAP exhibit patterns of strided accesses.

326

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang

3.2 Design Goal
In this paper, our goal is to design a low-cost DRAM-based archi-
tectural scheme that achieves high performance for strided memory
access while maintaining high-level ECC protection, i.e., chipkill ECC.
We face two design challenges.
• ECC compatibility. The memory reliability is critical when run-
ning IMDB on server computers as memory failure can crash the
system, resulting in either data loss or severe performance degra-
dation in data recovery. While it is beneficial to accelerate strided
memory accesses, disabling chipkill ECC during the operation
may not be desirable.

• Commodity DRAM readiness. Given DRAM remains the de facto
memory standard for constructing main memory in modern com-
puter systems, it is important to accelerate accesses for DRAM
chips. Since DRAM internals are highly optimized, it is critical
to minimize the hardware cost for the design to be applicable.

3.3 The State of the art
We next discuss the state-of-the-art architectural designs for accel-
erating strided memory accesses. We show how they work and why
the preceding two design goals cannot be realized with existing
designs.

Figure 5: (a) Data allocation in Gather-Scatter approach, (b)
Mat organization in Dual-Addressing approach

3.3.1 The GS-DRAM (Gather-Scatter) approach. Seshadri et al. pro-
posed GS-DRAM to accelerate strided accesses at the chip level [40].
For the example shown in Figure 1, GS-DRAM first conducts intra-
row shifts such that the data of the desired field from different
records are distributed to different chips with aligned columns,
e.g., the field f0 data from four consecutive rows are distributed to
four different chips in Figure 5(a). To enable accessing these data
from different chips, GS-DRAM augments the address bus such
that the same row address sent on the address bus is exploited to
drive different rows in different chips. By returning field f0 from
different rows, one strided read can return all four f0 field data and
thus improve the overall memory performance. GS-DRAM adopts
intra-row shift and thus is not suitable for accessing data with large
strided patterns.

A major concern associated with GS-DRAM is its compatibility
with ECC scheme. For example, one strided read can return all four
f0 fields (Figure 5(a)), but their ECC data, located at four addresses
in one parity chip, cannot be returned simultaneously. Due to the
same reason, neither chipkill nor SEC-DED ECC is compatible with
GS-DRAM. To maintain the same reliability, a simple enhancement
is to integrate two ECCs with one for normal accesses, and the
other for strided accesses. Clearly, such an approach doubles the
ECC space overhead and, more importantly, triggers multiple ECC

updates when writing one cacheline. For example, since one mem-
ory transfer (72B) contains 4 SSC codewords, one write transfer
can lead to updating five ECCs — four ECCs for accessing each
codeword in its corresponding strided access, and one ECC for the
normal access.

Note that GS-DRAM also varies the default data layout. For
example, a 16B ‘word’, by default, is spread over all data chips, as
shown in Figure 4(b), so that a critical word can be first accessed
by changing burst order in DRAM, whereas the 16B word has to be
concentrated on four ×4 data chips in GS-DRAM.

3.3.2 The RC-NVM (Dual-Addressing) Approach. Wang et al. pro-
posed RC-NVM to accelerate strided memory accesses on NVM-
memory based systems [48]. They exploited the symmetry of the
crossbar structure of NVM so that they exchange WLs and BLs on
demand to support row-wise and column-wise accesses, i.e., nor-
mal memory accesses and strided memory accesses, respectively,
as shown in Figure 5(b).

RC-NVM tends to introduce large modifications in memory ar-
rays. To support the symmetric access in two directions, it roughly
duplicates all peripheral circuits (e.g., SAs and decoders) and con-
nection wires (e.g., CSLs, local data lines (LDLs), global WLs, and
global BLs). These lead to ∼15% silicon overhead and two extra
metal layers for a four-layer baseline design [24].

A major limitation of RC-NVM is that it binds to the crossbar
structure and thus is not DRAM compatible. In addition, RC-NVM
introduces long latency when leveraging the crossbar symmetry
at bit-level. An optimization of RC-NVM reshapes the subarray
structure from 1D to 2D (e.g., square shape of 4×4 mats). However,
the reshaped structure increases the number of global BLs, which
increases the area overhead up to ∼33%. In this article, we term
RC-NVM with and without reshaped subarray as RC-NVM-bit and
RC-NVM-word respectively

To summarize, existing architectural optimizations lack the abil-
ity to achieve both of our design goals.

4 SAM DESIGN
In this section, we first introduce SAM-sub, an improvement of RC-
NVM. Then we present our primaries, i.e., SAM-IO and SAM-en.
Finally, we indicate an extension method to achieve finer-grained
accesses in strided pattern.

4.1 SAM-sub
As discussed in Section 2.1, DRAM is well architected in a hierarchi-
cal structure, such as mat and subarray, each of which is organized
in one dimension. For each access, multiple mats in one subarray
are activated and a fraction of data are fetched from local row buffer
to global row buffer with the help of HFFs (helper flip flops), which
are in a latch-like structure for repeating signals [25]. With the
same structure, we propose SAM-sub, which constructs a column-
wise subarray by activating multiple mats in the same column, to
implement strided access.

Figure 6 shows the logical structure of SAM-sub, where a set of
row-oriented bitlines are added to connect multiple HFFs in one row.
Therefore, the HFFs in the bank are symmetrically connected by the
bitlines in two dimensions. Correspondingly, data from multiple
mats aligned in the same column, termed column-wise subarray,

327

SAM: Accelerating Strided Memory Accesses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

can be fetched to an additional global column buffer via the HFFs.
Meanwhile, to enable the multiple mats in each column-wise sub-
array, one extra control line is added per column-wise subarray.
Similar to RC-NVM, SAM-sub tends to cost the same power for
accesses to row-wise subarray and column-wise subarray because
of the symmetric data path.

Figure 6: Bank structure of SAM-sub in logical layout2

SAM-sub outperforms RC-NVM in the following three aspects.
First, SAM-sub avoids the limitation of RC-NVM that relies on
specific crossbar-based memory substrate to implement strided
access. SAM-sub can be applied to different memory technologies,
as they are all built in a similar hierarchical architecture [28, 37, 51].
Second, SAM-sub does not require any modification in the mats,
because each mat is still activated in row-wise in a column-wise
subarray. Compared to RC-NVM, the slight hardware overhead of
SAM-sub occurs only at the subarray level with a few extra wires
(e.g., global bitlines), which does not need an extra metal layer for
routing. Finally, it also avoids the challenge in RC-NVM where the
crossbar symmetry is at bit-level, while the symmetry of SAM-sub
is at word-level, as the HFFs of each mat have a width of 4 or 8 bits.

SAM-sub keeps the integrity of ECC code. For instance, in the ex-
ample of SSC chipkill, each 8-bit symbol locates at the same address
in each chip. Thereby, an 18-bit symbol codeword (Figure 4(b)) can
always be transmitted by the 18 chips in tandem in two transfer
beats, despite the access type, i.e. a regular or strided access. Al-
though SAM-sub induces relatively smaller hardware overhead, it
is still a challenge for memory manufacturers who are sensitive to
area efficiency. We thereby propose our second design below, which
keeps the integrity of DRAM and induces near-zero overhead.

4.2 SAM-IO
The key idea behind our proposed SAM-IO is to leverage underuti-
lized resources in DRAM to implement strided access. As indicated
in Section 2.2, × chips also contain the resources for ×8 and ×16
modes because of the common die technique. In this subsection,
we leverage these redundant I/O resources to realize strided access.

4.2.1 Configurable I/O mode. Figure 7 shows the architecture of
relevant components in the I/O path of a DRAM chip, including the
GIO gating, I/O buffers, and drivers [18, 32]. There are 4 32-bit I/O
buffers, each of which can be divided into 4 rows, termed as lanes
in this paper. Each lane is connected to one DQ via a serializer.

In a ×4 chip, during each memory transfer (8-beat burst), 32 bits
of data are fetched from slow memory arrays into one of the I/O
buffers, e.g., the bottom of the four, via the GIO gating. Then, the
2The figure shows a logic layout. In the physically layout, one local SA is shared by
two adjacent mats. The column-wise subarray can be physically organized by every
other mat.

buffered data are transmitted by the fast DDR interface. Hence, only
one I/O buffer and its drivers (e.g., Drv[0:3]) are utilized, while all
other I/O buffers are disabled. In a ×16 chip, the buffering size is
extended by 4 times (128-bit). All 4 I/O buffers and 16 drivers are
then utilized. The opportunity here is that if a ×4 chip can utilize
all the unused resources, then we can perform wide buffering that
stores them in all the I/O buffers, but only sends requested data to
the CPU with desired strides.

Figure 7: Structure of SAM-IO. Red color in bank/buffer rep-
resents useful data. Pink color in bank/buffer represents ac-
tivated or fetched but unused data. The table below shows
the I/O configuration under different modes.

Inspired from this observation, we propose SAM-IO, a strided
access strategy leveraging configurable I/O modes. As shown in
the table of Figure 7, we extend the regular I/O modes (×4, ×8, and
×16) with extra modes for strided access, termed stride mode Sx4_n,
where n is the lane ID in the I/O buffer. For example, if only the
bottom lane is requested by the CPU, then the I/O is configured as
Sx4_3.

Figure 7 illustrates a detailed example. Four pieces of strided data
(in red), allocated across one row in Bank0, are requested by the CPU.
A regular ×4 mode would transfer them sequentially, but under an
Sx4_3 mode, they are fetched into the 4 I/O buffers simultaneously,
occupying the bottom lane of each buffer, and then transmitted via
the 4 DQs, driven by the relevant 4 drivers (Drv[3, 7, 11, 15]), in one
memory transfer. To enable this process, we redirect the control
signals of drivers to an additional 7-bit I/O mode register, where
each bit is responsible for one I/O configuration by enabling the
corresponding drivers, as indicated by the table in Figure 7. There
are also several additional interconnections among the drivers (as
shown by the shaded region near DQs in Figure 7). Note that the
interconnections can be implemented during post-manufacturing
process, e.g., bonding the interconnected wires together during
packaging, which does not induce any overhead to the silicon die.
The only modification in SAM-IO is the extra mode register for
driver control, which is negligible.

4.2.2 Discussion of SAM-IO. The main benefit of SAM-IO is that
it induces negligible modifications to commodity DRAM. This is

328

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang

important to memory technology whose manufacturing process has
been well optimized, and non-trivial modifications could severely
impact yield, reliability, and even timing parameters. Meanwhile,
SAM-IO can use the SSC-variant scheme (Figure 4(c)), by storing
an SSC symbol along the lane-wise of I/O buffer, to support chipkill
ECC.

However, SAM-IO experiences increased power, as it internally
activates and transfers many non-required data. During the strided
access, 288B data (four cachelines plus ECC bits) are fetched to the
I/O buffers (128 bits per chip) in the memory module, but only 72B
data (one cacheline plus ECC) in strided pattern are sent to the
channel. In addition, data layout now is transposed from the default
Figure 4(b) to Figure 4(c). Correspondingly, one codeword transfer
interval increases from 2 beats to 8 beats. This disables SAM-IO to
transfer critical-word first, even though the impact on performance
is moderate (<1% based on [53]). It also takes effort to transpose
data in the CPU. To tackle these challenges, we propose SAM-en,
an enhanced design that combines the advantage of both SAM-sub
and SAM-IO.

4.3 SAM-en
SAM-en is based on SAM-IO, integrated with configurable I/O
mode to implement strided access. Meanwhile, SAM-en offers two
enhancement options. The first one employs an analogous tech-
nique to SAM-sub to reduce power consumption. The second is
to enable the default data layout of Figure 4(b) by constructing a
two-dimensional I/O buffer.

Figure 8: SAM-en Design. (a) SAM-en with fine-grained acti-
vation technique, (b)-(d) a two-dimensional I/O buffer from
different views: xy-plane, 3D, and yz-plane

Option 1. Inspired by SAM-sub, the row activation in SAM-
en can be conducted only on the mats that store the useful data.
As shown in Figure 8(a), we leverage the fine-grained activation
technique to selectively enable the mats storing the required data
in strided pattern. As a result, only useful data are delivered to the
I/O buffers (Figure 8(b)), which saves the power of activation and
internal data transfer. This fine-grained activation technique has
also been employed in several recent studies, such as FCRAM [10],
SBA [46], HrDRAM [50], and half-dram [54].

Option 2. Instead of constructing the subarrays into two dimen-
sions (row- or column-wise) in SAM-sub, we propose a lightweight
two-dimensional I/O buffer access strategy for SAM-en. To better

illustrate the design, we divide each I/O buffer into lanes (rows)
and columns, creating 16 blocks with 2 bits per block, as shown in
Figure 8(b). We can access the 4 I/O buffers from two directions
with the help of two sets of serializers attached in the associated
directions. Figure 8(c) shows a 3D view of the 4 buffers, where each
small cube is equal to the 2-bit block. An extra set of serializers are
located along the z-axis and the required data in a strided pattern
(marked by red) are stored in the same level of cubes along the
yz-plane. Correspondingly, the 4 buffers in Figure 8(b) can also be
represented in the symmetric view (of the yz-plane) in Figure 8(d).
The required data can thereby be accessed via the bottom buffer in
the yz-plane. Different from SAM-IO where each word is stored in
lane-wise, data in SAM-en now can be stored in column-wise, the
default layout, in accordance with the critical-word-first principle.
Since data paths through the two sets of serializers are symmet-
ric, we thereby consider the accesses to the I/O buffer via the two
dimensions have the same latency.

To summarize, these two options are independent, which pro-
vides flexibility to optional improved SAM design. In this article,
SAM-en is implemented with both of them as default.

4.4 Support Finer Granularity
The SAM-IO and SAM-en designs select one 8-bit data in each
I/O buffer and send four of them across four buffers in a strided
pattern in each chip. Correspondingly, the strided granularity can be
defined as 8 bits per chip, which is consistent with the 8-bit symbol,
stored in one chip, in SSC. While for SSC-DSD, the symbol size is
reduced to 4 bits. We thereby propose a finer strided granularity (4
bits per chip) to better support SSC-DSD and make full use of the
bandwidth, even though SSC-DSD is not as widely adopted as SSC
in modern server memories [26].

Figure 9: Support Finer Granularity. (a)-(d) I/O buffer and its
details from different views. (e) DQ layout among two ranks

The strided granularity of SAM-sub is determined by the width
of HFFs (4 or 8 bits) in a mat, which can be configured during
manufacturing. In this subsection, we mainly indicate the imple-
mentation of finer strided granularity in SAM-IO and SAM-en. In
practice, we can upgrade existing SAM-IO and SAM-en designs

329

SAM: Accelerating Strided Memory Accesses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

without inducing additional hardware overhead. The upgrading
can be based on a two-step procedure: first, data are aggregated
to fewer drivers, i.e., using 2 DQs to send four 4-bit symbols in
each chip, which leaves half channel pins unemployed; second,
rank-level parallelism is leveraged to make full channel utilization.

For SAM-en, we can adjust the wire routing of the added seri-
alizers to aggregate data. Figure 9(a) and (c) show the layout of
strided 4-bit symbols from the views of the xy-plane and yz-plane,
respectively. Figure 9(b) shows a fraction of I/O buffer in detail,
consisting of two lanes, where each lane contains 8 flip-flops (or
latches). The 8 bits in one lane are selected by an 8:1 MUX. Cor-
respondingly, 4 lanes attached to 4 MUXes, grouped into a 32:4
serializer. To support fine-grained strided access, the MUX in the
added serializer is interleaved between two lanes. Specifically, it
connects 4 bits from one lane and the other 4 bits from the other
lane, as shown in Figure 8(d). Therefore, each of two 4-bit symbols
can be connected to one driver via the interleaved MUX, and the 4
symbols can be transmitted via 2 DQs in one memory transfer (8
beats). Finally, we combine two ranks to make full use of channel
bandwidth, as shown in Figure 9(e).

SAM-IO maintains a different layout from SAM-en, where each
symbol is stored in lane-wise, and each lane is connected to one
driver. As shown in Figure 7, symbols in strided pattern locate in
different buffers with the same lane ID. Since each 4-bit symbol
only occupies one half of a lane, we redirect two 4-bit symbols from
two lanes, with the same ID, to one driver. Therefore, in each chip,
four 4-bit symbols (in strided pattern) can be transmitted via 2 DQs
in one memory transfer. This redirection can be implemented by
the GIO gating (Figure 7) that already exists in DRAM. Similarly,
we then leverage two ranks to fill up the channel.

5 DISCUSSION
We first discuss the system support for SAM. Although orthogonal
to our research, which proposes an efficient memory substrate for
strided access, a moderate adjustment in the system is necessary to
support our design. Then we compare SAM to the state-of-the-art.

5.1 CPU End
5.1.1 Cache Hierarchy. In SAM, the accessed data under stride
mode is in a strided pattern across multiple cachelines. To support
the strided pattern in cache hierarchy, one choice is to employ a
sector cache [30, 39] where the cacheline is divided into multiple
sectors and each sector maintains its own valid and dirty bits. Since
SAM is always compatible with chipkill ECC, each strided data is
the 16B data in a chipkill codeword. Therefore, the cacheline can
be divided into four 16B sectors, with moderate overhead, 6 bits
per 64B, induced by the storage for valid and dirty bits.

Besides sector cache, previous study [14] also proposes multi-
dimensional-access (MDA) cache architecture for strided access.
However, it suffers from coherence issue induced by duplicated
data. Additionally, compared to sector cache, MDA cache does not
show a significant advantage in IMDB applications, where data
reuse is not frequent in cache. Therefore, we choose a sector cache
in this work to simplify performance evaluation and emphasize the
performance improvement contributed by memory design.

5.1.2 ISA Extension. We add two instructions, termed sload and
sstore, to enable IMDB applications to use the stride mode in SAM.
The details of these two instructions are shown below:

sload reg, addr
sstore reg, addr

where reg is the destination register, addr is the data address.
These instructions can inform memory controller to sets memory
to the stride mode via the C/A (command/address) bus. While there
exist other options, e.g. supplement new attribute to page table
entry (PTE), for the system to implement a new function onmemory,
we choose ISA extension, a similar approach to prior work [40, 48],
to make a fair comparison with the state-of-the-art.

5.2 OS support
By default, in order to maximize the possibility of row buffer hit,
an OS page is generally mapped to one or two DRAM row seg-
ments [36, 47]. However, SAM reshapes the row organization in
stride mode. Specifically, multiple rows in the column-wise sub-
array are activated simultaneously in SAM-sub. In SAM-IO (or
SAM-en), the row size is extended by multiple times under stride
mode. To ensure that an OS page can still be physically mapped to
the reshaped DRAM rows, we can define a new scheme for virtual
to physical address mapping under the stride mode.

Figure 10: Virtual-Physical address mapping under stride
mode

As shown in Figure 10, the shaded region in the virtual address
represents the page offset (12 bits), which is directly mapped to the
lower 12 bits in the physical address during regular memory access.
The 4-bit offset in the physical addresses represents the 16B strided
data. Under the stride mode, a small segment of the page offset is
remapped. For example, in SAM-sub with 4-bit strided granularity
(per chip), a 3-bit segment is swapped with the corresponding bits
that are associated with subarrays. Similarly, in SAM-IO (or SAM-
en), the 3-bit segment is swappedwith the extended column bits and
rank bit. For SAM designs with 8-bit strided granularity (per chip),
the segment is only 2-bit. This extra address mapping scheme can
be manually implemented by leveraging the huge-page technique.
It can also be integrated into OS by adding a new kernel module.
To summarize, with the knowledge of address mapping, an IMDB
can explicitly control the data to be accessed and organize records
with a specific layout, described in Section 5.4.1, in memory.

5.3 Interface to SAM
Different from prior work, which extends C/A width to implement
the new command of strided access, SAM avoids any modification
on the command interface by defining a new mode in DRAM. Com-
modity DRAM possesses a set of mode registers for internal control,
such as refresh granularity and burst type [32]. To configure these
mode registers, specific commands are sent to DRAM via C/A bus.

330

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang

In SAM-IO and SAM-en, we extend the existing mode registers with
the proposed extra mode register for configurable I/O, as shown
in Figure 7. The different I/O modes, e.g. ×4, ×8, Sx4_n, etc., can
thereby be configured via C/A bus, keeping the integrity of the
command interface. Since SAM-sub does not require configurable
I/O, it only needs to extend the existing mode registers with one
extra bit to define the stride mode.

Given that initiating another I/O mode in SAM-IO or SAM-en
could require switching DQ driver, which is similar to the process
of rank switch [12], we thereby consider the switch delay among
different I/O modes equals to rank-to-rank delay (tRTR). Note that
in real applications, the mode switch does not happen frequently,
incurring negligible performance overhead.

5.4 Compare to the State-of-the-art
5.4.1 Data Layout. Different data layouts can impact the efficiency
of SAM, RC-NVM, and GS-DRAM. In this subsection, we first sum-
marize how to allocate a chipkill codeword to multiple chips. Then,
we discuss how to place an IMDB table in memory to facilitate
strided access.

By default, to enable critical-word-first, each 144-bit SSC (or SSC-
DSD) codeword is spread over 72 (or 144) pins, and one memory
transfer can transmit 4 (or 8) codewords in burst length of 8. SAM-
sub, SAM-en, and RC-NVM maintain the default layout, as shown
in Figure 4(b). SAM-IO is consistent with Figure 4(c), where the
codeword in each chip is in a transposed manner. GS-DRAM adopts
a special layout, where each word is aggregated on a few chips,
e.g. a 128-bit word is allocated to 4 data chips. This disables the
chipkill function. Since maintaining a different layout from the
default, SAM-IO and GS-DRAM cannot support critical-word-first.

Figure 11: Two different record alignment strategies
Next, we discuss the layout of records for the above designs.

In SAM, strided data are collected from multiple cachelines that
are located in different rows (in SAM-sub) or sub-rows (in SAM-
IO and SAM-en) with the same column offset. This requires the
IMDB records to be aligned with the rows or sub-rows. As shown
in Figure 11(a), the database is aligned by every N records in SAM,
where N, determined by the strided granularity, equals 4 or 8. RC-
NVM uses a similar alignment strategy, but with a much larger
N (in the magnitude of KB). This requires the alignment to be
implemented on a large physical space, which can lead to large
fragments and degrade memory utilization.

Different from SAM and RC-NVM, where the database is aligned
in the unit of record, in GS-DRAM, the database has to be aligned
by each cacheline size (64B), as GS-DRAM cannot support large
strided access. As shown in Figure 11(b), assuming the record size
is 128B, the record has to be divided into two 64B segments and
then aligned by each segment. This complicates the application of
GS-DRAM for users.

5.4.2 Qualitatively Analysis. We qualitatively compare SAM and
the state-of-the-art across three dimensions: system support, inter-
face, and memory device, as summarized in Table 1. All designs
require support from database alignment, ISA, and cache hierarchy.
In the aspect of interface, GS-DRAM is the most complicated, which
modifies the memory controller with a multi-level swapping logic
and extends the width of command interface.

In the aspect of memory device, RC-NVM lags in performance
and area efficiency. In contrast, GS-DRAM shows good performance
and small area overhead, but cannot efficiently support ECC, which
is an important consideration for both server memories and IMDB
applications. SAM-sub and SAM-IO significantly relieve the chal-
lenges in RC-NVM and GS-DRAM. But there is still room for im-
provement from some perspectives, e.g., area overhead of SAM-sub,
power of SAM-IO. Apparently, SAM-en achieves the best charac-
ters, which outperforms others from almost all perspectives. Again,
Table 1 highlights the advantage of SAM as a promising memory
substrate for strided access. The detailed quantitative evaluation is
described later in Section 6.

Table 1: Comparison of Designs for Strided Access

RC
-N

VM
-b
it

RC
-N

VM
-w

d

GS
-D

RA
M

SA
M
-s
ub

SA
M
-IO

SA
M
-e
n

System
Database Alignment

ISA Extension
Sector Cache or MDA Cache

Interface
Memory Controller ✓ ✓ ✗ ✓ ✓ ✓

Command Interface ✓ ✓ ✗ ✓ ✓ ✓

Critical-Word-First ✓ ✓ ✗ ✓ ✗ ✓

Memory

Performance ✗ ✗ ✓ • ✓ ✓

Power Consumption • • ✓ ✓ • ✓

Area Overhead ✗ ✗ ✓ • ✓ ✓

Reliability ✓ ✓ ✗ ✓ ✓ ✓

Mode Switch Delay • • ✓ • • •

✓: good/unmodified •: fair/slightly_modified ✗: poor/modified

Note that GS-DRAM is better than SAM-en only from the per-
spective of mode switch delay. This is achieved by modifying the
command interface. In other words, if GS-DRAM adopts the same
mode switch strategy, it has the same switch delay as SAM-en.

6 EVALUATION
6.1 Experiment Setup
To quantitatively evaluate the benefits of SAM, we use a cycle-
level memory simulator, NVMain [37], integrated with Gem5 [6]
as our system simulator, on top of the x86 architecture. Table 2
lists the main parameters of the simulated system. All caches use
64B cachelines, corresponding to 16 ×4 memory chips with 32-bit
I/O buffer. Multiple cores are applied to accelerate the computing
process in workloads. The memory controller uses open-page and
FR-FCFS scheduling policy.

In the evaluation, SAM is compared with the state-of-the-art.
DRAMmemory is provided for SAM and GS-DRAM, while RRAM is

331

SAM: Accelerating Strided Memory Accesses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

the substrate of RC-NVM. The subarray in RRAMhas been reshaped
into a square structure (2K×2K) for RC-NVM. Each memory chip is
in capacity of 8Gb, using DDR4 interface with ×4 I/O width. Tim-
ing parameters of DRAM and RRAM are obtained from industrial
technical documentations [32] and academic studies [24, 37, 51],
respectively. Specifically, we add mode switch parameter for SAM,
equal to Rank-to-Rank delay (tRTR) that is 2 CK [21, 34, 49]. Given
that memories with different capacities (core area) can maintain the
same core frequency via deep pipelining [43], core frequencies in
all the designs are not changed. Other latency parameters, such as
tRCD, tAL, etc, are increased proportionally to the area overhead.

Table 2: Simulated System Parameters

4 cores, x86, 4.0GHz
Processor L1: 32KB, L2: 256KB, LLC: 8MB

64B cacheline, 8-way associative
Memory Write queue capacity: 32
Controller Address mapping: rw:rk:bk:ch:cl:offset

Page management: open-page, FR-FCFS
DDR4-2400, ×4 I/O width
1 channel, 2 ranks, 16 banks

DRAM 256 subarrays, 512 rows/subarray, 4Kb local row buffer
CL-nRCD-nRP: 17-17-17
nRTR(or mode switch)-nCCDS-nCCDL: 2-4-6
DDR4-2400, ×4 I/O width
1 channel, 2 ranks, 16 banks

RRAM 128 subarrays, 2K rows/subarray, 2Kb local row buffer
CL-nRCD-nRP: 17-35-1
nRTR-nCCDS-nCCDL: 2-4-6

Workloads. As pointed out by prior work [4, 14, 29, 48], there
still lacks a standard benchmark for the mixed OLTP and OLAP
processing, we follow prior work to construct the workloads.

Table 3 shows the benchmarks used in our evaluation. We first
leverage the benchmark (Q1 to Q12) obtained from [29, 48]. In the
benchmark, Q2 has f10 > x mostly false. Other queries have f10 >
x in a constant possibility (selectivity) of 25%. However, we find
all of them, which only read or write a subset of fields in a table,
prefer column store, though the benchmark is a mix of OLTP- and
OLAP-type queries (note that some OLTP-type queries could prefer
row store to column store). We thereby supplement the benchmark
with several queries (Qs1 to Qs6) that read or write the whole fields
in a few records and prefer row store. Similar to Q queries, these
Qs queries have f10 > x in a possibility of 25%.

We also conduct a comprehensive evaluation on a scenario that
prefers a hybrid row and column store, using a similar method to [3,
4] by analyzing an arithmetic query, as well as an aggregate query,
and adjusting the projectivity and selectivity, which determine the
number of fields projected and the number of records that satisfy
the predicate (e.g., f0 > x), respectively.

The query benchmark has two tables, a wide table (Ta) and a
narrow table (Tb). Ta and Tb have 128 fields and 16 fields, each
8 bytes in size. The size of the records in Ta and Tb is 1KB and
128B, respectively. In all of our experiments, we load 10M records
into each table in the database. We assume all the records are well
aligned in each memory design.

Table 3: Benchmark Queries

No. SQL Statement from [48] (prefer column store)
Q1 SELECT f3, f4 FROM Ta WHERE f10 > x
Q2 SELECT * FROM Tb WHERE f10 > x
Q3 SELECT SUM(f9) FROM Ta WHERE f10 > x
Q4 SELECT SUM(f9) FROM Tb WHERE f10 > x
Q5 SELECT AVG(f1) FROM Ta WHERE f10 > x
Q6 SELECT AVG(f1) FROM Tb WHERE f10 > x
Q7 SELECT Ta.f3, Tb.f4 FROM Ta, Tb WHERE

Ta.f1 > Tb.f1 AND Ta.f9 = Tb.f9
Q8 SELECT Ta.f3, Tb.f4 FROM Ta, Tb WHERE Ta.f9 = Tb.f9
Q9 SELECT f3, f4 FROM Ta WHERE f1 > x AND f9 < y
Q10 SELECT f3, f4 FROM Ta WHERE f1 > x AND f2 < y
Q11 UPDATE Tb SET f3 = x, f4 = y WHERE f10 = z
Q12 UPDATE Tb SET f9 = x WHERE f10 = y
No. SQL Statement supplement (prefer row store)
Qs1 SELECT * FROM Ta LIMIT 1024
Qs2 SELECT * FROM Tb LIMIT 1024
Qs3 SELECT * FROM Ta WHERE f10 > x
Qs4 SELECT * FROM Tb WHERE f10 > x
Qs5 INSERT INTO Ta VALUES (f0, f1, ..., fp)
Qs6 INSERT INTO Tb VALUES (f0, f1, ..., fp)
No. Arithmetic and Aggregate SQL (prefer row or col store)
Arith. SELECT fi + fj + ... + fk FROM Ta WHERE f0 < x
Aggr. SELECT AVG(fi), ..., AVG(fj) FROM Ta WHERE f0 < x

Power. We estimate DRAM power consumption using Micron’s
power calculator [33], which is based on current (IDD) values mea-
sured on actual devices. The power parameters are excerpted from
Micron’s data sheet [32]. Specifically, for SAM-sub, power is cal-
culated based on a ×4 chip with 2% increased background power
from extra decoding and SA logic. For SAM-IO, power is calcu-
lated based on different modes. For example, a ×16 (×4) chip is
employed to evaluate a stride (regular) mode. SAM-en adopts the
same strategy as SAM-IO, but with optimized power parameters
contributed by fine-grained activation. RRAM is modeled similar
to Lee’s work [28]. The parameters are obtained from [24, 37].

Area. There are two sources of area overhead. The first one is
the extra wires routing in DRAM array, e.g. row-wise global BLs in
SAM-sub, which can be evaluated by counting the number of wiring
tracks in metal layers as indicated in [7, 35]. The array structure, e.g.
bank and subarray, is based on the model from Rambus [38]. For
SAM-sub, the 4 extra global BLs are routed in the same metal layer
(M2) as global WLs and LDLs in horizontal (row-wise) direction.
Given each subarray with 512 rows has 128 M2 routing tracks for
global WLs and 12 M2 routing tracks for 4 differential LDLs and 4
local WLsels (wordline select lines), the extra global BLs, requiring
8 M2 routing tracks, lead to 5.7% area overhead. Correspondingly,
the additional control lines for column-wise subarray are routed
in M3, increasing the area by 0.7%. For SAM-IO, it does not induce
any wire routing overhead. For SAM-en, it only requires the same
additional control lines as SAM-sub, leading to 0.7% area overhead.

The second source of area overhead originates from the extra
logic, e.g. additional global SA in SAM-sub, in the peripheral circuit,
which can be derived from CACTI-3DD [8] (based on 32nm node).
For SAM-sub, there are two types of extra logic. First, the area

332

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang

Figure 12: Speedup (normalized to row-store) of different designs on Q and Qs queries

of extra global SAs is 0.14mm2, corresponding to 0.8% overhead.
Second, the extra control logic for the column-wise subarray, which
is a simplified column decoder, occupies 0.002mm2 (less than 0.01%
overhead). For SAM-IO, the only overhead is the 7-bit mode register
(less than 0.01%), which is negligible. For SAM-en, it induces extra
control logic, similar to SAM-sub, and another set of serializers,
which is also negligible (less than 0.01% overhead).

Hence, the overall area overhead, including wire routing and
peripheral logic, of SAM-sub, SAM-IO, and SAM-en are ∼7.2%,
<0.01%, and ∼0.7%, respectively.

6.2 Results
Figure 12 shows the performance results of SAM, RC-NVM, and
GS-DRAM. The memory module uses SSC-DSD by default, entail-
ing 4-bit strided granularity of SAM. The baseline is a commodity
DRAM with row-store layout. The ideal case represents either a
row-store or column-store that is preferred by the queries. Specifi-
cally, column-store is applied to Q-type queries, and row-store is
for Qs-type queries. As indicated in Section 3.3.2, two designs, RC-
NVM-bit and RC-NVM-wd, are employed to represent RC-NVM.
Given that GS-DRAM faces the challenge of reliability, it is not fair
for other designs to compare with GS-DRAM from the perspective
of performance, power, and area, but regardless of the reliability.
An optimal solution to relieve this reliability challenge is to use em-
bedded ECC, as indicated in [55], which stores ECC bits along with
their associated data bits in the same page. We thereby enhance
GS-DRAM with embedded ECC, termed GS-DRAM-ecc, and add it
to the comparison.

All designs can outperform baseline (row-store) in Q queries.
For Qs queries, the maximum speedup is one, as the baseline is the
ideal case. Obviously, among all the designs, the performance of
SAM-IO and SAM-en is closer to the ideal. On average, the naive
SAM-sub design achieves 3.8× performance improvement on Q
queries, but with 30% performance degradation on Qs queries. This
already outperforms prior studies, where GS-DRAM-ecc, RC-NVM-
bit, and RC-NVM-word achieve 2.7×, 2.6×, and 3.4× improvement
on Q queries, with 41%, 58%, and 46% degradation on Qs queries.
More importantly, our primary designs, SAM-IO, and SAM-en, can
achieve 4.1× and 4.2× performance improvement on Q queries,
meanwhile, without performance degradation (< 1%) on Qs queries.

SAM outperforms RC-NVM in all queries. This can be attributed
to three reasons: first, the timing parameters of DRAM are gener-
ally better than NVM. Especially for the write requests, e.g., Q11,
Q12, Qs5, and Qs6, the performance of RC-NVM is significantly
degraded. Second, RC-NVM suffers from a high latency of field

switch. When accessing a new field, RC-NVM has to conduct a
column-to-column switch in the same bank, entailing bank conflict.
This is more challenging for RC-NVM-bit, which has to collect mul-
tiple sub-fields to form one field because of the bit-level crossbar
symmetry. Third, the consecutive records in RC-NVM are aligned
across multiple rows in the same bank, which also increases the
possibility of bank conflict when running Qs queries. While in SAM-
IO and SAM-en, accesses to consecutive records or different fields
have more chance of row buffer hit. SAM-sub also faces the second
and third challenges similar to RC-NVM, thereby, its performance
falls behind SAM-IO and SAM-en.

The performance of GS-DRAM is close to SAM. However, to
achieve such performance, GS-DRAM requires a complex record
alignment strategy, which divides a record into multiple 64B seg-
ments (Figure 11(b)). More importantly, it sacrifices reliability, which
is unacceptable for IMDB applications. On the other hand, when
enhanced with ECC, the performance of GS-DRAM-ecc declines
distinctly. This is because the additional ECC data in GS-DRAM
require extra data transfer and reduce the throughput. The results
show that the performance of GS-DRAM-ecc is only 64∼68% of
SAM in Q-type queries.

Figure 13: Power and energy efficiency (normalized to row-
store) of different designs on Q and Qs queries

Figure 13 shows the power and energy efficiency, categorized by
the read/write type of Q/Qs queries. We draw several conclusions
from the results. First, compared to baseline (row-store), although
the power of SAM-IO is increased by 1.8× and 1.5× when running
the read-type and write-type Q queries, the energy efficiency of

333

SAM: Accelerating Strided Memory Accesses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

SAM-IO is improved by 2.4× and 2.9×, respectively, as it avoids the
transfer of unused data on channel. Second, the power of SAM-IO
is higher than other DRAM-based designs, which present roughly
the same power, because SAM-IO cannot avoid the internal transfer
of unused data. Third, the NVM-based designs show better power
and energy efficiency on read, but worse on write. This can be
attributed to the character of RRAM, which consumes near-zero
background power, but with significant write power. Fourth, for
Qs queries, all DRAM-based designs show roughly the same power
and energy efficiency as the baseline, because there is no strided
access in Qs queries and they all work under a regular mode.

Figure 14: (a) Performance ofRC-NVMand SAMusing differ-
ent memory technologies, (b) performance of RC-NVM-wd,
GS-DRAM, and SAM-en with different granularities, (c) area
overhead of different designs

To clarify the impact of memory technology, we construct a
DRAM-based RC-NVM and an NVM-based SAM by configuring
their timing parameters according to the related technology. Note
that the RC-NVM based approach using a DRAM substrate can
induce significant area overhead (larger than 200%) [9, 48]. Fig-
ure 14(a) presents the average result of all queries (Q and Qs).
RC-NVM-wd and SAM-sub show nearly the same performance
on the same substrate. But RC-NVM always falls behind SAM-IO
and SAM-en, regardless of what substrate they use. We also analyze
the impact of different strided granularity. A finer granularity here
corresponds to a smaller symbol size of chipkill ECC. Figure 14(b)
shows the average result of Q queries. Obviously, finer granularity,
which improves bandwidth utilization, helps achieve better per-
formance. Meanwhile, SAM-en outperforms RC-NVM-word and
GS-DRAM-ecc under all scenarios. Figure 14(c) shows the area or
storage overhead of different designs. Again, our proposed SAM
has an obvious advantage over others. Note that Figure 14(c) does
not show the extra metal layers in the NVM-based designs.

Next, we analyze an arithmetic query and an aggregate query,
as shown in table 3, with varied parameters, i.e., selectivity, pro-
ductivity, and record size. The ideal case is either a row-store or
column-store that is preferred when the query is configured with
specific parameters. To simplify the simulation, we choose SAM-en,
GS-DRAM-ecc, and RC-NVM-wd as representatives.

Figure 15(a), (b), and (c) show the speedup results of processing
the arithmetic query under different selectivity settings when there
are 8, 64, and 128 fields projected in a random manner. Across all
these settings, the performance of SAM-en is either better than
or comparable to the other designs, which highlights the benefits
of SAM-en. Specifically, in Figure 15(a), when the selectivity is
increased, the efficiency of strided accesses can be improved with
more row buffer hit, the speedup thereby tends to rise. However,
the tendency is diminished when there are more fields projected,

which becomes more suitable for the baseline (row store), as shown
in Figure 15(b) and (c).

Figure 15: Speedup (normalized to row-store) of RC-NVM-
wd, GS-DRAM-ecc, and SAM-en with different parameters,
e.g., selectivity, projectivity, and record size

Figure 15(d), (e), and (f) show the results of experiments where
the selectivity is fixed and projectivity is varied (in a random man-
ner). From these results, we draw similar conclusions to Figure 15(a),
(b), and (c). When the projectivity is increased, the efficiency of
baseline is improved, the speedup thereby declines. On the other
hand, the speedup rises with the increment of selectivity.

Figure 15(g) and (h) show the speedup results of processing an
aggregate query with the same settings as Figure 15(a) and (f). The
only difference is that the performance of RC-NVM-wd is improved,
nearly the same as SAM-en. This is because the aggregate query
can process each field independently, which relieves the challenge
of field switch in RC-NVM. Figure 15(i) indicates the influence
of record size on a query with 100% projectivity and selectivity.
Only RC-NVM-wd shows degraded performance. This can be at-
tributed to the inefficient record layout in RC-NVM, which allocates
consecutive records across a large number of rows, increasing the
possibility of bank conflict. In summary, SAM-en outperforms RC-
NVM-wd and GS-DRAM-ecc and keeps close to the ideal case (row-
or column-store) in almost all conditions.

7 CONCLUSION
In conclusion, we present SAM, a series of solutions for server
memories (×4 DRAM chips) to achieve better efficiency of strided
accesses in IMDB applications, meanwhile being compatible with
chipkill ECC.

ACKNOWLEDGMENTS
This work is supported in part by US National Science Foundation
#1617071, #1718080, #1725657, #1910413, and #2011146. The authors
thank the anonymous reviewers for their constructive comments.

334

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xin Xin, Yanan Guo, Youtao Zhang, and Jun Yang

REFERENCES
[1] Inc. Advanced Micro Devices (AMD). 2007. kernel developer’s guide for AMD

NPT family 0Fh processors.
[2] Inc. Advanced Micro Devices (AMD). 2013. BIOS and Kernel Developer’s Guide

(BKDG) for AMD Family 15h Models 10h-1Fh Processors.
[3] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: a hands-

free adaptive store. In Proceedings of the 2014 ACM SIGMOD international confer-
ence on Management of data. 1103–1114.

[4] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In Proceedings of
the 2016 International Conference on Management of Data. 583–598.

[5] Kuljit S Bains and John Halbert. 2011. Common memory device for variable
device width and scalable pre-fetch and page size. US Patent 7,957,216.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[7] Niladrish Chatterjee, Mike O’Connor, Donghyuk Lee, Daniel R Johnson,
Stephen W Keckler, Minsoo Rhu, and William J Dally. 2017. Architecting an
energy-efficient DRAM system for gpus. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 73–84.

[8] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman,
and Norman P Jouppi. 2012. CACTI-3DD: Architecture-level modeling for 3D
die-stacked DRAM main memory. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 33–38.

[9] Yen-Hao Chen and Yi-Yu Liu. 2013. Dual-addressing memory architecture for
two-dimensional memory access patterns. In 2013 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 71–76.

[10] Elliott Cooper-Balis and Bruce Jacob. 2010. Fine-grained activation for power
reduction in DRAM. IEEE Micro 30, 3 (2010), 34–47.

[11] Intel Corp. 2011. Intel Xeon Processor E7 Family: Reliability, Availability, and
Serviceability”.

[12] Leonardo Ecco, Adam Kostrzewa, and Rolf Ernst. 2016. Minimizing DRAM rank
switching overhead for improved timing bounds and performance. In 2016 28th
Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 3–13.

[13] Gerd Frankowsky and Barbara Vasquez. 2004. Fuse programmable I/O organiza-
tion. US Patent 6,707,746.

[14] Sumitha George, Minli Julie Liao, Huaipan Jiang, Jagadish B Kotra, Mahmut T
Kandemir, Jack Sampson, and Vijaykrishnan Narayanan. 2018. MDACache:
Caching for multi-dimensional-access memories. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 841–854.

[15] Product Guide. 2018. https://www.samsung.com/semiconductor/global.semi/
file/resource/2018/06/DDR4_Product_guide_May.18.pdf

[16] Hewlett-Packard. 2011. HP Advanced Memory Error Detection Technology.
[17] International Business Machines Corp. (IBM). [n. d.]. Chipkill Memory. http:

//ps-2.kev009.com/pccbbs/pc_servers/chipkilf.pdf
[18] Bruce Jacob, David Wang, and Spencer Ng. 2010. Memory systems: cache, DRAM,

disk. Morgan Kaufmann.
[19] JEDEC. 2012. JESD79-4: JEDEC Standard DDR4 SDRAM.
[20] JEDEC. 2020. JESD79-5: JEDEC Standard DDR5 SDRAM.
[21] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Mike Sullivan, Ikhwan Lee,

and Mattan Erez. 2012. Balancing DRAM locality and parallelism in shared
memory CMP systems. In IEEE International Symposium on High-Performance
Comp Architecture. IEEE, 1–12.

[22] Xun Jian, Henry Duwe, John Sartori, Vilas Sridharan, and Rakesh Kumar. 2013.
Low-power, low-storage-overhead chipkill correct via multi-line error correction.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1–12.

[23] Xun Jian and Rakesh Kumar. 2013. Adaptive reliability chipkill correct (arcc). In
2013 IEEE 19th International Symposium on High Performance Computer Architec-
ture (HPCA). IEEE, 270–281.

[24] Akifumi Kawahara, Ryotaro Azuma, Yuuichirou Ikeda, Ken Kawai, Yoshikazu
Katoh, Yukio Hayakawa, Kiyotaka Tsuji, Shinichi Yoneda, Atsushi Himeno,
Kazuhiko Shimakawa, et al. 2012. An 8 Mb multi-layered cross-point ReRAM
macro with 443 MB/s write throughput. IEEE Journal of Solid-State Circuits 48, 1
(2012), 178–185.

[25] Brent Keeth, R Jacob Baker, Brian Johnson, and Feng Lin. 2007. DRAM circuit
design: fundamental and high-speed topics. Vol. 13. John Wiley & Sons.

[26] Jungrae Kim, Michael Sullivan, and Mattan Erez. 2015. Bamboo ECC: Strong, safe,
and flexible codes for reliable computer memory. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 101–112.

[27] Kie-Bong Ku and Tae-yun Kim. 2000. Circuit for setting width of input/output
data in semiconductor memory device. US Patent 6,141,273.

[28] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. In Proceedings of the 36th
annual international symposium on Computer architecture. 2–13.

[29] Minli Julie Liao and Jack Sampson. 2020. D-SOAP: Dynamic Spatial Orientation
Affinity Prediction for Caching in Multi-Orientation Memory Systems. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 581–595.

[30] JS Liptay. 2000. Structural aspects of the System/360 Model 85, PartII: the cache.
In Readings in computer architecture. 373–379.

[31] Sangkug Lym, Heonjae Ha, Yongkee Kwon, Chun-kai Chang, Jungrae Kim, and
Mattan Erez. 2018. ERUCA: Efficient DRAM Resource Utilization and Resource
Conflict Avoidance for Memory System Parallelism. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 670–682.

[32] Micron. [n. d.]. Micron DDR4 Data Sheet. https://www.micron.com/-/media/
client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf

[33] Micron. 2019. DDR4 Power Calculator 4.0. http://www.micron.com/products/
dram

[34] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jeffrey Stuecheli, and José F
Martínez. 2013. Understanding and mitigating refresh overheads in high-density
DDR4 DRAM systems. ACM SIGARCH Computer Architecture News 41, 3 (2013),
48–59.

[35] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. 2017. Fine-grained DRAM:
Energy-efficient DRAM for extreme bandwidth systems. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 41–54.

[36] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM addressing for cross-cpu attacks. In
25th {USENIX} security symposium ({USENIX} security 16). 565–581.

[37] Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems. IEEE Computer
Architecture Letters 14, 2 (2015), 140–143.

[38] Rambus. 2010. DRAM Power Model. https://www.rambus.com/energy/
[39] Jeffrey B Rothman andAlan Jay Smith. 2000. Sector cache design and performance.

In Proceedings 8th international symposium on modeling, analysis and simulation
of computer and telecommunication systems (cat. no. pr00728). IEEE, 124–133.

[40] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B
Gibbons, Michael A Kozuch, and Todd C Mowry. 2015. Gather-scatter DRAM:
In-DRAM address translation to improve the spatial locality of non-unit strided
accesses. In Proceedings of the 48th International Symposium on Microarchitecture.
267–280.

[41] Mark E Shaw, Christian Petersen, and Lidia Mihaela Warnes. 2012. Memory
module having a memory device configurable to different data pin configurations.
US Patent 8,116,144.

[42] Kyomin Sohn, Taesik Na, Indal Song, Yong Shim, Wonil Bae, Sanghee Kang,
Dongsu Lee, Hangyun Jung, Seokhun Hyun, Hanki Jeoung, et al. 2012. A 1.2 V 30
nm 3.2 Gb/s/pin 4 Gb DDR4 SDRAM with dual-error detection and PVT-tolerant
data-fetch scheme. IEEE journal of solid-state circuits 48, 1 (2012), 168–177.

[43] Young Hoon Son, O Seongil, Yuhwan Ro, Jae W Lee, and Jung Ho Ahn. 2013.
Reducing memory access latency with asymmetric DRAM bank organizations. In
Proceedings of the 40th Annual International Symposium on Computer Architecture.
380–391.

[44] Vilas Sridharan and Dean Liberty. 2012. A study of DRAM failures in the field. In
SC’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–11.

[45] Synopsys. 2019. Synopsys White Paper. https://www.synopsys.com/dw/doc.
php/wp/which_DDR_SDRAM_memory_to_use_and_when_LI.pdf

[46] Aniruddha N Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev Bala-
subramonian, Al Davis, and Norman P Jouppi. 2010. Rethinking DRAM design
and organization for energy-constrained multi-cores. In Proceedings of the 37th
annual international symposium on Computer architecture. 175–186.

[47] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal. 2020. DRAMDig:
a knowledge-assisted tool to uncover DRAM address mapping. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[48] Peng Wang, Shuo Li, Guangyu Sun, Xiaoyang Wang, Yiran Chen, Hai Li, Jason
Cong, Nong Xiao, and Tao Zhang. 2018. Rc-nvm: Enabling symmetric row and
column memory accesses for in-memory databases. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 518–530.

[49] Zheng PeiWu, Rodolfo Pellizzoni, and Danlu Guo. 2016. A composable worst case
latency analysis for multi-rank dram devices under open row policy. Real-Time
Systems 52, 6 (2016), 761–807.

[50] Xin Xin, Youtao Zhang, and Jun Yang. 2020. Reducing DRAM access latency via
helper rows. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[51] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao
Zhang, Shimeng Yu, and Yuan Xie. 2015. Overcoming the challenges of crossbar
resistive memory architectures. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 476–488.

[52] Doe Hyun Yoon, Min Kyu Jeong, and Mattan Erez. 2011. Adaptive granularity
memory systems: A tradeoff between storage efficiency and throughput. In
Proceedings of the 38th annual international symposium on Computer architecture.
295–306.

335

https://www.samsung.com/semiconductor/global.semi/file/resource/2018/06/DDR4_Product_guide_May.18.pdf
https://www.samsung.com/semiconductor/global.semi/file/resource/2018/06/DDR4_Product_guide_May.18.pdf
http://ps-2.kev009.com/pccbbs/pc_servers/chipkilf.pdf
http://ps-2.kev009.com/pccbbs/pc_servers/chipkilf.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
http://www.micron.com/products/dram
http://www.micron.com/products/dram
https://www.rambus.com/energy/
https://www.synopsys.com/dw/doc.php/wp/which_DDR_SDRAM_memory_to_use_and_when_LI.pdf
https://www.synopsys.com/dw/doc.php/wp/which_DDR_SDRAM_memory_to_use_and_when_LI.pdf

SAM: Accelerating Strided Memory Accesses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[53] Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez. 2012. The dy-
namic granularity memory system. In 2012 39th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 548–560.

[54] Tao Zhang, Ke Chen, Cong Xu, Guangyu Sun, Tao Wang, and Yuan Xie. 2014.
Half-DRAM: A High-bandwidth and Low-power DRAM Architecture from the

Rethinking of Fine-grained Activation. In 2014 ACM/IEEE 41st International Sym-
posium on Computer Architecture (ISCA). IEEE, 349–360.

[55] Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, Howard David,
and Zhichun Zhu. 2008. Mini-rank: Adaptive DRAM architecture for improving
memory power efficiency. In 2008 41st IEEE/ACM International Symposium on
Microarchitecture. IEEE, 210–221.

336

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Basics
	2.2 I/O Interface
	2.3 ECC for Servers

	3 Motivation
	3.1 Strided Memory Accesses
	3.2 Design Goal
	3.3 The State of the art

	4 SAM DESIGN
	4.1 SAM-sub
	4.2 SAM-IO
	4.3 SAM-en
	4.4 Support Finer Granularity

	5 Discussion
	5.1 CPU End
	5.2 OS support
	5.3 Interface to SAM
	5.4 Compare to the State-of-the-art

	6 EVALUATION
	6.1 Experiment Setup
	6.2 Results

	7 CONCLUSION
	Acknowledgments
	References

