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ABSTRACT

Messaging and communication is a critical aspect of next generation
Internet-of-Things (IoT) systems where interactions among devices,
software systems/services and end-users is the expected mode of
operation. Given the diverse and changing communication needs
of entities, the data exchange interactions may assume different
protocols (MQTT, CoAP, HTTP) and interaction paradigms (point
to point, multicast, unicast). In this paper, we address the issue
of supporting adaptive communications in IoT systems through a
mediation-based architecture for data exchange. Here, components
called mediators support protocol translation to bridge the hetero-
geneity gap. Aiming to provide a placement of mediators to nodes,
we introduce an integer linear programming solution that takes as
input: a set of Edge nodes, IoT devices, and networking semantics.
Our proposed solution achieves adaptive placement resulting in
timely interactions between IoT devices for larger topologies of IoT
spaces.
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1 INTRODUCTION

Developing Internet of Things (IoT) applications requires the com-
bination of heterogeneous IoT devices in smart spaces [3, 18]. For
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example, to regulate the temperature of a building according to
rooms’ occupancy, an application that analyzes data coming from
Bluetooth beacons, WiFi access points or motion sensors can be
developed. This input data can be subsequently used to estimate
the occupancy level of rooms and actuate the building’s HVAC
appropriately. However, the involved IoT devices may employ dif-
ferent APIs and protocols, data formats and data information se-
mantics. Existing interoperability solutions enable application de-
velopers to bridge IoT devices by relying on (i) service buses, prox-
ies or gateways [8, 9, 13]; (ii) connector wrappers or mediating
adapters [1, 3, 9, 13, 18]; and (iii) Cloud platforms [5, 14].

While these solutions enable data exchange, they introduce an
overhead cost in terms of end-to-end delay between the involved IoT
devices. In particular, developers tend to focus only on dealing with
the heterogeneity problem while they ignore the deployment of
the needed artifacts (gateways, mediators, etc). The most common
practice is either to use a Cloud platform or to deploy the needed
artifacts in the Cloud using the APIs of well known Cloud providers
such as Amazon, Google, etc. Hence, IoT devices of the same space
must interact with each other via the Cloud, which results in higher
end-to-end delays between IoT devices. Such delays depend on
the number of IoT devices, the available bandwidth, data size and
frequency of messages. High delays may limit the development of
dependable IoT applications, especially those that carry mission-
critical information to improve public safety.

For instance, during a fire in a smart building, an emergency
dispatch process is activated by sending a team of Fire Fighters (FFs)
to the building. The FFs and their Incident Commander (IC) bring
their own equipment (smart sensors and devices) to the site and
they require up-to-date situational awareness information. Data
(e.g., temperature, smoke levels and occupancy) derived from the
building’s IoT devices along with static information (e.g., build-
ing floor plans) can be leveraged by the stakeholders (e.g., IC, FFs,
building occupants) to ensure their safety. However, advanced in-
teroperability solutions are required to interconnect their devices
with the ones in the smart building. Leveraging a Cloud platform
or deploying the needed artifacts in the Cloud may result in high
end-to-end delays between IoT devices. Such delays can be even
higher for emergencies because the network may become highly
congested and partially unavailable.

To deal with the heterogeneity in these emergency response
scenarios, we rely on the DeXMS (Data eXchange Mediator Synthe-
sizer) framework [3] that synthesizes mediators in an automated
manner for bridging heterogeneous IoT devices. DeXMS does not
dictate where to deploy the mediators, and the current paper stud-
ies the mediator placement problem which explores how adaptive
mediation can be enabled in an IoT space. In particular, this is done
by taking into account bandwidth, data frequency and data size


https://doi.org/10.1145/3366612.3368122
https://doi.org/10.1145/3366612.3368122
https://doi.org/10.1145/3366612.3368122

ARM ’19, December 9-13, 2019, Davis, CA, USA

constraints in order to place the synthesized mediators to a set of
nodes and ensure timely data exchange between IoT devices. In
particular, we propose an integer linear programming placement
(ILP) solution, and compare it against other baseline algorithms—
the results clearly show the efficiency of our solution. The main
contributions of this paper are:

(1) Introducing the mediator placement problem as a formal
model that takes into account network resources and IoT
device attributes (Section 3).

(2) Presenting baseline heuristics based on distance and best
fit decreasing bandwidth, and proposing our ILP placement
algorithm for adaptive mediation between IoT devices (Sec-
tion 4).

(3) Comparing the different placement approaches via their exe-
cution time and the resulted end-to-end delays for different
topologies including heterogeneous IoT device interactions
(Section 5).

2 MEDIATORS FOR ADAPTIVE DATA
EXCHANGE

IoT devices (i.e., Things) employ middleware-layer protocols such as
MQTT, CoAP, ZeroMQ and more, to interact with each other. These
protocols support different Quality of Service (QoS) semantics; they
define multiple data-serialization formats (e.g., JSON, XML, proto-
bul, etc.) and different payloads suitable for constrained or healthy
devices; and they follow different interaction paradigms such as
client/server, publish/subscribe and streaming. IoT systems include
heterogeneous Things employing any of the above protocols. In
many cases, new heterogeneous Things may be needed to be added
to an IoT system in an on-demand fashion. For instance, in the fire
fighting scenario, the IoT equipment of FFs must interact with the
devices in an IoT space. Hence, generic and automated solutions
are required to enable data exchange in such IoT systems.

' Mediator
mediator
logic

HTTP -{ HTTP H MQTT Jdr-b MQTT

\
< DeX connector A > < DeX connector B >

Figure 1: Enabling data exchange via mediators.

In this paper we leverage DeXMS [3] to synthesize software
mediators that bridge heterogeneous Things. As depicted in Fig. 1,
DeXMS relies on the Data eXchange (DeX) API, which implements
post and get primitives for sending/receiving messages using ex-
isting IoT protocols such as CoAP, MQTT, XMPP, etc. In Fig. 1, the
mediator converts temperature data coming from a smart thermo-
stat (in JSON format through the HTTP protocol) to be received
from a FF’s dashboard (in XML format through the MQTT protocol).
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Considering a set of heterogeneous Things that have to intercon-
nect with Things deployed in an IoT space, DeXMS accepts as input
their input/output data representation models and synthesizes the
required mediators. More details on DeXMS can be found in [3].

3 PROBLEM FORMULATION

In this section, we introduce the mediator placement problem which
utilizes a set of Edge nodes to enable adaptive mediation for ex-
changing data between Things. Figure 2 shows a space where things
and nodes are located. We illustrate four interactions whose media-
tors have already been assigned to nodes, and introduce the used
notations below.

Figure 2: Heterogeneous IoT devices (Things) and computa-
tional resources (Nodes) located in an IoT space.

3.1 System and Resources Model

T ={t;:ie1...|T|}is the set of things in the system. In the sam-
ple fire fighting scenario, this set consists of the sensors that may
be located in a building (e.g., temperature sensors, smoke sensors,
etc.), their corresponding receivers, as well as any equipment that
FFs carry before entering the burning building (e.g., heart monitor,
location sensor, etc.). We assume that FFs will be assigned to some
particular areas, allowing us to approximate their locations. When
FFs are relocated to other areas, a new instance of the mediator
placement problem needs to be solved to accommodate the FFs’
mobility. We assume that a thing ¢; has the following key attributes:

(1) location I(t;), which is a vector denoting the coordinates at
which t; is located. We assume that we will work in a 3D
environment, and thus, the length of this vector is 3.

(2) protocol p(t;), which is a string denoting the IoT protocol
(CoAP, MQTT, etc.) used by the application running on ;.
We assume that for every thing t; € T, there is only one
protocol used.

N ={n; :i € 1...|N]|} is the set of nodes in the system. These
nodes are responsible for hosting mediators to enable things to
interact. In our fire fighting scenario, this set consists of any com-
putational resources (e.g., Raspberry Pis) that are available in an
IoT space to deploy software artifacts. We define the location I(n;)
of a node analogously to the location of a thing.

I= {i]kl :jel...|I,k,l € 1...|T|} is a set of interactions

that will take place in the system. An interaction i}‘ ! denotes that
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interaction j consists of thing t;. sending a message to thing ¢;. With
the above definition, we can model a two-way interaction with ikl
and i'% . We also make an assumption that for each interaction ijl.‘ Le

L p(tx) # p(t;). Interactions will additionally have the following
key attributes:

(1) message size /1(1'}.), which is a scalar denoting the size of a
message sent.

(2) frequency y(i j), which the number of times a message of size
A j) is sent. We let this frequency follow a Poisson process.

W ={wjr :j€1...[T|,k € 1...|N|} is a graph that denotes
the available bandwidth of links between Things and Nodes. In par-
ticular, wj represents the available bandwidth of the link between
thing t; and ng. We do not include links between nodes because it
is not possible for any interaction to traverse through such links.

Mediator Placement Problem. The Mediator Placement Prob-
lem can be formally stated as follows: Given a set of Things, Nodes,
Interactions, and (Bandwidth of) Links, assign each mediator to a
node so that the total bandwidth used over every link is less than
or equal to the link’s available bandwidth and the total delay is
minimized.

3.2 Objective Function

Next, we describe how the total end-to-end delay is calculated to
quantify the quality of a particular placement. There are two main
components relevant to finding the total end-to-end delay for a
given placement.
Ae2e is the end-to-end delay for the entire system. We calculate
this quantity using the following equation:
Aeze = 3,09 1)

proc
which sums up the transmission delay and the propagation delay for
all interactions. We note that the end-to-end delay does not include
the time taken to generate mediators because we assume that such

mediators have already been generated. Agzo ¢
-kl

delay for interaction i7" and a node ny, on which a mediator is

is the propagation

placed. We calculate this value with the equation:
A0 ) = Kem)l] (1) = KE)]
c

proc c

@

where c is the wave propagation speed, which is the speed at which
data travels through a medium. That is, this formula takes the
distance that the data must travel and divides it by the wave prop-
agation speed. Notice that we assume the conversions between
heterogeneous Things are relatively short, and thus the queueing
and processing delays are negligible [3].

We note that the processing delay is small, since mediators are
lightweight [3]. In this work, we will also assume that the queueing
delay is negligible, and so we do not include it as part of the end-to-
end delay. In addition, we note that the processing delay is negligible
since the mediators we develop are lightweight.

3.3 Constraints
Below are the two constraints that must be satisfied for any partic-
ular placement to be valid.

(1) Bandwidth Constraint. Given a placement, for every link,
comprised of a Thing and a Node, its used bandwidth must
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be less than or equal to its available bandwidth. Given an
interaction i]l.‘l and node ny, to place its corresponding me-
diator, ij will consume /1(1‘].) X y(ij) bandwidth on the two
links from #;. to ny, and from #; to n,,. This constraint can be
checked efficiently with the algorithm given in Algorithm 1.

(2) Injective Constraint. Given a placement, for every interac-
tion, there must be only one node assigned to that interac-
tion.

Algorithm 1: Check Bandwidth Constraints

Input: A placement P, of Interactions I to Nodes N, graph W

Output: True if the bandwidth constraint is satisfied for P,
otherwise False

fort, «— T do

for n, «— N do
bandwidthUsed « 0;

for i]].d «— Ido
if u = k Av = P[j] then
bandwidthUsed «—
bandwidthUsed + A(ij) * y(ij);

if bandwidthUsed > wy,, then
| return False;

| return True;

4 MEDIATOR PLACEMENT ALGORITHMS

In this section, we propose several algorithms to solve the mediator
placement problem.

4.1 Baseline Algorithms

Best Fit Decreasing Bandwidth Placement. This heuristic algo-
rithm places mediators to nodes only when the bandwidth con-
straint would not be violated, but selects a node such that the
bandwidth wasted by the placement is minimized. We consider in-
teractions in decreasing order of their data rates and place mediators
on nodes that would saturate more bandwidths earlier.

First, we define the waste of a mediator assignment to node
nm for interaction ij.‘ ! as a difference of two sums, which we will
refer to as SUM1 and SUM2. SUM1 is the sum of the available
bandwidths from ¢ to n,, and from ¢; to np,, which can be denoted
with wip,, + wy,,. SUM2 is the sum of the bandwidths used by all
other interactions sending a message from tj to ny, and from t; to
nm, added to the data rate used by i ;- We can denote SUM2 using
the formula: Uy, + Up,,, + 2 X A(ij) X y(ij), where U represents the
total bandwidths used by all other interactions. We note that since
there are two links involved in every interaction, we must multiply
the data rate by two to properly count the total bandwidth used.
Collectively, the waste produced by placing on some particular node
N is described with: wi.p,, + wy, — (U, + Uy +2 X /1(1'].) X y(ij)).
We give the psuedocode of this algorithm in Algorithm 2.

Greedy Distance Placement Algorithm. This is a heuristic
algorithm that places mediators to nodes such that the bandwidth
constraints on all the links are not violated, and the distance trav-
elled by the data is minimized. That is, for every interaction, we
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Algorithm 2: Best Fit Decreasing Bandwidth Placement

Algorithm 3: Greedy Distance Placement

Input: set of Things T, set of Nodes N, set of Interactions I,
graph W
Output: Placement P, or NULL
P < an empty map;
U « an isomorphic graph to W, with all edge weights = 0;
for ikl — I, sorted in decreasing data rate order do
¢ < NULL, the node to place a mediator for i 5
bandwidthUsed < oo, the bandwidth used by placing a
mediator on ¢
A « 0 be an empty set of nodes;
for n,, «— N do
if
(Ukm+/1(ij)*)/(ij) < ka)/\(Ulm+/1(ij)*Y(ij) < Wim)
then
| add ny, to A;

if A= 0 then
| return NULL;
for np, «— Ado
b= wim +wim = (Ugm + Uy + 2% A(ij) * Y(ij))

if b < bandwidthUsed then
ce—m

bandwidthUsed < b;
P[j] « m;
Uke = Uke + Aip) * y(i));
Ue =Uje + /1(1.]) * Y(ij);

place a mediator to the closest node by distance such that the con-
straints are met. Pseudocode is provided in Algorithm 3.

4.2 Integer Linear Programming Placement

We define a decision variable X, which is a matrix of size |I| X [N/,
such that an entry X = 1iff interaction i; uses node ny, otherwise
0. To compute the total bandwidth between thing t; and node n;,
we sum the data rates of all interactions that are both: (1) using t; as
part of the interaction, and (2) using n; to host the corresponding
mediator. In order to express whether some thing ¢; is part of an
interaction, we introduce a boolean matrix V with size |I| X |T|,
whose entries Vj; = 1iff thing ¢; is a part of interaction i i otherwise
0. Thus, we formulate the bandwidth constraints as:

thanZijVjp X Xjgq X )L(ij) X y(ij) < Wpg.

Since an entry Vj, = 1iff t, is a part of i s the links we take a
summation of must include at least t,, as one endpoint. Likewise,
since an entry Xjq = 1 iff ng will be used to host a mediator for i .,
this same link must have ng4 as another endpoint. We multiply these
two entries together to ensure that both must be true. In such a case,
we are allowed to add the bandwidth used by i ; to the summation.
Otherwise, one of these entries must be 0, which will cause the
summation to stay the same.

The second constraint we consider is that a mediator is assigned
exactly one node. We formulate this constraint as follows:

Vijzn,.in =1.

Input: set of Things T, set of Nodes N, set of Interactions I,
graph W
Output: Placement P, or NULL
P < an empty map;
U « an isomorphic graph to W, with all edge weights = 0;
for i « Ido
¢ «— NULL, the closest node to t; and t;;
totalDist < oo, the distance from t; to c to ;
A « 0 be an empty set of nodes;
for n,, «— N do
if
Ut +2(1)47(5) < W) AN Ui A0 1)) < Wi)
then
| add ns;, to A;

if A =0 then
| return NULL;

for n,;;, — Ado
d e dist(I(te), np)) + dist(U(nm), 1(1)));
if d < totalDist then

ce—m;
L totalDist « d;
P[j] & m;
Uke = Uke + Aliy) * v (i);
Ue =Upc + A(i]) * )’(ij);

Suppose that for some interaction i 2 Xji # 1. In the case that
the sum is equal to 0, there must not have been any nodes assigned
to host this mediator, thus creating an invalid placement. Similarly,
in the case that the sum is greater than 1, there must be at least 2
nodes that were assigned to host this mediator, which is also an
invalid placement. Thus, the sum of Xj; over all nodes n; must be 1.

With the above derivation, our ILP problem is formally written as:

minimize Aegge
subject to thanZijVjp X Xjq X )L(ij) X y(ij) < Wpq
Vijznini =1.

5 EXPERIMENTS

In this section, we will describe the experiments used to quantify
both the running time and quality of solutions produced by the
presented algorithms. We use the random placement algorithm as
a baseline. Additionally, we assume that if an algorithm is unable
to place a mediator to a node such that all constraints specified in
Section 3 are satisfied, the algorithm will report failure, and the
attempt is not recorded.

Experimental Setup. We consider two classes of topologies:
(1) TOPOLOGY1 is a simple case consisting of 10 things and 10
nodes and (2) TOPOLOGY?2 is a more complex case consisting of 100
things and 10 nodes. Specific topologies are generated as detailed
below:

(1) The locations I(t;) and I(n;) are both chosen randomly from
the range [0, 1000] (meters).
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Figure 3: Execution time for TOPOLOGY1

(2) Interactions are generated randomly by selecting two (dif-
ferent) things with different IoT protocols. Therefore, all
interactions must inherently be heterogenous, and thus, re-
quire a mediator.

(3) The data rate corresponding to any particular interaction is
chosen randomly from the range [0.8, 2] (Mbps).

(4) The bandwidth available on any particular link is a function
of the number of things. In particular, we specify a total
bandwidth, chosen randomly, and divide this total by the
number of things that exist in the topology.

We record two performance measures: (1) the execution time
and (2) the estimated response time (Equation 1), while varying
the number of interactions in a given topology from 5 to 245 in
increments of 10 and use the timeit module ! built into python. Each
experiment was repeated ten times for each interaction size, and
the minimum amount of time taken was recorded (as advised in the
documentation for the timeit module). After timing each algorithm
on a topology, we record the quality of the solution produced using
the estimated response time.

We note that although we do not explicitly test the extreme case,
where all mediators are deployed to one node, it is easy to reason
that such a placement will introduce a single point of failure, along
with significantly increasing the total end-to-end delay.

Results Analyzing the experiments done on TOPOLOGY1 first,
we can see that the ILP solution took the longest to run, and all
other algorithms had negligible runtimes. In particular, Figure 3
shows that the runtime of the ILP grows linearly with the number
of interactions. Connecting this with Figure 4, we can see that the
ILP has the best estimated response time, followed by the greedy
placement, and then finally the random and best fit decreasing
algorithms. We note that while the greedy algorithm could find
nearly optimal solutions, as the number of interactions increases,
the difference between the greedy placement and the ILP placement
widens, and at a certain point, the greedy algorithm simply fails to
place mediators. This failure to place mediators is caused by not
considering the bandwidth remaining on links. Thus, the other two
algorithms are able to place a larger number of mediators because
they evenly distribute the mediators.

Uhttps://docs.python.org/3.7/library/timeit.html
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Figure 5: Execution time for TOPOLOGY2.

TOPOLOGY?2 considers a case with a larger number of things;
we record the execution time and the estimated response time in
Figures 5 and 6. Similar to TOPOLOGY]1, we can see that the exe-
cution time of the ILP is much larger than the execution time of
the other algorithms. We connect this to the estimated response
time in Figure 6, where once again, the ILP solution outperforms
the others. We note that the other three algorithms were not able
to find solutions for larger numbers of interactions. In particular,
the greedy algorithm failed first, as is expected, since it does not
consider the remaining bandwidth on each link. On the other hand,
the best fit decreasing bandwidth algorithm which does take into
account bandwidth, does not do well in terms of the response time;
the tradeoff is that it is able to place a larger number of mediators
compared to the greedy and random algorithms. An additional in-
teresting point to make in Figure 6 is the relationship between the
random and the best fit decreasing algorithms. Although their exe-
cution times are roughly the same, the best fit decreasing algorithm
is able to place a larger number of mediators. This is caused by the
way the two algorithms select nodes for placement, and the amount
of bandwidth available on links. Since the best fit decreasing algo-
rithm attempts to minimize the amount of "wasted" bandwidth, it
is able to place more mediators before failing.


https://docs.python.org/3.7/library/timeit.html

ARM ’19, December 9-13, 2019, Davis, CA, USA

0.35
0.30
£ 025
T
w» 0.20
=]
2
£ 015
=}
E
0 010 RandomPlacement
.05 GreedyDistancePlacement
5 —i— |LPPlacement
0.00 —— BestFitDecreasingBandwidthPlacement

0 50 100 150 200 250
# interactions

Figure 6: Estimated total delay TOPOLOGY2.

6 RELATED WORKS

Much of elated work in the operator placement problem has stud-
ied the context of in-netowrk query processing and WSN, where
efficient placement is the key criteria; these algorithms differ in
their initial assumption and optimization goals.

One large class of proposed algorithms start with an assump-
tion of an operator tree.. Under this assumption, Bonfils et. al. [2]
introduces a neighbor exploration strategy that iteratively moves
operators until they find a local minimum. Lu et. al. [11] instead of-
fers a distributed heuristic-based algorithm, which first individually
places operators to nodes, and then later attempts to modify them
as needed. On the other hand, Srivastava et. al. [15] adds another
assumption: that all operators are filters, which they propose a
greedy and (separate) polytime algorithm. Ying et. al. [17] proposed
a distributed algorithm inspired by the Bellman-Ford algorithm
More recently, Tzaritas et. al. [16] presented an algorithm similar
to [2], and focused on operator migration.

Another assumption often made in the context of operator place-
ment is the node resource bottleneck. In [7], Chatzimilioudis et. al.
proposed a hybrid algorithm utilizing both dynamic programming
and heuristics. Hong et. al. [10] proposed a greedy algorithm based
on scarcest resource, shortest path, and early feature extraction.

However, not all algorithms avoid bandwidth constraints. Piet-
zuch et. al. [12] alternatively proposed an algorithm that utilized an
n-dimensional cost space based on data rates and network latency.

We acknowledge that the work published by Cardellini et. al. [6]
is closest to our own. In their approach, they formulate the opera-
tor placement problem with regards to both nodes and operators
graphs, along with providing constraints for both node resources
as well as link resources. We note that one of the key differences
between our work and their work is that each interaction produces
data on their own based on a message size and frequency of sending.

It is evident that many papers present solutions for the operator
placement problem under strong assumptions that may not hold
true for more complex systems. From operator trees to node re-
source bottlenecks, we differentiate our work by focusing on links
and bandwidth over node resources, and also modeling interactions
in detail using attributes like message size and frequency.
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7 CONCLUSIONS

To support adaptive mediation in IoT systems, the heterogeneity
gap must be bridged via a mediation based-architecture. Compo-
nents called wrappers or mediators support such bridging. This
paper describes the mediator placement problem in which a set of
mediators must be placed on a set of nodes based on IoT device
attributes and network semantics. We devise an adaptive placement
of mediators through an integer linear programming algorithm.
In future work we intend to incorporate the effect of queuing to
our proposed solution, which is crucial in constrained networks. We
will use queueing theoretic models [4]. as input to our placement
techniques to more accurately quantify the performance of IoT
interactions; such interactions may need to handle intermittently
connected things while satisfying timely delivery. We expect to
represent interactions with directed acyclic graphs (DAG), which
more accurately model a more complex setting of sensors / virtual
sensors. Ultimately, we plan to extend the mediator placement
problem based on information semantics produced by IoT devices.
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