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Abstract

Euclidean geometry has formed the foundation of architecture, science, and technology
for millennia, yet the development of human’s intuitive reasoning about Euclidean geometry is
not well understood. The present study explores the cognitive processes and representations that
support the development of intuitive reasoning about Euclidean geometry. One-hundred-twenty-
five 7-12-year-old children and 30 adults completed a localization task in which they visually
extrapolated missing parts of fragmented planar triangles and a reasoning task in which they
answered verbal questions about the general properties of planar triangles. While basic Euclidean
principles guided even young children’s visual extrapolations, only older children and adults
reasoned about triangles in ways that were consistent with Euclidean geometry. Moreover, a
relation between visual extrapolation and reasoning appeared only in older children and adults.
Reasoning consistent with Euclidean geometry may thus emerge when children abandon
incorrect, axiomatic-based reasoning strategies and come to reason using mental simulations of

visual extrapolations.

Keywords
spatial cognition; mathematical cognition; Euclidean geometry; reasoning; simulation;

computation
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1. Introduction

Our reasoning about everyday physical events, like how forces affect object trajectories,
may be most successful when we consider how such events unfold over time (e.g., Battaglia,
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul, 2013).
For example, when asked what would happen if a ball attached to a string whirling around in a
circle were suddenly released, about '3 of adult participants in one classic study incorrectly
thought that the ball would continue on a curved, rather than straight, path (McCloskey,
Caramazza, & Green, 1980, see also Caramazza, McCloskey, & Green, 1981; McCloskey, 1983;
Proffitt & Gilden, 1989). But when given animated displays of the whirling ball versus static
displays or linguistic descriptions, participants were more likely to choose the correct, linear
trajectory than the incorrect, curved one (Hegarty, 2004; Smith, Battaglia, & Vul, 2018; Kaiser,
Proffitt, Whelan, & Hecht, 1992).

While successful reasoning about the spatial and geometric properties of such dynamic
physical events may naturally lend itself to mental simulations, what of successful reasoning
about geometry itself, a mathematical cornerstone for physics and much of human achievement?
Do such dynamic simulations play any role in our reasoning about the properties of static,
immutable geometric objects, like planar triangles? Problems in geometry instead seem best
answered by immediate inference (like Bhaskara’s seeing-is-knowing “Behold” proof of the
Pythagorean theorem) or by step-by-step proof rooted in axiomatic deduction (like Euclid’s
Elements 1.47 for the same theorem). But without Bhaskara’s brilliance or Euclid’s elements,
what describes our intuitive reasoning about triangles?

Much prior work has addressed the role of visual imagery and visual routines for

judgments about physical spatial entities (e.g., Mitrani & Yakimoff, 1983; Shepard & Metzler,
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1971; Ullman, 1984; Weintraub & Virsu, 1972). Nevertheless, it remains unknown whether such
visual and mental processes might also support our more general reasoning about abstract spatial
entities, like those that underlie formal geometry. Evaluating this link is important not only for
our understanding of geometry as a central cognitive achievement of the human mind but also
for our development of effective geometry pedagogies, which traditionally communicate
geometric abstractions through language, proofs, or static diagrams (Calero, Shalom, Spelke, &
Sigman, 2019; Carraher, Schliemann, & Carraher, 1988; Duval, 2006; Gonzélez & Herbst, 2013;
Herbst & Brach, 2006; Zaslavsky, 2010; Zodik & Zaslavsky, 2007).

Recent work by Hart et al. (Hart, Dillon, Marantan, Cardenas, Spelke, & Mahadevan,
2018) has begun to address the possibility that dynamic mental simulations described by
particular spatial properties might indeed support mature geometric intuitions used during
reasoning about Euclidean objects, like planar triangles. In this study, adult participants tested in
the laboratory and on Amazon Mechanical Turk were presented with a series of fragmented
planar triangles varying greatly in size and were asked to use a mouse to drag a dot to the
missing vertex of the triangles. Participants produced third corner locations that both
underestimated the true vertex location and also were strikingly more accurate than those that
would be produced if they had attempted one instantaneous, straight-line extrapolation from each
of the given two corners with a noisy representation of the angle sizes (Mitrani & Yakimoff,
1983). Hart et al. (2018) thus modeled participants’ localizations using a correlated random walk
composed of two competing processes: one that maintained local, smooth motion; and another
that globally corrected this motion’s direction by the given angle sizes. Participants’ localization
accuracy was overall scale-dependent (error grew as triangles grew) because of the local noise

associated with the random walk. Nevertheless, the global correction process inherently
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persevered the basic Euclidean principle of scale-invariant angle representations because
extrapolations were corrected at a constant timescale as they unfolded. This model was able to
account both for participants’ underestimation of a triangle’s missing vertex and also for the
striking accuracy of their localizations.

Hart et al. (2018) also evaluated the relation between this model of participants’
localizations and their reasoning about the general properties of triangles. A different group of
adult participants on Amazon Mechanical Turk produced verbal judgments about the location
and angle size of a triangle’s missing corner after reading verbal descriptions of changes to the
other two corners (e.g., “What happens to the angle size of the third corner of a triangle when the
other two angles get smaller? Does the third corner angle size get bigger, get smaller, or stay the
same size?”). Participants responded more accurately and more quickly when the described
transformation resulted in a smaller versus larger triangle, suggesting that they were relying on a
reasoning process that, like their localizations, was scale-dependent and tied to particular
physical exemplars. Moreover, the model of the first group of participants’ localizations
predicted the categorical responses of the second group. Hart et al. (2018) speculated that adults
might actively engage in mental simulation of these visual extrapolations to answer verbal
reasoning questions about static geometric figures.

This work highlights, but does not directly address, several persistent questions about
human geometric reasoning, including how formal education and individual development might
affect the intuitive strategies humans adopt during geometric reasoning. Prior cross-cultural
research testing children and adults from the United States, France, and a remote Amazonian
village (Izard, Pica, Spelke, & Dehaene, 2011) and prior developmental research from a

laboratory in the United States (Dillon & Spelke, 2018) had used tasks nearly identical to Hart et
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al. (2018) and found significant changes in geometric reasoning through development.
Reasoning consistent with Euclidean geometry emerged universally across human cultures,
regardless of formal schooling (Izard, Pica, Spelke, & Dehaene, 2011) at about 10-12-years of
age (Dillon & Spelke, 2018; Izard, et al., 2011). While these cross-cultural and laboratory-based
studies suggest universal developmental changes in geometric reasoning, they nevertheless
provide no evidence of what cognitive processes, representations, or intuitive strategies might
underlie those developmental changes. In particular, they do not reveal whether the spatial
properties inherent in simple acts of visual triangle completion might be related to explicit
judgments about the Euclidean properties of shapes. In the present work, we thus combine
computational methods from statistical physics and developmental methods from basic research
in cognitive science to examine the relations between visual triangle completion and verbal
reasoning about the general properties of planar triangles across samples of children and adults.
We speculate that reasoning consistent with Euclidean geometry may emerge in development
when children abandon incorrect, axiomatic-based strategies and instead come to reason by an

intuitive strategy rooted in mental simulations of visual extrapolations.

2. Methods
2.1. Child Participants

The use of human participants for this study was approved by the Institutional Review
Board on the Use of Human Subjects at New York University. A sample size of 125 fluent
English-speaking children between the ages of 7-12 was chosen in advance of data collection and
was preregistered on the Open Science Framework (OSF). All participants were recruited from

visitors to the National Museum of Mathematics in New York City. While the museum
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welcomes visitors of all ages, their target child age range is eight to eleven years. Most museum
visitors reside in New York City or the surrounding suburbs. Most visitors are White, although
household incomes varied widely. Museum visitors also likely have a strong interest in
mathematics. Despite these specifications of our sample, the tasks in the present study have —
rather uniquely — been used in previous studies with diverse populations, as reviewed above, and
their results have been unaffected by education or culture. We thus consider the present sample’s
responses too as representative of the larger population at least in terms of the specific cognitive
geometry probed here and in those prior studies.

Several unexpected outcomes related to the sample occurred during data collection. First,
we had planned that each whole-year age group would include at least 20 children, but 125
participating children met the inclusion criteria before we could reach 20 children per age group
(7 years: 19 children; 8 years: 17 children; 9 years: 28 children; 10 years: 30 children; 11 years:
19 children; 12 years: 12 children). Second, while our exclusion criteria were planned and
preregistered, a greater number of children met these exclusion criteria than we had expected.
We had planned to include an additional group pf 25 6-year-old children, moreover, apart from
the main group of 125 older children. However, their exclusion rate was very high (12 out of the
first 25 children tested, 2 for missing data and 10 for response properties in the Localization
Task), and so we discontinued data collection with these younger children. In our main sample of
7- to 12-year-old children, an additional 61 children participated but were excluded for: missing
data (6); technical failure (1); experimenter error (1); parental interference (1); and the properties
of their responses in the Localization Task (52; see SM; Fig. S1). This last criterion, which by
far led to the most exclusions, was specified in advance and based on Hart et al. (2018), who

tested adults individually in the laboratory and presented three times the number of trials
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compared to the present task. This criterion turned out to have been too strict for the present
study (see SM), not accounting for the age differences between studies, the more complex testing
conditions in the museum compared to the laboratory, and the significantly reduced number of
trials. To examine the robustness of our findings to this exclusion criterion, we thus repeated our
main analyses as an unplanned analyses with the excluded sample (N = 52; 21 girls; 7 years: 17
children; 8 years: 9 children; 9 years: 10 children; 10 years: 6 children; 11 years: 6 children; 12
years: 4 children), and because those results are consistent with the analysis of the planned
sample, we report them in the SM.

2.2. Adult Participants

Based on the findings with children presented below, we also tested an unplanned group
of 30 adult participants (the maximum number of participants per age group in the child sample)
between the ages of 21-36 years. This allowed us to examine whether the unexpected trends we
observed in older children described below were also present in adults. An additional 7 adults
also participated but were excluded because of the properties of their responses in the
Localization Task (see SM); no adults met any of our other exclusion criteria. Adult participants
were also recruited from visitors to the National Museum of Mathematics and completed the
same tasks as children, presented exactly in the same way. None of the adults were participating
children’s parents or guardians.

2.3. Reasoning Task

The task materials and procedures were determined in advance and preregistered on the
OSF. Participants first completed a geometric reasoning task (after Dillon & Spelke, 2018; Hart
et al., 2018) that required them to produce verbal, categorical responses about the distance and

angle properties of triangles given shape and size transformations to fragmented scalene triangles
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with only two visible corners (Fig. 1A). This task was presented on a large screen (65’ diagonal,
1920px x 1006px) and with the help of an adult experimenter. At the beginning of the task,
participants saw a sample fragmented triangle (which never appeared during a test trial),
displaying at first just the triangle’s two base corners, then the complete triangle, then just the
two base corners again. The experimenter then demonstrated what four different possible
changes to those visible corners would look like, using a separate display with one button for
each of the four possible changes: the visible angles growing in size; shrinking in size; moving
apart; or moving together. The sample fragmented triangle had 30° base angles, and its base
length was set to 0.7 of the full possible base length (Table 1). Although participants were tested
only on static fragmented triangles, they could revisit the sample-changes display at any point
during the task if they wanted to see those sample changes again. Participants were then told that
for each fragmented triangle, they could be asked: whether the triangle’s missing corner location

29 ¢¢

would “move up,” “move down,” or “stay in the same place” after one of these changes; or

29 ¢¢

whether its angle size would “get smaller,” “get bigger,” or “stay the same size” after one of
these changes. To ensure that participants understood what each of these outcomes meant, the
experimenter gestured as they described each one. For the location outcomes, the experimenter
held one hand at chin height, then moved it up in space, then down in space (below chin height),
and then back to chin height. For the angle-size outcomes, the experimenter formed an upside-
down “V” shape with their hands, then made the “V” narrower, then wider (wider than its
starting width), and then back to its starting width. In addition to providing these gestures during
the task’s introduction, the experimenter also displayed them during every test question. There

were 8 possible questions (4 possible changes to the visible corners X 2 possible outcomes for

the missing corner), and each question was presented twice, once per block of 8 questions with
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two total blocks for each participant. Those 8 questions were randomized within a block and
paired with a random fragmented scalene triangle (Table 1). The second block presented the
same questions but in a different order and with a different random triangle. Participants never
saw the same question or triangle presented twice in a row. All images accompanying test
questions were created by a custom Javascript code. Participants’ responses were recorded by an

experimenter’s button press.
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Fig. 1. A. Sample screen, Reasoning Task. The question at the top reads: “Take this partial

triangle here. What if I increase the distance between the bottom two corners, will the angle size
of the top corner get bigger, get smaller, or stay the same size?” Participants were provided with
a set of scalene triangle corners and asked to make judgments about the third, missing corner
after changes to the given corners. B. Sample screen, Localization Task. The question at the top
reads: “Can you click where the top corner is?”’ Participants were provided with a set of

isosceles triangle corners and asked to drag a dot to the vertex of the missing corner.

Table 1.

Properties of the triangle fragments presented in the Reasoning Task
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Triangle Base Right Left Triangle

Length base angle  base angle size [area]

1 0.44 48° 32° 3.87

2 0.66 32° 40° 7.8

3 0.77 32° 56° 13.03

4 0.55 40° 32° 5.41

5 0.77 56° 48° 18.82

6 0.66 40° 48° 10.41

7 0.44 56° 40° 5.19

8 0.55 48° 56° 9.6

Note. (1 length unit = 1632 px [1920px x 0.85])

2.4. Localization Task

The task materials and procedures were determined in advance and preregistered on the
OSF. Participants completed the Localization Task (after Hart et al., 2018; Izard et al., 2011)
following the Reasoning Task. At the beginning of the task, participants again saw the sample
fragmented triangle, displaying at first just the triangle’s two base corners, then the complete
triangle, then just the two base corners again. Participants were told that they would see more
partial triangles and would be asked to use the mouse to click on the vertex location of the
triangle’s missing top corner. To ensure that participants understood the task, they completed one
trial with this sample triangle. For the test trials, participants saw 49 fragmented triangles (Fig.
1B) and were asked to click on the location of a triangle’s missing vertex. They received no
feedback. Seven isosceles triangles were presented, which had 7 different side-length values
combined with 2 angle sizes and 4 base lengths (Table 2). The presentation of these triangles
was pseudo-random for each participant, not allowing the same triangle to be presented twice in
a row. All participants used a single-button, child-sized mouse, and their responses were
recorded based on where they clicked on the screen; reaction times were also recorded. All

images accompanying test questions were created by a custom Javascript code.

10
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Table 2.

Properties of the triangle fragments presented in the Localization Task

Triangle Base Base Triangle

Length angles size [area]

1 0.9 36° 14.7

2 0.4 36° 2.9

3 0.1 36° 0.18

4 0.04 36° 0.03

5 0.4 45° 4

6 0.1 45° 0.25

7 0.04 45° 0.04

Note. (1 length unit = 1632 px [1920px x 0.85])

3. Results
3.1. Child Results
3.1.1. Planned Analyses.

The following analyses were specified prior to data collection and preregistered on the
OSF.

Reasoning Task.

First, a binomial mixed-model logistic regression revealed a significant effect of gender
on children’s overall accuracy, with boys performing better than girls (P =0.579, 95% CI =
[0.501, 0.653], p = 0.048). As planned, all analyses were thus repeated with gender as an
additional predictor variable, but because those results were consistent with our primary planned
analyses, they are reported in the SM.

A binomial mixed-model logistic regression evaluated the role on children’s accuracy of:
question type (about the position versus angle size of the missing corner); transformation (to the

distance between the two given corners or their angle sizes); size of the transformation (whether

11
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the two given corners were described as getting farther/bigger versus closer/smaller); the two-
way interactions between these variables; the implied area of the fragmented triangle; and age.
As predicted, this regression revealed results consistent with prior studies (Dillon & Spelke,
2018; Fig. 2). In particular, children were more accurate on questions about the position versus
angle size of the fragmented triangle’s missing corner (P = 0.746, 95% CI =[0.672, 0.808], p <
.001) and when there was a transformation to the angle sizes versus the distance between the two
given corners (P =0.716, 95% CI =[0.637, 0.783], p <.001). Children were also more accurate
when they were asked about the position versus angle size of the missing corner after a distance
transformation to the two given corners (P = 0.692, 95% CI = [0.597, 0.772], p < .001). Neither
the size of the transformation (bigger or smaller) nor the implied area of the fragmented triangle
presented with each question (continuous, in area units, see Table 1) affected children’s
accuracy (ps > .490). Finally, older children were more accurate on this task than younger
children (age, in days, was treated as a continuous variable in this analysis; P = 0.538, 95% CI =

[0.507, 0.568], p = .016).

9]

ntage of respanses

40

Percel

20

Fig. 2. The percentage of A. younger (< 10 years) and B. older (> 10 years) children’s

responding in the Reasoning Task about the general properties of triangles. Children were asked

12
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to reason about changes to the position and angle size of a missing corner of incomplete triangles

after changes to the angle sizes or distances between the two given corners (see Fig. 1).

Localization Task.

For each child and for each of the 7 triangle side lengths, we calculated the localization
error in the y direction (the true vertex location — the mean of the child’s estimates) and the
standard deviation in the y direction of the child’s estimates. Using a linear regression, we first
evaluated the growth in each child’s error with growing triangle side lengths. We then evaluated,
across the sample of children, the relation between error growth by side length and age using a
linear regression. As predicted, across the sample of children, error grew significantly as triangle
side-length grew (p < .001), suggesting an overall scale dependence in children’s visual
extrapolations of the triangles’ missing parts. Moreover, as predicted, we found that the error
grew less in older versus younger children (p =.039).

After Hart et al. (2018), we then evaluated the slope of the log of the standard deviation
of each child’s localization estimates as a function of the log of triangle side length. This slope,
or scaling exponent, is equivalent to the power law by which the standard deviation of the
estimates scales with triangle side-length. The scaling exponent represents one of the two
competing processes in the correlated-random-walk model described above, which characterizes
the extrapolation process. It represents the global correction of the local noise associated with
maintaining smooth motion in the direction of the given angle sizes.

(1) d?6/dt* = 1/1(1/€(0 — 8y) — dB/dt) + n(t)

2) dx/dt = v, cos(6)

3) dy/dt = v, sin(6)

13
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The model parameters include t, an inertial relaxation timescale for local smoothness, v, ,

a characteristic speed of extrapolation progress, &, a timescale for the global error correction, and
n(t), a noise term. The more correction events that occur, the closer the scaling exponent is to 0.5
versus 1. Scaling exponents less than 1 suggest that correction events are occurring, and scaling
exponents closer to 0.5 suggest that correction events are occurring at a more frequent timescale.
Extrapolations with scaling exponents close to 0.5 thus better preserve the angle sizes of the
triangle’s given corners, allowing greater consistency with Euclidean geometry.

We predicted that our data would be well described by this model, yielding localization
errors that underestimated the true vertex location and scaling exponents that were less than 1.
We also predicted that since older children more consistently reason in line with Euclidean
geometry (as revealed by prior work), their localizations would also better reflect Euclidean
geometry, resulting in smaller scaling exponents.

Consistent with the model from Hart et al. (2018), children tended to underestimate the
location of a triangle’s vertex (Fig. 3; Fig. S2) and most of their scaling exponents were less than
1: Children produced a median scaling exponent of 0.83 (95% CI = [0.80, 0.86], range = [0.56,
1.14]). Contrary to our prediction, however, the relation between scaling exponent and age was
not significant (p =.666): We did not find evidence that older children corrected their visual

extrapolations more than younger children.

14
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Fig. 3. Example responses from an 8-year-old child on the Localization Task on A. a smaller
triangle with 0.4 times the base-length metric and 45° angles and B. a larger triangle with 0.9

times the longest base length and 36° angles.

Relation between reasoning and simulation.

Children’s accuracy in the Reasoning Task and Localization Task may nevertheless rely
on properties inherent to Euclidean geometry. We thus hypothesized that individual children’s
scaling exponents would be related to their individual reasoning success such that the more
frequently a child corrected their visual extrapolations in the Localization Task, the greater their
accuracy in the Reasoning Task. This relation would be especially evident in older children,
moreover, who may more often adopt a strategy of mentally simulating visual extrapolations
during reasoning.

First, a binomial mixed-model logistic regression across the entire sample of children
probing the relation between scaling exponent and reasoning accuracy was not significant (P =
0.271, 95% CI =[0.097, 0.562], p = .117). Nevertheless, this first analysis did not take into
account the difference in reasoning accuracy for older versus young children. An additional
binomial mixed-model logistic regression predicting accuracy by scaling exponent, age, and their

interaction did not provide evidence that age moderated the relation between scaling exponent

15
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and reasoning (Scaling Exponent: P = 0.995, 95% CI=[0.038, 1], p =.226; Age: P = 0.660, 95%
CI=[0.486,0.800], p = .071; Scaling Exponent *Age: P = 0.344, 95% CI=[0.182, 0.554], p =
142).

3.1.2. Unplanned Analyses.

Relation between reasoning and simulation.

To better understand the relation between reasoning and simulation and the differences
between younger versus older children beyond what we could infer from the two planned
analyses, we conducted two additional unplanned analyses. First, we repeated the same
regressions as in the planned analysis, but this time treated children below 10 years of age (N =
64) and above 10 years of age (N = 61) as different groups. This decision was motivated by prior
results from the literature on children’s and adults’ geometric reasoning across cultures: Prior
studies had indicated 10 years of age as approximately the age at which reasoning becomes
conformal with Euclidean geometry (Dillon & Spelke, 2018; Izard et al., 2011). This age split, as
opposed to the continuous treatment of age in our moderation analysis, may better capture the
developmental changes in children’s reasoning, especially if there is not much change in
reasoning before age 10 years and not much change in reasoning after age 10 years. In addition
to splitting the sample based on the findings and conclusions of prior work, we also conducted a
change-point analysis on children’s accuracy on our Reasoning Task, with age binned by month
and using a binary segmentation method (Scott & Knott, 1974) with a Bayesian Information
Criterion (BIC) penalty type. We found one change point at 10 years 3 months (Fig. S3). As a
test of robustness, we thus repeated our analysis using this age split, and because it revealed

results consistent with the split at 10 years, we report those results in the SM.
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First, a binomial mixed-model logistic regression predicting reasoning accuracy by

scaling exponent, age (> 10 years versus <10 years), and their interaction found no significant

effect of scaling exponent (P = 0.492, 95% CI =[0.176, 0.814], p =.966) but a significant effect

of age (P =0.920, 95% CI=1[0.613, 0.988], p =.016). This analysis was further characterized by

a scaling exponent by age interaction (P = 0.093, 95% CI =[0.010, 0.522], p =.059). Individual

contrasts revealed no relation between scaling exponent and reasoning for younger children (P =

0.492, 95% CI =[0.176, 0.815], p =.966), but a significant relation between scaling exponent

and reasoning for older children (P = 0.090, 95% CI =[0.016, 0.381], p =.013).

Proportional Accuracy
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« =10 years

<10 years

06 07 08 09 10 11 1.2
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Fig. 4. The relation between the scaling exponent from the Localization Task and accuracy in the

Reasoning Task across younger (< 10 years, light grey) and older (> 10 years, dark grey)

children, 95% Cls are depicted for each regression line.
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We next explored whether this result was due to differences in effort or motivation in
younger versus older children. In particular, if the hardest working or most motivated children
were older, corrected their localizations more, and thought more deeply during reasoning, this
might lead to both better scaling exponents and more accurate reasoning. If we correct for the
time older children took to complete the Localization Task (as a proxy for their effort; reaction
time, in seconds, was log-transformed to better align the scales of the variables, allowing for
model convergence) and evaluate the relation between scaling exponent and reasoning, we find
that the relation persists (P = 0.080, 95% CI =[0.009, 0.448], p =.032) and that time does not
independently predict reasoning (P = 0.428, 95% CI =[0.258, 0.617], p =.495). The relation
between scaling exponent and reasoning in older children is thus not likely due to overall effort
or motivation.

Finally, a close investigation of children’s responses lent further support to the suggestion
that common Euclidean principles drive both visual extrapolation and geometric reasoning in
older but not younger children. First, older children tended to produce reasoning responses that,
like the extrapolation process, showed some scale dependence, for example, responding more
accurately when the transformed triangle was smaller versus larger than the original (Fig. 2).
Younger children, in contrast, tended to produce reasoning responses that directly conflicted with
properties of extrapolation. The majority of younger, but not older, children reasoned, for
example, that the missing third angle of a triangle would change in the same direction as (as
opposed to inversely to) the change to the other two angles (Fig. 2). Even a very noisy
extrapolation of such an angle transformation would be unlikely to yield this response in a
majority of children. Thus, older children’s reasoning errors were—and younger children’s

errors were not—consistent with the properties of visual extrapolation.
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3.2. Adult Results
3.2.1. Unplanned Analyses.

After seeing these results with children, we collected an additional unplanned, small
sample of adult participants to further evaluate two surprising findings, namely that children’s
scaling exponents, which inherently reflect the Euclidean principle of scale-invariant angle
measures: (1) do not improve with age; and (2) are associated with reasoning only at older ages,
1.e., when reasoning is conformal with Euclidean geometry.

First, consistent with the findings from the child sample, a linear regression revealed no
evidence of an effect of age on the scaling exponent across the entire child and adult sample (P =
0.500, 95% CI =10.500, 0.501], p = .303). To further evaluate this null effect, we conducted a
Bayesian regression, which calculated the posterior distribution of slopes characterizing the
relation with a region of practical equivalence of -0.005 to 0.005. This analysis suggested that
there was no effect of age on the scaling exponent (slope = 0.0015, 95% CI =[-0.0014, 0.0044],
posterior probability of the null effect of age = 99.14%)).

Second, consistent with the findings with older children, adults’ performance on the
Reasoning Task was conformal with Euclidean geometry (Fig. 5). For adults, as for older

children, moreover, individuals’ scaling exponents were related to their reasoning success (P =

0.017, 95% CI =[0.0002, 0.62], p = .080).
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Fig. 5. The percentage of adults’ responding in the Reasoning Task about the general properties

of triangles.

4. Discussion

Two tasks required children and adults to make judgments about the properties of
visually fragmented triangles. The patterns of performance on these tasks suggested both
continuity and change in geometric cognition through development. First, a correlated-random-
walk model from statistical physics characterized children’s localizations of the missing third
corners of triangles of different sizes, as it had in prior studies examining adults’ localizations.
The model revealed that while the random noise associated with triangle-side extrapolation
decreased as children got older, the timescale with which they corrected that noise in line with
the basic Euclidean principle of scale-independent angle-size information did not change. And
s0, children may require no explicit knowledge of this Euclidean principle (or its relevance to a
visual shape completion task) when extrapolating the missing parts of planar shapes. Instead,
basic Euclidean principles guiding visual extrapolation may be present from early in human
development, perhaps due to experiences with the continuous edges and surfaces in scenes and

objects or to the very structure of our brain systems dedicated to everyday spatial tasks
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(Ayzenberg & Lourenco, 2019; Elder & Goldberg, 2002; Feldman, 2001; Field, Hayes, & Hess,
1993; Lee & Yuille, 2006; Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011). Moreover,
sensitivities to straight and oriented trajectories for moving through spaces and recognizing
objects are observable in infancy and young childhood, even in the absence of typical visual
experience (Kellman & Spelke, 1983; Landau, Gleitman, & Spelke, 1981; Slater, Mattock,
Brown, & Bremner, 1991), and the tradeoff between maintaining a straight line at a certain angle
and maintaining a smooth line with no sharp corrections is even inherent in the navigational
abilities of a variety of animal species (Cheung, Zhang, Stricker, & Srinivasan, 2007), including
dung beetles (Peleg & Mahadevan, 2016), birds (Wiltschko & Wiltschko, 2005), sharks
(Papastamatiou, Cartamil, Lowe, Meyer, Wetherbee, & Holland, 2011), and insects (Wehner,
Michel, Antonsen, 1996). Future research exploring whether other animal species incorporate
basic Euclidean principles into their visual extrapolations, moreover, could evaluate whether
such principles are reflective of our uniquely human capacity to learn geometry, our experiences
in the spatial world shared by other animals (e.g., Hubel & Wiesel, 1962, 1965; Rubin,
Nakayama, & Shapley, 1996; von der Heydt, Peterhans, & Baumgartner, 1984), or any
evolutionarily inherited Euclidean biases in perception and cognition.

Second, the present study found that children’s verbal reasoning about the general
properties of triangles changed markedly as children got older, consistent with prior studies with
diverse populations (Dillon & Spelke, 2018; 1zard et al., 2011). In particular, younger children
seemed to respond to reasoning questions by simple, though erroneous size-based heuristics that
conflicted with Euclidean principles. For example, younger children responded that the missing
angle of a fragmented triangle changed in the same direction as (as opposed to inversely to) the

change to the other two angles. In contrast, older children and adults tended to respond to
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questions about the side and angle properties of planar triangles in general accord with formal,
Euclidean geometry. Nevertheless, neither older children nor adults were perfectly Euclidean:
Both groups showed some scale dependence in their reasoning, for example, by responding more
accurately when the described transformations to the triangles made triangles smaller versus
bigger. This was true even though the participants in the present study may have more interest
and practice in math compared to others who have been tested in prior studies and others in the
general population. Their similar performance to other populations thus further supports the
suggestion that some intuitive reasoning about geometry is largely unaffected by culture,
education, or even expertise (see, e.g., Amalric & Dehaene, 2016; 2018; Butterworth, 2006).

The present work also addresses two questions about the cognitive mechanisms
underlying human geometric reasoning that prior work had not been able to address: What
developmental change in cognitive representations and processes might underlie a change in
reasoning from incorrect and axiomatic to nearly Euclidean? And what would it mean for our
understanding of human intuitive cognitive geometry to qualify this reasoning as nearly
Euclidean? While prior work had speculated that older children naturally become “little
Euclids,” reasoning by intuitive knowledge of geometric rules (e.g., Dillon & Spelke, 2018; Izard
et al., 2011), the present work instead suggests that older children and adults fall short of
reasoning that is perfectly consistent with formal, Euclidean geometry. Instead, older children
and adults appear to engage only some Euclidean principles during simple tasks of visual triangle
completion and during verbal tasks of explicit geometric reasoning. We suggest, therefore, that
older children and adults may perform better on tasks of Euclidean reasoning not because they
become “little Euclids,” but because they adopt an intuitive reasoning strategy that relies on the

mental simulations of their visual extrapolations, which include some Euclidean elements.
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Developmental discontinuity in Euclidean reasoning may thus emerge when children abandon
axiomatic strategies and begin to engage in dynamic simulations to solve novel geometric
reasoning problems. For older children and adults, moreover, the strength of the Euclidean
elements guiding these simulations may contribute to their individual success in reasoning in
accord with Euclidean geometry.

Given the correlational design of the present study as well as some unplanned analyses,
this suggestion is speculative. Nevertheless, the present work raises new questions for future
exploration. For example, if simulation is a relatively effective intuitive strategy for geometric
reasoning that older children and adults rely on, and younger children’s extrapolations already
incorporate basic Euclidean properties that are predictive of reasoning success, then why do
younger children not engage in simulation during reasoning? One possibility is that younger
children do not recognize the relevance of their simulations to the reasoning problem. Simply
telling a younger child to dynamically imagine the missing parts of and the transformations to
fragmented triangles during a reasoning task might thus make their performance look more like
older children’s. Instruction to imagine the dynamic unfolding of physical events has improved,
for example, even young children’s reasoning about the trajectories of balls moving through
opaque tubes (e.g., Joh, Jaswal, & Keen, 2011; Palmquist, Keen, & Jaswal, 2017). Future studies
using such explicit verbal instruction or implicit priming could begin to evaluate both whether
mental simulation of visual extrapolations about geometry and its static planar figures is
available to younger children as a reasoning strategy and whether such simulation is causally
related to reasoning success.

Another possibility for why younger children may not engage in simulation for reasoning

is that limits to younger children’s memory and attention, in general, or other properties of their
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simulations, in particular, may affect their ability to engage in simulation as a reasoning strategy.
For example, while there were many similarities between older and young children’s visual
extrapolations in the Localization Task, engaging in mental simulation of these visual
extrapolations for reasoning requires both visualizing a transformation to a given triangle and
also performing extrapolations on that imagined triangle. Our current tasks do not examine
whether younger and older children might differ in such abilities. Moreover, younger children
had more local noise in their simulations than older children. Future studies might begin to
explore whether introducing noise into the displays accompanying reasoning questions for older
children and adults might lead them to adopt language-based heuristics instead of simulation-
based strategies for solving reasoning problems (see Perfecto, Donnelly, & Critcher, 2019). Such
studies could lead to the investigation of how individuals decide, more generally, whether
reasoning by language-based heuristics or simulation might be more or less effective when faced
with novel problems in geometry, mathematics, or other domains. Moreover, such findings could
ultimately inform pedagogies aimed at teaching and testing geometric formalisms, rules, and
abstractions.

While problems in geometry may seem best answerable by immediate inference or
deductive proof, intuitive geometric reasoning may instead rely on noisy, dynamic simulations.
The achievements enabled by Euclidean geometry are manifest throughout human history, and
Euclidean geometry has often been held up as the model of abstract thought. And yet our
findings suggest that Euclid himself, like the rest of us, may have taken quick random walks in

his mind before he plodded step by step on the printed page.
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