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Abstract

To achieve human-like common sense about everyday life, machine learning
systems must understand and reason about the goals, preferences, and actions of
other agents in the environment. By the end of their first year of life, human infants
intuitively achieve such common sense, and these cognitive achievements lay the
foundation for humans’ rich and complex understanding of the mental states of
others. Can machines achieve generalizable, commonsense reasoning about other
agents like human infants? The Baby Intuitions Benchmark (BIB)1 challenges
machines to predict the plausibility of an agent’s behavior based on the underlying
causes of its actions. Because BIB’s content and paradigm are adopted from
developmental cognitive science, BIB allows for direct comparison between human
and machine performance. Nevertheless, recently proposed, deep-learning-based
agency reasoning models fail to show infant-like reasoning, leaving BIB an open
challenge.

1 Introduction

Figure 1: A still from Hei-
der and Simmel (1944). De-
spite the simplicity of the
visual display, we ascribe
intentionality to the three
shapes in the scene: The
large triangle is chasing the
small triangle and the circle,
whose goals are to avoid it.

Humans have a rich capacity to infer the underlying intentions of others
by observing their actions. For example, when we watch the animations
from Heider and Simmel (1944) (see video2 and Figure 1), we attribute
goals and preferences to simple 2D shapes moving in a flat world. Using
behavioral experiments, developmental cognitive scientists have found
that even young infants infer intentionality in the actions of other agents.
Infants expect agents: to have object-based goals (Gergely et al., 1995;
Luo, 2011; Song et al., 2005; Woodward, 1998, 1999; Woodward and
Sommerville, 2000); to have goals that reflect preferences (Repacholi and
Gopnik, 1997; Kuhlmeier et al., 2003; Buresh and Woodward, 2007); to
engage in instrumental actions that bring about goals (Carpenter et al.,
2005; Elsner et al., 2007; Hernik and Csibra, 2015; Gerson et al., 2015;
Saxe et al., 2007; Woodward and Sommerville, 2000); and to act effi-
ciently towards goals (Gergely et al., 1995; Gergely and Csibra, 1997,
2003; Liu et al., 2019, 2017; Colomer et al., 2020).

Machine-learning and AI systems, in contrast, are much more limited
in their understanding of other agents. They typically aim only to pre-
dict outcomes of interest (e.g., churn, clicks, likes, etc.) rather than to
learn about the goals and preferences that underlie such outcomes. This
impoverished “machine theory of mind”3may be a critical difference between human and machine
intelligence more generally, and addressing it is crucial if machine learning aims to achieve the
flexibility of human commonsense reasoning (Lake et al., 2017).

1The dataset and code are available here: https://kanishkgandhi.com/bib
2https://www.youtube.com/watch?v=VTNmLt7QX8E
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Recent computational work has aimed to focus on such reasoning by adopting several approaches.
Inverse reinforcement learning (Ng et al., 2000; Abbeel and Ng, 2004; Ziebart et al., 2008; Ho and
Ermon, 2016; Xu et al., 2019) and Bayesian approaches (Ullman et al., 2009; Baker et al., 2009,
2011, 2017; Jara-Ettinger, 2019) have modeled other agents as rational, yet noisy, planners. In these
models, rationality serves as the tool by which to infer the underlying intentions that best explain
an agent’s observed behavior. Game theoretic models have aimed to capture an opponent’s thought
processes in multi-agent interactive scenarios (see survey: Albrecht and Stone, 2018), and learning-
based neural network approaches have focused on learning predictive models of other agents’ latent
mental states, either through structured architectures that encourage mental-state representations
(Rabinowitz et al., 2018) or through the explicit modeling of other agents’ mental states using a
different agent’s forward model (Raileanu et al., 2018). Despite the increasing sophistication of
models that focus on reasoning about agents, they have not been evaluated or compared using a
comprehensive benchmark that captures the generalizability of human reasoning about agents. For
example, some evaluations of machines’ reasoning about agents have provided fewer than 100 sample
episodes (Baker et al., 2009, 2011, 2017), making it infeasible to evaluate learning-based approaches
that require substantial training. Other evaluations have used the same distribution of episodes
for both training and test (Rabinowitz et al., 2018), making it difficult to measure how abstract or
flexible a model’s performance is. Moreover, existing evaluations have not been translatable to the
behavioral paradigms that test infant cognition, and so their results cannot be analyzed in terms of the
representations and processes that support successful human reasoning.

Our benchmark, the Baby Intuitions Benchmark (BIB), presents a comprehensive set of evaluations
of commonsense reasoning about agents suitable for machines and infants alike. BIB adapts experi-
mental stimuli from studies with infants that have captured the content and abstract nature of their
knowledge (Baillargeon et al., 2016; Banaji and Gelman, 2013). It provides a substantial amount of
training episodes in addition to out-of-distribution test episodes. Moreover, BIB adopts a “violation of
expectation" (VOE) paradigm (similar to Riochet et al. (2018); Smith et al. (2019)), commonly used
in infant research, which makes its direct validation with infants possible and its results interpretable
in terms of human performance. The VOE paradigm, moreover, offers an additional advantage
relative to other measures of machine performance like predictive accuracy, in that it reveals how
an observer might fail: VOE directly contrasts one outcome, which requires a high-level, human-
like understanding of an event, to another one, which instantiates some lower-level, heuristically,
or perceptually based alternative. BIB thus presents both a general framework for designing any
benchmark aiming to examine commonsense reasoning across domains as varied as agents, objects,
and places, as well as a key step in bridging machines’ impoverished understanding of intentionality
with humans’ rich one.

AGENT (Shu et al., 2021), a benchmark developed contemporaneously with BIB, is inspired by
infants’ knowledge about agents and has been validated with behavioral data from adults. Similar to
BIB, AGENT challenges machines to reason about the intentions of agents as the underlying cause
of their actions. Both benchmarks test whether models can predict that agents have object-based
goals and move efficiently to those goals. There are nevertheless key differences between BIB and
AGENT. First, BIB evaluates whether models can reason about multiple agents, inaccessible goals,
instrumental actions, and the differences between the intentions of rational and irrational agents;
AGENT does not test these competencies. The advantage of including them is that they introduce
additional elements—beyond a single rational agent and one or two possible goal objects—that
models must flexibly account for in their reasoning. These competencies, moreover, extend the infant
cognition literature, potentially allowing BIB to further inform tests for infants. Second, BIB and
AGENT evaluate new models differently. AGENT involves training on many different leave-out
splits, where those splits include relatively minor differences between the training and test sets. BIB,
in contrast, presents a single canonical split designed to maximally evaluate the abstractness of
a model’s reasoning: Models tested on BIB must flexibly combine learning from different types
of training scenarios to solve a novel test scenario. We thus ultimately see BIB and AGENT as
complementary and hope that new models focused on commonsense reasoning about agents will be
evaluated on both.

3Note that in the psychology literature, “theory of mind" typically refers to the attribution of mental states,
such as phenomenological or epistemic states (i.e., perceptions or beliefs) to other intentional agents (Premack
and Woodruff, 1978). In this paper, we address on only one potential component of theory of mind, present from
early infancy, which focuses on reasoning about the intentional states, not the phenomenological or epistemic
states, of others (Spelke, 2016).
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2 Baby Intuitions Benchmark (BIB)

BIB focuses on the following questions: 1) Can an AI system represent an agent as having a preferred
goal object? 2) Can it bind specific preferences for goal objects to specific agents? 3) Can it
understand that physical obstacles might restrict agents’ actions, and does it predict that an agent
might approach a nonpreferred object when their preferred one is inaccessible? 4) Can it represent an
agent’s sequence of actions as instrumental, directed towards a higher-order goal object? 5) Can it
infer that a rational agent will move efficiently towards a goal object?

Following the VOE paradigm, each of BIB’s tasks includes a familiarization phase and a test
phase, together referred to as an “episode." The familiarization phase presents eight successive trials
introducing the main elements of the visual displays used in the test phase and allows the observer
to form expectations about the future behavior of those elements based on their prior knowledge or
learning. The test phase includes an unexpected and expected outcome based on what was observed
during familiarization. Typically, the unexpected outcome is perceptually similar to the familiarization
trials but is conceptually implausible, while the expected outcome is more perceptually different but
involves no conceptual violation. The unexpected outcome is thus unexpected only if the observer
possesses an abstract understanding of the events, and the expected outcome reflects a lower-level,
heuristically, or perceptually based alternative. When VOE is used with infants, their looking time to
each outcome is measured, and infants tend to look longer at the unexpected outcome (Baillargeon
et al., 1985; Turk-Browne et al., 2008; Oakes, 2010).

Inspired by Heider and Simmel (1944), the primary set of visual stimuli present a fully observable
“grid world," shown from an overhead perspective, and populated with simple geometric shapes that
take on different roles (e.g. “agents," “objects," “tools") and provide few cues to those roles. We
chose this type of environment as particularly suitable for testing AI systems (e.g., Baker et al., 2017;
Rabinowitz et al., 2018) because it allows for procedural generation of a large number of episodes,
and the simple visuals focus the problem on reasoning about agents. This design will also allow
infancy researchers to test new questions about infant’s understanding of agents in future work. While
BIB and the baseline models tested here focus on this 2D grid-world environment, we have also
instantiated the stimuli in 3D as a means of varying perceptual difficulty in future studies evaluating
other models (appendix A).

2.1 Can an AI system represent an agent as having a preferred goal object?

Developmental Background. Infants infer that agents have preferences for goal objects, not goal
locations (Gergely et al., 1995; Luo, 2011; Song et al., 2005; Woodward, 1998, 1999; Woodward
and Sommerville, 2000). As illustrated in Figure 2 (left), Woodward (1998)’s seminal study showed
that when 5- and 9-month-old infants saw a hand repeatedly reaching to a ball on the left over a bear
on the right, they then looked longer when the hand reached to the left for the bear, even though the
direction of the reach was more similar in that event to the events in the previous trials. These results
suggest that the infants expected that the hand would reach consistently to a preferred goal object as
opposed to a preferred goal location. Other studies have shown that infants’ interpretations are not
restricted to reaching events. For example, infants attribute a preference for goal objects to a 3D box
during a live puppet show when that box seemingly exhibits self-propelled motion. (Luo, 2011; Luo
and Baillargeon, 2005; Shimizu and Johnson, 2004). When shown an agent repeatedly moving to the
same object at approximately the same location, do machines infer that the agent’s goal is a preferred
object, not location?

Familiarization Trials. The familiarization shows an agent repeatedly moving towards a specific
object in a world with two objects (Figure 2a center). The agent’s starting position is fixed, and
the locations of the objects are correlated with their identities such that the preferred object and
nonpreferred object appear in generally the same location across trials (appendix Figure 9 and 10).

Test Trials. The test uses two object locations that had been used during one familiarization trial,
but the identity of the objects at those locations has been switched. In the expected outcome (Figure
2b), the agent moves to the object that had been their goal during the familiarization, i.e., their
preferred object, but the trajectory of their motion and the location of that object is different from
familiarization. In the unexpected outcome (Figure 2c), the agent moves to the nonpreferred object,
but the trajectory of their motion and the location they move to is the same as familiarization. The
model is successful if it expects the agent to go to the preferred object in a different location.
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(a)  Familiarization (8 trials)

(b)  Test: Expected

(c)  Test: Unexpected

Figure 2: Can machines represent an agent’s preferred
goal object? Inspired by Woodward (1998)’s study
with infants (left), BIB presents an agent navigating to
their preferred goal object in approximately the same
location across eight familiarization trials (a). At test,
the location of the preferred goal object changes. The
expected outcome (b) presents the agent moving to
their preferred goal object in a new location, and the
unexpected outcome (c) presents the agent moving to
their nonpreferred object in the preferred object’s old
location. This evaluation has been rendered in 2D
(middle) and 3D (right).

(a)  Familiarization (8 trials)

(b)  Test: Expected

(c)  Test: Unxpected

Figure 3: Can machines infer that rational agents move
efficiently towards their goals? Inspired by Gergely
et al. (1995) (left), BIB presents a rational agent navi-
gating around an obstacle to its goal object across eight
familiarization trials (a). At test, the rational agent ei-
ther follows an efficient path (b) or an inefficient path
(c).

2.2 Can an AI system bind specific preferences for goal objects to specific agents?

Developmental Background. Infants are capable of attributing specific object preferences to specific
agents (Repacholi and Gopnik, 1997; Kuhlmeier et al., 2003; Buresh andWoodward, 2007; Henderson
and Woodward, 2012). For example, while 9- and 13-month-old infants looked longer at test when
an actor reached for a toy that they did not prefer during a habituation phase, infants showed no
expectations when the habituation and test trials featured different actors (Buresh and Woodward,
2007). When shown one agent repeatedly moving to the same object, do machines expect that that
object is preferred by that specific agent?

Familiarization Trials. The familiarization shows an agent consistently choosing one object over
the other, but objects appear at widely varying locations in the grid world.

Test Trials. The test includes four possible outcomes: the same agent moves to the preferred object
(expected); a new agent moves to the object preferred by the first agent (no expectation) (appendix,
Figure 12); the same agent moves to the nonpreferred object (unexpected); or the new agent moves to
the nonpreferred object (no expectation) (appendix, Figure 13). The model is successful if it has the
same relative expectations as listed above; that is, weak or no expectations about the preferences of
the new agent compared to the familiar agent.

2.3 Can an AI system understand that physical obstacles might restrict agents’ actions, and
does it predict that an agent might approach a nonpreferred object when the preferred
one is inaccessible?

Developmental Background. Infants understand the principle of solidity (e.g., that solid objects
cannot pass through one another), and they apply this principle to both inanimate entities (Baillargeon,
1987; Baillargeon et al., 1992; Spelke et al., 1992) and animate entities, such as human hands (Saxe
et al., 2006; Luo et al., 2009). Infants’ expectations about the objects agents might approach are
also informed by object accessibility. Scott and Baillargeon (2013) demonstrate, for example, that
16-month-old infants expected an agent, facing two identical objects, to reach for the one in the
container without a lid versus the one in the container with a lid. When shown an agent repeatedly
moving to the same object, do machines recognize that the agent’s access to that object might change,
and do they predict that an agent might then approach a nonpreferred object?
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(a) Familiarization (8 trials) (b) Test: Expected (c) Test: Unexpected

Figure 4: Can machines understand that obstacles re-
strict actions? The familiarization trials present an agent
navigating to their preferred object in varied locations
(a). At test, either the preferred object is inaccessible
and the agent goes to the nonpreferred object (b) or the
preferred object is accessible and the agent goes to the
nonpreferred object (c).

Familiarization Trials. The familiarization
shows an agent consistently choosing one ob-
ject over the other, as above, and objects appear
at widely varying locations in the grid world
(Figure 4).

Test Trials. The test presents two new object
locations. In the no-expectation outcome, the
preferred object is now blocked on all sides by
fixed, black barriers, and the agent moves to
the nonpreferred object. In the unexpected out-
come, both of the objects remain accessible, and
the agent moves to the nonpreferred object (Fig-
ure 4). The model is successful if it has the
same relative expectations; that is, weak or no
expectation about the agent’s moving to the nonpreferred object only when the preferred object is
inaccessible.

2.4 Can an AI system represent an agent’s sequence of actions as instrumental, directed
towards a higher-order goal object?

Familiarization (8 trials) Test: Expected Test: Unexpected

(a) No barriers
Familiarization (8 trials) Test: Expected Test: Unexpected

(b) Inconsequential barriers
Familiarization (8 trials) Test: Expected Test: Unexpected

(c) Blocking barriers

Figure 5: Can machines recognize instrumental actions
towards higher-order goals? BIB’s three types of test
trials evaluate machines’ understanding of instrumen-
tal actions. The agent’s goal is initially inaccessible
(blocked by a green removable barrier). During familiar-
ization (left), the agent removes the barrier by retrieving
the key (triangle) and inserting it into the lock. At test,
the agent’s moving directly to the goal is expected when
the green barrier is absent (a) or not blocking the goal
object (b,c); its moving to the key in those cases is unex-
pected.

Developmental Background. Infants represent
an agent’s sequence of actions as instrumental to
achieving a higher-order goal (Carpenter et al.,
2005; Elsner et al., 2007; Hernik and Csibra,
2015; Gerson et al., 2015; Saxe et al., 2007;
Sommerville and Woodward, 2005; Woodward
and Sommerville, 2000). For example, Som-
merville and Woodward (2005) showed that 12-
month-old infants understand an actor’s pulling
a cloth as a means to getting the otherwise out-
of-reach object placed on it. When shown an
agent repeatedly taking the same action to effect
a change in the environment that enables them
to move towards an object, do machines expect
that that object is the goal, as opposed to the
sequence of actions?

Familiarization Trials. The familiarization in-
cludes five main elements: an agent; a goal ob-
ject; a key; a lock; and a green removable bar-
rier (see Figure 5). The green barrier initially
restricts the agent’s access to the object. And so,
the agent removes the barrier by collecting and
inserting the key into the lock. The agent then
moves to the object.

Test Trials. The test phase presents three differ-
ent scenarios for a total of six different outcomes.
In the scenario with no green barrier: the agent
moves directly to the object (expected); or to the
key (unexpected) (Figure 5a). In the scenario
with an inconsequential green barrier: the agent
moves directly to the object (expected); or to the
key (unexpected) (Figure 5b). In the scenario with variability in the presence/absence of the green
barrier: the barrier blocks the agent’s access to the object, and the agent moves to the key (expected);
or, the barrier does not block the object and the agent moves to the key (unexpected). The model is
successful if it expects the agent to go to the key only when the green removable barrier is blocking
the goal object (Figure 5c).
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2.5 Can an AI system predict that a rational agent will move efficiently towards a goal object?

Developmental Background. Infants expect agents to move efficiently towards their goals (Gergely
et al., 1995; Gergely and Csibra, 1997, 2003; Liu et al., 2017, 2019; Colomer et al., 2020). In a
seminal study by Gergely et al. (1995), for example, 12-month-old infants repeatedly saw a small
circle jumping over an obstacle to get to a big circle (see Figure 3 left). At test, the obstacle was
removed, and the small circle either took the same, now inefficient, path to get to the big circle or took
the straight, efficient path. Infants were surprised when the agent took the familiar, inefficient path.
These findings have been replicated by instantiating the agent and object in different ways (as, e.g.,
humans, geometric shapes, or puppets) and by using different kinds of presentations (e.g., prerecorded
or live) (Colomer et al., 2020; Phillips and Wellman, 2005; Sodian et al., 2004; Southgate et al., 2008;
Liu et al., 2017). When infants see an irrational agent, i.e., one moving inefficiently to their goal from
the start, however, they do not form any expectations about that agent’s actions at test (Gergely et al.,
1995; Liu and Spelke, 2017). When shown a rational agent repeatedly taking an efficient path around
an obstacles to its goal object, do machines expect that that agent will continue to take efficient paths,
as opposed to similar-looking paths, relative to the obstacles in the environment?

Familiarization Trials The familiarization includes two different scenarios: a rational agent consis-
tently moves along an efficient path to its goal object around a fixed black barrier in the gird world
(Figure 3a); or, an irrational agent moves along these same paths as the rational agent, but there is no
barrier in the way (appendix, Figure 14b).

Test Trials. The test includes two possible scenarios. One scenario shows only the rational agent,
and it presents one of the familiarization trials but with the barrier between the agent and the goal
object removed or changed in position (such that a curved path is still required). The agent either
moves along an efficient path to its goal (expected) or the agent moves along one of two unexpected
paths, either the exact same, but now inefficient, path that it had during familiarization (path control,
Figure 3) or along a path that is inefficient but takes the same amount of time as the efficient path
(in this latter case, the goal object starts off closer to the agent, appendix Figure 11). The second
scenario shows either the rational or irrational agent taking an inefficient path towards its goal. This
outcome should be unexpected in the case of the rational agent, but should yield no expectation in the
case of the irrational agent (appendix, Figure 14). The model is successful if it expects only a rational
agent to modify its path based on the location of barriers and move efficiently to its goal.

3 Background Training

(a) Single object (b) No-navigation Preference (c) Agent-blocked 
Instrumental action

(d) Single-object Multiple-agents

Figure 6: The four tasks from the background train-
ing set, including the Single-Object Task (a), the No-
Navigation Preference Task (b), the Agent-Blocked
Instrumental Action Task (c), and the Single-Object
Multiple-Agent Task (d). For tasks (a)-(c), only the test
trials are shown here. For task (d), the agent switches
during familiarization and continues during test. An ex-
ample of two agents in the same episode are shown here.

While infants in the lab make meaningful in-
ferences about novel stimuli and environments
with only a brief familiarization phase, BIB in-
cludes tens of thousands of background episodes
as a generous stand-in for this type of in-lab fa-
miliarization. Models should therefore not be
surprised merely by BIB’s elements and dynam-
ics. Just as infants may already have knowledge
about agents, objects, and places prior to com-
ing to the lab, moreover, we do not intend to
limit models to just BIB’s background training
prior to being tested. Although learning-centric
approaches will learn something about agents
if trained on the background set, either supple-
mental pretraining or additional prior knowledge
can be enriched by the background training for
a model to approach the benchmark success-
fully. The episodes in the background training
are structured similarly to those in the evalua-
tion, although the familiarization and test trials
are drawn from the same distribution for the
background training only. Similar to IntPhys
(Riochet et al., 2018) and ADEPT (Smith et al.,
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2019), we only provide expected outcomes at test for the background training. There are four training
tasks:

Single-Object Task. The agent navigates to an object at some varied location in the environment
(Figure 6a). This task is different from the evaluation tasks, where there are two objects or the
arrangement of the barriers in the environment changes. With this training, models can learn how
agents start and end trials, how agents move, and how barriers influence agents’ motion. We provide
10,000 episodes of this type.

No-Navigation Preference Task. Two objects are located very close to the agent’s initial starting
location but at varied locations, and the agent approaches one object consistently across trials (Figure
6b). The task allows the model to learn that agents display consistent preference-based behavior.
Critically, the navigation in these trials is trivial compared to the evaluation trials, so navigation to a
preferred goal object is not trained. We provide 10,000 episodes of this type.

Single-Object Multiple-Agent Task. One object is located very close to the agent’s initial starting
location but at varied locations (Figure 6d). At some point during the episode, a new agent takes
the initial agent’s place (for example, the initial agent could be replaced at the fourth trial, and all
subsequent trials, including the test trial, would have the new agent). The task allows the model to
learn that multiple agents can appear across trials. This task differs from the evaluation task, where
there are two objects and a new agent appears only in the test trials. We provide 4,000 episodes of
this type.

Agent-Blocked Instrumental Action Task. The trial starts with the agent confined to a small region
of the grid world, blocked by a removable green barrier (Figure 6c). The agent collects the key and
inserts it into the lock to make the barrier disappear. The agent then navigates to the object. This task
allows the model to learn that the green barrier obstructs navigation and that inserting the key in the
lock removes that barrier. These trials differ from the evaluation in that the removable barriers are
around the agent instead of the object. We provide 4,000 episodes of this type.

To be successful at the evaluations, models must acquire or enrich their representations of agents for
flexible and systematic generalization. For example, models have to combine acquired knowledge of
navigation (Single-Object Task) and preferences (No-Navigation, Preference Task) to be successful
at the evaluation testing their understanding that agents have preferences for goal objects, not goal
locations (section 2.1).

4 Baseline Models

When being evaluated on BIB, a model cannot actively sample from the environment; it can only use
the samples provided in the episodes themselves. We therefore did not test baseline models using
traditional approaches in imitation learning (IL), inverse RL (IRL), and RL (Ng et al., 2000; Abbeel
and Ng, 2004; Ziebart et al., 2008) because they require substantial privileged information, such as
access to the environment to actively sample trajectories using the modelled policy, and, in the case
of the RL algorithms, an observable reward. Moreover, these approaches often model one agent at
a time, and BIB requires the same model to infer the behavior of different agents across different
episodes (although recent approaches in deep RL and IRL try to mitigate this latter issue with work in
meta-RL and meta-IRL (Xu et al., 2019; Yu et al., 2019; Rakelly et al., 2019) that allows for similar
cross-episode adaptation). Although this feature of BIB makes it less suitable for testing RL models,
it is essential to BIB’s design because it reflects infants’ reasoning. Infants rely on little to no active
interaction with a particular environment to make meaningful inferences and predictions about the
agents in that environment, and infants’ inferences are far more abstract than their particular observed
or active experience (Skerry et al., 2013; Gergely et al., 2002; Liu et al., 2019; Zmyj et al., 2009).

We thus tested three baseline models spanning different approaches including video modeling,
behavior cloning (BC), and offline RL (see appendix C for full model specifications). Models were
trained passively and through observation only. An episode in BIB can be broken down into nine
trials with trajectories, {τi}9i=1, where τi∀i ∈ [1, 8] are the familiarization trials and τ9 is the test trial.
Each trajectory τi consists of a series of state (frames from the video) and action pairs (sij , aij)Tj=1.
The action space of the agents in BIB is of size eight; agents can move along the two axes or along
the diagonals. Additionally, the transitions are deterministic.
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Figure 7: Architecture of the video baseline model inspired
by Rabinowitz et al. (2018). An agent-characteristic em-
bedding is inferred from the familiarization trials using a
recurrent net. This embedding, with a frame from the test
trial, is used to predict the next frame of the video using a
U-Net (Ronneberger et al., 2015).

Input Frame Model Prediction Target Frame

(a) The model predicts that the brown agent will go to the green object
instead of the gray object, its preferred goal object during familiarization.

Input Frame Model Prediction Target Frame

(b) The model predicts that the blue agent will go to the inaccessible
cyan object instead of an accessible object.

Input Frame Model Prediction Target Frame

(c) The model predicts that the blue agent will go to the inaccessible
orange object instead of performing the instrumental action to first collect
the triangular key.

Figure 8: The most surprising frame (the frame with
the highest prediction error) from the test trial for the
video model taken from the evaluation tasks. Examples
of failed expectations are shown here.

Our baseline models either predict the next frame in the video (see Figure 7 for architecture) or the
actions taken by the agent (see appendix C.2). To encode the context in the form of the familiarization
trials, we use a sequence of frames (for the video model) and frame-action pairs (for the BC models).
In terms of the architecture, the baseline models take inspiration from a state-of-the-art, neural-
network-based approach to encode the characteristic of an agent: the theory of mind net (ToMnet)
model in Rabinowitz et al. (2018). We encode the familiarization trials as context using either a
bidirectional LSTM or an MLP. In addition to video modeling and BC, we also try an offline-RL
baseline (Siegel et al., 2020). Offline-RL algorithms (Levine et al., 2020) are designed to learn a
policy from demonstrations by using privileged information in the form of rewards received by the
agent. We engineer a reward function based on the distance of the agent from the goal to train the RL
policy (see appendix C.3).

During evaluation, the "expectedness" of a test trial, in the context of the previous familiarization
trials, was inferred by a model’s error on the most ‘unexpected’ step (i.e., the step with the highest
prediction error). The most ‘unexpected’ step was chosen for comparison as alternatives (like the
mean expectedness of steps) consistently resulted in lower VOE scores. For each evaluation episode,
we first calculated the model’s relative accuracy, i.e., whether the model found the expected video in
each pair more expected than the unexpected video (chance is 50%).

5 Results
The models were trained on 80% of the background training episodes (training set), and the rest of
the episodes were used for validation (validation set). A comparison of the MSE loss (on pixels for
the video model and in the action space for the BC and RL models) on the training and validation
sets indicated that the models had learned the training tasks successfully (see appendix C).

The results of our baselines are presented in Table 1. The offline RL model performs similarly
to the BC approach (see appendix C.3 for details), so we do not consider the offline RL model
further (offline RL is known to provide little improvement over BC when the demonstrations are
not noisy (Siegel et al., 2020)). Comparing the performance of BC on BIB and AGENT (Shu et al.,
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BIB AGENCY TASK BC-MLP BC-RNN VIDEO-RNN

PREFERENCE 26.3 48.3 47.6
MULTI-AGENT 48.7 48.2 50.3
INACCESSIBLE GOAL 76.9 81.6 74

EFFICIENCY: PATH CONTROL 94.0 92.8 99.2
EFFICIENCY: TIME CONTROL 99.1 99.1 99.9
EFFICIENCY: IRRATIONAL AGENT 73.8 56.5 50.1

EFFICIENT ACTION AVERAGE 88.8 82.5 83.1

INSTRUMENTAL: NO BARRIER 98.8 98.8 99.7
INSTRUMENTAL: INCONSEQUENTIAL BARRIER 55.2 78.2 77.0
INSTRUMENTAL: BLOCKING BARRIER 47.1 56.8 62.9

INSTRUMENTAL ACTION AVERAGE 67.0 77.9 79.9

Table 1: Performance of the baseline models on BIB. The scores quantify pairwise VOE judgements.

2021), we see that BC performs worse on BIB. BC and offline-RL are known to perform poorly on
out-of-distribution and systematically different scenarios from training to test (Siegel et al., 2020).
Because systematic generalization is a primary feature of BIB but not AGENT, this is likely why BC
performs worse on BIB.

The two models we tested with an RNN (Video-RNN; BC-RNN) perform at chance on the Preference
Task (see Figure 8a for predictions made by the video model); they tend to predict that an agent will
go to the closer object (this prediction is made in about 70% of trials). The models thus ignore the
agent’s preference, established during familiarization. This finding is especially striking relative to
the models’ success on the No-Navigation, Preference Task from the background training and could
result from differences in the distance at which the objects are placed in the scene. In the background
training, the objects are close to the agent, yielding short trial lengths during familiarization. The
characteristic encoder RNN might find it difficult to generalize to the evaluation tasks’ longer
sequences. The BC-MLP model is confused by how the object locations correlate with their identity,
encoding an agent’s preference for a goal location instead of a goal object. This too is surprising, as
the background training provides evidence that agents prefer object identities, not specific locations.
None of these models, as a result, succeed in recognizing that agents have preferences and goals for
specific objects.

The models also fail on the Multi-Agent Task, again tending to predict that an agent will go to the
closer object regardless of any established preferences. Consistent with this failure, the models also
fail to map specific preferences to specific agents. The models do slightly better than chance on the
Inaccessible Goal Task. As seen in Figure 8b, the video model still, nevertheless, frequently predicts
that the agent will go to the inaccessible goal. The models are proficient at finding the shortest
path to the goal in the Efficiency Task (appendix Figure 16a), leading to high accuracy on both
sub-evaluations that test for efficient action: Path Control and Time Control (Table 1). However, the
two models with an RNN fail to modulate their predictions based on whether the agent was rational or
irrational during familiarization (Table 1). The BC-MLP has a weak expectation of rationality from
an irrational agent, scoring slightly higher that the two RNN models on this task. Finally, the models
perform above chance on the Instrumental Action Task, but performance on the sub-evaluations
(Table 1) indicate that they rely on the simple heuristic of directly going to the goal object rather
than understanding the nature of the instrumental action (Figure 8c). This heuristic leads to higher
scores on sub-evaluations with no barrier and an inconsequential barrier (Table 1) but lower scores on
the sub-evaluation with a blocking barrier. This poor performance may be due to the difference in
the relations between the agent and barrier in the background training (where the agent is confined;
Figure 6c) and evaluation (where the object is confined; Figure 5).

6 General Discussion
We introduced the Baby Intuitions Benchmark (BIB), which tests machines on their ability to reason
about the underlying intentionality of other agents by only observing their actions. BIB is directly
inspired by the abstract reasoning about agents that emerges early in human development, as revealed
by behavioral studies with infants. BIB’s adoption of the VOE paradigm, moreover, means both that
its results can be interpreted in terms of human performance and that low-level heuristics can be
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directly evaluated. While baseline, deep-learning models successfully generalize to BIB’s training
tasks, they fail to systematically generalize to the evaluation tasks even though the models incorporate
theory-of-mind-inspired architectures (Rabinowitz et al., 2018).

What kinds of models might succeed on BIB? Shu et al. (2021) proposes a Bayesian inverse planning
model for success on AGENT’s agency-reasoning tasks. Extending this structured Bayesian approach
to BIB is not straightforward, however, as it requires features that are not currently provided. Recent
approaches in deep imitation learning and inverse RL, especially work in meta-IL and meta-IRL
(Xu et al., 2019; Yu et al., 2019) that allows for test-time adaptation, also show promise and could
ultimately lead to more human-like reasoning about other agents. Extending these approaches to BIB
is nevertheless also non-trivial since they require active sampling of the environment, which is not
something that BIB allows. We hope that BIB will catalyze future research in these directions.

While the comparison between human and machine performance will be bolstered by future behavioral
studies with infants, the results from the baseline models already shed new light on critical differences
between human and artificial intelligence (also see appendix D). For example, across tasks, the
baseline models tended to predict that an agent would move to the closer of two objects, regardless
of the agent’s previously demonstrated preference for only one of the objects. And, while models
succeeded in predicting that an agent would move efficiently to an object, they over-generalized that
efficiency principle to include agents who had previously demonstrated inefficient, irrational actions.
For infants, object-based preferences and efficient, goal-directed action instead serve to enrich their
understanding of the intentions of others. For example, when infants observe an agent going farther
to a particular object or exerting more effort to reach it, they can attribute both a preference for that
object to that agent and a value to that preference (Liu et al., 2017).

BIB also raises new questions about the foundations of common-sense reasoning about agents for
both humans and machines alike. For example, the “extended familiarization" needed for training
AI models (i.e., the background training) potentially reveals a striking difference between how BIB
might challenge minds versus machines. While both infants and AI systems may have built-in
knowledge and/or experience prior to participating in BIB, infants likely need only eight, as opposed
to thousands, of videos of shapes moving around grid worlds to successfully apply their reasoning
about agents to new, test events presented in that medium. Nevertheless, it remains unknown whether
infants might also benefit from some kind of background training meant for machines; such designs
have never been tested with infants. Relatedly, BIB challenges the generalizability of early emerging,
human common-sense reasoning about agents. How well do humans recognize simple shapes with
simple movements and minimal cues to animacy (e.g., no eyes/gaze direction, no distinctive sounds,
and no emotional expressions) as agents with intentionality? Do navigation- versus reaching-contexts
deferentially shift humans’ attention to locations versus objects as candidates for an agent’s goal?
How does a comprehensive set of agency-reasoning abilities relate to one another within the same
individual? Most of the existing infant literature on which BIB is based presents infants with richer
cues to animacy (in the form of live-action or animated displays from frontal or three-quarters points
of view), events with no or minimal navigation to establish preferences for goal objects, and individual
tests of one competency or another, outside of a unified framework.

The origins and development of humans’ intuitive understanding of agents and their intentional
actions have been studied extensively in developmental cognitive science. The representations and
computations underlying such understanding, however, are not yet understood. BIB serves as a test for
computational models with different priors and learning-based approaches to achieve common-sense
reasoning about agents like human infants. A computational description of how we reason about
agents could ultimately help us build machines that better understand us and that we better understand.

Finally, BIB serves as a key step in bridging machines’ impoverished understanding of others’ mental
states with humans’ rich one. To achieve a human-like theory of mind, a model would not only have
to understand intentionality, which is tested in BIB, it would also have to understand the perceptions
and beliefs of other agents. A combined, comprehensive understanding may underlie human theory of
mind and lead to, for example, success in a false belief task, in which humans have expectations about
where an agent would search for a goal object based on where that agent last saw it (Baron-Cohen
et al., 1985; Spelke, 2016). A benchmark that focuses on reasoning about agents’ phenomenological
and epistemic states is thus a natural extension of BIB and could further advance our understanding
of both human and artificial intelligence.
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