Vertex Connectivity in Poly-logarithmic Max-Flows®

Jason Li Danupon Nanongkai Debmalya Panigrahi
Carnegie Mellon University University of Copenhagen, Denmark, Duke University
USA and KTH, Sweden USA
jmli@cs.cmu.edu danupon@gmail.com debmalya@cs.duke.edu
Thatchaphol Saranurak Sorrachai
University of Michigan Yingchareonthawornchai
USA Aalto University
thsa@umich.edu Finland

ABSTRACT

The vertex connectivity of an m-edge n-vertex undirected graph
is the smallest number of vertices whose removal disconnects the
graph, or leaves only a singleton vertex. In this paper, we give a
reduction from the vertex connectivity problem to a set of maxflow
instances. Using this reduction, we can solve vertex connectivity in
O(m®) time for any & > 1, if there is a m*-time maxflow algorithm.
Using the current best maxflow algorithm that runs in mA/3+o(1)
time (Kathuria, Liu and Sidford, FOCS 2020), this yields a m#/3+o(1).
time vertex connectivity algorithm. This is the first improvement
in the running time of the vertex connectivity problem in over
20 years, the previous best being an O(mn)-time algorithm due
to Henzinger, Rao, and Gabow (FOCS 1996). Indeed, no algorithm
with an o(mn) running time was known before our work, even if
we assume an O(m)-time maxflow algorithm.

Our new technique is robust enough to also improve the best
O(mn)-time bound for directed vertex connectivity to mni=1/12+o(1)
time

CCS CONCEPTS

» Theory of computation — Graph algorithms analysis.

KEYWORDS

algorithmic graph theory, vertex connectivity

ACM Reference Format:

Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak,
and Sorrachai Yingchareonthawornchai. 2021. Vertex Connectivity in Poly-
logarithmic Max-Flows. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC °21), June 21-25, 2021, Virtual,
Italy. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3406325.
3451088

*The full version of this paper is available at https://arxiv.org/abs/2104.00104.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °21, June 21-25, 2021, Virtual, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8053-9/21/06.

https://doi.org/10.1145/3406325.3451088

sorrachai.yingchareonthawornchai@aalto.fi

317

1 INTRODUCTION

The vertex connectivity of an undirected graph is the size of the
minimum vertex cut, defined as the minimum number of vertices
whose removal disconnects the graph (or becomes a singleton ver-
tex). Finding the vertex connectivity of a graph is a fundamental
problem in combinatorial optimization, and has been extensively
studied since the 1960s. It is well-known that the related problem
of an s-t vertex mincut, defined as the minimum vertex cut that
disconnects a specific pair of vertices s and ¢, can be solved using an
s-t maxflow algorithm. This immediately suggests a natural start-
ing point for the vertex connectivity problem, namely use O(n?)
maxflow calls to obtain the s-t vertex mincuts for all pairs of ver-
tices, and return the smallest among them. It is against this baseline
that we discuss the history of the vertex connectivity problem be-
low. Following the literature, we use m, n, and k to respectively
denote the number of edges, vertices, and the size of the vertex
mincut in the input graph.

In the 60s and 70s, several algorithms [8, 18, 23], showed that
for constant values of k, only O(n) maxflow calls suffice, thereby
improving the running time for this special case. The first uncondi-
tional improvement over the baseline algorithm was obtained by
Becker et al. [3], when they used O(nlogn) maxflow calls to solve
the vertex connectivity problem. The following simple observation
underpinned their new algorithm: if one were able to identify a
vertex s that is not in the vertex mincut, then enumerating over the
remaining n — 1 vertices as ¢ in the s-t maxflow calls is sufficient.
They showed that they could obtain such a vertex s whp' by a
random sampling of vertices.

The next round of improvement was due to Linial, Lovasz, and
Wigderson (LLW) [20] who used an entirely different set of tech-
niques based on matrix multiplication to achieve a running time
bound of O((n® + nk®) log n), which is O(n'** log n) in the worst
case of k = ©(n); here, w = 2.37 is the matrix multiplication expo-
nent. To compare this with the maxflow based algorithms, we note
that the maxflow instances generated by the vertex connectivity
problem are on unit vertex-capacity graphs, for which an O(m+/n)
algorithm has been known since the celebrated work of Dinic using
blocking flows in the 70s [7]. Therefore, LLW effectively improved
the running time of vertex connectivity from O(n’/?) in the worst
case to O(n!*®).

!with high probability

https://doi.org/10.1145/3406325.3451088
https://doi.org/10.1145/3406325.3451088
https://arxiv.org/abs/2104.00104
https://doi.org/10.1145/3406325.3451088

STOC ’21, June 21-25, 2021, Virtual, Italy

A decade after LLW’s work, Henzinger, Rao, and Gabow (HRG) [14]
improved the running time further to O(mnlog n) by reverting to
combinatorial flow-based techniques. They built on the idea of com-
puting O(n) maxflows suggested by Becker et al. [3], but with a
careful use of preflow push techniques [11] in these maxflow sub-
routines, they could amortize the running time of these maxflow
calls (similar to, but a more refined version of, what Hao and Orlin
had done for the edge connectivity problem a few years earlier [12]).
The HRG algorithm remained the fastest unconditional vertex con-
nectivity algorithm before our work.

We also consider the vertex connectivity problem on directed
graphs. Here, the goal is to find a smallest set of vertices whose
removal ensures that the remaining graph is not strongly connected.
The HRG bound of O(mnlog n) [13] generalizes to digraphs, and
sets the current record for this problem as well.

In concluding our tour of vertex connectivity algorithms, we
note that there has also been a large volume of work focusing
on faster algorithms for the special case of small k. Nearly-linear
time algorithms are known only when k < 2 [5, 10, 15, 16, 21, 24]
until recently when [9, 22] give an O(mk?)-time algorithm? for
both undirected and directed graphs, which is nearly-linear for
k = polylog(n). Similarly, the question of approximating the vertex
connectivity of a graph efficiently has received some attention,
and a (1 + €)-approximation is known in O(min{mk/e,n® /€*})
time [9, 22] while a worse approximation factor of O(logn) can be
achieved in near-linear time [4]. These two lines of work are not
directly related to our paper.

1.1 Our Results

In this paper, we give the following result:

THEOREM 1.1 (MAIN). Given an undirected graph on m edges,
there is a randomized, Monte Carlo vertex connectivity algorithm that
makes s-t maxflow calls on unit capacity graphs that cumulatively
contain O(m) vertices and O(m) edges, and runs in O(m) time outside
these maxflow calls.

In other words, if maxflow can be solved in m* time on unit capac-
ity graphs, for any a > 1, then we can solve the vertex connectivity
problem in O(m®) time. In particular, using the current fastest
maxflow algorithm on unit capacity graphs (Kathuria, Liu and Sid-
ford [17]), we get a vertex connectivity algorithm for undirected
graphs that runs in m*/3+°(1) time, which strictly improves on the
previous best time complexity of O(mn) achieved by the HRG al-
gorithm. Even more ambitiously, if maxflow is eventually solved
in O(m) time, as is often conjectured, then our theorem will au-
tomatically yield an O(m) algorithm for the vertex connectivity
problem, which would resolve the long standing open question by
Aho, Hopcroft and Ullman [1] since 1974 up to polylogarithmic
factors. In contrast, even with an O(m)—time maxflow algorithm, no
previous vertex connectivity algorithm achieves an o(mn) running
time bound.

We remark that the reduction in the theorem generates instances
of the s-t vertex connectivity problem, i.e., a maximum set of vertex-
disjoint paths between s and ¢ in an undirected graph, which are
solved by a maxflow call via a standard reduction. Also, we note that

20(f (m)) = O(polylog(n) f ().

318

Li, Nanongkai, Panigrahi, Saranurak, Yingchareonthawornchai

our algorithm is randomized (Monte Carlo) even if the maxflow
subroutines are not. It is an interesting open question to match
the running time bounds of this theorem using a deterministic
algorithm, or even a Las Vegas one.

We also generalize our new technique to work directed graphs
and obtain a significant improvement upon the fastest O(mn)-time
algorithm by HRG for the directed vertex connectivity problem

THEOREM 1.2. Given a directed graph with m edges and n vertices,
there are randomized Monte Carlo vertex connectivity algorithms
with

o mnl=1/12+0(1) time or
e O(n?) time assuming that max flow can be solved in near-
linear time.

As the result on directed graphs is obtained by using our new
technique in a less efficient way and does not give additional insight,
we discuss it in the full version of this paper.

1.2 Technical Overview

Our main technical contribution is a new technique that we call
sublinear-time kernelization for vertex connectivity. Namely, we
show that under certain technical conditions, we can find a sub-
graph whose size is sublinear in n and preserves the vertex con-
nectivity of the original graph. We use sketching techniques to
construct such a subgraph in sublinear time. To the best of our
knowledge, all previous techniques require Q(n*) time even in the
extremely unbalanced case when the vertex mincut have size Q(n),
and the smaller side of the mincut contains O(1) vertices. In con-
trast, sublinear-time kernelization allows us to reduce the problem
in this case to maxflow calls of total size O(m) in O(m) time. Below,
we elaborate on this new technique and discuss how it fits into the
entire vertex connectivity algorithm.

Suppose the vertex mincut of the input graph G is denoted by
(L, S,R), where |L| < |R| are the two sides of the cut, and |S| = k
is the set of vertices whose removal disconnects L from R. For
intuitive purposes, let us assume that we know the values of |L|
and |R| and |R| = Q(n). This allows us to obtain a vertex in R
using just O(log n) samples. From now, we assume that we know
a vertex r € R. If we were also able to find a vertex x € L, then
we can simply compute an x-r maxflow to obtain a vertex mincut.
But, in general, |L| can be small, and obtaining a vertex in L whp
requires O(n/|L|) samples. Recall that we promised that the total
number of edges in all the maxflow instances that we generate
will be O(m). One way of ensuring this would be to run each of
the O(n/|L|) maxflow calls on a graph containing only O(k|L|)
edges; then, the total number of edges in the max flow instances
is O((n/|L|) - (k|L|)) = O(nk) = O(m) since the degree of every
vertex is at least k. At first glance, this might sound impossible
because the number of edges incident to N(x) is already Q(k?).
Nevertheless, our main technical contribution is in showing that in
certain cases we can construct a graph H with just O(k|L]) edges
that gives us information about the vertex connectivity of G. We call
such graph a kernel. In achieving this property, we need additional
conditions on L and S, specifically on their relative sizes and the
degrees of vertices in S. If these conditions do not hold, we give a
different algorithm that uses a recent tool called the isolating cut

Vertex Connectivity in Poly-logarithmic Max-Flows

lemma used in the edge connectivity problem [19] (we adapt the
tool to vertex connectivity). More specifically, we consider three
cases depending on the sizes of L and Sy, Where

Stow = {v € S | deg(v) < 8k}.

It might not be intuitive now why we need Sy, Distinguishing
cases using Sy, 1S a crucial idea that makes everything fits together.
Its role will be more clear in the discussion below. The use of our
kernelization is in the last case (Case 3). We now discuss all the
cases.

Case 1: Large L (details in Section 4). We first consider the easier
case when L is not too small compared to S, i.e. |[L| > k/polylog(n).
Consider the vertex set T where each vertex is included in T with
probability m Then, with probability at least 1/polylog(n),
T contains exactly one vertex from L (call it x), no vertex from
S, and the remaining vertices are from R. Assume that it is the
case by repeating polylog(n) times. Observe that a vertex mincut
separating x from T \ {x}, denoted by (x, T \ {x})-vertex mincut,
is a (global) vertex mincut of G.

The isolating cut lemma was recently introduced by Li and Pan-
igrahi [19] for solving the edge connectivity problem determinis-
tically. It says that in an undirected graph, given a set of termi-
nal vertices T, we can make maxflow calls to graphs of total size
O(mlog |T|) and return for each terminal ¢ € T, the smallest edge
cut separating ¢ from T\ {¢}. In particular, it returns us a (x, T\ {x})-
edge mincut. If this lemma worked for vertex cuts, it would return
usa (x,T\ {x})-vertex mincut and we would be done. It turns out
that the isolating cuts lemma can be adapted to work for vertex
connectivity, due to the submodularity property of vertex cuts.

Case 2: Small L, small Sy, (details in Section 4). From now on,
we assume that |[L| < k/polylog(n). Note that for every vertex
x € L, all neighbors of x are inside L U S and so deg(x) < |L| +
k < 2k. Let Vjoy be all vertices whose degrees are less than 8k.
We know that L € Vg and Sigw = S N Vjgw by definition. It
is also easy to show that |R N Vi | = |L| (see Claim 4.5). So, if
[Siow| < |L| - polylog(n), then, by sampling from V},, instead of V
with probability 1/(|L| polylog(n)), we can obtain a random sample
that includes exactly one vertex from L, some vertices from R, and
none from S, as in the previous case. In this case, we again can
apply the isolating cuts lemma.

Case 3: Small L, large S\, (details in Section 3). The above brings
us to the crux of our algorithm, where the isolating cuts lemma is
no longer sufficient. Namely, L is much smaller than the cut S and
S contains many vertices with low degree, i.e.

ey

Let us first sample é(n/|L|) vertices; at least one of these vertices
is in L whp. Now, for each vertex x in the sample, we will invoke a
maxflow instance on O(k|L|) edges that returns the vertex mincut
if x € L. This suffices because O((n/|L|) - (k|L|)) = O(nk) can be
bounded by O(m), noting that the degree of every vertex is at least
k. Thus, we can reduce our problem to the following goal:

|L| < k/polylog(n) and |Sjow| > |L| - polylog(n).

Given a vertex x € L, describe a procedure to create
a maxflow instance on O(k|L|) edges that returns a
vertex mincut.

319

STOC ’21, June 21-25, 2021, Virtual, Italy

In other words, assuming that we have a vertex x € L, we want
to construct a small graph H and two vertices s and ¢ in H such
that the (s, t)-maxflow in H tells us about the vertex mincut in the
original input graph. The graph H corresponds to the concept of
kernel in parameterized algorithms. A challenge is that it is not
clear if a small kernel exists for vertex connectivity; it is not even
clear if it is possible to reduce the number of edges at all. The entire
description below aims to show that it is possible to reduce the
number of edges to O(k|L|). We ignore the time complexity for this
process for a moment.

The key step is to define the following set Ty. First, let T be
a set such that every vertex is in T with probability 1/|L|. Then,
Ty is defined from T by excluding x and its neighbors, ie. Ty =
T \ Ng|x], where Ng[x] = Ng(x) U {x} and Ng(v) denotes the
set of neighbors of v. (We drop G when the context is clear). We
exploit a few properties of Ty. First, we claim that T, € R with Q(1)
probability. To see this, note that N[x] € LUS for any x € L. Since
IN[x]| > kbut [L US| < |L| + k, it must be the case that

[(LUS)\ N[x]| <|L|. @)

Now, Ty C R iff none of vertices from (L U S) \ N[x] is sampled to
T.As [(LUS) \ N[x]| < |L| and the sampling probability is 1/|L|,
so Tx € R with Q(1) probability.

From now we assume that Ty C R. Consider contracting vertices
in Ty into a single node ty. Since Ty C R, an (x, tx)-maxflow call
would return a vertex mincut of the original graph. However, the
contracted graph might still contain too many edges. To resolve
this issue, we make the following important observations:

(1) any vertex v neighboring to both x and ¢, must be in S, and

(2) there exists a collection of k vertex disjoint paths between x
and t, where each path contains exactly one neighbor of x
and exactly one neighbor of ty.

The observations above simply follow from the fact that x and t,
are on the different side of the vertex mincut. The first observation
allows us to remove all common neighbors of x and t, and add them
back to the vertex mincut later. The second observation allows us
to remove all edges between neighbors of x and all edges between
neighbors of tx without changing the (x, tx) vertex connectivity.
Further, after all these removals, neighbors of tx of degree one (i.e.
they are adjacent only to fx) can be removed without changing the
(x, tx) vertex connectivity. Interestingly, these removals are already
enough for us to show that there are O(k|L|) vertices and edges
left!

Small kernel. We call the remaining graph from above a kernel
and denote it by H. We now show that H contains O(k|L|) edges
whp. Note that H consists of the terminals x and ty, disjoint sets
Ny = Ny (x) and Ny = Np(tx), and all other vertices in a set that
we call F” (for “far”). We illustrate this in Figure 1.

Recall that we have already discarded all internal edges in Ny
and N;; hence, we have three types of edges in H:

(E1) edgesin Nx X (F U N;), i.e. edges with one endpoint in Ny
and the other in F” or N,

(E2) edges in F’ x (F’ U Ny), i.e. edges with one endpoint in F’
and the other in F” or Ny, and

(E3) edges incident to terminals x and tx.

STOC ’21, June 21-25, 2021, Virtual, Italy

Figure 1: Kernel H of graph G = (V, E).

We count the number of edges in (E1) and (E2) by charging them to
its endpoint in Ny and F’ respectively. We will show that there are
O(k|L]) such edges in total. It then follows that there are O(k|L|)
edges in (E3), since there are at most k + |L| edges incident to x
and each vertex in N; must be incident to some edge in (E1) or
(E2) (otherwise, we would have already deleted such vertex). The
claimed O(k|L|) bound on the number of edges in (E1) or (E2)
follows immediately once we show that whp

(a) every vertex in Ny U F’ is charged by O(L) edges, and

(b) there are O(k) vertices in Ny U F’.

To prove (a), consider any vertex v # x in G with degG\N[x] (v) >
|L| - polylog(n), i.e. v has many neighbors outside Ng[x], the neigh-
borhood of x. Then, one of these neighbors must have been sampled
to T whp, and would be retained in T. This implies that such v is
in Ny whp. This implies further that every vertex v € Ny U F’ has
at most |L| - polylog(n) edges to vertices in F/ U N; (since the latter
vertices are all outside of Ng[x]). This establishes (a).

To prove (b), first note that |[Nx| < |L| + |S| < 2k since Nx €
Ng(x) € LUS; so, it is left to show that |F’| = O(k). The key
statement that we need is that
®3)
Given this, as we know that vertices in Sy, are incident to O (k|Sjow|)
%) = O(k) as desired. To
prove (3), we essentially use the following facts (for precise quanti-
ties, see Figure 2).

(b1) There are less than k + |L| vertices in Ny, i.e. [Ny| < k + |L|
(we just proved this above).
(b2) All but |L| of vertices in Sjoy, are in Nx. This follows from
(2).
(b3) Whp, every vertex in F’ has at least k — |L| polylog n neigh-
bors in Ny. This follows from the argument in the proof of
(a).
This means that each v € F” has at least the following number of
neighbors in Sjgy:

k = |L| polylog(n) = (INx| = (ISiow| = IL])) =
k — |L|polylog(n) — (k +[L[) + (ISiow| = IL]) = Q(ISiow])
where the last equality holds as k’s cancel each other and |}y |
dominates other terms. This is the crucial place where we need that
Siow is large as stated in (1). Without this guarantee, we could not

have bounded the size of H and this explains the reason why we
need to introduce Case 2 above. This completes the proof of (b).

Q(|Siow|) neighbors of every vertex v € F are in Sy

edges in total, we have |F’| = O(

320

Li, Nanongkai, Panigrahi, Saranurak, Yingchareonthawornchai

(b2)
T— |S N, | <]|L
(Assumption) 4 S A<
P SIc:w
[Siow!>300][L]Inn R
S N
(b1)
N <kell | (03
N >k-100]|L|Inn

Figure 2: Facts (b1), (b2) and (b3).

Building kernels in sublinear time. So far, we only bound the
size of the kernel H. Below, we discuss how to actually build it in
sublinear time. Note that we will end up building a subgraph of H
instead of H.

Consider the following BFS-like process: Initialize the queue
of the BFS with vertices in N,,. Whenever v is visited, if v ¢ Ng,
we add N (v) \ N[x] into the queue. This process will explore the
“relevant” subgraph of H \ {x, t, } because the part that is not even
reached from Ny cannot be relevant to (x, ty)-vertex connectivity
in H and so we ignore it. The kernel graph that our algorithm
actually constructs is obtained by adding E(x, Nx) and E(Ny, ty)
into the above explored subgraph of H. Our goal is to implement
this process in O(k|L|) time. There are two main challenges.

(c1) For all O(k) visited vertices v ¢ Ny, we must list N(v) \ N[x]
in O(|L|) time. Note that simply listing neighbors of v already
takes deg(v) > k time which is too expensive.

(c2) Forall O(k|L|) visited vertices v, we must test if o € Ny (i.e. if
its neighborhood in G overlaps with Ty) in polylog(n) time.

We address both challenges by implementing our BFS-like pro-
cess based on linear sketches from the streaming algorithm commu-
nity, and so we call our technique sketchy search. The key tech-
nique for (c1) is sparse recovery sketches: An s-sparse recovery
sketch linearly maps a vector @ € Z" to a smaller vector sks(d) €

Z9®G) in O(||d|o) time so that, if @ has at most s non-zero en-
tries, then we can recover @ from sk (@) in O(s) time. For any
vertex o, let 1 x(5) and 1 x[] be the indicator vectors of N(v) and
NJo] respectively. We observe two things: (1) non-zero entries in
1N (0) — L[] correspond to the symmetric difference N (v) AN [x],
and (2) [IN(v)AN[x]| = ©(IN(v) \ N[x]|+ |L|) (formally proved in
(6)).

This motivates the following algorithm. Set s «— |L| polylog(n)
and precompute sks (1 5(y)) and sks (1 [5]) for all vertices v. This
takes Y, O(deg(v)) = O(m) time. Now, given any o, we can com-
pute in O(s) time sk (1 n(4)) = sks (L n[x]) = sks(In (o) = LN [x])s
where the equality is because the map is linear. If v ¢ Ny, then
we have argued previously that [N(v) \ N[x]| < |L|polylog(n)
and so 1 () — L y[x] has at most s non-zero entries. Thus, from
sks (1 n(g) = LN[x]) We can obtain N(v) AN [x] which contains the
desired set N (o) \ N[x] in O(s) = O(|L|) time.

Vertex Connectivity in Poly-logarithmic Max-Flows

To address (c2), recall that if [N(v) \ N[x]| > |L|polylog(n),
then v € Ny. This condition can be checked in O(logn) time us-
ing another linear sketch (called norm estimation) for estimating
TN (o) = In[xllz which is proportional to [N (v) \ N[x]| + [L].
However, there can still be some v € N; but [N(v) \ N[x]| <
|L| polylog(n). Fortunately, there are only O(k) such vertices in Ny
(using the same argument that bounds |F| = O(k) in the proof of
(b)). For those vertices, we have enough time to list N(v) \ N[x]
in O(|L|) time using the sparse recovery sketches and check if
ty € N(v) \ N[x], which holds iff v € N;.

Remarks: Note that all we have established is that in any one of
the many invocations of the sampling processes being used, we will
return a vertex mincut. For the sake of correctness, we carefully
argue later that in all the remaining calls, i.e., when sampling does
not give us the properties we desire, we actually return some vertex
cut in the graph. This allows us to distinguish the vertex mincut
from the other cuts returned, since it has the fewest vertices.

2 PRELIMINARIES

Let G = (V,E) be an undirected graph. For any set T of vertices,
we let Ng(T) = {v ¢ T | 3u € T and (u,v) € E} and Ng[T] =
T UNg(T). If T = {v}, we also write N(v) and N[ov]. The set
EG (A, B) denote the edges with one endpoint in A and another in
B.If A = {v}, we write Eg (v, B). We usually omit the subscript
when G refers to the input graph. For any graph H, we use V(H) to
denote the set of vertices of H, and E(H) to denote the set of edges
of H. Whenever we contract a set of vertices in a graph, we remove
all parallel edges to keep the graph simple. This is because parallel
edges does not affect vertex connectivity.

A vertex cut (L,S,R) of a graph G = (V,E) is a partition of V
such that L,R # @ and Eg(L,R) = 0. We call S the correspond-
ing separator of (L, S, R). The size of a vertex cut is the size of its
separator |S|. A vertex cut (L,S,R) is an (s, t)-vertex cutifs € L
and t € R. A vertex mincut is a vertex cut with minimum size. An
(s, t)-vertex mincut is defined analogously. If (L, S, R) is an (s, t)-
vertex mincut, we say that S is an (s, t)-min-separator. For disjoint
subsets A,B C V, a vertex cut (L, S, R) is an (A, B)-vertex cut if
A C Land B C R. (A, B)-separator and (A, B)-min-separator are
defined analogously. Throughout the paper, we assume wlog that

IL| < |R].

In Section 3.3, we will employ the following standard linear
sketching techniques. We state the known results in the form which
is convenient for us below. We prove them in the Appendix. In
both theorems below, an input vector v is represented in a sparse
representation, namely a list of (index,value) of non-zero entries.
The number of non-zero entries of v is denoted as ||o]|,.

THEOREM 2.1 (NorRM ESTIMATION). For any number n, there is
an algorithm that preprocesses in O(n) time and then, given any
vector v € R", return a sketch sky, (v) € ROW0EM jn O(|lv]lo) time
such that |[o]|2 < || sk, (v)|l2 < 1.1]|o|l2 whp. Moreover, the sketch is
linear, i.e. sk, (u +v) = sk, (v) + skg, () for any u,o € R™.

THEOREM 2.2 (SPARSE RECOVERY). For any numbers n and s, there
is an algorithm that preprocesses in O(s) time and then, given any
vectorv € {—=1,0,1}", return a sketch skg(v) € Z°® in O(||ollo)

321

STOC ’21, June 21-25, 2021, Virtual, Italy

time and guarantees the following whp (as long as the number of
recovery operations is poly(n)).>

o If|lo|lo < s, then we can recoverv from sks(v) in O(s) time.
(More specifically, we obtain all non-zero entries of v together
with their indices).

o Otherwise, if ||v]|lo > s, then the algorithm returns L.

Moreover, the sketch is linear, i.e. sks(u +v) = skq(v) + skg(u) for
anyu,v € Z".

3 USING SUBLINEAR-TIME KERNELIZATION

We say that a vertex cut (L, S, R) is a k-scratch if |S| < k, |L| <
k/(100logn) and |Sjow| = 300|L|Inn where [Sjow| = {0 € S |
deg(v) < 8k}. This kind of cuts is considered in Case 3 of Section 1.2.
In this section, we show that if a graph has k-scratch, then we can
return some vertex cut of size less than k.

Lemma 3.1. There is an algorithm that, given an undirected graph
G with n vertices and m edges and a parameter k, returns a vertex cut
(L,S,R) inG.If G has a k-scratch, then |S| < k w.h.p. The algorithm
makes s-t maxflow calls on unit-vertex-capacity graphs with O(m)
total number of vertices and edges and takes O(m) additional time.

Throughout this section, we assume that minimum degree of
G is at least k, otherwise the lemma is trivial. The rest of this
section is for proving the above lemma. Assume that a k-scratch
exists, let (L, S, R) be an arbitrary k-scratch. We start with a simple
observation which says that, given a vertex x € L, the remaining
part of L U S outside N[x] has size at most |L| which is potentially
much smaller than k.

Proposition 3.2. Foranyx € L,|(LUS) \ N[x]| < |L].

ProoF. Note that N[x] € LU S as x € L. The claim follows
because |L U S| < |L| + k and |N[x]| > k as the minimum degree is
at least k.]

We will use £ as an estimate of |L| (since |L| is actually unknown
to us). Let T be obtained by sampling each vertex with probability
1/(8¢). Let Ty £ T\ N[x] for any x € V. Below, we show two basic
properties of T.

Proposition 3.3. For any x € V, we have the following whp.

For everyv ¢ N[Ty], IN(0) \ N[x]| < 40fInn (4)

Proor. It suffices to prove that, for any v € V, if [N (v) \ N [x]| >
40¢ In n, then v is incident to Ty, whp. Indeed, v is not incident to Ty
is with probability at most (1 — si?) INANIx]] < =5, m]

Proposition 3.4. Suppose |L|/4 < ¢ < |L|. Foreachx € L, 0 #
Tx C R with constant probability.

ProoF. Note that @ # T, C R iff none of vertices from (L U S) \
N|[x] is sampled to T and some vertex from R \ N[x] is sampled
to T. Observe that [(L U S) \ N[x]| < |L| by Proposition 3.2 and
IR\ N[x]| = R = |L].

To rephrase the situation, we have two disjoint sets A; and Aj
where |A;] < |L| and |A2| > |L| and each element is sampled

3The algorithm works for larger range [— poly(n), poly(n) | of integers, but the range
{-1,0,1} is sufficient for our purpose.

STOC ’21, June 21-25, 2021, Virtual, Italy

with probability L € [+

with probability at least (1

ﬁ] No element is A; is sampled

_L

2IL]
sampled with probability at least 1 —

ILl > 0.5. Some element in A; is
(1—|—)|L| >1-e/8>0.1.
As both events are independent, so they happen simultaneously

with probability at least 0.05. That is, @ # T C R with probability
at least 0.05.]

For intuition, let us see why these observations above can be
useful. Suppose £ ~ |L| and we can guess x € L. Then, Proposi-
tion 3.4 says that 0 # T C R with some chance. This implies that
any (x, Ty)-vertex mincut must have size at most |S| < k and we
so could return it as the answer of Lemma 3.1. However, directly
computing a (x, Ty)-vertex mincut in G is too expensive. One initial
idea is to contract T into a single vertex t (denoted the contracted
graph by G, ,T) and then compute a (x, tx)-vertex mincut in the
smaller graph G, - Now, Equation (4) precisely means that, for
not incident to the sink t, and not ¢ itself,

the neighbor set of v outside N[x] is at most 40¢In n.
This fact that many vertices in G, ;. has “degree outside N[x]”

every vertex v in G, 1

at most O(¥) is the key structural property used for constructing a
small graph G, r with O(k?) edges such that a (x, t,)-vertex mincut
in Gy 1 corresponds to a (x, T)-vertex mincut in G. The graph Gy 7
fits into the notion of kernel in parameterized algorithms and hence
we call it a kernel graph. The graph Gy, 1 will be obtained from G, .
by removing further edges and vertices. ’

The following key lemma further shows that, given a set X, we
can build the kernel graph Gy 7 for each x € X in O(k?) time, which
is sublinear time.

Lemma 3.5 (Sublinear-time Kernelization). Let G and k be the
input of Lemma 3.1. Let £ < k/(100logn). Let X be a set of vertices.
Let T be obtained by sampling each vertex with probability 1/(8f)
and Ty = T \ N[x] for any x € X. There is an algorithm that takes
total O(m + |X|k?) time such that, whp, for every x € X, either

o outputs a kernel graph Gy containing x and ty as vertices
where |[E(Gx.T)| = O(ktlog n) together with a vertex set ZyT
such that a setY is a (x, tx)-min-separator in Gy 1 if and only
if YU Zy 1 is a (x, Ty)-min-separator in G, or

o certifies that Ty, = O or that there is no k-scratch (L, S, R) where
0#Ty CR £e[|L|/2]|L|] andx € L.

Below, we prove the main result of this section using the key
lemma (Lemma 3.5) above.

Proof of Lemma 3.1. For each i
00 =2l Let TGV,

., 1g(k/(100logn)), let
,T(1:0(ogn)) he independently obtained by
sampling each vertex with probability 1/ (821)) and let X be
a set of O(nlog n/ﬂi)) random vertices. We invoke Lemma 3.5
with parameters (f(i),X(i), T(i’j)) for each j =1,...,0(logn). For
each x € X)) where the kernel graph G, 1@ is returned, we find
(, tx)-min-separator in G, 75 by calling the maxflow subroutine

and obtain a (x, T,Si’j))-min-separator in G by combining it with
Z, 1) - Among all obtained (x, Tx(l’]))—min—separators (over all
i, j, x), we return the one with minimum size as the answer of
Lemma 3.1. Before returning such cut, we verify in O(m) time that
it is indeed a vertex cut in G (as Lemma 3.5 is only correct whp.).

322

Li, Nanongkai, Panigrahi, Saranurak, Yingchareonthawornchai

If not, we return an arbitrary vertex cut of G (e.g., NG (v) where
v is a minimum degree vertex). Also, if there is no graph Gy 16h
returned from Lemma 3.5 at all, then we return an arbitrary vertex
cut of G as well.

For correctness, it is clear that the algorithm always returns some
vertex cut of G with certainty. Now, suppose that G has a k-scratch
(L, S, R). Consider i such that FIONS [IL|/2,|L]]. Then, there exists
x € X where x € L whp. Also, by Proposition 3.4, there is j
where 0 # Tx(i’j) cR whp. Therefore, a (x, Tx(i’j))—min—separator
must have size less than k and we must obtain it by Lemma 3.5.

Finally, we bound the running time. As we call Lemma 3.5
O(log? n) times, this takes time at most

O(Z(m +1X:kED)) = O(m + Z F(Ll)k?(i)) = O(m).

The total size of maxflow instances is at most

>0 |E(erm>)|—20(kf<” (n/7D)) = O(m).

i,j xex
This completes the proof.

Organization of this section. We formally show the existence of
Gy in Section 3.2 (using the help of reduction rules shown in
Section 3.1). Next, we give efficient data structures for efficiently
building each Gy 7 in Section 3.3 and then use them to finally prove
Lemma 3.5 in Section 3.4.

3.1 Reduction Rules for (s, t)-Vertex Mincut

In this section, we describe a simple and generic “reduction rules”
for reducing the instance size of the (s, t)-vertex mincut problem.
We will apply these rules in Section 3.2. Let H = (V,E) be an
arbitrary simple graph with source s and sink ¢ where (s, t) ¢ E.

The first rule helps us identify vertices that must be in every
mincut and hence we can remove them. More specifically, we can
always remove common neighbors of both source s and sink t and
work on the smaller graph.

Proposition 3.6 (Identify rule). Let H = H \ N(s) N N(¢). Then,
S’ is an (s, t)-min-separator in H' iff S = 8’ U (N(s) N N(¢)) is an
(s, t)-min-separator in H’.

ProoF. Letv € N(s)NN(t). Observe that v is contained in every
(s, t)-separator in H. So S’ is an (s, t)-min-separator in H\ {v} iff S’U
{v} is an (s, t)-min-separator in H. The claim follows by applying
the same argument on another vertex v* € N(s) N N(t) \ {v} in
H \ {0} and repeating for all vertices in N(s) N N(#). O

The second rule helps us “filter” useless edges and vertices w.r.t.
(s, t)-vertex connectivity.

Proposition 3.7 (Filter rule). There exists a maximum set of (s, t)-
vertex-disjoint paths Py, . .., P, in H such that no path contains edges
or vertices that satisfies any of the following properties.

(1) an edge e with both endpoints in N(s) or both in N(t).

(2) a vertexv wheret € N(v) C N[t].

(3) a vertexv where s cannot reachv in H \ N[t].
Therefore, by maxflow-mincut theorem, the size of (s, t)-vertex mincut
in H stays the same even after we remove these edges and vertices
from H.

Vertex Connectivity in Poly-logarithmic Max-Flows

PROOF. (1): Suppose there exists P; = (s,...,u1, Uz, ...,t) where
(u1,u2) € N(s) X N(s). We can replace P; with P/ = (s,uz,...,t)
which is disjoint from other paths P;. The argument is symmetric
for N (t).

(2): Let v be such that t € N(v) € N[¢]. We first apply rule (1).
This means that N(v) = {t}. It is clear that there is no simple s-t
path through v.

(3): Suppose v € P;. There must exist t’ € N(t) where P; =
(s,...,t',...,0,...,t) because s could not reach v if N[t] was re-
moved. Then, we can replace P; with Pi’ =(s,...,t’,t) which does
not contain v and is still disjoint from other paths P;. O

3.2 Structure of Kernel G r

Let G and k be the input of Lemma 3.1. Throughout this section, we
fix a vertex x and a vertex set T # (. The goal of this section is to
show the existence of the graph Gy 7 as needed in Lemma 3.5 and
state its structural properties which will be used later in Sections 3.3
and 3.4.

Recall that Ty = T \ N[x] and also the graph G'
from G by contracting Ty into a sink t,. We call x a source. Clearly,
every (x, tyx)-vertex cut in G’ 1 is a (x, Ty)-vertex cut in G.

Let Gy 1 be obtained from G'
from Proposition 3.6. Let Z 7 = NGf

is obtained

by first applying Identify rule
(x) N Ng;, (tx) be the set
1 by Identify rule. We also wrlte Z =
convenience. After removing Z, 1, we apply Filter rule from Propo-
sition 3.7. We call the resulting graph the kernel graph Gy r. The
reduction rules from Propositions 3.6 and 3.7 immediately imply
the following.

removed from G Zy T for

Lemma 3.8. AnysetY isa (x, tx)-min-separator in Gy T iff YUZy T
is a (x, Tx)-min-separator in G.

Let us partition vertices of Gy, as follows. Let Nx = Ng_ ;. (x) be
the neighborhood of source x. Let Ny = N, 1. (fx) be the neighbor
of sink tx. Note that Ny and N; are disjoint by Identify rule. Let
F =V(Gxr) \ (Nx UN; U {x,t}) be the rest of vertices, which
is “far” from both x and t,. By Filter rule(1), Gy, has no internal
edges inside Ny nor N;. So, the edges of G 1 can be partitioned to

E(Gx,1) = EG, 1 (%, Nx) U EG, 7 (Nx, F U N¢)

UEg, (F,FUN;) U EG, (Nt ty). (5)

Below, we further characterize each part in G, 1 in term of sets in
= (V,E). See Figure 3 for illustration.

Lemma 3.9. We have the following:

(1) Z = N(x) N N(Ty) and Ny = N(x) \ N(Tx). So, Z and Ny
partition N (x).

(2) F={v € V\ (N[x] UNI|Ty]) | v is reachable from Ny in
G\ N[Ty]}.

(3) Nt ={v € N(Ty) \ N[x] | v is incident to F or Ny}

Proor. (1): Observe that N} £ NG/
(x) = N(x) because G’

So Z N(x) N N(Ty). After removmg Z from G’ T via Identify
rule, the remaining neighbor set of x is N(x) \ N (Tx) Since Filter

rule never further removes any neighbor of the source x, we have
Ny = N(x) \ N(Ix).

(tx) = N(Ty) and N} =

is 51mply G after contracting Ty.

323

STOC ’21, June 21-25, 2021, Virtual, Italy

Gx,T

Figure 3: G, T (left) is obtained from G by contracting Ty.. G
(right) is obtained from G, T by applying Identify rule and
Filter rule, respectively. The set Z is identified using Identify
rule. Note that Ny = N/ \ Z. The vertices in F’ \ F cannot be
reached from Ny in G;,T\NG;,T (tx). The vertices in N/ \(N;UZ)
have edges only to N; or ty.

(2): Let F/ = V\ (N[x] UN[Tx]). Note that F’ is precisely the set
of vertices in G .. that is not dominated by source x or sink ty. As
Fisan analogous set for Gy, and Gy 1 is a subgraph of G .., we
have F C F’. Observe that only Filter rule(3) may remove vertlces
from F’. (Identify rule and Filter rule(1,2) do not affect F’). Now,
Filter rule(3) precisely removes vertices in F” that are not reachable
from source x in G’ T \ NG/ [tx] Equivalently, it removes those
that are not reachable from Nx in G\ N[Ty]. Hence, the remaining
part of F” in G, T is exactly F.

(3): Let N/’ = N(Tx) \ N[x]. N/’ precisely contains neighbors
of sink ty in G;’c,T outside N[x]. As N; is the neighbor set of ¢, in
Gyx,1 and Z = N(x) N N(Ty) is removed from Gy 1, we have that
Ny € N;”. Now, only Filter rule(2) may remove vertices from N,’,
and it precisely removes those that are not incident to F or Nx.

Therefore, the remaining part of N}’ in Gy 7 is exactly N;. o
Next, we show we bound the size of |[E(Gyx,1)I.
Lemma 3.10. Suppose Equation (4) holds. Then, |[E(Gy1)| = O((k+

|F|)¢logn).

Proor. We bound |E(Gy,T)| by bounding each term in Equa-
tion (5). First, |[E(x,Nx)| < |Nx| < |L US| < 2k. Next, for any
0 € V(Gy,1) \ Nt, we have |Eg, (0, F U Ny)| < 40¢1nn by Equa-
tion (4). S0 |EG, 1 (Nx, F U Ny) UEG, , (F,F U Np)| < (INx| +|F]) -
40¢Inn = O((k+|F|)¢log n) because |Ny| < 2k. Lastly, each vertex
in N; must have a neighbor in either Ny or F by Lemma 3.9(3). So
|EG, 7 (Nt tx)| < IN¢| < |Eg, 7 (Nt Nx U F)| which can be charged
to either Eg, . (Nx,F U N¢) or Eg, ,(F,F U N;) whose size are
O((k+|F|)flogn). To conclude, |E(Gx1)| = O((k+|F|)flogn). O

Since |E(Gx,1)| depends on |F|, we will bound |F| as follows.
We show that the set Fr,elax ={v e V\N[x] | IN(v) \ N[x]| <
1007 log n} is a superset of F and then bound |Fr/elax|' The bound
on |F/ | will be also used later in Proposition 3.18 for proving
efﬁaency of our algorithm.

STOC ’21, June 21-25, 2021, Virtual, Italy

Lemma 3.11. Suppose Equation (4) holds and there is a k-scratch
(L,S,R) where® # T C R, t € [|L|/2,|L|], and x € L. Then, we
have that F C F], . and |F] 16k.

elax relax I <

Proor. Let F/ =V \ (N[x] U N[Tx]), which is precisely the set
of vertices in G, . that is not dominated by source x or sink ... We
have F C F’ because Gy,T is a subgraph of G, ;. and we have F’ C
Flelax because of Equation (4). Now, we bound |F’ |- Recall that
the definition of a k-scratch (L, S, R) says that |Slow| > 300|L|Inn
where [Sjow| = {v € S | deg(v) < 8k}. Let Nigw = N(x) N Sigw. We
will show that | relax| IStow!/2 < |EG (Niows relax)| < 8k|Siowl-
This would imply that |F/ | | < 16k and complete the proof of the
claim.

The upper bound on |EG (Njow, F’;.)| follows because Njqy, C

relax
Slow and each vertex in Sy, has degree at most 8k. To prove the
lower bound on |[Eg(Njgw, F)| we will actually show that for

everyv € F |EG (v, Nlow)| > |Siow /2. We have

relax
|EG (v, Niow) | = |EG (0, N(x))| = [N (x) \ Nigw|

> k—100¢Inn — (k +|L| — [Nigw)
= |Nigw| — 100¢1nn — |L|

> [Siow| = IL| = 100¢1nn — |L|

> |Siow| = 102|L| Inn > |Sjowl/2.

To see the second inequality, we have |Eg (v, N(x))| = k— 100¢1nn
because deg; (v) > kbut |[Eg(v, VAN(x))| < 1007 In n by definition
of Fr,elax' Also, [N(x)] < |ILUS| < k + |L|. The third inequality
follows because |Siow| < [Niow| + [Siow \ Niow| < [Niowl| + L] by
Proposition 3.2 (the part of S outside N[x] has size less than L, and
so the part of Sy, outside Ny, has size less than L as well). This
completes the proof of the claim. O

3.3 Data Structures

In this section, we show fast data structures needed for proving
Lemma 3.5. Throughout this section, let (G, k, ‘. T) denote the input
given to Lemma 3.5. We treat them as global variables in this section.
Moreover, as the guarantee from Equation (4) holds whp, we will
assume that Equation (4) holds in this section.

There are two steps. First, we build an oracle that, given any
vertices x and v, lists all neighbors of v outside N[x] if the set is
small. Second, given an arbitrary vertex x, we use this oracle to
perform a BFS-like process that allows us to gradually build G, 1
without having an explicit representation of G T in the beginning.
We show how to solves these tasks respectively in the subsections
below.

3.3.1 An Oracle for Listing Neighbors Outside N [x]. In this section,
we show the following data structure.

Lemma 3.12 (Neighbor Oracle). There is an algorithm that prepro-

cesses (G = (V,E), k, {7) in é(m) time and supports queries
OUTNEIGHBOR(x,v) for any vertex x where |[N[x]| < k + 2¢ and
veV\{x}.

OUTNEIGHBOR(x, v) either returns the neighbor set of v outside
Nlx], ie. N(v) \ N[x], in O(?) time, or report “too big” in O(log n)
time. If IN(v) \ N[x]| < 40¢Inn, then N(v) \ N|[x] is returned. If

324

Li, Nanongkai, Panigrahi, Saranurak, Yingchareonthawornchai

IN(v) \ N[x]| > 100¢1nn, then “too big” is reported. Whp, every
query is answered correctly.

For any vertex set V/ C V, let the indicator vector 1y~ € {0, 1V
of V’ be the vector where 1y (u) = 1 iff u € V’. In this section, we
always use sparse representation of vectors, i.e. a list of (index,value)
of non-zero entries of the vector.

The algorithm preprocesses as follows. Set s < 100¢ In n. For ev-
ery vertexv € V, we compute the sketches sks (1 n(4)). sks (L n[0]);
skg, (1 n7(o))> and sk, (1 5 [5]) using Theorems 2.1 and 2.2. Observe
the following.

Proposition 3.13. The preprocessing time is O(m).

Proor. Theorems 2.1 and 2.2 preprocess in O(n) time. The total
time to compute the sketches is Y,y O(deg(v)) = O(m). O

Now, given a vertex x where |[N[x]| < k+2fandv € V \ {x},
observe that the non-zero entries of 1y () — Ly[x] € {-1,0, 1V
corresponds to the symmetric difference (N (v) \ N[x]) U (N[x] \
N (v)). We will bound the size of N[x] \ N(v) as follows:

IN[x] \ N(0)| < IN[x]| = IN[x] "' N(0)]

<k+2f—(k—|N®@) \N[x]])
= [N(0) \ N[x]| +2¢ (6)
where the second inequality is because k < |[N(v)| = |[N(v) N

N{x]| + |N(v) \ N[x]|. Therefore, we have

(6) _
IN() \ N[x]| < [1n(0) = Inpxllo < 2|N(v) \ N[x]| +2¢.
1 € {-L0, 1}V, we have
1ll2 < 2IN(0) \ N[x]| + 2.

Since (o) — In[x

IN@\NI[x]| < 1IN — Inx ™)

Now, we describe how to answer the query. First, we compute
ske, (1 (0)) —ske, (L n[x]) = ke, (T n7(0) =L n[x]) in O(log) time.
If || ske, (LN (o) =~ IN[x)||2 > s, then we report * too big”. Otherwise,
we have s > || Skfz(llN(u) “Inpplz 2 N — Ingllz =
o) — x]llo by Theorem 2.1 and because 1y, — ILN[X]
{-1,0, l}V. So, we can compute

sks(Ln (o)) = sks(In[x]) = sks(In(o) = Ln[x])

and obtain the set N(U)~\N [x] inside (N(@)\N[x])U(N[x]\N(v))
using Theorem 2.2 in O(s) = O(f) time. B

To see the correctness, if [N (v) \ N[x]| < 40¢Inn, then

llske,(In (o) = AnpxPll2 < LN (o) = LN« ll2

7) =
(s 1.1-(2[N(v) \ N[x]| +2¢)
<100flnn =s.

So the set N (v)\ N [x] must be returned. If [N (v) \N[x]| > 100¢Inn,
then

I ske, (In (o) = Inpxll2 = ||1lN(o) — Il

2 IN(0) \ N[x]|
> 100¢In n.

and so “too big” is reported in O(log n) time. Every query is correct
whp because of the whp guarantees from Theorems 2.1 and 2.2.
This completes the proof of Lemma 3.12.

Vertex Connectivity in Poly-logarithmic Max-Flows

3.3.2 Building Gy 1 by Sketchy Search. In this section, we show
how to use the oracle from Lemma 3.12 to return the kernel graph
Gy 1. As the oracle is based on linear sketching and we use it in a
BFS-like process, we call this algorithm sketchy search.

Lemma 3.14 (Sketchy Search). There is an algorithm that prepro-
cesses (G, k, £, T) in O(m) time and guarantees the following whp.

Given a query vertex x € X, by calling the oracle from Lemma 3.12,
return either L or the kernel graph G, 1 with O(ktlogn) edges to-
gether with the set Zy T (defined in the beginning of Section 3.2) in
O(k?) time. IfTx # 0 and there is a k-scratch (L, S, R) where Ty C R,
? e [IL|/2,|L|], and x € L, then the algorithm must return Gy 1 and
ZyT-

The remaining part of this section is for proving Lemma 3.14.
In the preprocessing step, we just compute Vy,q = {v | T € N[ov]}
by trivially checking if T € N[v] on each vertex v using total
Ylpdeg(v) = O(m) time. Observe that x € W,,q iff To = 0.

Next, if there is a k-scratch (L,S,R) where x € L and 7 €
[IL|/2,|L]], then we must have |[N[x]| < k + |L| < k + 27. So,
given a query vertex x, if x € Vp,q or [N[x]| > k + 2¢, we can just
return L. From now, we assume that Ty # 0 and |N[x]| < k + 2¢.

Before showing how to construct Gy r, we recall the definitions
of Gy, and Z, 1 from Section 3.2. Equation (5) says that edges of
Gy can be partitioned as

E(GX,T) = EGx,T (x: Nx) U EGX»T (Nx’ F U Nt)

U EGX,T (F> Fu Nt) U EGx,T (Nts tx)
where Ny = NG, ; (x), Nt = NG, ;(tx), and F = V(Gx,1) \ (Nx U
Ny U {x, tx}). We write Z T = No T(x) N Ng’ T(tx) where
G, is obtained from G by contracting Ty into a sing]e vertex fy.

A

Our strategy is to exploit OUTNEIGHBOR queries from Lemma 3.12
to perform a BFS-like process on Gy r that allows us to gradually
identify Gy 7 and Z, 1 without having an explicit representation of
Gy, in the beginning. The algorithm initializes Z ﬁx, E, N> ﬁt, 1?,
EF = (. At the end of the algorithm, these sets will become Z, Ny,
EGX,T (Nx, FU N¢), N, F, EG,.r (F, F U Ny) respectively.

Observe that once we know all these sets we can immediately
deduce Eg, ;(x, Nx) and Eg, (Nt tx), and hence we obtain all
parts in E(Gy 7). So we can return G, 1 and Z, 1 as desired.

The algorithm has two main loops. After the first loop, Z, Ny,
and ENX become Z, Ny, and Eg, . (Nx, F U N;) respectively. After
the second loop, ﬁt, f and EF become Ny, F, and EGx,T (F,F U Ny)
respectively. Let COUNTLIST = 0 initially. We use COUNTLIST to
count the number of times that OUTNEIGHBOR(x, v) lists neighbors
of v (not just reports “too big”). In Algorithm 1, we describe this
BFS-like process in details.

Before prove the correctness of Algorithm 1, we observe the
following simple fact.

Fact 3.15. N(v) \ N[x] intersects Ty iff v is incident to T.

Proor. As Ty N N[x] = 0, we have N(v) \ N[x] intersects Ty
iff N (o) intersects Ty iff v € N(Ty). O

That is, the condition in Steps 1(c)i and 2(c)ii is equivalent to
checking if v is incident to Tyx. Now, we prove the correctness of
the first loop.

325

STOC ’21, June 21-25, 2021, Virtual, Italy

Algorithm 1: An algorithm for building Gy r

(1) For eachv € N(x),
(a) Set visiT(v) = TRUE.
(b) If OUTNEIGHBOR(x, v) returns “too big”, add v to Z.
(c) Else, OUTNEIGHBOR(x, v) returns the set N(v) \ N[x].
(i) If N(v) \ N[x] intersects Ty, add v to Z.
(i) Else, (1) add o to Ny and edges between v and
N(v) \ N[x] to Ex, and (2) add
{w € N(v) \ N[x] | visiT(w) # TRUE} to QUEUE.
(2) While Jv € QUEUE,
(a) Remove v from QUEUE. Set VISIT(v) = TRUE.
(b) If OUTNEIGHBOR(x, v) returns “too big”, add v to N;.
(c) Else, OUTNEIGHBOR(x, v) returns the set N(v) \ N[x].
(i) CounTtLiST ¢~ COUNTLIST + 1.
(ii) If N(v) \ N[x] intersects Ty, then add v to N;.
(iii) Else, (1) add v to F and edges between v and
N(v) \ N[x] to EF, and (2) add
{w € N(v) \ N[x] | visiT(w) # TRUE} to QUEUE.
(iv) If CouNTLIST > 16k, return L and terminate.

Proposition 3.16. After the for loop in Step 1, Z, Ny, and ENX
become Z, Ny, and EnyT (N, F U N;), respectively.

Proor. By Lemma 3.9(1), N(x) = ZUNyx where Z = N(x) N
N(Ty) and Ny = N(x) \ N(Tx) After the for loop, every v € N(x)
is added to either Z or Ny. If v is added to Z in Step 1(c)i, then
Lemma 3.12 implies that [N (v) \ N[x]| > 40¢Inn and so v € N(Ty)
by Equation (4), which means 0 € Z. If v is added to Z in Step
1(c)i, then we directly verify that v € N(Ty) (see Fact 3.15) and
so v € Z again. Lastly, if v is added to Ny in Step Item 1(c)ii, then
v ¢ N(Ty) and so v € Ny. This means that indeed Z = Z and
Ny = Ny after the for loop. Lastly, every time v is added to Ny,
we add Eg (v, V \ N[x]) = Eg,.; (v, F U Nx) into ENX- So ENX also
collects all edges in Eg, . (Nx, F U N;) after the for loop. O

Next, we prove the correctness of the second loop. The proof is
similar to the first one but more complicated.

Proposition 3.17. Suppose L is not returned by Algorithm 1. Then,
at end of the while loop in Step 2, Ny, F and E become Ny, F and
EG, 1 (F, F U Nt) respectively.

Proor. We will prove by induction on time that (1) N; € N, (2)
F C F,and (3) if w € QUEUE at some point of time, then w € N; UF.

For the base case, consider the time before the while loop is
executed. We have Z\~]t =0andF=0.Tfw ¢ QUEUE, then w €
N(v) \ N[x] for some v € Ny. There are two cases: if w € N(Ty),
then w € N(Ty) \ N[x] and w is incident to v € Ny, which means
that w € N; by Lemma 3.9(3). Otherwise, if w ¢ N(Ty), then
w ¢ N[x] UN(Ty) and (v, w) is a path from Ny to w in G \ N[Ty],
which means that w € F by Lemma 3.9(2).

For the inductive step, consider that iteration where we visit o.
We prove the three statements below one by one.

(1) Suppose v is added to N;. If 0 is added at Step 2b, then

Lemma 3.12 implies that |[N(0) \ N[x]| > 40¢Inn and so
v € N(Ty) by Equation (4). If v is added at Step 2(c)ii, then

STOC ’21, June 21-25, 2021, Virtual, Italy

we directly verify that v € N(Ty) (see Fact 3.15). In both
cases, v € N(Ty). Asv € N; U F by induction, v must be in
N;. So ﬁt C Ny holds.

Suppose v is added to F, which only happens at Step 2(c)iii.
We directly verify thatv ¢ N(Tx). Asv € N;UF by induction,
v must be in F and so F C F holds.

Suppose w is added into QUEUE at Step 2(c)iii. There are
two cases. If w € N(Tx), then w € N(Tyx) \ N[x] and w is
incident to v € F, which means that w € N; by Lemma 3.9(3).
Otherwise, if w ¢ N(Ty), then w ¢ N[x] U N(Ty). Asv € F,
there exists a path p, from Ny to v in G\N[Ty]. Now, observe
that the concatenated path p,, = py o (v, w) is a path from
Ny towin G \ N[Ty]. So, w € F by Lemma 3.9(2). In either
case, we have w € N; UF.

To show that ﬁt = Ny and F = F at the end, we argue that all
vertices in N; U F must be visited at some point. Observe that our
algorithm simulate a BFS algorithm on G \ Z when we start the
search from vertices in Ny. Moreover, it never continues the search
once it reaches vertices in N;. By Lemma 3.9(2), vertices in F are
reachable from Ny in G \ N[Ty] € G \ Z. So all vertices from F
must be visited. Also, because Ny C N(Tx) \ N[x] and every vertex
in N; is incident to F or Ny, all vertices from N; must be visited as
well. This completes the proof that N; = N; and F = F at the end
of the while loop.

Finally, every time o is added to F, we add Eg(o,V \ N[x]) =
EG, (v, FUN) into Ep. So Ep collects all edgesin Eg ;. (F,FUN)
after the while loop. O

(2

~

®)

Let v be a visited vertex in some iteration of the for loop or the
while loop. We say that v’s iteration is fast if OUTNEIGHBOR(x,)
returns “too big”, otherwise we say that v’s iteration is slow.

Proposition 3.18. Algorithm 1 takes O(kf) time.

Proor. By Lemma 3.12, each fast iteration takes O(log n) time.
For each slow iteration, the bottle necks are (i) listing vertices
in N(v) \ N[x], and (ii) checking if N(v) \ N[x] intersects Ty.
The former takes O(#) time by Lemma 3.12. The latter also takes
IN(v) \ N[x]| = O(f) time because we can simply check, for every
w € N(v) \ N[x], if w € Ty which happensiff w € T.

Observe the number of slow iterations is at most

IN(x)| + CounTLIST < 2k + 16k

by the condition in Item 2(c)iv. So the total time on slow iterations
is at most O(kf). We claim the number of fast iterations is most
CouNTLIST - 100¢ In 1, which would imply that the total running
time is O(k?).

To prove that claim, we say that w is a child of v if w is added
to QUEUE at v’s iteration. If ¢’s iteration is fast, then v € ZUN;
and so v has no child. If v’s iteration is slow, then v has at most
IN(v)\N[x]| < 100¢Inn children by Lemma 3.12. This implies that
there are at most COUNTLIST- 1007 In n fast iterations as desired. O

Proposition 3.19. If Algorithm 1 returns L, then there is no k-
scratch (L, S,R) where® +# T,y C R, ¢ € [|L|/2,|L|], and x € L.

ProoOF. Recall Fr/elax = {v € V\ N[x] | IN(v) \ N[x]| <

100¢log n} defined above Lemma 3.11. Observe that if COUNTLIST

326

Li, Nanongkai, Panigrahi, Saranurak, Yingchareonthawornchai

is incremented in o’s iteration, then |[N(v) \ N[x]| < IOOFIOgn
by Lemma 3.12. As v € V \ N[x], we have v € Fr/elax' So, if
CounTtLisT > 16k, then |F r’elax| > 16k. As we assume that Equa-
tion (4) holds, Lemma 3.11 implies that there is no k-scratch (L, S, R)

where 0 # Ty C R, £ € [|L|/2,|L|],and x € L. a]
Now, we conclude with the proof of Lemma 3.14.

Proof of Lemma 3.14. Let (G, k, £, T) be given. In the preprocess-
ing step, we compute V;,q which takes O(m) time. Given a query
x € V,if x € Viuq or [IN[x]]| > k + 27, we return L and we are
done. Otherwise, we execute Algorithm 1 which takes O(k?) time
by Proposition 3.18. The algorithm either returns L and otherwise
correctly constructs all parts of Gy 7 by Propositions 3.16 and 3.17
whp. Using these sets, we can build G 7 via Equation (5) and obtain
Zyr =Zin O(k?) time. Note that |F| = |F| < 16k by the condition
in Step 2(c)iv. So |[E(Gx,1)| = O(kflogn) by Lemma 3.10.

Finally, if Tx # 0 and there is a k-scratch (L, S,R) where 0 #
Te C R, ¢ € [|L]|/2,|L|], and x € L, then we have x ¢ Vj,q and
N{[x] < k +2¢, so L is not returned before running Algorithm 1.
By Proposition 3.19, Algorithm 1 cannot return L as well. So Gy 7
and Z, T must be returned.

3.4 Proof of Lemma 3.5 (Sublinear-Time
Kernelization)

Let (G, k, 0T, X) be given as input. We first initialize the oracle
from Lemma 3.12 and the BFS-like process from Lemma 3.14. This
takes O(m) time. For each x € X, we query x to the algorithm
from Lemma 3.14. Lemma 3.14 guarantees that each query takes
O(k?) time and returns either L or (Gx.,T, Zx,T). Therefore, the total
running time is O(m + |X|k?).

For each query x € X, Equation (4) holds whp by Proposi-
tion 3.3. So we will assume it and conclude the following whp.
By Lemma 3.14, if L is returned, then we can correctly certify
that Ty = 0 or there is no k-scratch (L, S,R) where 0 # T, C R,
te[IL|/2,|L|], and x € L.If (Gx.T» Zx,T) is returned, then we have
that |[E(Gy1)| = O(kflogn). By Lemma 3.8, any set Y is a (x, ty)-
min-separator in Gy 7 iff Y U Zy 7 is a (x, Ty)-min-separator in G.
as desired.

4 USING ISOLATING CUTS LEMMA

We say that a vertex cut (L, S, R) is a k-non-scratch if it has size
less than k but it is not a k-scratch. That is, (L, S, R) is such that
(1) |S] < k and |L| > k/100logn, or (2) |S| < k, |L| < k/100logn,
and |Sjow| < 300|L| In n. Recall that Sy, = SN Vjgy and Vg, = {0 |
deg(v) < 8k}. In the previous section, we can report that a mincut
has size less than k if a graph contains a k-scratch. In this section,
we solves the opposite case; we will report that a mincut has size
less than k if a graph contains a k-non-scratch. More formally, we
prove the following.

Lemma 4.1. There is an algorithm that, given an undirected graph G
with n vertices and m edges and a parameter k where m < nk, returns
a vertex cut (L,S,R) in G. If G has a k-non-scratch, then |S| < k
w.h.p. The algorithm makes s-t maxflow calls on unit-vertex-capacity
graphs with O(mlog® n) total number of vertices and edges and takes
O(m) additional time.

Vertex Connectivity in Poly-logarithmic Max-Flows

Note that the lemma above only applies on graphs with at most
nk edges, but we can easily and will ensure this when we use the
lemma in Section 5. The rest of this section is for proving Lemma 4.1.
The key tool in this section is the isolating cuts lemma which was
introduced in [19]. We show how to adapt it for vertex connectivity
as follows.

Lemma 4.2 (Isolating Cuts Lemma). There exists an algorithm that
takes as inputs G = (V, E) and an independent set I C V of size at
least 2, and outputs, for each vertexv € I, a (v,I \ v)-min-separator
Cy. The algorithm makes s-t maxflow calls on unit-vertex-capacity
graphs with O(mlog |I|) total number of vertices and edges and takes
O(m) additional time.

We will prove Lemma 4.2 at the end of this section in Section 4.1.
Below, we set up the stage so that we can use it to prove Lemma 4.1.
First, we need the following concept:

Definition 4.3. For any vertex set T, a vertex cut (L, S, R) isolates
avertex x in T if

LNT={x}L,SNT=0,andRNT # 0.

For any p € [0,1], we let V(p) be obtained by sampling each
vertex in V with probability p. Similarly, let V|, (p) be obtained
by sampling each vertex in Vjqy, with probability p. The following
observation says that, for any a k-non-scratch (L, S, R), we can
obtain a random set that (L, S, R) isolates a vertex in it with good
probability.

Proposition 4.4. Suppose that G has a k-non-scratch (L,S,R).
Then, with probability Q(1/log? n), there isi € {1,...,logn} where
(L, S, R) isolates a vertex in V(%) or isolates a vertex in Vlow(%)-

Proor. There are two cases. Suppose that S| < k and |L| >
k/1001og n. Consider p = 1/2! such that 1 < p(2|L| +|S|) < 2. As
|S| < 100|L| log n, we have |L|p = Q(1/logn). Therefore, (L, S, R)
isolates a vertex in V(p) with probability

PILOV(p)| =1]-P[ISOV(p)| = 0] - P[[RNV (p)| > 1]
2 P[ILNV(p)| =1]*-P[ISNV(p)| = 0]

=(ILlp- (1= pHH2 (- p)]

> (ILIp)%(1 - p)? BT = (1/10g? n)

where the first inequality is because |R| > |L| and the last inequality
follows because p(2|L| +|S|) = ©(1) and |L|p = Q(1/logn).

Consider another case where |S| < k, |L| < k/100logn, and
[Siow!| < 300|L|In n. The argument is similar to the previous case,
but we first need this claim:

Claim 4.5. Let Liyy, = L N Vigw and Rigw, = R N Vigy. We have
Liow = L and |Riow| 2 |Liow |-

ProorF. For each x € L, N[x] € LUS. So deg(x) < |L| +[S]| <
2k and thus x € Ljgy- So Ligw = L. To see why |Riow| = |Liowl,
if k > n/8, then Vioy, = V and so |Riow| = IR| = |L| = |Ligwl-
Otherwise, k < n/8.So |LUS| < 2k < n/4 and then |R| > 3n/4. As
8k|V \ Vipw!| < Xy deg(v) < 2nk, we have |V \ Viow| < n/4 and so
[Viow!| = 3n/4. Therefore, |Rigw| = [RN Vigw| = 1/2 = |Ligw|. O

327

STOC ’21, June 21-25, 2021, Virtual, Italy

Consider p = 1/2¢ such that 1 < p(2|L|+|Siow|) < 2. As [Sjow| <
300|L| In n, we have |L|p = Q(1/logn). Therefore, (L, S, R) isolates
a vertex in Vj,y, (p) with probability

PIIL 0 Viow ()| = 11 - P[IS N Vigw (p)| = 0] - P[IR N Vigw (p)| 2 1]

P[|Liow N V(p)| = 1] - B[|Siow N V(p)| = 0] P[|Rigw NV (p)| > 1]
> PILNV(p)] = 1]* - P[|Siow N V(p)| = 0]

= (ILlp - (1= p) T2 (1 = p)ISiow

> (|LIp)* (1 — p)?HEH1Siov] = (1/10g? n)

where the first inequality by Claim 4.5 and the last inequality fol-
lows because p(2|L| + |Siow|) = ©(1) and |L|p = Q(1/logn).]

The last observation we need is about maximal independent sets
of an isolated set.

Proposition 4.6. Suppose that a vertex cut (L, S, R) isolates a vertex
x in a set T. Let I be an maximal independent set of T. Then (L, S, R)
also isolates x in I.

ProoF. Note that |T| > 2 because LNT = {x} and RN T # 0.
As x is not incident to any other vertex in T, we have x € I. So
LNI={x}. Also some vertex in RN T must remain in I because
SNT =0.SoRNI # (. This means that (L, S, R) isolates x in . O

Now, we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. The algorithm for Lemma 4.1 is as follows.
Foreachi € {1,...,logn} and j € {1,...,0(log’ n)}, we indepen-
dently sample 7)) = V(%) and Tlgl’“{) = Vlow(%) and compute
maximal independent sets I (1) of T(29) and Ili)id) of Tlf)l“f) respec-
tively. Next, we invoke Lemma 4.2 on (G, I(i’j)) if |I(i’j)| > 2and
on (G, I(ol\’i)) if |Il(ol;{7) | > 2. Among all separators that Lemma 4.2 re-
turns, we return the one with minimum size and its corresponding
vertex cut. If [T(51)], |Il(0id) | < 2 for all i, j, we return an arbitrary
vertex cut.

It is clear the algorithm makes s-t maxflow calls on unit-vertex-
capacity graphs with O(m log® n) total number of vertices and edges
and takes O(m) additional time because we invoke Lemma 4.2
O(log? n) times.

To see the correctness, suppose there is a k-non-scratch (L, S, R),
then by Proposition 4.4, there exist i and j such that (L, S, R) isolates
a vertex in either T(5/) or Tlgl‘;vj) whp. By Proposition 4.6, (L, S, R)
must also isolate a vertex in either I(2/) or Il(ol\’i) whp. Suppose that
(L, S, R) isolates a vertex x in 1)) Then, (L, S, R) is a (x, 12 \ x)-
separator. So the call of Lemma 4.2 on (G,I(i’j)) must return a
separator of size at most |S| < k. The argument is the same if
(L, S, R) isolates a vertex x in Il(ol"){,).

4.1 Proof of Lemma 4.2 (Isolating Cuts Lemma)

The goal of this section is to prove Lemma 4.2. We follow the proof
of Theorem II.2 of [19]. Order the vertices in I arbitrarily from 1
to |I|, and let the label of each v € I be its position in the ordering,
a number from 1 to |I| that is denoted by a unique binary string
of length [lg|I|]. Let us repeat the following procedure for each

STOC ’21, June 21-25, 2021, Virtual, Italy

i=12...,[lg|I|]. Let A; C I be the vertices in I whose label’s
i’th bit is 0, and let B; C I be the vertices whose label’s i’th bit is
1. Compute a (A;, B;)-min-separator C; C V (for iteration i). Note
that since I = A; UB; is an independent set in G, the set V'\ (4; UB;)
is an (A, Bj)-separator, so an (A;, B;)-min-separator exists.

First, we show that G \ |J; C; partitions the set of vertices into
connected components each of which contains at most one vertex
of I. Let U, be the connected component in G \ | J; C; containing
v € I. Then:

Claim 4.7. U, NI = {v} forallv € I.

Proor. By definition, v € U, N I. Suppose for contradiction that
Uy N I contains another vertex u # v. Since the binary strings
assigned to u and v are distinct, they differ in their j’th bit for
some j. Assume without loss of generality that u € A; and b €
Bj. Since C; C V is a (Aj, Bj)-min-separator, there cannot be a
u-v path whose vertices are disjoint from Cj, contradicting the
assumption that and v belong in the same connected component

of G\ U; Ci. O

Claim 4.8 (Submodularity of vertex cuts). For any subsetsA,B C V,
we have

IN(A)| + [N(B)| = IN(AUB)| + |N(AN B)|.

Proor. We consider the contribution of each vertex v € V to the
LHS [N(A)|+|N(B)| and the RHS |[N(AUB)|+|N(ANB)| separately.
Each vertex v € N(A) N N(B) contributes 2 to the LHS and at most
2 to the RHS. Each vertex v € N(A) \ N(B) contributes 1 to the
LHS, and 1 to the RHS because v € N(AUB) andv ¢ N(ANB). A
symmetric case covers each vertex v € N(B) \ N(A). Finally, each
vertex v ¢ N(A) U N(B) contributes 0 to both sides. O

Now, for each vertex v € I, let A, be the size of a (v, \ v)-min-
separator. For each (v, I \ v)-min-separator C, we can consider the
setS C V of vertices in the connected component of G\C containing
v, which necessarily satisfies N(S) = C. Let S;, C V be an inclusion-
wise minimal set such that N(S;) is a (v, I \ v)-separator. Then, we
claim the following:

Claim 4.9. U, 2 S;, forallv € L.

Proor. Fix a vertex v € I and an iteration i. Let T} C V be the
vertices in the connected components of G \ C; that contain at least
one vertex the same color as v (on iteration i). By construction of
Ci, the set T} does not contain any vertex of the opposite color. We
now claim that S} C TZ. Suppose for contradiction that S} \ T # 0.
Note that (S; N T}) NI = {v} and

NS;NTHNIC (N(SH)UN(TH) NI C (NSHUC)NT=0,

where the first inclusion holds because N(SNT) € N(S)UN(T) for
any S, T C V, and the second inclusion holds because N(T)) G
by construction of T}. Therefore,

IN(S; NT)| 2 Ao = IN(S})].

Indeed, by our choice of S}, to be inclusion-wise minimal, we can
claim the strict inequality:

IN(S; N T > Ao = IN(S})I.

328

Li, Nanongkai, Panigrahi, Saranurak, Yingchareonthawornchai

But, by Claim 4.8 we have:
IN(S; U TS|+ IN(S; N To)| < IN(S)|+ IN(T)1.
Therefore, we get:
IN(S; UT)l < IN(T)l.

Now observe that (S} UT)) NI =T NIsince (S;\T)NI=0.
In particular, S} U T! contains all vertices in A; and no vertices in
B;. Also, since N(S3) NI = 0 and N(T}) N I = 0, we also have
N(S;UTH) NI=0.Then,

IN(S; UTH| < IN(T)| < |Cil,

s0 N(S:UT}) is a smaller (A;, B;)-separator than C;, a contradiction.

For each iteration i, since S}; C T}, none of the vertices in S}, are
present in C;. Note that G[S;] is a connected subgraph; therefore, it
is a subgraph of the connected component U, of G\ J; C; containing
v. This concludes the proof of Claim 4.9. O

Fact 4.10. Given a graph G = (V,E) and distinct vertices s,t € V,
and given a s-t vertex maxflow, we can compute in O(|V| + |E|) time
asetS CV withS N {s,t} = {s} such that N(S) is a (s, t)-min-
separator.

It remains to compute the desired set S, given the property
that U, 2 S,. Construct the graph G, as follows. Start from the
induced graph G[U, U Ng (Uyp)], remove all edges with both end-
points in NG (Uy), and then add a vertex ¢ connected to all vertices
in NG (Uyp). We compute a v-t vertex maxflow in G, and then ap-
ply Fact 4.10, obtaining a set S, such that Ng, (Sy) is a (v, t)-min-
separator. Since t ¢ Ng, (Sy), we must have S, N Ng, (Uy) = 0, so
by construction of G,, we have Ng_ (Sy) = Ng(Sy). In particular,
NG(Sy) = Ng,(Sy) € Uy U Ng(Uyp), and along with v € S, we
obtain NG (Sy) NI = 0.

Claim 4.9 implies that Ng, (S;) € Uy U Ng, (Uy), so Ng, (S;) =
Ng(S;) and t ¢ Ng, (S;,). Therefore, Ng, (Sy) is a (v, t)-separator
in Gy of size A,. Since Ng, (Sy) is a (v, t)-min-separator in G,, we
have [N (So)| = [NG, (So)| < ING, (S5)| = Ao. Define Cy = N(Sp),
which satisfies the desired properties in the statement of the lemma.

We now bound the total size of the graphs G, over all v € I. By
construction of the graphs Gy, each edge in E joins at most one
graph G,. Each graph G, has |Ng(U,)| additional edges adjacent
to t, but since each vertex in Ng(Uy) is adjacent to some vertex
in Uy via an edge originally in E, we can charge the edges in G,
adjacent to t to the edges originating from E. Therefore, the total
number of edges over all graphs G, is O(m). Each of the graphs G,
is connected, so the total number of vertices is also O(m). Finally,
to compute (A;, B;j)-min-separator for all i, the total size of the
maxflow instances is O(mlog |I|). To bound the additional time, by
Fact 4.10, recovering the sets S, and the values [N (S,)| takes time
linear in the number of edges of G, which is O(m) time over all
v € I. This completes the proof of Lemma 4.2.

5 PUTTING EVERYTHING TOGETHER

For any k, we can detect if G has vertex mincut of size less than k
as follows. First, compute a k-connectivity certificate H of G which
preserves all vertex cuts of size less than k and H has at most nk
edges (so H is applicable for Lemma 4.1). This can be done in linear
time using the algorithm by Nagamochi and Ibaraki [21]. Then,

Vertex Connectivity in Poly-logarithmic Max-Flows

we apply Lemmas 3.1 and 4.1 on H with parameter k. If H has a
vertex cut of size less than k, that cut is either a k-scratch or k-non-
scratch, and so one of the algorithms of Lemmas 3.1 or 4.1 must
return a vertex cut of size less than k whp. If vertex mincut of G is
at least k, then any of the algorithms in Lemma 3.1 and Lemma 4.1
always returns a vertex cut of size at least k. Theorem 1.1 follows
immediately by a binary search on k.

ACKNOWLEDGMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 715672 and
No 759557. Nanongkai was also partially supported by the Swedish
Research Council (Reg. No. 2019-05622). Panigrahi has been sup-
ported in part by NSF Awards CCF 1750140 and CCF 1955703.

A PROOFS OF LINEAR SKETCHING

Proof of Theorem 2.1. We can use Fo-moment frequency estima-
tion by [2]. Although their work focus on estimating on positive
entries, their algorithm is linear, and thus it is possible to estimate
norm of the difference between two vectors x, y: ||x — y|,.

Given a vector v € R", we compute sketch of v by viewing it in
a streaming setting as follows. We start with a zero vector x = 0,
and feed a sequence of update (i, ;) for each non-empty entry in v
of total ||v||, updates. Each update can be performed in logo(l) (n)
time.

Proof of Theorem 2.2. The sparse recovery algorithm is described
in Section 2.3 in [6] (Section 2.3.1 and Section 2.3.2 in particular).
In order for their algorithm to work efficiently, we need a standard
assumption that the vector x that we compute the sketch from
satisfies x; € ZN[-nPW), no(l)] foralli € [n] so that all arithmetic
operations in this algorithm can be computed in O(log n) time.

Givenavectoro € {-1,0, 1}", we compute sketch of v by viewing
it in a streaming setting as follows. We start with a zero vector x = 0,
and feed a sequence of update (i,v;) for each non-zero entry in v
of total ||v||, updates. Each update can be performed in logo(l) (n)
time according to their sparse recovery algorithm.

REFERENCES

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The Design and
Analysis of Computer Algorithms. Addison-Wesley.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of
Approximating the Frequency Moments. J. Comput. Syst. Sci. 58, 1 (1999), 137-147.
https://doi.org/10.1006/jcss.1997.1545

329

STOC ’21, June 21-25, 2021, Virtual, Italy

[3] Michael Becker, W. Degenhardt, Jirgen Doenhardt, Stefan Hertel, Gerd Kaninke,
W. Kerber, Kurt Mehlhorn, Stefan Niher, Hans Rohnert, and Thomas Winter.
1982. A Probabilistic Algorithm for Vertex Connectivity of Graphs. Inf. Process.
Lett. 15, 3 (1982), 135-136.

Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. 2014. Distributed
connectivity decomposition. In PODC. ACM, 156-165.

Joseph Cheriyan and Ramakrishna Thurimella. 1991. Algorithms for Parallel k-
Vertex Connectivity and Sparse Certificates (Extended Abstract). In STOC. ACM,
391-401.

Graham Cormode and Donatella Firmani. 2014. A unifying framework for -
sampling algorithms. Distributed Parallel Databases 32, 3 (2014), 315-335.

E. A. Dinic. 1970. Algorithm for solution of a problem of maximal flow in a
network with power estimation. 11 (1970), 1277-1280.

Shimon Even and Robert Endre Tarjan. 1975. Network Flow and Testing Graph
Connectivity. SIAM J. Comput. 4, 4 (1975), 507-518.

Sebastian Forster, Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and
Sorrachai Yingchareonthawornchai. 2020. Computing and Testing Small Connec-
tivity in Near-Linear Time and Queries via Fast Local Cut Algorithms. In SODA.
SIAM, 2046-2065.

Loukas Georgiadis. 2010. Testing 2-Vertex Connectivity and Computing Pairs of
Vertex-Disjoint s-t Paths in Digraphs. In ICALP (1) (Lecture Notes in Computer
Science, Vol. 6198). Springer, 738-749.

Andrew V. Goldberg and Robert Endre Tarjan. 1988. A new approach to the
maximum-flow problem. J. ACM 35, 4 (1988), 921-940.

Jianxiu Hao and James B. Orlin. 1994. A Faster Algorithm for Finding the
Minimum Cut in a Directed Graph. J. Algorithms 17, 3 (1994), 424-446.

Monika Henzinger, Satish Rao, and Di Wang. 2017. Local Flow Partitioning for
Faster Edge Connectivity. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19.1919-1938. https://doi.org/10.1137/1.9781611974782.125
Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. 2000. Computing
Vertex Connectivity: New Bounds from Old Techniques. 7. Algorithms 34, 2
(2000), 222-250. Announced at FOCS’96.

John E. Hopcroft and Robert Endre Tarjan. 1973. Dividing a Graph into Tricon-
nected Components. SIAM J. Comput. 2, 3 (1973), 135-158.

Arkady Kanevsky and Vijaya Ramachandran. 1991. Improved Algorithms for
Graph Four-Connectivity. J. Comput. Syst. Sci. 42, 3 (1991), 288-306. announced
at FOCS’87.

Tarun Kathuria, Yang P. Liu, and Aaron Sidford. 2020. Unit Capacity Maxflow
in Almost $O(m"{4/3})$ Time. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020. 119-130.
https://doi.org/10.1109/FOCS46700.2020.00020

D Kleitman. 1969. Methods for investigating connectivity of large graphs. IEEE
Transactions on Circuit Theory 16, 2 (1969), 232-233.

Jason Li and Debmalya Panigrahi. 2020. Deterministic Min-cut in Poly-
logarithmic Max-Flows. In 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020. IEEE Computer Society.

Nathan Linial, Laszl6 Lovasz, and Avi Wigderson. 1988. Rubber bands, convex em-
beddings and graph connectivity. Combinatorica 8, 1 (1988), 91-102. Announced
at FOCS’86.

Hiroshi Nagamochi and Toshihide Ibaraki. 1992. A Linear-Time Algorithm for
Finding a Sparse k-Connected Spanning Subgraph of a k-Connected Graph.
Algorithmica 7, 5&6 (1992), 583-596.

Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareontha-
wornchai. 2019. Breaking quadratic time for small vertex connectivity and an
approximation scheme. In STOC. ACM, 241-252.

VD Podderyugin. 1973. An algorithm for finding the edge connectivity of graphs.
Vopr. Kibern 2 (1973), 136.

Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM 3. Comput. 1, 2 (1972), 146-160. Announced at FOCS’71.

[10

(1]

[12

[13

=
&

[15

[16]

(17

(18]

[19

[20

[21

[22]

[23

[24

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1137/1.9781611974782.125
https://doi.org/10.1109/FOCS46700.2020.00020

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	3 Using Sublinear-time Kernelization
	3.1 Reduction Rules for (s,t)-Vertex Mincut
	3.2 Structure of Kernel Gx,T
	3.3 Data Structures
	3.4 Proof of lem:kernel (Sublinear-Time Kernelization)

	4 Using Isolating Cuts Lemma
	4.1 Proof of lem:isolator (Isolating Cuts Lemma)

	5 Putting Everything Together
	Acknowledgments
	A Proofs of Linear Sketching
	References

